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Abstract

In the first part of this dissertation a framework for categorizing entropic measures of

nonclassical correlations in bipartite quantum states is presented. The measures are

based on the difference between a quantum entropic quantity and the corresponding

classical quantity obtained from measurements on the two systems. Three types of

entropic quantities are used, and three different measurement strategies are applied to

these quantities. Many of the resulting measures of nonclassical correlations have been

proposed previously. Properties of the various measures are explored, and results of

evaluating the measures for two-qubit quantum states are presented. To demonstrate

how these measures differ from entanglement we move to the set of Bell-diagonal

states for two qubits, which can be depicted as a tetrahedron in three dimensions.

We consider the level surfaces of entanglement and of the correlation measures from

our framework for Bell-diagonal states. This provides a complete picture of the

structure of entanglement and discord for this simple case and, in particular, of their

nonanalytic behavior under decoherence. The pictorial approach also indicates how

to show that all of the proposed correlation measures are neither convex nor concave.

In the second part we look at two practical interferometric setups that use

nonclassical states of light to enhance their performance. First we consider an
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interferometer powered by laser light (a coherent state) into one input port and ask

the following question: what is the best state to inject into the second input port,

given a constraint on the mean number of photons this state can carry, in order

to optimize the interferometer’s phase sensitivity? This question is the practical

question for high-sensitivity interferometry. We answer the question by considering

the quantum Cramér-Rao bound for such a setup. The answer is squeezed vacuum.

Then we analyze the ultimate bounds on the phase sensitivity of an interferometer,

given the constraint that the state input to the interferometer’s initial 50:50 beam

splitter B is a product state of the two input modes. Requiring a product state is a

natural restriction: if one were allowed to input an arbitrary, entangled two-mode

state |Ξ〉 to the beam splitter, one could generally just as easily input the state B|Ξ〉

directly into the two modes after the beam splitter, thus rendering the beam splitter

unnecessary. We find optimal states for a fixed photon number and for a fixed mean

photon number. Our results indicate that entanglement is not a crucial resource for

quantum-enhanced interferometry. Initially the analysis for both of these setups is

performed for the idealized case of a lossless interferometer. Then the analysis is

extended to the more realistic scenario where the interferometer suffers from photon

losses.
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Chapter 1

Introduction

1.1 Motivation

With the rapid technological development of the last century, the performance of

nearly any device one can think of has been dramatically improved. The generic

example here is the exponential increase in transistor densities of integrated circuits,

known as Moore’s law. While this predicted growth has been observed for almost

fifty years, the first signs of its slowdown might soon become apparent [ZHB03]. This

is not really surprising given the discrete structure of matter: A transistor cannot

be smaller than one atom. One can still increase the computing power at this point,

however, by simply using more resources and increasing the size of the computer.

Quite generally, limits on how well any device can perform, given a defined set of

resources, are imposed by Nature. As Nature is described using quantum mechanics,

the most fundamental limitations on device performance need a quantum-mechanical

treatment.

While the description needs to be quantum mechanical to deliver accurate predic-

tions, an interesting distinction can be made between devices using resources of a

classical nature and devices using a more general class of resources that do not have a

classical description. The goal of research in quantum information theory (QIT), for
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example, is to classify and pin down the differences between information-processing

protocols that use quantum resources and those protocols that have a full description

in classical information theory.

Arguably, most of the researchers in quantum information theory are drawn to this

field because of the exciting prospect it offers to tackle information-processing tasks

that have been deemed infeasible on classical information processors no matter what

their size is. The famous example that every student of the field cites when justifying

their research to people not familiar with QIT, is Shor’s algorithm. This algorithm

allows factoring of integers on a quantum computer in polynomial ‘runtime’, a problem

on whose classical hardness the security of the widely used RSA cryptosystem is based

on. While Shor’s algorithm presents the most striking selling point for research in

QIT, current technology is still decades away from implementing a version of Shor’s

algorithm that could be used by people interested in breaking RSA encryption.

Moving from the ambitious goal of performing a task not feasible classically, such

as Shor’s algorithm or the idea of quantum simulation, to the more modest goal of

simply performing a task which is feasible classically, but that can be done better

using quantum resources, we can see various examples, where research in quantum

information theory has led to ideas that either have been implemented or are at

least implementable with current or near-future technology. Quantum cryptography

systems are commercially available, and the use of quantum resources in metrological

setups allowed for the design of ‘quantum clocks’, accurate to one second in 3.4 billion

years and thus able to demonstrate gravitational time dilation within a single room.

Nonclassical resources are also used to upgrade LIGO, the world’s most sophisticated

and powerful laser interferometer, in the hopes that this will push its sensitivity far

enough to make the first direct observation of gravitational waves a reality.

On the one hand, research in QIT is devoted to analyzing practical situations and

determining how quantum resources have to be deployed in these situations to provide

a benefit. On the other hand, scientists working in the field explore the foundations of

the theory, trying to get a better grasp on what it is in the very structure of quantum

mechanics that is responsible for these quantum enhancements.
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The research presented in this dissertation touches on both of these branches. In

the first part nonclassical correlations beyond entanglement are discussed. These

correlations might turn out to be a key piece in the puzzle of pinning down the

resource that enables quantum systems to process information more efficiently than

their classical counterpart. The second part is devoted to analyzing the ultimate

limits on a practical interferometric setup that is allowed the use of nonclassical states

of light. Such an interferometer can be used to measure various quantities, such as

small distances, more precisely than possible with a standard laser interferometer

and therefore could provide new insights in various fields of research.

1.2 Nonclassical correlations

In order to represent quantum information efficiently a quantum-information-pro-

cessing system has to be composed of parts [BKCD02]. For multi-partite systems,

correlations between these parts can arise that are conceptually different from corre-

lations between classical systems.

One kind of nonclassical correlation is entanglement [HHHH09]. Entanglement is

the crucial resource for such quantum-information-processing protocols as quantum

key distribution, teleportation, and super-dense coding [HHHH09]. Moreover, Josza

et al. [JL03] and Vidal [Vid03] showed that entanglement is a resource for pure-state

quantum computation. A pure quantum state is unentangled if it is a product of

pure states for each part. Josza et al. and Vidal provided a classical algorithm that

efficiently simulates any pure state quantum computation where entanglement is

negligible (more precisely, where entanglement is restricted to blocks of processing

elements of a fixed size). While the exact amount of entanglement required for a

pure-state quantum algorithm that promises an exponential speedup over a classical

one performing the same task can be quite small [VdN13], Josza et al.’s and Vidal’s

results nevertheless prove that entanglement is necessary. The constructions by

Josza et al. [JL03] and Vidal [Vid03] relies on the fact that there exists an efficient

description of pure states that are not entangled.
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For mixed states, the situation is more complicated. A mixed state is unentangled

(separable) if it can be written as an ensemble of pure product states. Operational

measures of entanglement are notoriously difficult to calculate for mixed states and

even the boundary between separability and entanglement is difficult to characterize.

In general, one can say, however, that the set of separable states is a convex set,

is invariant under local unitary operations, and has dimension (as a manifold) as

large as the space of mixed states [HHHH09]. This dimension, unfortunately, is the

reason why for unentangled mixed states, no efficient description is available and the

construction from [JL03] cannot be applied. It is unknown whether entanglement is

necessary for an exponential speedup in an arbitrary and thus mixed-state quantum

computation.

In the realm of mixed states, separable states can have nonclassical correlations

even though they are unentangled. A state with only classical correlations, often called

a classical state, is one that is diagonal in a product basis, for then the correlations

are described by a joint probability distribution for classical variables of the parts.

These purely classical states are a set of measure zero; this is suggested by the fact

that any classical state can be perturbed infinitesimally to become nonclassical by

making two of the eigenvectors infinitesimally entangled and is proved rigorously

in [FAC+10].

The fact that the states without any nonclassical correlations are a set of measure

zero begs the question of whether there is an efficient description of these kinds

of states. If so, a similar construction to the one proposed by Josza and Vidal

might be used to show that a more general type of nonclassical correlation, not just

entanglement, is a requirement for exponential speedups in quantum algorithms.

Eastin [Eas10] followed this agenda and investigated whether a computation only

involving classical states can be simulated efficiently on a classical computer. While

he was able to show that computations comprised of qubits and gates involving not

more than two qubits, provided the state remains a product state after all gates, can

indeed be simulated efficiently on a classical computer, his result is apparently not

extendable to a more general setting, and no one has taken up the challenge of finding
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a more general result in this direction.

Another result hinting at a possible connection between nonclassical correlations

beyond entanglement and quantum speedups is related to the model ‘deterministic

quantum computation with one quantum bit’ (DQC1) [KL98]. While this model

is not universal, it can perform at least one specific task for which there is no

efficient classical algorithm known. It was shown in [DFC05] that in this model

only a negligible amount of entanglement is present; Datta et al. [DSC08], however,

demonstrated the presence of another type of nonclassical correlation, called quantum

discord, in typical instances of DQC1.

While the connection of nonclassical correlations to quantum speedups remains

tenuous [DacVB10], even this tenuous connection sparked a considerable interest.

A variety of measures have been proposed to quantify nonclassical correlations

for bipartite systems [OZ01, OHHH02, Luo08a, PCMH09, WPM09, BT10, LCS11,

MPS+10], in ways that can be nonzero for separable, but nonclassical states.

Our contribution to this field is to present a framework that unifies several of

the proposed measures of quantum correlations that go beyond entanglement. While

some new measures emerge from this framework, its main purpose is to investigate

how the proposed measures relate to one another and to determine whether there is

anything special about several existing measures, including quantum discord. Moving

to Bell-diagonal states, a specific set of two-qubit states parametrized by three real

parameters, allows us then to illustrate some of the properties of these correlation

measures; conveniently all the different measures of non classical correlations agree

on this subset of two-qubit states, and we can use a pictorial approach to explain

some of the properties that are common to all these measures.
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1.3 Interferometry with nonclassical states

of light

The second topic that will be discussed within this thesis moves away from the

foundational topic of quantum correlations to a more practically oriented problem in

the field of quantum metrology. Specifically we will investigate how to use the quantum

resource of nonclassical light fields most efficiently to optimize the performance of a

practical interferometer.

The discovery that squeezed vacuum, injected into the normally unused port of

an interferometer, provides phase sensitivity below the shot-noise limit [Cav81] led

to thirty years of technology development, beginning with initial proof-of-principle

experiments [XWK87, GSYL87] and culminating recently in the use of squeezed light

to beat the shot-noise limit in the GEO 600 gravitational-wave detector [C+11] and

the Hanford LIGO detector [AAA+13].

In the last decade much work has been devoted to exploring ultimate quantum

limits on estimating the differential phase shift between two optical paths and to

finding the states that achieve these limits. Given exactly N photons, the optimal

state, in the absence of photon loss, is a N00N state, (|N , 0〉 + |0,N〉)/
√

2 [Ger00,

BKA+00, GBC02, LKD02], i.e., a superposition of all photons proceeding down one

path with all photons proceeding down the other path. The N00N state is the optical

analogue of the cat state that is optimal for atomic (Ramsey) interferometry [BIWH96].

Ideally, the sensitivity of a phase estimation setup using N00N states scales linearly

with the energy used to produce the state. This provides a quadratic improvement

over the best scaling possible when only employing classical resources, where the

particle nature of photons gives rise to the shot-noise limit. Since the N00N state

is extremely sensitive to photon loss, considerable effort has gone into determining

optimal N -photon input states and corresponding sensitivities in the presence of

photon loss [DDDS+09, KSD11, EdMFD11a, EdMFD11b].

While these states indeed deliver optimal or near-optimal performance, given a
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fixed input energy, we argue that they are not of practical relevance because they are

very hard to produce with current technology and are therefore only available with

quite low photon numbers. Consequently, the phase resolution obtained from using

these optimal states cannot compete, even remotely, with the resolution obtained

from a classical interferometer operating at or near the shot-noise limit with a strong,

commercially available laser. This does not mean, however, that nonclassical states

are useless for metrology. The use of squeezed states to enhance the sensitivity of the

GEO 600 and LIGO interferometers is testimony to the efficacy of squeezed light in a

situation where the lasers powering the interferometer have been made as powerful as

design constraints allow.

In the work we present here, we turn the focus away from interferometry with

states which can only be created with very small numbers of photons and instead start

from the assumption of a more practical interferometric setting. We will still search

for nonclassical input states that perform best, but we will do so under additional

constraints that ensure that the states we find are not just of academic interest.

Inspired by Caves’ original proposal, we will look at an interferometer whose main

source of power is a laser and ask the question: What is the optimal nonclassical

state to inject into the second input port to maximize the interferometers phase

sensitivity? In this way the main power production is separated from the production

of nonclassical light. One can still make use of strong commercially available lasers,

while the exotic state of light does not need to be powerful to obtain a significant

improvement of the devices performance. We will prove that squeezed vacuum is the

optimal choice in this setting, thus showing that in this sense the current LIGO setup

is optimal.

The main problem in the production of N00N states is the challenge to entangle

two optical modes. To avoid this problem, another sensible question of practical

importance is the following: what is the optimal unentangled input state to an

interferometer? If we pursue this approach, any entanglement necessary for enhanced

resolution gets produced by the first beam splitter of the interferometer. We analyze

this situation for the two cases of a fixed photon number and mean photon number
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constraint. Making this simple assumption, that the state in the two input modes of

the interferometer is of product form, we find for the case of fixed photon number, that

the optimal sensitivity is given by identical or fraternal twin-Fock states, depending

on whether the photon number is even or odd. For the case of a mean-photon-number

constraint, we will see that squeezed vacuum, now in both input modes, again yields

the best sensitivity. While this product state of two squeezed vacua has essentially

the same sensitivity as a N00N state, it happens to be an eigenstate of the first beam

splitter of the interferometer. As a consequence, no modal entanglement is generated

at all before the state is subjected to the phase shift. Hence, contrary to what one

might expect given the discussion of N00N states, our findings indicate that modal

entanglement is not a crucial resource in quantum-enhanced interferometry.

The analysis of the two scenarios described above is first performed under the

assumption of an idealized interferometer, that is an interferometer which is not

subjected to photon losses. We make use quantum Fisher information [Hel76, Hol11,

BC94] as the figure of merit to quantify the performance of a particular input state

to determine the phase shift occurring in the interferometer.

The main source of ‘noise’ that any linear optical setup is subjected to is loss

of photons. Consequently any real world interferometer has to deal with photon

losses. In recent years it has been shown by several groups [FI08, DDDS+09, KSD11,

EdMFD11a] that losses can be very detrimental to the performance of any state in

an interferometric setup. Most important was the observation that asymptotically, as

the mean photon number employed to produce a state goes to infinity, no state is

able to achieve the sought after ‘Heisenberg scaling’, the quadratic improvement over

the best classical scaling displayed by N00N states in the lossless regime.

In the light of this, an analysis that includes photon losses is desirable whenever

ultimate limits of sensitivities are discussed. Our case, being chiefly motivated by

practical concerns, makes a close account of the effects of losses mandatory. In the last

part of this dissertation, we revisit the analysis of the optimal state for a laser-powered

interferometer and for an interferometer powered by an arbitrary product state, given

a mean photon number constraint, and extend the analysis to the case where photon
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losses occur in the setup.

Losses transform pure states to mixed states and unlike for the pure-state case,

there is no general, explicit expression for the quantum Fisher information available.

This makes an analysis including losses much harder, as it is not possible to incorporate

losses into calculations analogous to those performed for the lossless case. Using some

additional tools, however, we are able to show that for the cases of practical interest,

the optimal states for the lossless case remain optimal (or very nearly so) even when

photon losses degrade the performance of the interferometer.

1.4 Organization of this dissertation

As stated above, this dissertation is comprised of contributions to two topics in

quantum information theory, so it is divided into two distinct parts. The first part,

Chaps. 2–5, deals with the foundational topic of nonclassical correlations that go

beyond the notion of quantum entanglement, while the second part, Chaps. 6–8,

treats a more practical question in the field of interferometry.

Within the first part, Chap. 2 presents some concepts of classical information theory

and their counterparts in quantum information theory. It provides the background

and introduces notation used in the first part of the dissertation. Chapter 3 discusses

some results on measures of nonclassical correlations, some of which are investigated

in more detail in Chap. 4, the central chapter for this first part. In this central

chapter, a framework is introduced that demonstrates the relations between various

measures of quantum correlations that have been proposed independently and that

highlights the special properties of particular measures including quantum discord.

The first part concludes with Chap. 5, where we investigate specific properties of

these nonclassical correlation measures on a convenient subset of two-qubit states.

The second part of the dissertation starts in Chap. 6 with a basic discussion of

parameter estimation and, more specifically, why Fisher information can be used as

a figure of merit when one is interested in the sensitivity of a particular estimation
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scheme. Chapters 7 and 8 give the central results of the analysis. Chapter 7

investigates optimal input states to an interferometer under certain constraints

motivated by practical considerations in the absence of losses. This relatively simple,

but important analysis is extended in Chap. 8 to the situation where the interferometer

is subject to photon losses. The analysis that includes losses requires considerably

more technical apparatus than the lossless analysis, but confirms its main conclusions

about which input states are optimal.

1.5 List of publications

The following provides a list of publications encompassing most of the work presented

in this dissertation.

1. M. D. Lang and C. M. Caves, Quantum discord and the geometry of Bell-diagonal
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2. M. D. Lang, C. M. Caves and A. Shaji, Entropic measures of non-classical

correlations, International Journal of Quantum Information 9, 1553-1586 (2011).

3. M. D. Lang and C. M. Caves, Optimal quantum-enhanced interferometry using

a laser power source, Physical Review Letters 111, 173601 (2013).

4. Z. Jiang, M. D. Lang and C. M. Caves, Mixing nonclassical pure states in a

linear-optical network almost always generates modal entanglement, Physical

Review A 88, 044301 (2013).

5. M. D. Lang and C. M. Caves, Optimal quantum-enhanced interferometry, Phys-

ical Review A 90, 025802 (2014).

6. S. A. Haine, S. S. Szigeti, M. D. Lang, and C. M. Caves, Heisenberg-limited

metrology with information recycling, Physical Review A, 91, 041802(R) (2015).

The first two items in the list report the results of the first part of the dissertation,

i.e., the results on measures of nonclassical correlations. Items 3–6 are related to the
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second part of the dissertation, i.e., the results on practical interferometry. Items 3

and 5 are concerned with lossless interferometry in the two scenarios discussed in

Chap. 7. Item 4 presents related results on how entanglement is generated in linear

optical networks, and item 6 discusses applications of quantum Fisher information to

an interferometric technique called information recycling. The results in items 4 and 6

are not discussed in the dissertation. The work on lossy interferometers, reported in

Chap. 8, is in preparation for publication.
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Chapter 2

Information Theory in the classical

and the quantum world

2.1 Introduction

In this chapter I will present some basic concepts and quantities important in classical

information theory and their generalization to the quantum world. My goal here is to

describe these concepts such that someone outside of the field of quantum information

can follow the main points of this dissertation. I do not intend to be rigorous when

introducing some mathematical concepts, but will instead try to provide simple

examples to encourage an intuitive understanding of these concepts. A detailed

discussion of most of the following can be found in [NC00].

2.2 Bits

Arguably the most fundamental concept in all of information theory is the concept of

a binary digit or as it is commonly called a bit. A bit is some system that can be in

either of two states. Bits are used to store information. Physically, say in a computer,

this is typically done on an integrated circuit, where voltage in a particular part of the
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circuit is used to represent a bit. The two states a bit can take are represented by a

‘high’ and a ‘low’ voltage. In the following we will not be concerned about the physical

realization of a bit, but rather talk about the abstract concept. This abstraction

away from particular physical realizations is the hallmark of an information theory.

As is standard practice, I will label the two states a bit can take by ‘0’ and ‘1’.

2.2.1 Entropy

The most basic quantity in classical information theory, used to quantify information,

e.g., the information carried by a bit, is the Shannon entropy H. Given a random

variable A with an associated probability distribution (or probability mass function)

pa, the Shannon entropy H(A) of this random variable is given by [NC00]

H(A) ≡ −
∑
a

pa log pa. (2.1)

We will use the convention here and in the following that logarithms are to be taken

to base 2. This will fix the unit of information to be bits. The above quantity tells

us the amount of information we gain, on average, from learning the value of the

random variable A.

An example of this would be a coin toss. Having two possible outcomes, ‘heads’

and ‘tails’, a coin toss can be thought of as a random bit A. Even though I will be

talking about a coin toss, I will use the standard convention for bits ‘0’ and ‘1’ to

label the outcomes. For a fair coin toss, we have

p0 = p1 =
1

2
→ H(A) = 1. (2.2)

This means we gain 1 bit of information by looking at the outcome of the fair toss.

On the other hand, if we look at the outcome of a maximally biased coin, with

p0 = 0, p1 = 1 → H(A) = 0, (2.3)

we will gain no information, as there was no uncertainty to start with: the outcome

of the toss was determined before we tossed the coin.
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A strong operational motivation of why it is expression (2.1) that is commonly used

to quantify the information is provided by Shannon’s source coding theorem [CT12],

which links H(A) to the minimal average length of bit strings that faithfully represent

the information in the random source A.

If we consider one additional system, say another bit B, we will use the joint

entropy H(A,B) to quantify the overall information in this joint system. By analogy

with the above, the joint entropy is defined as

H(A,B) ≡ −
∑
a,b

pa,b log pa,b, (2.4)

where pa,b is the joint probability density (mass) function, for system A being in the

state a and system B being in the state b. Again take a coin toss as an example. We

can imagine two independent and fair coins tossed together. We have

p0,0 =
1

4
= p0,1 = p1,0 = p1,1 → H(A,B) = 2. (2.5)

It makes sense intuitively that the information gained from 2 independent fair coins

is twice the amount from a single fair coin. In the next section we will see what

happens when the two coins are not independent.

2.2.2 Correlation and Mutual information

The two random variables A and B can be correlated, in which case they share some

information. As an example for perfect correlation, one could image two fair coins

glued together by their edges, both facing ‘heads’ up. The outcome of coin A is still

completely random, but once we look at coin A, we know the outcome of coin B.

Looking again at the probabilities and entropies, we see

p0,0 =
1

2
= p1,1, p0,1 = 0 = p1,0 → H(A) = 1 = H(B) = H(A,B). (2.6)

Here we see that the total information we can gain is present in either coin; looking

at the other reveals nothing new. We can write this as

H(A|B) = 0 = H(B|A), (2.7)



Chapter 2. Information Theory in the classical and the quantum world 15

where H(A|B) is to be read as the entropy of A given that that we know the state of

B,

H(A|B) ≡ H(A,B)−H(B). (2.8)

In this last example, one coin shares all its information with the other. A quantifier

for this shared information is known as the mutual information,

H(A : B) ≡ H(A) +H(B)−H(A,B). (2.9)

For two perfectly correlated coins we have H(A : B) = H(A,B), which restates the

fact that all of the information in this bipartite system is shared information. As

should be obvious from the motivation, each of the quantities introduced above is a

positive quantity. This enables us to display how these quantities relate in the Venn

diagram of Fig. 2.1.

2.3 Qubits

A quantum bit, or a qubit for short, is the quantum version of a classical bit and the

smallest conceivable quantum system. While a classical bit can be in one of two states,

a qubit’s state can be represented by any (normalized) vector of a two-dimensional

Hilbert space H2. Using the standard ‘bra-ket’ notation we use the symbol |a〉 to

denote a vector ~a and 〈a| to denote its dual vector. To write down the state of a pure

qubit, we typically pick an orthonormal basis. The most common one is called the

computational basis and uses the basis vectors |0〉 and |1〉. We will use this basis in

the following, unless we explicitly specify another one. Now we can write an arbitrary

(pure) qubit state |ψ〉 as

|ψ〉 = α|0〉+ β|1〉, (2.10)

where α and β are complex numbers such that |α|2 + |β|2 = 1. It turns out that the

global phase of a quantum state |ψ〉 is not observable and can be neglected,

|ψ〉 ≡ eiϕ|ψ〉, (2.11)
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Figure 2.1: (Color online) The (red) circle on the left denotes the entropy
associated with system A; the (blue) circle on the right denotes the entropy
associated with system B. The area on the right filled in with (blue) dots
is the information missing about B given complete information about A; this
area denotes the conditional entropy H(B|A). Similarly, the area on the left
filled in with the (red) grid denotes H(A|B). The overlap between the two
circles, filled with horizontal lines, denotes the mutual information H(A : B),
which is the information contained in A about B and vice versa. The combined
envelope of the two circles is the joint entropy H(A,B). From the diagram,
we have H(B|A) = H(A,B) − H(A) = H(B) − H(A : B) and H(A|B) =
H(A,B)−H(B) = H(A)−H(A : B). For a classical joint probability distribution,
the entropic measures are all Shannon entropies or relative Shannon entropies—
thus they are guaranteed to be nonnegative—and they are related as the diagram
depicts. For a bipartite quantum state, the joint quantum von Neumann entropy,
S(A,B), and the marginal von Neumann entropies, S(A) and S(B), replace
H(A,B), H(A), and H(B). The measures are related as depicted in the diagram,
because the quantum conditional entropies, S(B|A) and S(A|B), and the quantum
mutual information, S(A : B), are defined by these relations. The difference is
that S(B|A) and S(A|B), as so defined, can be negative, and thus the quantum
mutual information S(A : B) can be bigger than the marginal entropies, S(A)
and S(B), and bigger than the joint entropy S(A,B).

which enables us to parametrize the qubit state in terms of two angles θ and φ,

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (2.12)

Given this parametrization we can geometrically think of the state of a pure qubit

as a point on a sphere, the so-called Bloch sphere. Orthogonal states in this picture
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lie at antipodal points on this sphere. A convention we will adopt is to identify the

state |0〉 with the north pole of the sphere and |1〉 with its south pole.

Any spin-1
2
object, say the spin of an electron, is an example of this simplest of

quantum objects. More commonly, however, in the lab two isolated levels of a more

complex system such as an atom are used as a qubit.

The qubit we have been talking about up to now was always in a pure state. In

analogy to a random classical bit, we will allow qubits to be in a statistical mixture

of pure states, say an equal mixture of |0〉 and |1〉. These states are simply known as

mixed states. Mixed states are convex combinations of more than one state and we

will use the density matrix formalism to describe them. The density matrix ρ is a

positive semi-definite matrix that describes a quantum state. The density matrix ρ

of a pure state |ψ〉 is simply the outer product of is state vector with itself:

ρ = |ψ 〉〈ψ |. (2.13)

To get the density matrix ρmix for the example above, we form the convex combination

of states | 0 〉〈 0 | and | 1 〉〈 1 |:

ρmix = p| 0 〉〈 0 |+ (1− p)| 1 〉〈 1 |. (2.14)

Written in the computational basis this becomes:

ρmix =

 p 0

0 1− p

 . (2.15)

For an equal mixture we have p = 1/2. Notice that this is different from the

superposition (|0〉+ |1〉)/
√

2, whose density matrix is

ρsup =

 1
2

1
2

1
2

1
2

 . (2.16)

In the picture of the Bloch sphere, mixed states sit in the inner part of the sphere.

The equal mixture of | 0 〉 and | 1 〉 for example is the point associated with the center

of the sphere.
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A common way of writing the density matrix of a qubit makes use of the Pauli

matrices ~σ = (σx,σy,σz) as a hermitian operator basis:

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σx =

 1 0

0 −1

 . (2.17)

With this, a qubit state ρ is specified by a vector ~v in the Bloch-sphere picture,

ρ =
1

2
(I2 + ~v ·~σ), (2.18)

where ~v is called the Bloch vector. The Bloch vector of the mixed qubit from Eq. (2.14)

is ~vmix = (0, 0, 2p− 1), while the superposition in Eq. (2.16) has a Bloch vector of

~vsup = (1, 0, 0). As these examples illustrate, the Bloch vector of a pure state is

normalized, while the Bloch vector of a mixed states are sub-normalized.

If we have a composite system, e.g. two qubits, the vector space Hcomp that

the new state ‘lives’ in will be the tensor product of the two Hilbert spaces of its

constituents, a 4-dimensional Hilbert space for two qubits H4 = H2 ⊗H2. To denote

state vectors of a joint system, we will often omit the tensor product sign and write

|a b〉 for | a 〉 ⊗ | b 〉, if it is obvious from the context what this notation will mean.

Using this convention, the standard computational basis for the combined space will

be {| 00 〉, | 01 〉, | 10 〉, | 11 〉}. Using the two states ρmix and ρsup as an example, their

joint density matrix ρjoint is:

ρjoint = ρmix ⊗ ρsup =


p

 1
2

1
2

1
2

1
2

 0

 1
2

1
2

1
2

1
2


0

 1
2

1
2

1
2

1
2

 (1− p)

 1
2

1
2

1
2

1
2



 . (2.19)

Conversely we will use the partial trace to obtain the density matrix for one of

the marginal states from the density matrix of the joint system. An index on the

trace specifies which system is ‘traced out’. Using the example above we have

trB(ρjoint) =

 p(1
2

+ 1
2
) 0(1

2
+ 1

2
)

0(1
2

+ 1
2
) (1− p)(1

2
+ 1

2
)

 = ρmix , (2.20)
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and

trA(ρjoint) =

 1
2
(p+ 1− p) 1

2
(p+ 1− p)

1
2
(p+ 1− p) 1

2
(p+ 1− p)

 = ρsup . (2.21)

Similar to Eq. (2.18) we can write arbitrary two qubit states as

ρ =
1

4

(
I4 + ~a ·~σ ⊗ I2 + I2 ⊗~b ·~σ +

∑
i,j

ci,j σi ⊗ σj
)

. (2.22)

Here ~a and ~b are the Bloch vectors of the respective marginal states; ci,j = 〈σAi ⊗ σBj 〉

is a matrix defined in terms of expectation values of products of Pauli operators and

contains information about the correlation of the two subsystems.

Again for the sake of a more compact notation, we will sometimes omit the tensor

product sign. Especially when an operator O acts only on one system, say the Hilbert

space of system HA of a composite system with Hilbert space HA ⊗ HB , we will

write OA meaning O ⊗ I.

2.3.1 Quantum measurements

Unlike a classical system, whose state we can measure without disturbing it, a

quantum mechanical measurement is intrinsically invasive and will generally change

the quantum state of the system being measured. We will use the ‘positive-operator-

valued-measure’ (POVM) formalism to mathematically describe a measurement.

While the POVM formalism describes more general measurements than the projective

measurements usually discussed in textbooks, it only tells us about the statistics of the

measurement and not about the state of the quantum system after the measurement

has been performed. A full description of the measurement process requires using what

are called quantum operations, which is beyond the scope of this brief introduction.

This, however, should not overly concern us as these post-measurement states will

not be relevant for most of the following discussion, although in one section quantum

operations pop up briefly. A complete discussion of the general measurement formalism

can be found in [NC00].
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A POVM is defined by a set of positive operators, {Em}. The members of the set

are called POVM elements. The POVM elements satisfy the completeness relation∑
m

Em = I. (2.23)

The probability pm for measurement outcome m, when measuring on a quantum state

ρ, is given by

pm = tr(Emρ). (2.24)

If the set of POVM elements consists of orthogonal projectors, the measurement is

called a projective measurement.

The POVM elements for a measurement in the computational basis are an example

of a projective measurement with rank-one projectors:

E0 =

 1 0

0 0

 , E1 =

 0 0

0 1

 . (2.25)

If we measure the equal mixture of the state (| 0 〉〈 0 |+ | 1 〉〈 1 |)/2 in this basis, we get

equal probabilities p0 = 1/2 = p1. At this point we can highlight the crucial difference

between mixed states and superpositions of states. Looking at the measurement

statistics for the state ρsup in Eq. (2.16), we see that it equals the statistics of the

mixed state above. Changing the measurement basis to the eigenbasis of ρsup, however,

E+ =

 1
2

1
2

1
2

1
2

 , E− =

 1
2
−1

2

−1
2

1
2

 , (2.26)

reveals that these two states differ drastically: p+ = 1
2
, p− = 1

2
for the mixed state,

but p+ = 1 , p− = 0 for ρsup. Pure states can always be measured in their eigenbasis

with certainty, but for mixed states, any rank-one POVM has at least two outcomes

with nonzero probability.

2.3.2 Von Neumann entropy

Mixed states are the quantum analogue of a random bit, whereas pure states are the

analogue of a bit in a defined state. Given this analogy, we expect a quantum entropy
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measure to be zero for a pure state, but greater than zero for a mixed state. The von

Neumann entropy S(A) of a quantum system A with density matrix ρ,

S(A) = S(ρ) ≡ − tr(ρ log ρ), (2.27)

fulfills these expectations and is the quantum analogue of the Shannon entropy. As

is standard convention, functions of operators are applied to the eigenvalues in the

eigenbasis of the operator. It turns out that the von Neumann entropy shares many

of the properties the Shannon entropy [NC00]. Similar to its classical counterpart,

Schumacher’s quantum noiseless channel coding theorem gives the von Neumann

entropy an operational meaning by connecting it the the minimum average number

of qubits needed to reliably represent the quantum information contained in ρ.

Similar to the classical case we can add a second system and ask about the

quantum information shared by these two systems. The generalization of joint

entropy is straightforward. Mutual information can be written analogously to the

classical case,

S(A : B) ≡ S(A) + S(B)− S(A,B). (2.28)

The most obvious choice for the quantum conditional information S(A|B) is

S(A|B) = S(A,B)− S(B). (2.29)

One has to be careful, however, when looking at Fig. 2.1 to visualize these

quantities. Most notable is that the quantum analogue of the conditional information

is no longer necessarily a positive quantity. We will see an example of this in the

next section on entanglement. Moreover, interpreting the conditional information

as the information about system X given that we learned what state system Y is

in, is not as straightforward as in the classical case. ‘Learning the state of a system’

involves a quantum measurement, which generally alters the state itself, and it seems

we would have to use the quantum measurement formalism to define an appropriate

conditional information. In Chap. 3, we will meet an alternative definition for the

the conditional entropy based on this thought.
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2.3.3 Quantum entanglement

Entanglement is a form of correlation between two quantum systems, which has no

classical counterpart. The defining characteristic of a pure entangled state is that

both of the marginal states are mixed. In fact the entropy of the marginal state is

used to quantify the entanglement of the overall state. The canonical example for an

entangled state is a Bell state

| β00 〉 = (| 00 〉+ | 11 〉)/
√

2. (2.30)

We have trA(ρβ00) = I/2 = trB(ρβ00) and S(trA(ρβ00)) = 1. We say this state carries

one bit of entanglement. The entropy of the marginal states is an entanglement

measure called the entropy of entanglement. Unfortunately this only works for pure

states. If we go to the realm of mixed states, entanglement is more difficult to quantify.

What we can say is that a state ρsep is not entangled when its density matrix can be

decomposed into product states:

ρsep =
∑
i

piρ
A
i ⊗ ρBi . (2.31)

We say such a state is separable. While this boundary between entangled and

unentangled states is clearcut, there are different ways of quantifying the entangle-

ment. Several operationally motivated quantities such as entanglement of formation,

squashed entanglement, entanglement cost, and a variety of others have been pro-

posed [HHHH09]. These operational measures limit to the entropy of entanglement

for pure states, but are notoriously difficult to calculate for mixed states; even the

boundary between separabiltiy and entanglement is difficult to characterize, despite

its seemingly simple definition. From Eq. (2.31), however, it is obvious that the set

of separable states is a convex set. Moreover, it is known that the set is invariant

under local unitary operations and has dimension as large as the space of mixed

states [HHHH09].

Entanglement is the crucial resource for several quantum-information-processing

protocols, such as quantum key distribution, teleportation and super-dense cod-

ing [HHHH09].
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As we alluded to in the previous section, entangled states are an example of where

the analogy to the classical entropic quantities breaks down. The conditional entropy

of the Bell entangled state, for example, is negative, i.e., S(A,B)−S(A) = 0−1 = −1.

So in some sense the overall state is defined while its constituents are completely

random. This seems counter-intuitive, which is not surprising given that there is no

analogue in the classical world to this phenomenon.

2.3.4 Decoherence

Decoherence is a process that reduces the purity of a state due to a system’s interaction

with other degrees of freedom, which one does not consider part of the system one

is interested in. Commonly one calls those degrees of freedom collectively the

environment. Decoherence turns pure states into mixed states and during this process

may destroy quantum correlations. It is responsible for the fact that we do not

encounter quantum effects in macroscopic systems, such as a superposition of a living

and a dead cat. Decoherence poses a fundamental obstacle when trying to control

a quantum system for a specific purpose. Quantum systems that are intrinsically

well insulated from the environment—and therefore robust against decoherence—are

generally hard to control because of their inaccessibility. On the other hand, quantum

systems that are easy to control usually also couple strongly to the environment and

therefore lose their quantumness easily.

Mathematically, decoherence can be described by the decay of off-diagonal elements

of the density matrix in some basis preferred by the environment [Zur93]. As this

is a nonunitary process, one typically invokes Lindblad-type master equations to

describe quantum systems subjected to decoherence. As we will just briefly talk

about decoherence, I will not describe the full formalism. Instead, I will limit myself

to describing the effect of particular decoherence processes on particular quantum

system when that situation arises within the dissertation.

One of the correlations that gets destroyed by decoherence is entanglement.

Given the importance of entanglement for quantum information-processing tasks,



Chapter 2. Information Theory in the classical and the quantum world 24

the preservation of entanglement is paramount to anyone trying to exploit quantum

systems to perform tasks not feasible classically. Unfortunately entanglement displays

a very unsettling behaviour when subjected to decoherence. While one might expect

correlations like entanglement to decay in an exponential way it turns out that

entanglement does show, generally, a decay following a nonanalytical curve, which

makes it vanish completely in a finite amount of time. This phenomenon, dubbed

‘entanglement sudden death’ (ESD) [YE09, Col10], might pose specific challenges

for the development of robust quantum information protocols, but it is not really

surprising in the view of the geometry of separable states, since separable states have

nonzero measure in the space of all states [ŻHSL98]. In a decoherence process that

involves decay to a separable equilibrium state that does not lie on the boundary

between separability and entanglement, the decohering state will cross that boundary

before reaching the equilibrium state.

2.4 Maxwell’s demon and Landauer’s principle

Maxwell proposed the following Gedankenexperiment: Consider an isolated box filled

with some gas in thermal equilibrium. The box is divided into two sections connected

by a trapdoor. An intelligent being, a demon, sits in the box and can open and close

the trapdoor. In particular he can see the single gas molecules. Maxwell supposed

that such a demon could in principle lower the system’s entropy by looking at the

molecules that fly towards the trapdoor and opening or closing the trapdoor so that

slower molecules collect on one side of the box and faster molecules on the other side.

Maxwell intended to show up the limitations of the Second Law of Thermodynamics

and to emphasize its probabilistic nature.

Maxwell’s idea was debated for over 100 years in an effort to ‘save’ the Second

Law, thus leading to interesting connections between thermodynamics and infor-

mation theory [LR02]. The resolution generally accepted today was put forward

by Bennett [Ben82] and is based on Landauer’s principle. Landauer showed that

the erasure of information is tied to an increase in entropy [Lan61]. This is usually
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referred to as Landauer’s principle today. The minimal cost for the erasure of one bit

of information is kT ln 2. Bennett argued that Maxwell’s demon acquires information

when measuring the particle’s velocities in order to operate the trapdoor. As the

system we are considering is isolated and the demon only has a finite memory, he

needs to erase his memory periodically. The entropy increase from erasure balances

the reduction of entropy from the separation of fast and slow particles.

In a famous paper of 1929 [Szi29], Szilárd envisioned a different incarnation of

Maxwell’s demon: Consider a cylinder containing only one particle in contact with

a heat bath (the walls of the cylinder). A divider could be inserted, separating the

cylinder into two equal parts. Upon acquiring the information in which part the

particle is, a demon could insert a piston into the empty part, remove the divider, and

let the particle isothermally push the piston outwards, doing some work W on a load

coupled to the piston. The heat bath transfers energy Q=W to the particle in the

process. After the particle pushes the piston out, it has the same volume accessible

to it as in the beginning of the process. The heat bath having transferred energy to

the particle, which does work, this cyclic process becomes a conversion of heat to

work, in violation of the Second Law. The resolution to this paradox again involves

accounting for the information acquired by the demon, which has to be erased at

some point, given a finite memory, in order for the demon to be ready for a new cycle

of the process. Interestingly Szilárd introduced the modern concept of information

and used what was later called a bit by Shannon, as the demon has to acquire one

bit of information in order to extract work.

The demons we will be taking about in Chap. 4 will be less ambitious than

Maxwell’s and Szilárd’s. They won’t try to challenge the Second Law of Thermody-

namics, but work in accordance with it to transform a low entropy system to a high

entropy system while extracting work and then will move on to another copy of the

system. We will be interested in the net work these demons can extract on average

keeping close account of the cost they have to pay for the erasure of information in

the process.

This concludes the brief introduction to (quantum) information theory. The
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focus of this chapter was to provide the background necessary to follow Chaps. 4

and 5 of this dissertation for a more detailed discussion of the ideas presented above

see [NC00].
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Chapter 3

Discord and other nonclassical

correlations beyond entanglement

3.1 Introduction

At the heart of quantum information theory lies the objective to pinpoint the features

that make it distinct from a classical theory. A complete understanding of these

features would help us exploit this nonclassicality to perform information-processing-

tasks that are not possible with a classical system. One obvious feature that makes a

quantum system distinct from a classical system is the kind of correlations, having no

classical counterpart, that can be shared by several quantum systems. Entanglement

is one type of nonclassical correlation which has proven to be a crucial resource in

several quantum information-processing-tasks. Separable states, however, can have

nonclassical correlations even though they are unentangled.

Bennett et al. [BDF+99] found an orthogonal set of product states, that cannot

be reliably distinguished by separate observers. As a mixture of these states is not

entangled, this discovery hinted at the fact that some other type of correlation,

different from entanglement, has to account for a distinctly nonclassical behavior of

some systems.
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A variety of measures have been proposed in an attempt to quantify nonclassi-

cal correlations for bipartite systems [OZ01, OHHH02, Luo08a, PCMH09, WPM09,

BT10, LCS11, MPS+10] that can be nonzero for separable, but nonclassical states.

In this chapter I will mainly focus on Quantum Discord, which is the quantity that

attracted the most attention. In fact, sometimes all quantum correlations other than

entanglement get lumped together under the name of quantum discord. I will try to

be precise and use the name Quantum Discord, or simply just discord, only when

referring to the quantity originally proposed by Ollivier and Zurek [Zur00, OZ01]

and independently by Henderson and Vedral [HV01]. This section will not be com-

prehensive; I will only point out some results that are either of general interest or

needed in the later chapters. A structured approach to the definition of these types of

correlation measures is the focus of the next chapter, while a more complete account

on the properties and various other results related to these correlation measures can

be found in Modi et al.’s review article [MBC+12].

3.2 Discord

Ollivier and Zurek conceived quantum discord as a measure of disagreement between

two forms of mutual information, S(X : Y ) and J(Y → X), that are equivalent

classically. S(X : Y ) is the mutual information from Eqs. (2.9) and (2.28), while

J(Y → X) is based on the identity for classical entropies:

H(X : Y ) = H(X)−H(X|Y ). (3.1)

They noted that in order to generalize the expression H(X|Y ) to the quantum

case one needs to specify a measurement basis in which information about system Y

was obtained. Given a set of one-dimensional projectors {Πy} on system Y , the state

of the combined system ρX|y after obtaining measurement outcome y is

ρX|y =
ΠyρX,Y Πy

py
, (3.2)

with py = tr(ΠyρX,Y ).



Chapter 3. Discord and other nonclassical correlations beyond entanglement 29

Now Ollivier and Zurek [Zur00, OZ01] argued that an appropriate form for

quantum version of the conditional entropy is∑
y

pyS(ρX|y) ≡ H{Πy}(X|Y ), (3.3)

and used this to define S{Πy}(X : Y ) in analogy to Eq. (3.1):

S{Πy}(X : Y ) = S(X)−H{Πy}(X|Y ). (3.4)

This quantity is identical to the quantity that Henderson and Vedral [HV01]

identified with the amount of classical correlations that can be extracted from a

quantum system through the measurement {Πy}. As a measure that characterizes

all the classical correlations accessible in a quantum state, Henderson and Vedral

proposed to maximize this quantity over all measurements. Intuitively a measure of

quantum correlations is the difference between the total correlations as measured by

S(X : Y ) and the classically accessible correlations measured by max{Πy} S{Πy}(X :

Y ) ≡ J(Y → X). This is the quantity that Ollivier and Zurek dubbed quantum

discord D(Y → X):

D(Y → X) = S(X : Y )− J(Y → X). (3.5)

The arrow emphasises that this quantity is inherently asymmetric, as only one of

the systems here is being measured. As is desirable for a correlation measure that

is supposed to measure the truly quantum correlations, this quantity turns out to

be non-negative1. Since it is based on entropic quantities, it is invariant under local

unitary transformations, which intuitively should not change correlations between two

systems. For the case of pure states, it is identical to the entanglement measures 2.3.3.

The intriguing part about discord however is that in the realm of mixed states, it

tries to capture more correlations than just entanglement. An example of a two qubit
1The Appendix contains a proof of the non-negativity of discord, but I urge the reader to

wait until the next chapter before looking at the proof. We will slightly adapt the notation
and introduce a second measurement when defining discord. While the resulting quantity is
the same, it is seen from a different perspective.



Chapter 3. Discord and other nonclassical correlations beyond entanglement 30

state ρdisc that is not entangled, but has nonzero discord can be found in [DacVB10]:

ρdisc =
1

4
(| 0 〉〈 0 | ⊗ |+ 〉〈+ |+ | 1 〉〈 1 | ⊗ |− 〉〈− |

+ |+ 〉〈+ | ⊗ | 1 〉〈 1 |+ | − 〉〈− | ⊗ | 0 〉〈 0 |) . (3.6)

Over the last 10 years discord has received a great deal of attention. Unfortunately,

a big part of the research devoted to discord is not well motivated, because this

quantity has no intrinsic operational meaning attached to it. While some progress

has been made in providing operational interpretations [MBC+12], many of these

attempts are arguably contrived.

In the following, I will briefly describe the operational interpretation for discord,

that I, personally, find the most convincing. Here discord is linked a quantum

communication protocol [MD11, MD13]. Suppose Alice and Bob share a bipartite

quantum state. Alice’s goal is to transfer her part of the state to Bob. To accomplish

this task she can use local operations and classical communication (LOCC) as a

classical resource as well as shared entanglement as a quantum resource. We will

assume LOCC ‘comes for free’ and focus on the quantum resource needed to achieve

their goal. One way to merge these states is for Alice to use the quantum teleportation

protocol [BBC+93]. It turns out, however, that she can do better and only spend

S(A|B) bits of entanglement to accomplish her goal [HOW05]. Moreover, this protocol,

called quantum state merging, also provides a suggestive interpretation of what it

means that S(A|B) can be negative. In that case, Alice does not have to spend

entanglement bits to merge the states, but rather recovers ebits in the process.

If Bob measures his part of the system before he receives Alice’s part, the cost for

the state merging process will increase: Bob will destroy some correlations during

his measurements, which Alice otherwise could have take advantage of. Madhok

and Datta [MD11] showed that the amount the state merging cost increases when

Bob measures his system first is quantified by the discord D(B → A) of the original

state. This measurement could also be thought of as a decoherence process, where

the environment ‘measures’ Bob’s system and destroys correlations [MD13].
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3.2.1 Other forms of nonclassical correlations

In 2003 Zurek [Zur03] showed that the advantage a nonlocal quantum demon has

over his local classical counterparts in extracting work from a quantum system can

be quantified through a form of discord. Unfortunately with this he started a trend

in attaching the same name, discord, to different quantities that share some common

traits. To emphasise that the quantity involved in the discussion of demons is different

form the original discord, we will refer to it as ‘demon discord’.

Another quantity that is similar to, but different from discord was proposed by

Luo in 2008 [Luo08a]. The idea behind this quantity, which Luo called measurement-

induced disturbance (MID), is to quantify how much correlation in a system gets

disturbed when the system is measured. Unlike discord this quantity is symmetric

under exchange of the two systems. An advantage over discord is that it is easier to

compute. The measurements involved here are fixed to be performed in the eigenbasis

of the marginal density operators, so unless the marginal states are degenerate, no

optimisation procedure needs to be performed.

These are just two examples of a plethora of similar quantities [MPS+10] that

try to capture more quantum correlations than entanglement does. We will meet

some more of these measures in the next chapter and show how they are related. For

now we will focus on a more general point, i.e., the set of states for which all these

correlation measures vanish.

3.3 The set of classical states

A state is considered to be classical when its density matrix ρcc is diagonalized in a

basis that is the product of basis elements for each subsystem [Luo08a]:

ρcc =
∑
a,b

pa,b| ea 〉〈 ea | ⊗ | fb 〉〈 fb |. (3.7)

A state written in this form is characterized by purely classical correlations. Moreover

we can measure the state without disturbing it if we perform the measurements in
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basis {| ea 〉} for the first system and basis {| fb 〉} for the second system. One kind of

correlation measure, necessarily symmetric, will be, zero if and only if the joint state

can be written in form of Eq. (3.7). The set of states for which discord vanishes is a

bit bigger than that. In fact, if we consider system A being measured, in order for

the joint state to have zero discord, one needs to be able to diagonalize the state ρcq
in a conditional product basis [Dat10]:

ρcq =
∑
a,b

pa,b| ea 〉〈 ea | ⊗ | fb|a 〉〈 fb|a |, (3.8)

This means that the state is block-diagonal in a product basis:

ρcq =
∑
a

pa| ea 〉〈 ea | ⊗ ρB|a. (3.9)

In this case only system A is undisturbed by an appropriate local measurement.

Hence, these latter states ρcq are sometimes called ‘classical-quantum’, whilst the

former ρcc are dubbed ‘classical-classical’. Clearly the classical-classical states are a

subset of the ‘classical-quantum’ state, which in turn are a subset of the separable

states ρsep for Eq. (2.31).

Ferraro et al. [FAC+10] pointed out a big conceptual difference between the set

of separable states and the set of classical-quantum states: They proved that the

set of states with zero discord has measure zero in the space of all states and is

nowhere dense. As a consequence a randomly selected bipartite quantum state will

have non-zero discord. Moreover, a decohering state will not cross this classicality

boundary before reaching an equilibrium state. As a consequence, there will be no

phenomenon like ‘entanglement sudden death’ for discord. In Chap. 5, we will see

a visualisation of this behaviour. While the state space we consider there will be

restricted, it is well suited to demonstrate the points above. Moreover, we will see

that unlike the set of separable states, the set of classical states is not convex.

While this chapter reported some properties on nonclassical correlations and

presented discord in its original form, we will take on a slightly different perspective in

the next chapter. There we take a more logical approach to nonclassical correlations

and define a framework from which several measures on noncalssical correlations, one

of them being quantum discord, emerge.
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Chapter 4

A framework for entropic measures of

nonclassical correlations

In this chapter we unify some of the measures discussed in Chap. 3 in a single

framework, with the goal of clarifying the relations between these several quantities.

Some ordering relations will follow naturally from the formulation of our framework;

others we will have to prove explicitly.

4.1 Introduction

Maxwell demons observe a physical system and use the information obtained to

extract work from the system [Max91]. For multipartite systems, we can distinguish

quantum Maxwell demons, which have knowledge of the entire density operator and

can manipulate and make measurements on the joint system, from classical demons,

which can only perform operations and make measurements on the subsystems of

the multipartite system. Because a single classical demon cannot be everywhere at

the same time, it must recruit local demons to gather, process, and use information

about the local systems; thus it is better to think of a classical demon as a collection

of local demons. These local demons might or might not be allowed to communicate

with each other using classical channels. The amount of work that the two kinds
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of demons, quantum and classical, can extract from a given multipartite quantum

state by employing protocols within each demon’s means is a way of comparing

quantum-information-processing protocols with classical ones.

This demonology [Zur00, OHHH02, Zur03, BT10] is but one of several attempts

[Zur00, OZ01, HV01, RR02, Zur03, PHH08, Luo08a, WPM09, BT10, MPS+10] to

track down and quantify the correlations that exist in multipartite quantum states.

The nonclassical part of these correlations is not just quantum entanglement, even

though entanglement is a part of it. The open question of pinning down why mixed-

state quantum algorithms can solve certain problems exponentially faster than the best

known classical ones [JL03], even in the absence of any significant entanglement, is

one of the main motivations behind studying the nonclassical correlations in quantum

states other than entanglement [DV07, DSC08, Dat08, DG09, Eas10].

We consider only bipartite states in this work. For our numerical work, the

discussion is specialized yet further to states of two qubits. Correlations between

systems can be quantified in terms of correlation coefficients and covariance matrices

or in terms of entropic measures like mutual information. We choose the latter

approach as the preferred one in information theory. The aim of this work is to

formulate a framework in terms of which the several entropy-based measures of

nonclassical correlations that have been proposed can be classified and understood.

Constructing the framework leads to two new measures we have not seen previously

in the literature. The focus here is not so much on unifying various measures, as in

Ref. [MPS+10], but rather on clarifying the relationships among them.

The setting for our framework is two systems, A and B, with a joint quantum

state ρAB. We consider three types of nonclassical-correlation measures, M(ρAB),

between A and B:

1. Mutual-information-based measures.

2. Conditional-entropy-based measures.

3. Demon-based (joint-entropy-based) measures.
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The type-2 correlation measures can be asymmetric between A and B because

conditional entropy is typically asymmetric.

As Landauer pointed out, when talking about demons, erasure of the demon’s

memory—and the associated thermodynamic cost—is an essential feature for assessing

what a demon can do [Lan61]. As we mentioned above, a classical demon that works

on a bipartite quantum system is best thought of as two local demons working in

concert. Whether the two demons can communicate impacts their ability to coöperate.

So the demon-based measures are thus further divided into two classes:

i. Erasure without communication between the demons.

ii. Erasure with communication between the demons.

All the measures of nonclassical correlations we consider here are constructed as the

difference between a quantum entropic measure, Q(ρAB), and its classical counterpart,

C(ρAB), which is derived from the probabilities for results of local measurements

on one or both of the subsystems. The thinking behind this construction is that Q

quantifies some notion of all the correlations in the system, whereas the corresponding

classical C captures only the corresponding classical correlations. The difference,

M = Q − C, is therefore a way of quantifying the nonclassical correlations in the

quantum state.

The results of local measurements are all that local classical observers (demons)

can access, and these measurement results are used to probe the correlations (if any)

between A and B. We do not want, however, our measure of nonclassical correlations

to depend on the specifics of the measurement performed. Hence, in its construction,

the classical measure, C(ρAB), is maximized over all possible measurements within

specific measurement strategies that are defined beforehand. In some instances, when

maximization is necessary, we are able to show that the maximum is attained on

rank-one POVMs; in other cases, we restrict the maximization to rank-one POVMs.

We give a full discussion of these different situations and the issues surrounding

rank-one POVMs after we have developed our framework.
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We thus imagine that there are classical observers A and B—demons or otherwise—

who have access to the two parts of the bipartite system. We allow these observers to

employ one of three measurement strategies:

a. Local, rank-one-projector measurements in the eigenbases of the marginal

density operators.

b. Unconditioned local measurements.

c. Conditioned local measurements.

For strategy (a), the local measurements are unique modulo degeneracies in the

marginal density operators. The other two strategies require maximization of the

classical measure C over the measurements allowed by the strategy. The first two

measurement strategies do not require the observers to communicate with each other,

but the last one does. Consequently, the first two strategies are symmetric between

A and B. For the third strategy, A performs a measurement and communicates the

result to B, who can then condition his measurement on the result communicated

by A. This makes the nonclassical correlation measures that are based on the third

measurement strategy asymmetric between A and B.

We now have three types of correlation measures and three measurement strategies,

and we can label the resulting correlation measures with the type and the strategy.

For example,M1b refers to the nonclassical correlation measure constructed as the

difference between quantum and classical mutual informations, where unconditioned

local measurements are used to construct the classical mutual information.

There is a natural hierarchy in the three types of measurements strategies. Allowing

arbitrary, unconditioned local measurements, as in strategy (b), is a restriction of the

conditioned local measurements of strategy (c), since to get (b) from (c), observer

B simply chooses to ignore any communication A might have sent regarding her

measurement results. Likewise, measuring in the local eigenbases of the marginal

density operators, as in strategy (a), is a restriction of the arbitrary, unconditioned

local measurements of strategy (b). Thus, when we maximize over the measurements
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in a particular strategy, the classical measure C cannot decrease—and generally

it increases—as we move from (a) to (b) to (c). This is saying that the more

general the measurements the local observers are allowed to do, the more they can

expect to discover about any classical correlations that exist between the subsystems.

Since our nonclassical-correlation measureM is the difference between Q and C,M

cannot increase—and generally it decreases—as we move from (a) to (b) to (c), i.e.,

Mja ≥Mjb ≥Mjc for j = 1, 2, 3.

In Sec. 4.2 we formulate our framework: Sec. 4.2.1 reviews the bipartite entropic

information measures that we use in constructing our framework; Sec. 4.2.2 spells

out the description of local measurements for strategies (a)–(c); Sec. 4.2.3 defines the

nonclassical-correlation measures and discusses relations among them; and Sec. 4.2.4

considers the issues raised by assuming the local measurements are described by rank-

one POVMs and also whether one can specialize further to measurements described

by rank-one projectors. In Sec. 4.3 we present numerical results comparing the various

measures for two-qubit states, assuming that the local measurements can be described

by orthogonal rank-one projection operators. App. A provides additional information.

4.2 Framework for entropic measures of nonclassical

correlations

In this section we develop our framework for measures of nonclassical correlations

and explore properties of the various measures the framework leads to.

4.2.1 Entropic measures of information and correlation

Entropic measures of information quantify how much information can be extracted

from a system or, more poetically, how much information is “missing” about the

fine-grained state of the system.
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Figure 2.1 is a useful pictorial representation of the relationships among the

entropies and entropic measures of correlation that apply to bipartite systems. The

figure provides an accurate representation for classical entropies. In the quantum

case, some of the quantities cannot be represented or are misrepresented by this

diagram, but even so, the diagram is a useful tool because it captures correctly the

relationships among the various entropies.

For a bipartite state ρAB of systems A and B, the quantum entropic quantities

that will be used in the ensuing discussion are the following:

1. S(A,B) = S(ρAB) = −tr(ρAB log ρAB), the joint von Neumann entropy of the

whole system.

2. S(A) = S(ρA) = −trA(ρA log ρA) and S(B) = S(ρB) = −trB(ρB log ρB), the

von Neumann entropies of the marginal density operators.

3. S(B|A) = S(A,B) − S(A) and S(A|B) = S(A,B) − S(B), the quantum

conditional entropies.

4. S(A : B) = S(A) + S(B)− S(A,B), the quantum mutual information, which is

related to the quantum conditional entropies by S(A : B) = S(B)− S(B|A) =

S(A) − S(A|B). The quantum mutual information can also be written as a

quantum relative entropy,

S(A : B) = S(ρAB||ρA ⊗ ρB) , (4.1)

where the relative entropy is defined by

S(ρ||σ) = −S(ρ)− tr(ρ log σ) . (4.2)

Local measurements on the bipartite quantum system are described by a joint

probability distribution pab for outcomes labeled by a and b. Bayes’s theorem relates

the joint, conditional, and marginal distributions: pb|apa = pab = pa|bpb. These

distributions are used to define the classical information measures:
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1. H(A,B) = H(pab) = −
∑

a,b pab log pab, the Shannon entropy of the joint distri-

bution pab.

2. H(A) = H(pa) = −
∑

a pa log pa and H(B) = H(pb) = −
∑

a pb log pb, the

Shannon entropies of the marginal distributions, pa and pb.

3. H(B|A)=H(A,B)−H(A) =
∑

a paH(B|a) and H(A|B)=H(A,B)−H(B) =∑
a pbH(A|b), the classical conditional entropies. H(B|a) =−

∑
b pb|a log pb|a

and H(A|b) =−
∑

a pa|b log pa|b are the Shannon entropies of the conditional

distributions pb|a and pa|b; the conditional entropies are averages of H(B|a) over

pa and H(A|b) over pb.

4. H(A : B) = H(A) + H(B) − H(A,B) =
∑

a,b pab log(pab/papb), the classical

mutual information. H(A : B) is the relative information of the joint distribution

pab with respect to the product of the marginals, papb,

H(A : B) = H(pab||papb) ; (4.3)

the classical relative information, which is always nonnegative, is defined by

H(pj||qj) =
∑
j

pj log(pj/qj) = −H(pj)−
∑
j

pj log qj . (4.4)

We also have H(A : B) = H(B)−H(B|A) = H(A)−H(A|B).

Figure 2.1 in Chap. 2 summarizes the relations among the classical entropies; it

works because the classical conditional entropies and the classical mutual information

are all nonnegative. This leads to several inequalities that can be read off Fig. 2.1.

For example, we can see that

max
(
H(A),H(B)

)
≤ H(A,B) ≤ H(A) +H(B) . (4.5)

The lower bound on H(A,B) is saturated when knowing one subsystem completely

determines the other (the two circles in Fig. 2.1 are either identical or become nested),

i.e., H(A : B) = min
(
H(A),H(B)

)
. The upper bound is saturated when there are no

correlations between A and B, i.e., H(A : B) = 0, so determining one subsystem gives
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no information about the other (the two circles in Fig. 2.1 are disjoint). For quantum

entropies the lower bound in Eq. (4.5) does not hold, which is equivalent to saying

the quantum conditional entropies can be negative. The simplest counter-example is

a two-qubit Bell state: the joint state is pure and, hence, has zero entropy, but the

marginal states are completely mixed, so their entropies are maximal and both equal

to one.

4.2.2 Local measurements

We now spell out the general description of the local measurements that applies to

measurement strategies (a)–(c). Although we only need measurement statistics—and,

hence, only need POVMs—to evaluate the classical entropic measures, we start our

description with quantum operations, partly to be general and partly so we can deal

with post-measurement states in a subsequent discussion of Maxwell demons.

The measurement on A is described by quantum operations [NC00] that are

labeled by the possible outcomes a of the measurement on A:

Aa =
∑
α

Aaα � A†aα . (4.6)

The quantum operation is applied to a density operator by inserting the density

operator in place of the �. The operators Aaα, the Kraus operators of Aa, combine

to give the POVM element for outcome a,

Ea =
∑
α

A†aαAaα , (4.7)

and the POVM elements satisfy a completeness relation, IA =
∑

aEa.

The absence of communication in strategies (a) and (b) makes them quite straight-

forward. The measurement on B is described by a set of quantum operations,

Bb =
∑
β

Bbβ �B†bβ . (4.8)

These give POVM elements

Fb =
∑
β

B†bβBbβ , (4.9)
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which satisfy a completeness relation IB =
∑

b Fb. The state of the joint system after

measurements with outcomes a and b is ρAB|ab = Aa ⊗ Bb(ρAB)/pab, where

pab = tr
(
Aa ⊗ Bb(ρAB)

)
= tr(Ea ⊗ FbρAB) (4.10)

is the joint probability for outcomes a and b. The post-measurement joint state and

the joint probability marginalize to the subsystems in the standard way.

We need to be more careful with strategy (c) because of the communication

from A to B. We handle strategy (c) in a general way that allows us to interpolate

between (b) and the extreme case of (c) in which every outcome a leads to a different

measurement on B. We do this by introducing a set C whose elements c label the

possible measurements to be made on B. We let A stand for the set of outcomes a,

and we define a function c(a) that maps an outcome a to the corresponding value in

C. We let Ac = {a | c(a) = c} be the subset of A that leads to the B measurement

labeled by c. The subsets Ac partition A into disjoint subsets. We can regard

C as another variable in our analysis; it is a coarse graining of the measurement

on A. Formally, we have that C is perfectly correlated with A, i.e., pc|a = δc,c(a),

implying that H(C|A) = 0 and H(A : C) = H(C). Should there be only one possible

measurement on B, i.e., only one value of c, then there is no communication, and the

situation reduces to strategy (b). The extreme case of (c) corresponds to having a

different value of c for each outcome a, in which case there is no difference between

the outcome set A and the set C.

The state of the joint system after the measurement on A yields outcome a is

ρAB|a = Aa(ρAB)/pa, where

pa = tr
(
Aa(ρAB)

)
= trA(EaρA) (4.11)

is the probability for outcome a. The state of system B, conditioned on outcome a,

is

ρB|a = trA(ρAB|a) =
trA
(
EaρAB

)
pa

; (4.12)

notice that this is determined by the POVM element Ea. The probability for making
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measurement c on B follows formally from

pc =
∑
a

pc|apa =
∑
a∈Ac

pa = trA(EcρA) . (4.13)

Here we introduce coarse-grained POVM elements for the measurement on A, labeled

by the measurement to be made on B:

Ec =
∑
a∈Ac

Ea . (4.14)

Notice that if there is only one possible measurement on B, i.e., only one value of c,

then Ec = IA; when there is a different measurement for each outcome a, the POVM

elements Ec are the same as the POVM elements Ea. We also have the state of B

conditioned on the coarse-grained outcome c:

ρB|c =
trA
(
EcρAB

)
pc

. (4.15)

Notice that Eqs. (4.12) and (4.15) imply that

ρB =
∑
a

paρB|a =
∑
c

pcρB|c . (4.16)

We turn our attention now to the measurements on B. We let B stand for the set

of all outcomes on B for all the possible measurements on B. We define a function

c(b) that maps an outcome b to the measurement c in which it occurs, and we define

Bc = {b | c(b) = c} to be the subset of B outcomes for the measurement labeled by c.

The subsets Bc partition the set of all possible outcomes on B into disjoint subsets.

We again have perfect correlation, i.e., pc|b = δc,c(b), implying that H(C|B) = 0 and

H(B : C) = H(C).

The measurement on B that is labeled by c is described by quantum operations

Bb|c =
∑
β

Bbβ|c �B†bβ|c , (4.17)

The Kraus operators give the POVM elements for this measurement,

Fb|c =
∑
β

B†bβ|cBbβ|c , (4.18)
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and these satisfy a completeness relation IB =
∑

b∈Bc
Fb|c. In sums over b, we can let

the sum run over the outcomes of all the possible measurements on B by the artifice

of defining Bbβ|c = 0 for b /∈ Bc and, hence, Fb|c = 0 for b /∈ Bc.

The state of the joint system, conditioned on outcomes a and b, is

ρAB|ab =
Aa ⊗ Bb|c(a)(ρAB)

pab
=
Bb|c(a)(ρAB|a)

pb|a
, (4.19)

where

pab = tr
(
Aa ⊗ Bb|c(a)(ρAB)

)
= tr(Ea ⊗ Fb|c(a)ρAB) = patrB(Fb|c(a)ρB|a) (4.20)

is the joint probability for a and b and

pb|a = tr
(
Bb|c(a)(ρAB|a)

)
= tr(Fb|c(a)ρB|a) (4.21)

is the conditional probability for b given a. Notice that pab and pb|a are nonzero only

if b ∈ Bc(a) or, equivalently, only if a ∈ Ac(b).

For our purposes, it is easier to work with the coarse-grained outcomes c, which

specify the measurements on B. Indeed, the joint probability for b and c is

pbc =
∑
a

pc|abpab =
∑
a∈Ac

pab = tr(Ec ⊗ Fb|cρAB) = pctrB(Fb|cρB|c) . (4.22)

Notice that pbc is nonzero only if b ∈ Bc. Thus the conditional probability of b given

c takes the form

pb|c =
pbc
pc

= trB(Fb|cρB|c) , (4.23)

and the unconditioned probability for b is

pb =
∑
c

pbc = tr(Ec(b) ⊗ Fb|c(b)ρAB) = pc(b)trB(Fb|c(b)ρB|c(b)) . (4.24)

4.2.3 Measures of nonclassical correlations

In this subsection we formulate our framework for entropic measures of nonclassical

correlations, considering in turn the three types of measures introduced in Sec. 4.1



Chapter 4. A framework for entropic measures of nonclassical correlations 44

and for each type, the three local measurement strategies, (a), (b), and (c). For

strategy (a), the local measurements are in the eigenbases of the marginal density

operators. For strategies (b) and (c), we assume that the measurements are described

by rank-one POVMs, which means that Ea and Fb|c are multiples of rank-one projection

operators. We discuss this assumption in Sec. 4.2.4.

To compare and relate the various measures, we rely on two inequalities that

relate the quantum and the classical entropies: the POVM inequality (see App. A.1

for a proof) and the ensemble inequality [NC00].

The POVM inequality relates the quantum entropy for a state ρ to the classical

entropy for probabilities pj = tr(Ejρ) obtained from (nonzero) POVM elements Ej:

H(pj) +
∑
j

pj log(trEj) = −
∑
j

pj log

(
pj

trEj

)
≥ S(ρ) . (4.25)

A rank-one POVM is one such that all the POVM elements are rank-one, i.e.,

Ej = µjPj, where Pj is a rank-one projection operator and 0 ≤ µj = trEj ≤ 1. The

trace of the completeness relation implies that
∑

j µj = (dimension of the quantum

system). For a rank-one POVM, we have

H(pj) ≥ S(ρ)−
∑
j

pj log µj ≥ S(ρ) . (4.26)

The ensemble inequality [NC00] says that the Shannon information of a set of ensemble

probabilities qj exceeds the Holevo quantity of the ensemble:

H(qj) ≥ S

(∑
j

qjρj

)
−
∑
j

qjS(ρj) . (4.27)

For strategy (a), where the local measurements are in the eigenbases of the marginal

density operators, we have immediately that H(A) = S(A) and H(B) = S(B).

For both (b) and (c), we can apply the POVM inequality in its rank-one form to

pa = tr(EaρA) to conclude that H(A) ≥ S(A). Similarly, for strategy (b), the POVM

inequality applied to pb = tr(FbρB) gives H(B) ≥ S(B). For strategy (c), we need a
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chain of inequalities to conclude that H(B) ≥ S(B):

H(B) = H(C,B) = H(C) +H(B|C)

= H(pc) +
∑
c

pcH(B|c)

≥ H(pc) +
∑
c

pcS(ρB|c) (4.28)

≥ S

(∑
c

pcρB|c

)
(4.29)

= S(ρB) = S(B) . (4.30)

The first inequality (4.28) is a consequence of applying the POVM inequality to

Eq. (4.23), the second inequality (4.29) is an example of the ensemble inequality, and

the final equality uses Eq. (4.16).

Type 1: Mutual-information-based measures

For type-1 measures, we choose Q1 = S(A : B) and C1 = H(A : B), giving the

difference measure

M1 = S(A : B)−H(A : B) . (4.31)

We now apply the three measurement strategies introduced in Sec. 4.1 to obtain the

classical mutual information H(A : B); this leads to three different type-1 measures.

For strategy (a), the local measurements are made in the eigenbases of the marginal

density operators, and this gives a nonclassical-correlation measure that we denote by

M1a. If the marginal density operators have nondegenerate eigenvalues, the marginal

eigenbases are unique; in the case of degeneracy, one needs to maximize H(A : B)

over the rank-one, projection-valued measurements in the degenerate subspaces to

get a unique measureM1a. The measureM1a was introduced by Luo in [Luo08a]

and called there the measurement-induced disturbance (MID). The same measure,

in a different guise, had been proposed by Rajagopal and Randall in [RR02]; they

defined what they called the quantum deficit as H(A,B)− S(A,B), where H(A,B)

is obtained from measurements in the marginal eigenbases. The quantum deficit and
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MID are the same because they differ by the terms H(A)− S(A) and H(B)− S(B),

which are zero for measurements in the marginal eigenbases.

When strategy (b) is used, we obtain the measure

M1b = S(A : B)−max
(b)

H(A : B) , (4.32)

where the classical mutual information has to be maximized over the unconditioned

local measurements of strategy (b). The maximum classical mutual information

was introduced in [PHH08] as a measure of classical correlations, and the same

paper suggestedM1b as a measure of nonclassical correlations. This measure was

investigated in detail by Wu, Poulsen, and Mølmer (WPM) in [WPM09], and we refer

to it as the WPM measure, while denoting it asM1b. The optimal unconditioned local

measurements are not necessarily orthogonal-projection-valued. An example of a case

in which the maximization requires POVMs and not just projective measurements

was given in [WPM09]; we review and extend this example in App. A.3. In addition,

the optimal local measurements do not generally occur in the marginal eigenbases,

which implies thatM(MID)
1a ≥M(WPM)

1b .

For strategy (c), the classical mutual information H(A : B) can be made arbitrarily

large, thus allowingM1c to be arbitrarily negative. This is easy to see by considering

the extreme case of (c) in which every outcome a leads to a different measurement

on system B; then, as noted in Sec. 4.2.2, H(A : B) = H(A), which can be as big

as desired by giving the measurement on A an arbitrarily large number of outcomes.

We conclude thatM1c has nothing to do with quantifying nonclassical correlations,

so we dropM1c from our array of possible measures.

Type 2: Conditional-entropy-based measures

For type-2 measures, we choose Q2 = −S(B|A) and C2 = −H(B|A). The result is

the difference measure

M2 = H(B|A)− S(B|A) . (4.33)
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We notice immediately that

M2 =M1 +
[
H(B)− S(B)

]
≥M1 . (4.34)

This shows that a type-1 measure is always less than or equal to the type-2 measure

that uses the same measurement strategy, with equality only when B is measured in

the marginal eigenbasis.

Measurements in the eigenbases of the marginal density operators have H(B) =

S(B), so for strategy (a), we haveM2a =M1a, and our measure is again MID.

Strategy (b) gives the measure

M2b = min
(b)

H(B|A)− S(B|A) , (4.35)

where we have to minimize H(B|A) over all unconditioned local measurements. We

can conclude from general considerations thatM(MID)
1a =M(MID)

2a ≥M2b ≥M
(WPM)
1b .

Notice also that the unconditioned local measurements that minimize H(B|A) need

not be the same as those that minimize H(A|B). This means thatM2b is intrinsically

asymmetric between subsystems A and B even though the measurement strategy is

symmetric.

Strategy (c) gives the measure

M2c = min
(c)

H(B|A)− S(B|A) . (4.36)

The POVM inequality immediately gives a bound on H(B|A),

H(B|A) =
∑
a

paH(B|a) ≥
∑
a

paS(B|a) ≡ H{Ea}(B|A) . (4.37)

When we are allowed to make conditional measurements on B, the bound can be

achieved by measuring B, for outcome a, in the eigenbasis of ρB|a. Hence, with the

conditional measurements on B specified, the minimization of the classical conditional

entropy, H(B|A), is reduced to choosing a measurement on A that minimizes the

conditional entropy H{Ea}(B|A):

min
(c)

H(B|A) = min
{Ea}

H{Ea}(B|A) ≡ H̃(B|A) . (4.38)
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The quantity H̃(B|A) is a special sort of classical conditional entropy. The resulting

measure is equivalent to the quantum discord [Zur00, OZ01] introduced in Chap. 3:

M2c = H̃(B|A)− S(B|A) ≡ D(A→ B) . (4.39)

In App. A.3, we exhibit joint states that show that to find the minimum H̃(B|A)—

and, hence, to find the quantum discord—sometimes requires rank-one POVMs, not

just orthogonal-projection-valued measurements.

Notice that in Chap. 3 we introduced discord as a difference between mutual

information-like quantities in accordance with the original definition by Ollivier

and Zurek [OZ01]: D(A → B) = S(A : B) − J(A → B). This is equivalent

to Eq. (4.39), as one can readily subtract S(B) from S(A : B) and J(A → B):

(S(A : B) − S(B)) − (J(A → B) − S(B)) = −S(B|A) + H̃(B|A). Moreover the

definition of discord in Chap. 3 does not make use of conditioned measurements

measurements on B, but rather assumed that the quantity to be minimized over

measurements on A is the conditional entropy H{Ea}(B|A).

We can conclude from general considerations thatM(MID)
1a =M(MID)

2a ≥ M2b ≥

M(discord)
2c . Our present considerations do not, however, provide an ordering of the

WPM measure and quantum discord. We return to the ordering of WPM and discord

in Sec. 4.2.3 and show in App. A.2 thatM(WPM)
1b ≥M(discord)

2c .

Type 3: Demon-based measures

Type-3 measures quantify the difference in the work that can be extracted from a

quantum system by quantum and classical demons. The demons extract work by

transforming the initial joint state ρAB to the fully mixed joint state using any means

at their disposal, including measurements. We assume here that all states of the

system have the same energy so that all the work that the demons extract arises from

the entropy difference between the initial and final states of the system; it is natural

to choose kBT ln 2 as the unit of work. Throughout this chapter, whenever we talk
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about extractable work and erasure cost, we actually mean average work and average

erasure cost.

The maximum work that can be extracted by a quantum demon by any means is

given by the entropy difference between the initial and final states,

Wq = log(dAdB)− S(A,B) , (4.40)

where dA and dB are the dimensions of the two subsystems. The demon could extract

this amount of work by devising an optimal process that directly transforms the joint

state ρAB to the maximally mixed state. It could, instead, make a measurement in

the joint eigenbasis of ρAB, extract work log(dAdB) as the post-measurement pure

eigenstate is transformed to the maximally mixed state, and then pay a price S(A,B)

to erase its memory of the S(A,B) bits acquired in the measurement. The demon

would then be ready to pick up another copy of the system and repeat the process.

In contrast to a quantum demon, a local, classical demon can only manipulate

the subsystem in its possession. In Sec. 4.1 we introduced two cases for the local

demons that are dealing with our bipartite system. In case (i) the two demons are not

allowed to communicate with each other. In this case, the maximum amount of work

demon A can extract from subsystem A is log dA − S(A). This can be achieved by

an optimal process that directly transforms the marginal state ρA to the maximally

mixed state or by measuring in the marginal eigenbasis, extracting work log dA as

the post-measurement pure state is transformed to the maximally mixed state, and

then erasing the S(A) bits of measurement record at cost S(A). Since demon B is in

the same situation, the maximum work the two local demons can extract is

Wc = log(dAdB)− S(A)− S(B) . (4.41)

The difference in the amount of work that can be extracted by the quantum and

classical demons, called the work deficit [OHHH02, Zur03, BT10], is the quantum

mutual information:

Wq −Wc = S(A) + S(B)− S(A,B) = S(A : B) ≡M3(i) . (4.42)



Chapter 4. A framework for entropic measures of nonclassical correlations 50

Brodutch and Terno [BT10] have noted that the work deficit in the case of erasure

without communication between the local demons provides an operational interpreta-

tion of the quantum mutual information.

In case (ii) the local demons can communicate their measurement results and thus

reduce their cost of erasure. In particular, the demons make local measurements,

which in accord with the assumptions of this section are described by rank-one

POVMs and thus leave the two subsystems in pure states. They can then extract

work

W+ = log dA + log dB (4.43)

as their respective systems are transformed to the maximally mixed state. They must

then erase their memories of the measurement record so they are ready to handle

another copy of the joint state ρAB.

In the absence of communication, the total erasure cost is W− = H(A) +H(B) ≥

S(A)+S(B), with the minimum attained for measurements in the marginal eigenbases;

the net work the demons can extract is that of case (i), i.e., Wc = W+ −W− =

log dAdb−S(A)−S(B). If the demons can communicate, however, as in case (ii), then

they can take advantage of correlations between their measurement results to reduce

their erasure cost to the joint classical information in their measurement records,

W− = H(A,B), which gives net work

Wc = W+ −W− = log(dAdB)−H(A,B) . (4.44)

Thus in case (ii), the work deficit becomes

Wq −Wc = H(A,B)− S(A,B) =M3 , (4.45)

giving us joint-entropy-based measures of nonclassical correlations, with Q3 =

−S(A,B), C3 = −H(A,B), andM3 = Q− C.

We now have to consider the three measurement strategies for the local demons,

but before embarking on that, we note that

M3 =M2 +
[
H(A)−S(A)

]
=M1 +

[
H(B)−S(B)

]
+
[
H(A)−S(A)

]
, (4.46)



Chapter 4. A framework for entropic measures of nonclassical correlations 51

so for each measurement strategy, we have M3 ≥ M2 ≥ M1, as we have noted

earlier.

For strategy (a), measurement in the marginal eigenbases, we have H(A) = S(A)

and H(B) = S(B), so we again get the MID measure, i.e.,M3a =M2a =M1a; this

is the form in which Rajagopal and Randall [RR02] defined what they called the

quantum deficit. For strategy (b), we have to minimizeH(A,B) over all unconditioned

local measurements,

M3b = min
(b)

H(A,B)− S(A,B) ; (4.47)

in general, the result is not the same asM2b orM1b.

For strategy (c), we have to minimize H(A,B) over all conditioned local measure-

ments. The minimization over the conditioned measurements on B is simple, since as

in Eq. (4.37), we have

H(A,B) = H(A) +H(B|A) ≥ H(A) +
∑
a

paS(B|a) ≡ H{Ea}(A,B) , (4.48)

with equality if and only if the measurement on B, given outcome a, is in the

marginal eigenbasis of ρB|a. Hence, with the conditional measurements on B specified,

the minimization of the classical joint entropy, H(A,B), is reduced to choosing a

measurement on A that minimizes the joint entropy H{Ea}(A,B):

min
(c)

H(A,B) = min
{Ea}

H{Ea}(A,B) ≡ H̃(A,B) . (4.49)

The quantity H̃(A,B) is a special sort of classical joint entropy. The resulting measure

of nonclassical correlations is

M3c = H̃(A,B)− S(A,B) . (4.50)

This measure was hinted at in Zurek’s original paper on discord [Zur00]. Ollivier

and Zurek [OZ01] defined quantum discord as the quantityM2c, but Zurek [Zur03]

resurrectedM3c as a modified form of discord in his paper on discord and Maxwell

demons. Brodutch and Terno [BT10] have also pointed out that M3c is the mea-

sure that applies to demons that can communicate and use strategy (c) for their

measurements. Hence, we can callM3c the demon discord (dd).



Chapter 4. A framework for entropic measures of nonclassical correlations 52

As noted in Sec. 4.1, we haveMMID
3a ≥M3b ≥M

(dd)
3c .

Properties of nonclassical-correlation measures

The following array neatly summarizes the measures of nonclassical correlations that

we have found and the relations we have found among them:

M(MID)
1a ≥ M(WPM)

1b

= ≥

M(MID)
2a ≥ M2b ≥ M(discord)

2c
= ≥ ≥

S(A,B) = M3(i) ≥ M(MID)
3a ≥ M3b ≥ M(dd)

3c

(4.51)

The vertically oriented inequalities are best read by leaning your head to the left; in

the absence of leaning, the wedges point toward the smaller quantity, as is standard.

Of the potential measures we started with, the demon-based measure that assumes

erasure without communication is special and gives the quantum mutual information.

Of the remaining nine potential measures, we discarded one,M1c, as meaningless; we

found that the three measures in the left column of the array are all identical to the

MID measure; we determined that three of the other measures are the WPM measure,

quantum discord, and demon discord; and we are thus left with two new measures,

M2b andM3b, althoughM3b is very closely related to—and perhaps identical to—a

discord-like measure introduced by Modi et al. [MPS+10].

Modi et al. [MPS+10] introduced a set of measures of quantum and classical

correlations based on the relative-entropy distance (4.2) between a multi-partite

state ρ and the nearest state σρ that is diagonal in a product basis, or between

ρ and the nearest product state. The only one of these measures relevant to our

discussion is their “discord,” which when specialized to bipartite states, is the distance

DModi = minσAB
S(ρAB||σAB), where σAB is diagonal in a product basis. Modi

et al. show that the minimum is attained on a state obtained by projecting ρAB
into a product basis, i.e., σAB =

∑
a,b |ea, fb〉〈ea, fb|ρAB|ea, fb〉〈ea, fb|, in which case,
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S(ρAB||σAB) = S(σAB)− S(ρAB). Thus we have

DModi = min
{|ea,fb〉}

S(σAB)− S(ρAB) . (4.52)

Since S(σAB) is the classical joint entropy of a measurement made on ρAB in the

product basis |ea, fb〉, this would be the same as ourM3b if we knew that the optimal

local measurements forM3b were described by orthogonal rank-one projectors.

Brodutch and Terno [BT10] define three kinds of “discord”: theirD1 is the standard

discordM(discord)
2c ; their D2 is the demon discordM(dd)

3c ; and their D3 is a discord-like

quantity that uses a different conditional measurement strategy. This strategy allows

conditioned local measurements, but with the measurement on A constrained to be

in the marginal eigenbasis of ρA. The Brodutch-Terno measurement strategy is a

restriction of strategy (c), and (a) is a restriction of the Brodutch-Terno strategy.

Measures based on it could thus be placed in the array (4.51) as an alternative

intermediate column whose ordering with strategy (b) is indeterminate.

All the measures in the array (4.51), except the quantum mutual information,

are bounded above by MID, and MID is bounded above by the quantum mutual

information. Similarly, MID,M2b, andM3b are bounded below by both the WPM

measure and the quantum discord, and the demon discordM3c is bounded below by

discord. The WPM measure and quantum discord have a special status in that they

are the most parsimonious of the measures in quantifying nonclassical correlations.

WPM showed that their measure is nonnegative, and Datta [Dat08] showed that

discord is nonnegative, allowing us to conclude that all the other measures are also

nonnegative. Both proofs rely on the strong subadditivity of quantum entropy [NC00];

we review the proofs in App. A.2. Careful consideration of the conditions for saturating

the strong-additivity inequality [HJPW04], not presented here, give the conditions

for WPM and discord to be zero: the WPM measure is zero if and only if ρAB is

diagonal in a product basis, i.e., an orthonormal basis of the form |ea〉 ⊗ |fb〉, and

discord is zero if and only if ρAB is diagonal in a conditional product basis (pointing

from A to B), i.e., an orthonormal basis of the form |ea〉 ⊗ |fb|a〉.

Since MID, like WPM, is zero if and only if ρAB is diagonal in a product basis,
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the relations in the array (4.51) imply thatM2b andM3b are zero if and only if ρAB
is diagonal in a product basis. Similarly, the inequality M(dd)

3c ≥ M(discord)
2c shows

that having ρAB diagonal in a conditional product basis is necessary to makeM3c

zero, and a moment’s contemplation of Eqs. (4.48)–(4.50) shows that this is also a

sufficient condition.

For pure states, we have S(A,B) = 0, S(A) = S(B) = −S(B|A) = −S(A|B),

and S(A : B) = 2S(A) = 2S(B). It is easy to show that the optimal measurement for

all the measures in the array is measurement in the Schmidt basis of the pure state

(marginal eigenbasis for each subsystem), which gives H(A) = H(B) = H(A,B) =

H(A : B) = S(A) = S(B) and H(B|A) = H(A|B) = 0. Thus all the measures in the

array, except the quantum mutual information, are equal to the marginal quantum

entropy, S(A) = S(B), which is the entropic measure of entanglement for bipartite

pure states.

The remaining gap in our understanding left by the relations in the array is

whether there is an inequality between the WPM measure and discord. The WPM

measure is strictly bigger than zero for states that are diagonal in a conditional

product basis that is not a product basis and so is bigger than the quantum discord

for such states. If there is an inequality, it must be that the WPM measure is bounded

below by quantum discord. Indeed, it is not hard to come up with a proof, using the

method of Piani et al. [PHH08]. The proof, given in App. A.2, is part of the two-step

demonstration that WPM and discord are nonnegative. We conclude that

M(WPM)
1b ≥M(discord)

2c = D(A→ B) . (4.53)

The proof allows us to identify the equality condition: the WPM measure is equal to

discord if and only if ρAB is diagonal in a conditional product basis that points from

B to A.

We emphasize that product bases and conditional product bases do not exhaust the

set of orthonormal bases that are made up of product states. There are orthonormal

bases made up entirely of product states that are neither product bases nor conditional

product bases; these have been studied, for example, in the context of nonlocality
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without entanglement [BDF+99]. Not surprisingly, we refer to such a basis as a basis

of product states, to be distinguished from a product basis or a conditional product

basis.

4.2.4 Rank-one POVMs and projective measurements

In Sec. 4.2.3 we assumed that all the measurements were described by rank-one

POVMs. This assumption does not affect the demon-based work deficit (4.42) for the

case of erasure without communication, for that case, which leads to the quantum

mutual information, does not rely on any assumptions about how the subsystems are

measured. Nor does this assumption affect MID, which is derived from measurement

strategy (a), a strategy that from the outset prescribes orthogonal-projection-valued

measurements in the eigenbases of the marginal density operators. The assumption

must be carefully examined, however, for measurement strategies (b) and (c). On

the face of it, there is a problem for the second and third rows of our array. For

type-2 measures, the task is to minimize a classical conditional entropy, and for

type-3 measures, the task is to minimize a classical joint entropy. In both cases, the

minimum is achieved by making no measurements at all.

For the demon-based measures in the right two columns of the third row, it is

clear what the problem is. The contribution of H(A,B) to the classical work comes

from the erasure cost; the local demons can minimize their erasure cost by not having

a measurement record. Of course, if the local demons make no measurements, they

also cannot extract the work attendant on knowing more about their system’s state.

The upshot is that formula (4.44) for the net classical work needs to be modified if

one does not assume measurements described by rank-one POVMs. App. A.4 shows,

not surprisingly, that, once modified, the net classical work is always optimized on

rank-one POVMs, so one can restrict the demons in this way without affecting their

performance.

For the measureM2b, we know of no reason to restrict to rank-one POVMs more

compelling than declaring that the measure would be nonsense without this restriction.
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For the quantum discord, we can do better: the original definition of discord [OZ01]

did not discuss conditioned measurements on B, but rather formulated the discord

directly in terms of minimizing the classical conditional entropy as in Eqs. (4.37)–

(4.39); this is equivalent to our assuming rank-one POVMs for the measurement on B.

We are still left with a question—why should the measurements on A be restricted to

rank-one POVMs?—and this same question applies to both local measurements for

the WPM measure. We now address this question by showing in both situations that

the optimum can always be attained on rank-one POVMs. It is important to show

this, because the proofs regarding nonnegativity and ordering of the WPM measure

and discord, given in App. A.2, assume rank-one POVMs.

We deal with the WPM measure first. The key point is obvious: making coarse-

grained POVM measurements on A and B should not uncover as much mutual

information as making fine-grained, rank-one POVM measurements. We start with

POVMs {Ea} and {Fb} for systems A and B, and we imagine that these are a coarse

graining of POVMs {Eaj} and {Fbk}, i.e.,

Ea =
∑
j

Eaj , Fb =
∑
k

Fbk . (4.54)

A POVM element can always be fine-grained to the rank-one level by writing it in terms

of its eigendecomposition. The joint probability for the fine-grained outcomes aj

and bk is pajbk = pjk|abpab, with similar relations for the marginals for the two

subsystems. It is now trivial to show that fine graining never decreases the classical

mutual information:

H(A, J : B,K) = H(A : B) +
∑
a,b

pabH(J : K|a, b) . (4.55)

This means that in maximizing the classical mutual information, we need only consider

rank-one POVMs.

For the discord, the reduction to rank-one POVMs has been demonstrated by

Datta [Dat08]; it is sufficiently brief that we repeat it here. Since the conditional

measurements on B are already specified, we need only worry about fine graining

the measurement on A. We need the conditional state of B given the coarse-grained
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outcome a in terms of the conditional states given the fine-grained outcome aj:

ρB|a =
trA(EaρAB)

pa
=
∑
j

trA(EajρAB)

pa
=
∑
j

pj|aρB|aj , (4.56)

where

pj|a =
paj
pa

=
trA(EajρA)

trA(EaρA)
. (4.57)

The quantity to be minimized over measurements onA is the conditional entropy (4.37).

For it, we can write

H{Ea}(B|A) =
∑
a

paS(ρB|a)

=
∑
a

paS
(∑

j

pj|aρB|aj

)
(4.58)

≥
∑
a,j

pajS(ρB|aj) = H{Eaj}(B|A) , (4.59)

where the inequality follows from the concavity of the von Neumann entropy. Thus

fine graining never increases this conditional entropy, so we are assured that the

minimum is attained on rank-one POVMs.

We have now settled the question of restricting to rank-one POVMs for all the

measures except the measure in the middle,M2b, and for it, we simply assert that it

makes sense only if we restrict to rank-one POVMs. A remaining question is whether

we can further restrict to orthogonal-projection-valued measurements. Searching over

the entire set of rank-one POVMs is a daunting task, considerably more onerous than

searching just over projection-valued measurements. On this score, we can report that

WPM drew attention to an example where the WPM measurements are optimized on

a rank-one POVM that is not projection-valued; we extend this example to quantum

discord and generalize it in App. A.3.

These examples, however, require that at least one system have dimension big-

ger than two; For evaluating quantum discord for a two-qubit system, Chen et

al. [CZY+11] found, that there are some states for which three-element POVMs on

system A do better than two-outcome, orthogonal-projection-valued measurements.
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Exploring the situation numerically, Galve, Giorgi, and Zambrini [GGZ11] confirmed

this finding, but suggested that the corrections to the two-qubit discord obtained by

using POVMs, instead of orthogonal projectors, are negligible. In the next section,

we do a wholesale evaluation of the various measures for two-qubit states; in the

need for manageable numerics, we restrict the search over measurements to rank-one,

orthogonal projection operators; according to [GGZ11], this should have no significant

effect on the result.

Several groups of investigators have considered Gaussian versions of nonclassical-

correlation measures for Gaussian states of two harmonic-oscillator modes; the

local measurements are restricted to Gaussian measurements, i.e., measurements

whose POVM elements are the phase-space displacements of a particular single-mode

Gaussian state. Giorda and Paris [GP10] and Addesso and Datta [AD10] focused on

a Gaussian version of discord and showed that the optimal Gaussian measurements

are rank-one POVMs, but that for some Gaussian states, the optimal measurement

is not orthogonal-projection-valued and thus requires the use of POVMs. Mĭsta et

al. [MTG+11] investigated Gaussian versions of MID and WPM (which they called

AmeriolatedMID); their investigation showed that for some Gaussian states, the

optimal Gaussian measurement for the WPM measure is not the globally optimal

measurement when one allows nonGaussian POVMs.

4.3 Numerical results for two-qubit states

One purpose of our framework is to clarify relations among the various measures of

nonclassical correlations beyond entanglement. The ordering of the measures is of

particular interest. The framework provides by construction some ordering relations

between the measures; in addition, we have proved, using the method of Piani et

al., the important relation that the WPM measure is bounded below by the discord.

Nonetheless, questions remain, in particular, of whether there is an ordering between

M2b andM
(dd)
3c , as well as betweenM(WPM)

1b andM(dd)
3c .
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Figure 4.1: M(discord)
2c = D(A → B) plotted against M(WPM)

1b for one million
randomly generated joint density matrices, using orthogonal projectors for the
measurements. As expected, the WPM measure is never smaller than the discord;
also evident is that discord is zero for a larger class of states than the WPM
measure, those being the states that are diagonal in a conditional product basis
pointing from A to B.

In this section we illustrate and investigate the various orderings by presenting

numerical evaluations of the several measures for randomly selected two-qubit states.

It should be noted, however, that in order to do the optimizations over measurements

Figure 4.2: M(dd)
3c plotted againstM(WPM)

1b for 100,000 randomly generated joint
density matrices. SinceM(dd)

3c ≥M
(discord)
2c , the points from Fig. 4.1 move upwards.

Many points pass the diagonal, and the ordering of Fig. 4.1 disappears.
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Figure 4.3: M(dd)
3c plotted against M2b for 100,000 randomly generated joint

density matrices. Relative to Fig. 4.2, the points move right, due to the relation
M2b ≥M1b. Since not all of them pass the diagonal, there is no ordering relation
betweenM3c andM2b.

numerically, we have had to restrict ourselves to orthogonal projectors instead of the

more general POVMs, so in some situations, we might not be finding the optimal

measurements.

To calculate the various correlation measures, we follow the approach of Al-Qasimi

and James [AJ11]. The measurement operators Ea and Fb are orthogonal projectors,

Ea = |eAa 〉〈eAa | , Fb = |eBb 〉〈eBb | , a, b ∈ {0, 1} , (4.60)

|eX0 〉 = cos θX |0〉+ eiφ
X

sin θX |1〉 , |eX1 〉 = − sin θX |0〉+ eiφ
X

cos θX |1〉 .

(4.61)

The required optimization is done by a numerical search over the angles {θX ,φX}

for X ∈ {A,B}. For measurement strategy (b), we must search over the four angles

for both qubits, but for strategy (c), we need only search over the two angles for

subsystem A.

Figure 4.1 compares the WPM measure and discord, confirming the expectation

that the WPM measure is never smaller than discord. Figures 4.2 and 4.3 display the

aforementioned pairs of correlation measures where our framework does not imply an

ordering relation; the numerical data show that there is no ordering for these pairs.
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Figure 4.4: (A) Discord (blue circles) and the WPM measure (yellow crosses) for
one million randomly chosen two-qubit states, plotted against entanglement of
formation, Ef . As the correlations increase, the spread between entanglement
and WPM or discord decreases. (B) Two superimposed histograms showing
the distribution of discord and the WPM measure for ranges of values of Ef :
left histogram shows discord (red) and WPM (yellow) for the states of (A)
corresponding to 0.1 ≤ Ef ≤ 0.2; right histogram shows discord (blue) and WPM
(green) corresponding to 0.3 ≤ Ef ≤ 0.4.

Another relation we have explored numerically is the one between the correlation

measures and entanglement. Figure 4.4 shows discord and the WPM measure plotted

against entanglement of formation, reproducing the plot in [AJ11] for discord, but pro-

viding new data for the WPM measure. The entanglement of formation is calculated

using Wootters’s analytical expression [Woo98], Ef (ρ) = h
(
(1+

√
1− C2(ρ))/2

)
. Here

h(x) is the binary entropy, h(x) = −x log x− (1− x) log(1− x), and C(ρ) is the con-

currence, given by C(ρ) = max(0,λ1−λ2−λ3−λ4), where the λjs are the eigenvalues

in decreasing order of the operator
√√

ρρ̃
√
ρ, with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).

To avoid the slow numerical optimization procedures, analytical expressions for

the correlation measures would be desirable. Yet only for very restricted classes

of joint states are such expressions available. Girolami et al. [GPA10] 1 suggested

that there is an analytical expression for the WPM measure for general two-qubit

states. To understand their claim, we write the joint two-qubit state in terms of Pauli
1In the published version of their paper Girolami et al. restriced the validity of their

analytical expression to the set of two-qubit X-states [GPA11].
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Figure 4.5: Deviation of the numerically obtained, optimal measurement vectors
from the maximal singular vectors of the correlation matrix for the WPM measure.
The joint states are a mixture of a pure product state with marginal spin (Bloch)
vectors a = (1, 0, 0) and b = (1/

√
2, −1/2, 1/2) and a mixed Bell-diagonal (zero

marginal spin vectors) state, with correlation matrix c = diag(−0.9, −0.8, −0.7).
The mixing parameter is ε, with ε = 0 corresponding to the product state and ε = 1
to the Bell-diagonal state. The green curve shows the cosine of the angle between
the maximal right singular vector and the measurement vector on system B. The
red curve is the cosine of the angle between maximal left singular vector and the
measurement vector on system A.

operators:

ρAB =
1

4

(
IAB + a ·σA ⊗ IB + IA ⊗ b ·σB +

3∑
j,k=1

cjkσ
A
j ⊗ σBk

)
. (4.62)

The correlation matrix, cjk = tr(σAj ⊗ σBk ρAB), is not symmetric, but cT c can be

diagonalized as cT cmj = λ2
jmj. The eigenvalues, λ2

j , are the squares of the singular

values of c, and the eigenvectors are the right singular vectors of c. The correlation

matrix maps the right singular vectors to the left singular vectors, cmj = λjnj, and

the left singular vectors, nj, are the eigenvectors of ccT .

The claim of Girolami et al. was that the maximal left and right singular

vectors, i.e., those corresponding to the largest singular value of c, specify the

optimal measurements for the WPM measure. We can confirm that the measurement

vectors for generic (randomly generated) two-qubit states are close to the maximal

singular vectors of c for all three correlation measures that are based on measurement

strategy (b), but it can be shown analytically that in general the singular vectors
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are not the optimal measurement vectors. Moreover, there are examples where the

deviation becomes obvious in the numerics. Figure 4.5 shows an example where

the angle between the measurement vectors and the maximal singular vectors is

noticeable in the calculation of the WPM measure. Similar plots can be obtained for

the measuresM2b andM3b.

In this chapter we considered several entropic measures of nonclassical correlations.

We presented a framework from which these different measures emerge logically. This

enabled us to investigate ordering relations between these measures, by putting them

onto equal footing. While some of these ordering relations are a direct consequence

of the different measurement strategies employed in the definition of the framework,

others were either proven analytically or numerical evidence was presented demon-

strating the nonexistence of an ordering between some measures. In the next chapter

we investigate some properties of these measures further by using a pictorial approach

for a restricted set of two qubit states.
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Chapter 5

Quantum Discord and the Geometry

of Bell-Diagonal States

Maintenance of quantum coherence is clearly important for quantum-information-

processing protocols. Noise and decoherence, by turning pure states into mixed

states, generally destroy quantum coherence. Efficient representation of quantum

information requires that a quantum-information-processing system be composed

of parts [BKCD02]. For multi-partite systems, quantum coherence is related to

nonclassical correlations between the parts.

One can use decoherence mechanisms to explore the nooks and crannies of

nonclassical-correlation measures. There is no sudden death of discord [FAC+10], as

is suggested by the absence of open sets of classical states, but the nonanalyticity

of nonclassical measures points to the possibility of sudden changes in derivatives.

Investigation of the behavior of nonclassical measures under decoherence has be-

gun [Col10, MCSV09, MWF+10, MPM10], with a focus on the action of decoherence

within the class of two-qubit states that are diagonal in the Bell basis. This focus

is motivated by the fact that entanglement measures and nonclassical-correlation

measures can be calculated explicitly for the Bell-diagonal states, thus allowing one

to determine how these measures change under decoherence.
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The Bell-diagonal states are a three-parameter set, whose geometry, including

the subsets of separable and classical subsets, can be depicted in three dimen-

sions [HHHH09, HH96]. Level surfaces of entanglement and nonclassical measures

can be plotted directly on this three-dimensional geometry. The result is a complete

picture, for this simple case, of the structure of entanglement and nonclassicality.

We suggest that it is more illuminating to use this picture to explain how measures

of entanglement and nonclassicality change along the one-dimensional trajectories

traced out by decohering states, rather than the other way around. Hence we review

and expand the pictorial approach here.

Figure 5.1: Geometry of Bell-diagonal states. The tetrahedron T is the set of valid
Bell-diagonal states. The Bell states |βab〉 sit at the four vertices, the extreme
points of T . The green octahedron O, specified by |c1|+ |c2|+ |c3| ≤ 1 (λab ≤ 1/2),
is the set of separable Bell-diagonal states. There are four entangled regions
outside O, one for each vertex of T , in each of which the biggest eigenvalue λab is
the one associated with the Bell state at the vertex. Classical states, i.e., those
diagonal in a product basis, lie on the Cartesian axes.

In Sec. 2.3 we have seen that an arbitrary two-qubit state can be written as:

ρ =
1

4

(
I4 + ~a ·~σ ⊗ I2 + I2 ⊗~b ·~σ +

∑
i,j

ci,j σi ⊗ σj
)

. (5.1)

Any two-qubit state, satisfying ~a = 0 = ~b, i.e., having maximally mixed marginal

density operators ρA = I/2 = ρB, can be brought to Bell-diagonal form by using



Chapter 5. Quantum Discord and the Geometry of Bell-Diagonal States 66

local unitary operations on the two qubits to diagonalize the correlation matrix

ci,j = 〈σAj ⊗ σBk 〉 [Luo08b].

Bell-diagonal states of two qubits, A and B, consequently have a density operators

of the form

ρAB =
1

4

(
I +

3∑
j=1

cj σ
A
j ⊗ σBj

)
=
∑
a,b

λab|βab〉〈βab| . (5.2)

The eigenstates are the four Bell states |βab〉 ≡ (|0, b〉 + (−1)a|1, 1 ⊕ b〉)/
√

2, with

eigenvalues

λab =
1

4

(
1 + (−1)ac1 − (−1)a+bc2 + (−1)bc3

)
. (5.3)

A Bell-diagonal state is specified by a 3-tuple (c1, c2, c3). The density operator

ρAB must be a positive operator, i.e., λab ≥ 0; the resulting region of Bell-diagonal

states is the state tetrahedron T in Fig. 5.1. Separable Bell-diagonal states are those

with positive partial transpose [HHHH09]. Partial transposition changes the sign of

c2, so operators with positive partial transpose occupy the reflection of T through

the plane c2 = 0; the region of separable Bell-diagonal states is the intersection of the

two tetrahedra, which is the octahedron O of Fig. 5.1 [HH96].

The entanglement of formation E [HHHH09, Woo98] is a monotonically increasing

function of Wootters’s concurrence C [Woo98], which for Bell-diagonal states, is

given by C = max(0, 2λmax − 1), where λmax = maxλab. The concurrence and the

entanglement of formation are convex functions on T . They are zero for the separable

states in the octahedron O. In each of the four entangled regions outside O, C and E

are constant on planes parallel to the bounding face of O and increase as one moves

outward through these planes toward the Bell-state vertex.

We will talk about discord when investigating correlation measures in this setting

because it has been a focus of recent work on decoherence and nonclassical correla-

tions [Col10, MCSV09, MWF+10, MPM10]. As we will show, however, everything

we will talk about directly applies to all of the correlation measures discussed in the

previous chapter, since for the set of Bell-diagonal states, all of these measures are

equal.
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Discord is defined as the difference between the mutual information I and the

accessible classical correlation C [HV01],

D = I − C = S̃(B|A)− S(B|A) . (5.4)

The quantum mutual information I is regarded as quantifying the total correlations

in the joint state ρAB.

The quantum mutual information of Bell-diagonal states,

I = 2− S(ρAB) =
∑
a,b

λab log2(4λab) , (5.5)

is a convex function on T . It has smooth level surfaces that bulge outward toward

the vertices of T (see Fig. 5.2).

The next step is to quantify purely classical correlations C in terms of information

from measurements. As we restricted ourselves to Bell-diagonal states, we can make

use of an analytical expression for C, derived by Luo [Luo08b], and circumvent the

cumbersome optimization procedure:

C=1−H2

(
1 + c

2

)
=

1 + c

2
log2(1 + c) +

1− c
2

log2(1− c) , (5.6)

where H2(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy and c = max |cj|.

Luo calculated C for Bell-diagonal states under the assumption that the measure-

ment is described by one-dimensional orthogonal projection operators. We will relax

this assumption and extend Luo’s result to rank-one POVMs here. If the measurement

on system A is to be described by arbitrary rank-one POVM elements

Ek = qk(I + nk ·σ), (5.7)

we have pk = qk and the state ρB|k of system B after the measurement outcome k is

ρB|k = (I + dk ·σ)/2, (5.8)

with dkj = cjnkj. Now, we have

S(ρB|k) = H2[(1 + |dk|)/2 ≥ H2[(1 + c)/2], (5.9)
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since |dk| ≤ c. This shows that S̃(B|A) ≥ H2[(1+c)/2], with equality for measurement

of orthogonal projectors along the direction of maximum cj.

From Eqs. (5.8) and (5.9) we see that the optimal measurement on system B

is always aligned with the measurement on system A and does not depend on the

outcome of the first measurement. As both of the optimal measurements are specified

by orthogonal projectors, and the marginal density operators for either subsystem of

Bell-diagonal state are degenerate, the measurements are performed in the marginal

eigenbasis of both parts. This causes the hierarchy of correlation measures in Eq. (4.51)

to collapse and demonstrates, for the set of Bell diagonal states, the equality of all

the correlation measures considered in the previous chapter.

The accessible classical information C, a convex function on T , is constant on

the surfaces of cubes (or the portion of such a cube in T ) centered at the origin in

Fig. 5.2 —this introduces nonanalyticity—and C increases monotonically with the

size of the cube.

As we have shown that discord equals the symmetric correlation measures, due to

the symmetry of the Bell-diagonal states, it vanishes if and only if ρAB is diagonal in

a product basis |eAj 〉 ⊗ |fBk 〉. In our three dimensional picture of the Bell-diagonal

state space, these purely classical states fall on the Cartesian axes [DacVB10] (see

Fig. 5.1).

Figure 5.3 plots level surfaces of discord for Bell-diagonal states. From these plots,

it is clear that discord is quite a different beast from entanglement of formation,

quantum mutual information, and the measure of classical correlations. Whereas

E , I, and C generally increase outward from the origin, D increases away from the

Cartesian axes, capturing an entropic notion of distance from classical states [MPS+10,

DacVB10]. In particular, as one moves outward along one of the constant-discord

tubes of Fig. 5.3, the classical correlations and the total correlations of the quantum

mutual information increase, but their difference, the nonclassical correlations as

measured by discord, remains constant. At the vertices of O, I = C = 1 and

D = E = 0. At the Bell-state vertices of T , I = 2 and C = D = E = 1, this being the
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maximum value of discord for two qubits. In addition, E , I, and C are all convex,

whereas discord is neither concave nor convex, as is evident from the plots in Fig. 5.3:

one can mix two positive-discord states to get a zero-discord classical state, and one

can mix two zero-discord classical states on different axes to get a positive-discord

state. This argument and its conclusion are not special to Bell-diagonal states: mixing

two discordant states can lead to a state that is diagonal in a product basis, and

mixing two states that are diagonal in incompatible product bases generally leads to

a discordant state.

Mazzola, Piilo, and Maniscalco [MPM10] recently investigated the dynamics

of classical and nonclassical correlations, as measured by discord, for two qubits

under decoherence processes that preserve Bell-diagonal states. In particular, they

considered independent phase-flip channels for the two qubits. The phase flips are

implemented mathematically by random applications of σz operators to the qubits.

This decoherence process leaves c3 unchanged, but flips the signs of c1 and c2 randomly,

leading to exponential decay of c1 and c2 at the same rate. Mazzola and collaborators

found that for the initial conditions they considered, the entanglement of formation

decays to zero in a finite time—sudden death of entanglement [YE09]—but that

the discord remains constant for a finite time and then decays, reaching zero at

infinite time. This situation is depicted in terms of the surfaces of constant discord in

Figure 5.4. The decohering-state trajectory is a straight line that runs along a tube

of constant discord, until it encounters an intersecting tube, after which the discord

decreases to zero when the state becomes fully classical.

This behavior is generic for flip channels and initial conditions on edges of the

state tetrahedron. We focus here on the phase-flip channel with initial conditions in

the (+,−, +)-octant, but analogous considerations apply to the other flip channels

(bit and bit-phase) and to initial conditions on the other edges of T . Consider

then initial conditions anywhere along the edge of T in this octant: c1(0) = 1

and 0 ≤ −c2(0) = c3(0) ≤ 1. The trajectory under phase flips is a straight line

c3 = c3(0) = −c2/c1. Along this straight line, the eigenvalues λab factor into products

of probabilities, (1± c1)/2 and (1± c3)/2, thus making S(ρAB) the entropy of two
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independent binary random variables with these probabilities. This yields a quantum

mutual information I = 2−H2[(1 + c3)/2]−H2[(1 + c1)/2]. Furthermore, along the

trajectory c = max(c1, c3). The result is that the trajectory initially runs along a

tube of constant discord

D = 1−H2

(
1 + c3

2

)
, (5.10)

for c1 ≥ c3. When c1 = c3, the trajectory encounters another tube, after which, for

c1 ≤ c3, the discord decreases monotonically as D = 1−H2[(1 + c1)/2] as c1 decreases.

Meanwhile, the entanglement of formation decreases monotonically from its initial

value to a sudden death at c1 = (1− c3)/(1 + c3).

The situation investigated in [MPM10] is surely interesting: under decoherence,

nonclassical correlations remain constant for a finite time interval. This situation

is, however, a special one, as can be seen from the surfaces of constant discord; the

trajectories considered here are the only straight lines in parameter space that stay on

a surface of constant discord. Indeed, the pictorial approach can provide a complete

understanding of how entanglement and nonclassicality change under decoherence

within the set of Bell-diagonal states.
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(a) (c)

(b) (d)

Figure 5.2: Level surfaces of the quantum mutual information I (left column) and
the accessible classical information C (right column): (a) I = 0.1; (b) I = 0.55;
(c) C = 0.15; (d) C = 0.4. The smooth surface of calI = 0.1 bulges towards the
vertices of the tetrahedron T from Fig. 5.1; as the mutual information grows, this
surface becomes inflated and eventually intersects T , giving rise to the windows
seen in (b) for I = 0.55. The level surfaces for the accessible classical information
C are cubes centered at the origin. As C increases corners of the cube get cut of
as they poke through the surface of T .
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(a)

(b)

(c)

Figure 5.3: Surfaces of constant discord: (a) D = 0.03; (b) D = 0.15; (c) D = 0.35.
The level surfaces consist of three intersecting “tubes” running along the three
Cartesian axes. The tubes are cut off by the state tetrahedron T at their ends,
and they are squeezed and twisted so that at their ends, they align with an edge
of T . As discord decreases, the tubes collapse to the Cartesian axes [DacVB10].
As discord increases, the tube structure is obscured, as in (c): the main body of
each tube is cut off by T ; all that remains are the tips, which reach out toward
the Bell-state vertices.
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Figure 5.4: Trajectory (red) of a Bell-diagonal state under random phase flips
of the two qubits; initial conditions are c1(0) = 1, −c2(0) = c3(0) = 0.3. The
trajectory is the straight line c3 = c3(0) = 0.3 = −c2/c1. For clarity, only the
(+,−, +)-octant is shown. A constant-discord surface is plotted for the discord
value of the initial state. Faces of the yellow state tetrahedron T and the green
separable octahedron O are also shown. The straight-line trajectory proceeds
along a tube of constant discord till it encounters the vertical tube at c1 = 0.3,
after which discord decreases monotonically to zero when the trajectory reaches
the c3 axis. Entanglement of formation decreases monotonically to zero when the
trajectory enters O at c1 = 0.7/1.3 = 0.54.
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Chapter 6

Parameter estimation

The goal of metrology is to determine some quantity as accurately as possible. A

prototypical example for this is an interferometer, in which a change in the relative

phase between the two arms is the quantity to be determined. A laser beam is

split up and later recombined at a beam splitter, interfering with itself. Any change

in the path lengths relative to each other can then be determined precisely in the

interference pattern after the beams are recombined. Interferometers are quite

universal measuring devices with such application as laser gyroscopes, phase-contrast

microscopes, astronomical optical interferometry, etc. One way to improve the

sensitivity of these interferometers is to use stronger lasers, but design constraints or

availability make this not always a viable option.

Generally, for any estimation scheme, a relevant question is the following: Given

a fixed amount of resources (such as a laser of a given power), how can we use this

resource efficiently to determine the quantity we are interested in as accurate as

possible? The first step is to isolate the apparatus from various sources of noise to

improve the signal-to-noise ratio. Eventually, however, quantum mechanics imposes

fundamental limits on how well one can do with a classical resource such as laser

light even if all classical sources of noise are eliminated.

Here the field of quantum metrology comes in. The idea is to use quantum

resources, such as exotic states of light, to mitigate the effects of quantum noise and
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to improve the sensitivity of one’s precision instruments.

One example we will focus on is arguably the most advanced interferometer of its

kind: the Laser Interferometer Gravitational-Wave Observatory or LIGO. The idea

is that a passing gravitational wave will cause a minuscule change in the 4 km long

arms of the interferometer. To detect this change, a tremendous effort has been put

into practically eliminating all kinds of sources of classical noise: The laser beams

travel in ultra high vacuum, mirrors have to be suspended to subdue seismic noise,

scattered light has to be ‘filtered’ out, etc. Despite all this effort, no gravitational

waves have been detected so far.

In the regime LIGO is currently working in, the relevant part of the noise introduced

through the quantum nature of light, is the photon-counting errors, which give rise to

the shot-noise limit. Caves [Cav81] showed in 1981 that, in principle, an interferometer

can surpass this limit, making use of an entirely non-classical form of light, a squeezed

state of light. After successful test runs [VKL+10, KVL+12, C+11], this technology

became part of the current LIGO upgrade [AAA+13], which is expected to push the

sensitivity of LIGO into the realm where a successful detection of gravitational waves

becomes very likely.

In this chapter I will describe some tools that I will use later on in the analysis of

an interferometric scheme to estimate a phase. Central to this introduction will be the

use of Fisher information for quantifying the performance of a parameter estimation

scheme. A brief, but maybe slightly more rigorous introduction to the concept of

Fisher information can be found in [CT12, VTB13]. In-depth discussions of the

problem of parameter estimation for the quantum case are located in [Hol11, Hel76].

A more comprehensive review, discussing limits on optical interferometry in general,

but also the use of Fisher information in this context, was recently written by

Demkowicz-Dobrzanski et al. [DDJK14].
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6.1 Classical parameter estimation and the Cramér-

Rao bound

The problem central to parameter estimation is to infer the state of some system,

specified through a set of parameters. One has to rely on a set of data gained from

observations on the system to estimate the parameters. Usually these observations

are not perfect, i.e., are compromised by random errors, so we have to use statistical

tools to accomplish our goal. This setting can also be used to characterize a process,

by letting a known state evolve under the unknown process and then observing

the change in the system. To keep things simple, I will restrict myself here to the

estimation of a single parameter, which I will call θ.

Mathematically, we describe these probabilistic measurement outcomes of im-

perfect observations through a probability distribution: p(~x|θ) is the probability for

obtaining the set ~x of measured data, given that the parameter of the system is θ.

Thus we get information about θ through sampling from the distribution p(~x|θ). We

will assume that there are nrep systems to sample from and that they are independent,

in which case the distribution factorizes:

p(~x|θ) =

nrep∏
i=1

p(xi|θ) (6.1)

After obtaining a set of data ~x, we will need to map this data set to an estimate

θest of the parameter we are interested in. The function Θ(~x) that does this mapping

is called an estimator. The error of the estimator ∆Θ is its deviation from the true

value of the parameter ∆Θ = Θ(~x)− θ.

As an example consider the measurement of the position of an object. Say we

only have access to a ‘coarse’ ruler, and we have to guess the exact position. We

could model the noise by a Gaussian (normal) distribution with standard deviation

σ = 1 (in some arbitrary units); e.g., the position we measure x is the true position θ

plus some Gaussian distributed random variable a: x = θ + a, with p(a) = N(0, 1),

where N(0, 1) is the zero-mean Gaussian distribution with unit variance. In this case
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we have p(x|θ) = N(θ, 1). Assume we measure 3 times and get ~x = {8.7, 11.2, 10.5}.

Now we need to map these outcomes to an estimate θest. The obvious thing to do

here is to take the average xavg = 10.1 = θest. It turns out that in this case, taking

the average is the best we can to as it minimizes the mean-squared error ∆ΘMSE:

∆ΘMSE =

∫
d~x p(~x|θ) (Θ(~x)− θ)2 (6.2)

In principle we could have chosen another way of obtaining the estimate, i.e. the

geometric mean of our samples or simply the last measurement outcome. For more

complicated problems it is by no means trivial or obvious to find the optimal estimator.

We say the estimator is unbiased if its error averaged over the measurement

outcomes is zero:∫
d~x p(~x|θ) ∆Θ = 0. (6.3)

To simplify the following discussion, I will assume the estimators we are talking about

are unbiased. Differentiating Eq. (6.3) with respect to the parameter we are trying to

estimate we get

d

dθ

∫
d~x p(x|θ)∆Θ = −

∫
d~x p(~x|θ) +

∫
d~x

∂p(~x|θ)
∂θ

∆Θ = 0. (6.4)

Rewriting this equation, we get∫
dx1 · · · dxn p(x1|θ) · · · p(xn|θ)

(
n∑
i=1

∂ ln p(xi|θ)
∂θ

)
∆Θ (6.5)

= n

∫
dx p(x|θ)

(
∂ ln p(x|θ)

∂θ

)
∆Θ = 1. (6.6)

Now we can group the terms

n

∫
dx

(√
p(x|θ)

(
∂ ln p(x|θ)

∂θ

))(√
p(x|θ)∆Θ

)
(6.7)

and apply the Schwarz inequality to obtain the (classical) Cramér-Rao lower bound

(CRLB) on the variance of the estimator,

〈
∆Θ2

〉
≥ 1

nrepF(θ)
, (6.8)
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where we introduced the Fisher information

F(θ) ≡
∫
dx p(x|θ)

(
∂ ln p(x|θ)

∂θ

)2

. (6.9)

While p(x|θ) describes the probability of getting the outcome x from a measure-

ment, given some fixed value of θ, we can look at it from a different perspective: After

having obtained as set of measurement outcomes ~x0 we can think of p(~x0|θ′) as a

function of θ′. In this case this function describes the likelihood that θ′ has given rise

to the observed measurement outcomes x0; hence p(x|θ′) is known as the likelihood

function in this context.

The maximum likelihood estimator ΘMLE(~x) simply picks as an estimate the θ′

for which the likelihood function p(x|θ′) is maximized; that is, for a uniform prior on

the parameter, the θ′ that most likely caused the observed measurement outcomes. In

our example above the likelihood function is simply the product of the three Gaussian

distributions, which is again a Gaussian with mean µ = (8.7 + 11.2 + 10.5)/3 = 10.1.

We see from this example that for the case of Gaussian distributions, taking the mean

of the data as an estimate corresponds to MLE.

It can be proven [Fis25, Cra99] that MLE asymptotically converges in probability

to the true value:

p-lim
nrep→∞

ΘMLE(~x) = θ. (6.10)

Moreover, in this limit the estimate is asymptotically Gaussian N(θ,σ), with a

standard deviation σ = (nrepF)−1/2. Hence, as nrep →∞, MLE achieves the lower

bound of Eq. (6.8).

In this work we are interested in quantifying the optimal performance of a particular

setup for trying to estimate a parameter. This seems like a daunting task, as one

might think we would have to find the optimal estimator, a problem for which no

general answer is known. Depending on the specific estimation scheme, there may

be estimators that do better than MLE; moreover, MLE might be computationally

infeasible. Still, it is the asymptotic optimality of MLE that justifies the use of Fisher
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information as a quantifier for the optimal performance in a particular estimation

scheme, without even having to specify an estimator. There are certain pitfalls

associated with the achievability of the CRLB, which one needs to be aware of when

using it as the figure of merit for estimation performance. Generally, it is always a

good idea to bolster a Fisher analysis by providing an explicit estimator whose error

achieves the CRLB in a finite number of trials.

6.2 Parameter estimation in a quantum setting
n1
ρin

n2 n3
�
�

Figure 6.1: It is convenient to think of parameter estimation in a quantum setting
as a three-step process: 1) A probe is prepared, i.e., the relevant quantum system
is prepared into a known state. 2) The known probe state evolves according to
a parameter-dependent process. 3) A measurement is performed and from the
outcomes of this measurement the parameter of interest is estimated.

The estimation of a parameter in a quantum setting is usually depicted as the

three-step process shown in Fig. 6.1: First, a quantum system is prepared in some

known state ρin. Then this state is evolved by some parameter-dependent unitary

process U(θ), e.g., a relative phase shift in two modes of light:

ρ(θ) = U(θ)ρinU(θ)† . (6.11)

Lastly, the system is subjected to a quantum measurement, modeled by POVM

elements {Ex}. From the outcomes x of this measurement, the unknown parameter

is inferred.

As mentioned earlier, it is desirable in estimation problems to use a given resource

as efficiently as possible. In interferometry this resource is typically a fixed amount

of energy in some given amount of time; one is interested in how to use a limited
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number of photons optimally in order to maximize the interferometer’s sensitivity to

a relative phase shift. Only the first step in Fig. 6.1 consumes photons, but to assess

the performance one needs to find the measurement that is optimal for a given input

state and then find the optimal estimator to get an estimate of the relative phase

give a set of measurement outcomes.

While this seems intimidating, one way to cut down on these optimization tasks

is to use Fisher information as a performance quantifier, which eliminates the need

to find an optimal estimator: The measurement {Ex} generates the probability

distribution p(x|θ) = tr(ρ(θ)Ex), from which we can calculate the classical Fisher

information F(p(x|θ)) ≡ FEx
(ρ(θ)|Ex). What we are left with is to find the optimal

measurement for a given state and find the state that delivers the best performance.

This remains a formidable task. It turns out, however, that again we can evade

part of the work by using a generalization of the Fisher information, simply known as

quantum Fisher information FQ. Quantum Fisher information is derived in [Hel76,

Hol11] as a tool for quantum parameter estimation, but it is the derivation of

Braunstein and Caves [BC94] that illustrates that quantum Fisher information is

exactly the quantity we want in the scenario above. Quantum Fisher information

of the state FQ, after being subjected to the parameter shift, corresponds to the

classical Fisher information optimized over all possible quantum measurements:

FQ(ρ(θ)) = max
{Ex}
FEx

(ρ(θ)|Ex). (6.12)

The quantum Fisher information for the estimation of parameter θ of state ρ(θ)

is defined as the expectation value of the square of a Hermitian operator Lθ,

FQ(ρ(θ)) = tr(L2
θρ(θ)). (6.13)

The operator Lθ is called the symmetric-logarithmic-derivative (SLD) operator in

analogy to the derivative of the logarithm in the definition of the classical Fisher

information. The SLD operator is defined by the implicit equation

∂θρ(θ) ≡ ∂

∂θ
ρ(θ) =

Lθρ(θ) + ρ(θ)Lθ
2

. (6.14)
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With this FQ we have a powerful tool to analyze the limits of any quantum

parameter estimation. The only variable we have to specify now is the input state

ρin. In particular, we can use FQ to answer the specific question: which state ρin is

the optimal choice for estimating parameter θ, given a limited resource, such as a

fixed photon number.

The advantage of using FQ is not having to worry about a specific measurement

setup, nor an estimator to go with it. On the downside there is no systematic way in

general to obtain the operator Lθ from Eq. (6.14), which casts doubt on the usefulness

of this method. Luckily under certain circumstances the quantum Fisher information

can be calculated analytically, making it a viable option for the analysis of estimation

schemes.

One of those easy cases, which will be of particular use to us, is the case when

ρ(θ) is a pure state, i.e., ρ(θ) = |ψ 〉〈ψ |, where I now omit the explicit θ dependence

to make the following equation more readable. For a pure state, we have ρ2 = ρ and

therefore

∂θρ = (∂θρ)ρ+ ρ(∂θρ). (6.15)

Comparing this with Eq. (6.14) we see that since ∂θρ is Hermitian,

Lθ = 2∂θρ = 2
(
| ∂θψ 〉〈ψ |+ |ψ 〉〈 ∂θψ |

)
. (6.16)

This allows us to write down an explicit expression for FQ:

FQ = 4tr
(
ρ
(
| ∂θψ 〉 〈ψ| ∂θψ〉 〈ψ |+ | ∂θψ 〉 〈ψ| ψ〉 〈 ∂θψ |+ |ψ 〉 〈∂θψ| ∂θψ〉 〈ψ |

+ |ψ 〉 〈∂θψ| ψ〉 〈 ∂θψ |
))

(6.17)

= 4
(
〈ψ| ∂θψ〉 〈ψ| ∂θψ〉+ 〈ψ| ∂θψ〉 〈∂θψ| ψ〉+ 〈∂θψ| ∂θψ〉

+ 〈∂θψ| ψ〉 〈∂θψ| ψ〉
)

. (6.18)

From the trace condition, trρ = 1, it follows that tr(∂θρ) = 0 = 〈ψ| ∂θψ〉+ 〈∂θψ| ψ〉;

this allows us to write Eq. (6.18) in a more compact way:

FQ = 4
(
〈∂θψ| ∂θψ〉 − |〈∂θψ| ψ〉|

2) . (6.19)
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As this quantity is readily computable, we are now in the position to apply quantum

Fisher information as the quantifier for the performance of estimation schemes. We

will see a simple example of this application at the end of the discussion on coherent

states in Sec. 6.3.

We should note that in general when more than one parameter, say k parameters,

are unknown, the quantum Fisher information becomes a k × k matrix and the

corresponding CRLB is a matrix bound. To keep this introduction simple, I kept it

at the one-parameter case. When we need the Fisher information matrix for multiple

parmaeters in Chap. 7, we will introduce it there.

6.3 Coherent and squeezed states

In this section I will describe some quantum states that are useful in the quantum

mechanical description of light. I will assume some familiarity of the reader with the

quantum mechanical description of a harmonic oscillator [CTDL91]. The Hamiltonian

for a single mode of the radiation field can be written in terms of the creation and

annihilation operators a† and a:

H = a†a+
1

2
. (6.20)

Here and in the following we will use natural units, with ~ = 1 and ω = 1, to keep the

equations clear. The eigenstates |n 〉 of this Hamiltonian are called number states.

We have

a†a|n 〉 = n|n 〉, (6.21)

where n̂ = a†a is known as the (photon) number operator. The expectation value of

n̂ is proportional to the energy needed to create a particular state and hence often a

constraint in an estimation scheme. The creation operator a† creates photons in the

mode, while the annihilation opeators a destroys photons:

a|n 〉 =
√
n|n− 1 〉, a†|n 〉 =

√
n+ 1|n+ 1 〉. (6.22)
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The Hermitian quadrature operators, corresponding to the position and momentum

of a harmonic oscillator, can be written as

x =
1√
2

(a+ a†) and p = − i√
2

(a− a†), (6.23)

and the respective commutators in our units are

[a, a†] = 1 and [x, p] = i. (6.24)

The absence of a well-defined phase of the number states indicates that they are

very different from the classical description of radiation. The number states form a

complete basis, however, and we can use superpositions of number states to describe

a quantum analogue to classical light, capturing its oscillatory behaviour.

Laser light is described quantum mechanically by a coherent state

|α 〉 = e−|α|
2
/2
∑
n

αn√
n!
|n 〉. (6.25)

Here α is a complex number, the analogue of the complex amplitude of a laser beam.

A coherent state has the same quadrature fluctuation as the vacuum state | 0 〉. It is

a minimum uncertainty state, achieving the Heisenberg inequality,

〈α |(∆x)2|α 〉〈α |(∆p)2|α 〉 =
1

4
, (6.26)

where the fluctuations in both quadratures are equal 〈α |(∆x)2|α 〉 = 〈α |(∆p)2|α 〉.

Coherent states are the same as the vacuum state, but displaced in phase space by

the displacement operator, |α 〉 = D(a,α)| 0 〉, where the displacement operator is

given by

D(a,α) ≡ eαa
†−α∗a. (6.27)

As an example of an estimation problem in a quantum setting, consider the

following. The vacuum’s x-quadrature has been displaced by an unknown amount

α0, and we want to know how accurately we can determine this unknown parameter

and what the optimal measurement is to do so. A displacement of the x-quadrature

corresponds to a real displacement amplitude, i.e., α = α0. To calculate the quantum
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Fisher information Eq. (6.19), we need to take derivatives with respect to α0 of the

state |α0 〉. Using Eq. (6.27), we have

| ∂α0
α0 〉 = (a† − a)|α0 〉 = −i

√
2p|α0 〉. (6.28)

With this the quantum Fisher information becomes

FQ/4 =
( 〈
∂α0

α0

∣∣ ∂α0
α0

〉
− |
〈
∂α0

α0

∣∣ α0〉 |2
)

= 1. (6.29)

Finding the optimal measurement is generally a hard problem. Our strategy here

will be to make a reasonable guess about the right measurement and then prove that

this measurement is indeed optimal. As the shift is in the x-quadrature, a good guess

to measure in the position basis. The probability of obtaining measurement outcome

x is [Cav]:

p(x|α0) = | 〈x| α〉 |2 =
1√
π
e−(x−

√
2α0)

2

. (6.30)

Plugging this into Eq. (6.9) for the classical Fisher information, we see after a

short calculation that the classical Fisher information for a position measurement

in this case matches the quantum Fisher information. This proves that the position

measurement is optimal here. Since the statistics of the position measurement in this

case are Gaussian, the Fisher bound can be achieved for any number of trials.

The Fisher information here is a constant. Typically we are interested in how the

Fisher information scales with whatever resource we are considering. In the example

here, however, our input state was the vacuum state and therefore we did not spend

any resource in creating it. If we were to do the same calculation with a coherent

state | β 〉 as the input state, instead of vacuum, we would get the same result. In the

next section we will use another state, the squeezed vacuum, that is more suited to

the estimation of a quadrature shift; we turn to the properties of squeezed vacuum

now.

A squeezed vacuum state is created from vacuum using the squeeze operator

S(r,φ) = exp

(
1

2
r
(
a2e−2iφ − (a†)2e2iφ

))
. (6.31)
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A squeezed vacuum state is defined to be S(r,φ)| 0 〉. It has the following expansion

in the number basis:

S(r,φ)| 0 〉 =
1√

cosh r

∑
n

(
− 1√

2
e2iφ tanh r

)n√
(2n− 1)!!

n!
| 2n 〉. (6.32)

Notable here is that the squeezed vacuum has support only on the even photon number

states. Like coherent states, squeezed vacua with φ = 0 are minimum uncertainty

states, but for any r 6= 0, their quadratures differ in their fluctuations,

〈 0 |S(r, 0)†(∆x)2S(r, 0)| 0 〉 6= 〈 0 |S(r, 0)†(∆p)2S(r, 0)| 0 〉. (6.33)

Assume, as in the example above, that we are to estimate a shift in the x-

quadrature, but now our input state is the squeezed vacuum, squeezed in the x

quadrature, that is with φ = 0. With this, the state after the quadrature shift is

|ψ(α0) 〉 = D(α0, a)S(r, 0)| 0 〉. From Eq. (6.19) and with the help of [Cav], we get

FQ/4 = 2〈 0 |S(r, 0)†(∆p)2S(r, 0)| 0 〉 = cosh 2r + sinh 2r = e2r. (6.34)

Again the position measurement is a good candidate for the the optimal measure-

ment. We have:

〈x| ψ(α0)〉 =
1

(πe−2r)1/4
exp

(
−(x−

√
2α0)2

2e−2r

)
(6.35)

To get the classical Fisher information, we can square this expression and plug it into

Eq. (6.9) for the classical Fisher information. This is straightforward and immediately

shows that this classical Fisher information is the same as FQ. Another way of

showing the equality between the quantum and classical Fisher informations in this

case is to use a condition for equality found in [BC94]:

Im{〈ψ(α0)| x〉 〈x| ∂α0
ψ(α0)

〉
} = 0. (6.36)

This condition is satisfied, since Eq. (6.35) is real, and this again shows the optimality

of the position measurement.

The mean photon number n̄ of a squeezed state is n̄ = sinh2 r. This shows us that

the squeezed vacuum state achieves a better resolution for the position as more and

more photons are used.
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6.4 Quantum noise and the shot-noise limit

Earlier we mentioned that coherent states resemble most closely the classical descrip-

tion of radiation. In particular we use coherent states to describe the light emitted

from a laser. The most notable feature of coherent state, which distinguishes them

from classical radiation, is the absence of a precisely defined energy. As seen in

Eq. (6.25), coherent states are superpositions of photon number states. While number

states |n 〉 have a defined energy, coherent states can only be assigned a mean photon

number n̄ and therefore a mean energy. For coherent state |α 〉 we have

n̄ = 〈α |n̂|α 〉 = |α|2 . (6.37)

To measure the intensity of a coherent light source, one needs to count photons.

Assuming a perfect photon counter, coherent states give rise to a Poisson distribution

of counts with mean |α|2. It is this statistical behavior of photon detection that gives

rise to what is known as the shot-noise limit.

Using only classical resources in an estimation scheme, such as coherent states,

the shot-noise limit restricts the scaling of the estimate’s error δφSN to

δφSN ≥
1√
n̄

. (6.38)

Some refer to this as the standard quantum limit. We will not use this term when

referring to the shot-noise limit, as we are primarily concerned with interferometry

and the term ‘standard quantum limit’ has a different meaning here.

A second source of quantum noise that affects interferometer is fluctuating forces

on the mirrors of the interferometer: The radiation pressure of photons exerts a force

the mirror, whose positions get shifted accordingly. The statistical nature of the

photon flux therefore causes an uncertainty in the positions of the mirror. This is

known as radiation-pressure noise

δφRP ∝
√
n̄

M
. (6.39)

Contrary to the shot-noise, this form of quantum noise increases with the mean

photon number n̄ injected into the interferometer.
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The overall quantum noise δφ now is given by [BR04]

δφ2 = δφ2
RP + δφ2

SN . (6.40)

For a given set of parameters for an interferometer, there is an optimal value n̄opt for

the mean photon number, thus balancing shot noise and radiation-pressure error.

The standard quantum limit of interferometry is precisely the quantum noise at

this n̄opt. It turns out that for most currently realistic interferometers, with properties

such as a length L and massM of the mirrors, etc., the radiation pressure is negligible.

Even for high power interferometers this is true [Cav81], as it is comparatively easy

to scale the mirror masses up. In Chap. 7, the interferometers we consider have

‘fixed’ mirrors, that is we assume the mirror masses are large enough that we can

neglect radiation-pressure noise. We will focus instead on techniques that promise to

beat the shot-noise limit, the relevant quantum noise for typical, currently realistic

interferometric setups.

6.5 Nonclassical states relevant for interferometry

In this section I will be talking about two nonclassical states that are of particular

interest for interferometry: Squeezed states and NOON-states.

6.5.1 Squeezed state interferometry

In 1981 Caves [Cav81] gave a detailed analysis of the quantum mechanical noise in

an interferometer. In a standard laser interferometer, a laser, modeled by a coherent

state, enters one port of the interferometer, while the second port is unused, that

is the second port is in the vacuum state. The detection scheme involves photon

counting in both of the output ports. The mean photon number difference now is

proportional to the relative phase shift between the two arms of the interferometer.

Caves showed that one can think of the noise of the photon counting error being due
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to fluctuations entering the unused port of the interferometer, that is the fluctuations

of the vacuum state.

He demonstrated that the photon counting error can be reduced by squeezing the

vacuum state in the second input mode, at the expense of increasing the radiation

pressure error. As the radiation pressure error is negligible for typical, currently

feasible interferometers, squeezing the vacuum in the second input port is a viable

option to increase the sensitivity of the interferometer.

Other ways of using squeezed states in an interferometric setup have been in-

vestigated. In particular it was shown that squeezing the states in both ports is

advantageous [BS84, KS96]. These schemes however are more complicated and lack

the most attractive point of Caves’ original proposal: One does not have to change the

original setup for the laser interferometer; instead one simply has to add components

in front of the second port. In particular one can rely on strong commercially available

lasers as the main power source.

Pezze and Smerzi showed [PS08], that Caves’ original proposal is not only capable

of beating the shot noise limit, but can also achieve a ‘Heisenberg scaling’ of the

phase sensitivity:

δφ ∝ 1

n̄
. (6.41)

However, a more complicated detection scheme is necessary to do so.

For linear parameter estimation, that is processes whose Hamiltonian coupling

to the phase shift is at linear in the photon number, this 1/n̄ scaling is considered

the be the best scaling possible and therefore is often referred to as the ‘Heisenberg

limit’ [GLM06]. While this Heisenberg limit is easy to prove for the case of a fixed

photon number, there is some controversy as to whether such a limit exists when one

imposes only a mean photon number constraint.
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6.5.2 NOON states

I will provide a simple way to prove this ‘Heisenberg limit’ for the case of a fixed

photon number interferometer, by finding the state that maximizes the quantum

Fisher information. The relative phase shift of φ in a two-mode interferometer is

modeled by the unitary operator U = exp(iφNd/2). Here we have introduced the

photon number difference operator Nd = a†a − b†b of the two modes a and b. If

|ψ 〉 describes the quantum state of the light after the first beamsplitter of the

interferometer, the state after the phase shift is U |ψ 〉. Plugging this into Eq. (6.19)

yields

FQ = 〈ψ |N2
d |ψ 〉 − 〈ψ |Nd|ψ 〉2. (6.42)

Any two-mode (pure) state with a fixed photon number N can be written as

|ψ 〉 =
N∑
n

cne
iϕn|n,N − n 〉, (6.43)

where the cn are positive numbers. To simplify this discussion notice that we can

always set all the ϕn to zero without changing FQ of the state. Moreover, given

a state in terms of the coefficients cn, we can always construct a state with new

coefficients c′n obeying

c′n = c′N−n =

√
c2
n + c2

N−n. (6.44)

This new state will always have a quantum Fisher information at least as large as the

old state, as the first term in Eq. (6.42) remains unchanged while the second term

vanishes. This new state will have the form

c′0 (| 0,N 〉+ |N , 0 〉) + c′1 (| 1,N − 1 〉+ |N − 1, 1 〉) + . . . . (6.45)

Writing out the first term of Eq. (6.42),

〈ψ |N2
d |ψ 〉 = 〈ψ |(a†aa†a+ b†bb†b− 2a†ab†b)|ψ 〉, (6.46)

it is not too hard to see that the first term in Eq. (6.45) is giving the biggest

contribution to this expression; hence the optimal state has the largest possible
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c′0 = 1/
√

2. We have shown that the N -photon state that maximizes the Fisher

information for a relative phase shift between two modes is

|ψN00N 〉 =
1√
2

(|N , 0 〉+ | 0,N 〉) (6.47)

The quantum Fisher information of this state is FQ = N2; i.e., the state exhibits a 1/N

scaling of the estimate error. As this state minimizes the CRLB, this demonstrates a

‘Heisenberg-limit’ for interferometry with a fixed number of photons.

Due to the form of Eq. (6.47) this state is known as the NOON state [BIWH96,

LKD02]. After the relative phase shift the state becomes:

U |ψN00N 〉 =
1√
2

(|N , 0 〉+ e−iφN | 0,N 〉), (6.48)

where we exploited the global phase freedom. From this expression we can see that

this state is invariant under, and therefore insensitive to phase shifts of 2π/N . Another

way to say this is that any interference pattern produced by a N00N state will have a

periodicity of 2π/N . Hence a single N00N state is only suited to detect phase shifts

φ < 2π/N , as there is no way to determine which interference fringe one is seeing in

an experiment.

While the usual method if subtracting the photocounts of two detectors is not

applicable here, it has been shown that a parity detection will achieve the sensitivity

promised by a quantum Fisher information calculation. This detection scheme simply

looks at the parity of the photon count in one of the output modes to infer the value

of the relative phase shift [BIWH96, GBC02]. Moreover, Berry et al. [BHB+09] have

shown that using an adaptive estimation scheme, the problem of the fringe ambiguity

can be dealt with while maintaining the N00N state favorable scaling.

Despite these theoretical benefits of N00N states, their practical infeasibility

makes them not a viable option for realistic interferometry The Hong-Ou-Mandel

effect produces N00N states deterministically, but unfortunately only with N = 2.

Other mechanisms to produce N00N states have not been able to produce N00N

states with N > 5. Moreover, these methods rely on post-selection and therefore are

highly inefficient [NOO+07, AAS10]. Considering this, the quadratic enhancement of
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sensitivity promised by the usage of N00N states becomes irrelevant when comparing

to a commercially available interferometer running on 1016 photons per detector

integration time.

6.6 Beating the Heisenberg limit

While the Heisenberg limit is straightforward to prove for an interferometer running

on a fixed amount of photons simply by finding the optimal state explicitly, there

is no proof that limits the sensitivity of phase estimates to ∆φ ≥ 1/n̄ when the

constraint is only on a mean number n̄ of photons. Still terms like ‘Heisenberg limit’

or ‘Heisenberg scaling’ are commonly used in the context of mean photon number

constraints, as it is generally believed that this is the best scaling possible for linear

parameter estimation schemes employing nonclassical resources.

There are several proposals, however, that challenge this belief by presenting

states seemingly beating this Heisenberg limit. A careful analysis of these schemes

reveals a sub-Heisenberg scaling. I will nevertheless describe two of them more closely

in this section, as they are instructive in showing up a pitfall one can encounter when

using various figure of merit, such as the quantum Fisher information, as the only

quantifier for the estimation performance.

The following two proposals reportedly beating the Heisenberg limit are not

talking about an interferometric setup; instead they simply consider a phase shift in

a single mode of the electro-magnetic field. It is, however, straightforward to extend

their arguments and apply them to an interferometric setup.

The first proposal I will talk about was put forward in 1989 by Shapiro, Shepard,

and Wong [SSW89]. The state they were considering, after the phase shift, is

|ψ 〉 = A

M∑
n=0

einθ

n+ 1
|n 〉, (6.49)

where A is a normalization constant, M is a cutoff in the photon-number basis, which

the mean photon number n̄ depends on. The measurement scheme in their proposal
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was an unphysical idealized phase measurement, described by the Susskind-Glogower

phase operator [SG64]. Instead of Fisher information, the figure of merit for the

sensitivity of their scheme is the so called reciprocal peak likelihood, that is the inverse

of the maximum of the likelihood function. While for a Gaussian likelihood function,

this quantity is directly related to the mean squared error, in general the idea is that

the higher the peak of the likelihood function p(x|θ) the more distinguishable it will

be from another likelihood function p(x|θ′). SSW’s claim was that their state leads

to a phase sensitivity of

∆θ ∝ 1

n̄2 , (6.50)

that is a quadratic improvement over Heisenberg scaling.

A careful analysis by Lane, Braunstein and Caves [BLC92, LBC93], however,

showed that SSW’s proposal is not able to beat the Heisenberg limit. Paradoxically,

they also showed that Fisher information grows exponentially in the mean photon

number for the SSW state, which on the first glance suggests an even better scaling

than reported by in [SSW89].

This paradox arises if one does not pay close attention to subtleties associated

with the achievability of the CRLB: When one talks about Heisenberg scaling, one

usually refers to the scaling of the phase error ∆θ in terms of a photon number

resource available. Typically this total photon number Ntot needs to be divided up

into a mean photon number n̄ per probe state and a number nrep of repetitions of

the experiment in order to get enough data that the distribution of the estimator is

nearly Gaussian and the conditions for the optimality of MLE are satisfied. That is,

our resource can be written as

Ntot = nrep n̄. (6.51)

For a specific estimator, i.e. MLE, and a given resource Ntot there will be an optimal

number of repetitions n∗rep(Ntot), and mean photon number per probe state n̄∗(Ntot

that minimizes the error of the estimator [Bra92b, LBC93].

If the form of the input state is fixed and one is interested in how the performance

of this state scales with Ntot one needs to find n̄∗(Ntot) . In the case of the SSW state,
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Lane et al. [LBC93] showed that this dependence of n̄∗ on Ntot is so unfavorable that

the effect of the exponential scaling of the Fisher information with n̄ is completely

negated.

The second example I will talk about was proposed by Rivas and Luiz [RL12].

To keep the discussion simple, I will describe the R-L state in the form discussed by

Tsang [Tsa12]. This form is a bit more general while highlighting at the same time the

essential features better than R-L’s original proposal. Consider the superposition of

the vacuum | 0 〉 with a small amount of another state | ξ 〉, which has a mean photon

number n̄ξ and large photon number variance γ n̄2
ξ , where γ is a positive constant.

The overall state is

|ψRL 〉 =
√

1− ε| 0 〉+
√
ε | ξ 〉, (6.52)

where ε� 1. We assume 〈ξ| 0〉 = 0 [if | ξ 〉 has a | 0 〉 component, this can be absorbed

into the first term of Eq. (6.52)]. As in Eq. (6.42), the quantum Fisher information for

a phase shift of a pure state in a single mode is given by the variance of the photon

number, and this gives [Tsa12]

FQ = (∆n)2 =

(
1 + γ

ε
− 1

)
n̄. (6.53)

Now we can see that in this case the Fisher information can be made arbitrarily

large even for a fixed n̄. Instead of doing a comprehensive sensitivity analysis like

Lane et al. did for the previous example, Tsang simply derived another lower bound

for the sensitivity in terms of the mean photon number [Tsa12]. He showed that in

this case his Ziv-Zakai type bound is tighter than the CRLB and, more importantly,

ruled out a Heisenberg scaling of the phase sensitivity of the R-L state. Tsang’s

analysis effectively shows something like what happens with the SSW state must also

go wrong if one tries to use MLE on the R-L state.

To deal with the tricky point of achievability when using Fisher information as a

measure of performance for an estimation scheme in the following chapters, we will

provide an efficient estimator whenever possible. That is, in addition to calculating

the CRLB we will provide an estimator whose error matches that of the CRLB after

a few runs of the experiment.
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In this chapter we presented some concepts and tools used in the analysis of

the performance of parameter estimation schemes in general and interferometry in

particular. My intention here was not to be particularly thorough, but to provide the

information necessary to follow the next chapters. A more complete account of these

concepts can be found in [DDJK14].
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Chapter 7

Quantum-enhanced interferometry

This chapter will be devoted to the exploration of optimal input states for the

estimation of a relative phase in an interferometer.

As shown in Chap. 6, for a fixed input energy the question of the optimal input state

is readily answered with N00N states. More precisely, for an actual interferometer,

the optimal input state would be the precursor of the N00N state, that is the input

state |ψin 〉 that gives rise to the N00N state after the first beam splitter of the

interferometer.

|ψin 〉 = B†(|N , 0 〉+ | 0,N 〉)/
√

2. (7.1)

While this state indeed delivers optimal performance, given a fixed input energy, we

argue that it is not of practical relevance because it is very hard to produce with

current technology and is therefore only available with quite low photon numbers.

Consequently, the phase resolution obtained from using these optimal states cannot

compete with the resolution obtained from a classical interferometer operating at or

near the shot-noise limit with a strong, commercially available laser.

This does not mean, however, that nonclassical states are useless for metrology.

The use of squeezed states to enhance the sensitivity of the GEO 600 and LIGO

interferometers is testimony to the efficacy of squeezed light in a situation where the

lasers powering the interferometer have been made as powerful as design constraints
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allow. In this work, we will try to turn the focus away from states that are simply of

conceptual interest and instead we will look at states that deliver optimal performance

under constraints motivated by practical concerns for currently feasible experiments.

7.1 Quantum-enhanced interferometry

with laser light

Here we will answer a question motivated by the use of nonclassical states to enhance

the sensitivity of high power interferometers such as GEO 600 and LIGO: when

an interferometer is powered by a laser producing coherent-state light, what is the

best state to put into an interferometer’s secondary input port? The answer is not

surprising: squeezed vacuum.

The setting for our analysis is depicted in Fig. 7.1. Specifically, we consider a

situation where laser light, described by a coherent state |α〉 = D(a,α)|0〉 of a mode

a, is fed into the primary input port of a 50:50 beam splitter. The secondary input

port is illuminated by mode b, which is in an arbitrary pure state |χ〉. The beam

splitter performs the unitary transformation

B = e−iJπ/4 , J ≡ a†b+ b†a . (7.2)

The two optical paths after the beam splitter experience phase shifts ϕ1 and ϕ2; the

phase-shift unitary operator is

U = ei(ϕ1 a
†
a+ϕ2 b

†
b) = eiNsφs/2eiNdφd/2 . (7.3)

In the second form we introduce the sum and difference phase shifts, φs = ϕ1 + ϕ2

and φd = ϕ1 − ϕ2, and the corresponding sum and difference number operators;

Ns = a†a+ b†b is the total number operator for the two modes, and Nd = a†a− b†b

is the number-difference operator. We assume that there are no losses in this

configuration. The two-mode state after the phase shifters is

|ψ〉 = UB|ψin〉 , (7.4)
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Figure 7.1: Measurement of a differential phase shift. An (upper) mode a in
a coherent state |α〉 and a (lower) mode b in an arbitrary pure state |χ〉 are
incident on a 50:50 beam splitter, which performs the unitary transformation B
of Eq. (7.2). After the beam splitter, phase shifts ϕ1 and ϕ2 are imposed in the
two arms; the action of the phase shifters is contained in the unitary operator U
of Eq. (7.3). Finally, a measurement is made to detect the phase shifts. When
the measurement is pushed beyond a second 50:50 beam splitter, the result is
a Mach-Zehnder interferometer, which is sensitive only to the differential phase
shift φd = ϕ1 − ϕ2.

where |ψin〉 is the state before the beam splitter.

As promised in the previous chapter, we will use the quantum Fisher information

(QFI) to investigate the optimal resolution for estimating the phase shift φd. As the

phase φs is an unknown parameter, we start out with the matrix form of the QFI

and the quantum Cramér-Rao bound (QCRB). In particular, let φest
s and φest

d denote

estimators of the sum and difference phase shifts, and introduce the covariance matrix

of the estimators,

Σ =

 〈(∆φest
s )2〉 〈∆φest

s ∆φest
d 〉

〈∆φest
d ∆φest

s 〉 〈(∆φest
d )2〉

 , (7.5)

where here and throughout ∆O ≡ O − 〈O〉 denotes the deviation of a quantity from

its mean. The QCRB is the matrix inequality

Σ ≥ F−1 , (7.6)

where F is the (real, symmetric) Fisher-information matrix [Hel76, Hol11]. The

matrix QCRB implies that trΣ ≥ trF−1 and det Σ ≥ detF−1; for more than one

parameter, the matrix QCRB cannot generally be saturated [Fuj06].
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For pure states, the Fisher-information matrix is given by [JDDan12]

Fjk = 4
(
〈∂jψ|∂kψ〉 − 〈∂jψ|ψ〉〈ψ|∂kψ〉

)
, (7.7)

where j and k take on the values s and d and thus the derivatives are with respect to

φs and φd. We retain both φs and φd in our analysis for the present, but eventually

specialize to estimation of the differential phase shift alone. This would be the case

if the final measurement were moved behind a second 50:50 beam splitter, giving a

standard (Mach-Zehnder) interferometric configuration.

There are important practical reasons for considering the configuration of Fig. 7.1.

The first is that in a typical phase measurement, the easiest way to improve sensitivity

is to buy more photons. The cheapest coherent source being a laser, the relevant

model is that of a laser producing an input coherent state with the largest possible

amplitude. To avoid the phase noise of the laser, either intrinsic or excess, one splits

the laser light at a 50:50 beam splitter. Phase shifts are imposed in the two arms,

and then in a Mach-Zehnder configuration, the light in the two arms is recombined

at a second 50:50 beam splitter, after which differenced photodetection or differenced

homodyne detection is used to detect the differential phase shift. This interferometric

technique is insensitive to the common-mode phase shift φs in the two arms, which is

just another way of saying that it is insensitive to the laser noise. Yet another way of

putting this is that each arm serves as a phase reference for the other.

The Mach-Zehnder interferometric configuration gives shot-noise-limited sensitivity

when the secondary port is illuminated by vacuum. To go beyond the shot-noise

limit, one must replace the vacuum coming into the secondary port with some other,

nonclassical quantum state of light; this inevitably makes the light in the two arms

of the interferometer entangled, this modal entanglement having been made by the

input beam splitter.1 A major advantage of the setting in Fig. 7.1 is that the main

power production is separated from the generation of nonclassical light, which only
1Equation (7.9) shows that to beat the overall shot-noise limit requires nonclassical light

into the secondary input port, since classical, coherent-state light has 〈(∆p)2〉 = 1/2. In
App. B, we show that any nonclassical state in the secondary input port leads to modal
entanglement between the two arms after the beam splitter. A more general proof can be
found in [JLC13].
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has to get a phase reference from the laser. Many analyses of phase sensitivity start

by asking what entangled state in the two arms gives the best sensitivity, but this

approach generally requires an entangled state that cannot be made by beamsplitting

a product state and thus gives up the practical advantage of separating the main

power production from the production of nonclassical light.

In accordance with this discussion, the intended mode of operation of our interfer-

ometer is to have the coherent state carry many more photons than the light input

to the secondary port. Since it does not hinder our analysis, however, we allow for

the opposite possibility and all intermediate ones in our analysis.

An analysis similar in spirit to ours has investigated the best performance of an

interferometer, given a constraint on the total mean number of photons, when the

primary input port is illuminated with many more photons than the secondary input

port [DDanBS13]. The results show that a coherent state input to the primary port

and squeezed vacuum into the other port comes very close to achieving a bound on

the Fisher information that applies to all input states, both product and nonproduct

states. This result holds when the photon loss exceeds a certain level, given in terms

of the total mean number of photons, and thus is complementary to our result.

In our setting, the Fisher matrix for an arbitrary input state |ψin〉 becomes

Fss = 〈ψin|B†N2
sB|ψin〉 − 〈ψin|B†NsB|ψin〉2 , (7.8)

Fdd = 〈ψin|B†N2
dB|ψin〉 − 〈ψin|B†NdB|ψin〉2 , (7.9)

Fsd = Fds = 〈ψin|B†NsNdB|ψin〉 − 〈ψin|B†NsB|ψin〉〈ψin|B†NdB|ψin〉 . (7.10)

We can use B†aB = (a− ib)/
√

2 and B†bB = (b− ia)/
√

2 to get B†NsB = Ns and

B†NdB = −i(a†b− b†a) ≡ K . (7.11)

The Fisher matrix is thus the covariance matrix of Ns and K with respect to the

initial state. Notice that Jz = Nd/2, Jx = J/2, and Jy = K/2 make up the three

components of an angular momentum and provide a convenient way of analyzing

interferometry [YMK86].
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For the product input that is our main concern,

|ψin〉 = |α〉 ⊗ |χ〉, (7.12)

the Fisher matrix becomes, with N2 = b†b,

Fss = |α|2 + 〈χ|(∆N2)2|χ〉 , (7.13)

Fdd = |α|2〈χ|(∆b∆b† + ∆b†∆b)|χ〉

− α∗2〈χ|(∆b)2|χ〉 − α2〈χ|(∆b†)2|χ〉+ 〈χ|N2|χ〉 , (7.14)

Fsd = Fds = −iα∗〈χ|N2(∆b)|χ〉+ iα〈χ|(∆b†)N2|χ〉 − iα∗〈χ|b|χ〉 . (7.15)

Partly because the matrix QCRB cannot generally be saturated [Fuj06], but

chiefly because we are mainly interested in measurements of the differential phase

shift, we specialize now to single-parameter estimation of φd, for which the QCRB

reduces to

〈(∆φest
d )2〉 = Σdd ≥

1

Fdd
. (7.16)

It is known that there is a quantum measurement that achieves the single-parameter

QCRB [BC94], i.e., has the required Fisher information, and it is also known that the

resulting QCRB can be attained asymptotically in many trials by maximum-likelihood

estimation.

What we do now is to maximize Fdd over all initial states |χ〉 of mode b subject

to a constraint of fixed mean photon number N̄ = 〈χ|N2|χ〉. The optimal state turns

out to be squeezed vacuum with the requisite mean photon number. We then use

results of Pezzé and Smerzi [PS08] to indicate how the ultimate sensitivity can be

achieved in a Mach-Zehnder interferometer in which one does direct photon detection

of the two outputs.

To get started on maximizing Fdd, we assume, without loss of generality, that

α is real, and we write Fdd in terms of moments of the (Hermitian) quadrature

components, x and p, of b = (x+ ip)/
√

2:

Fdd = 2α2〈(∆p)2〉+ N̄ . (7.17)
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Here and for the remainder of the chapter, all expectation values are taken with

respect to the initial state (7.12). The first term in Eq. (7.17), 2α2〈(∆p)2〉, is due

to interference between the coherent state and the phase quadrature p of the light

coming into the secondary port; if α2 � N̄ , this term dominates and gives the

shot-noise limit when mode b is in vacuum and improvements beyond shot noise

when 〈(∆p)2〉 > 1/2. If α = 0, the contribution from N̄ in Eq. (7.17) dominates and

expresses the shot-noise limit for illumination only through the secondary port.

We now maximize the variance of p, subject to a constraint on the mean number

of photons. Writing

2N̄ + 1 = 〈p2〉+ 〈x2〉

= 〈p〉2 + 〈x〉2 + 〈(∆p)2〉+ 〈(∆x)2〉 , (7.18)

we see that

〈(∆p)2〉+ 〈(∆x)2〉 ≤ 2N̄ + 1 , (7.19)

with equality if and only if 〈x〉 = 〈p〉 = 0. We also have

(
〈(∆p)2〉 − 〈(∆x)2〉

)2

=
(
〈(∆p)2〉+ 〈(∆x)2〉

)2 − 4〈(∆x)2〉〈(∆p)2〉

≤ −1 +
(
〈(∆p)2〉+ 〈(∆x)2〉

)2

≤ 4N̄(N̄ + 1) , (7.20)

with equality in the first inequality if and only if |χ〉 is a minimum-uncertainty state,

i.e., 〈(∆x)2〉〈(∆p)2〉 = 1/4. Combining Eqs. (7.19) and (7.20) bounds 〈(∆p)2〉 and

hence gives a bound on the Fisher information,

Fdd ≤ α2

(
2N̄ + 2

√
N̄(N̄ + 1) + 1

)
+ N̄ ≡ Fmax , (7.21)

with equality if and only if |χ〉 is a zero-mean minimum-uncertainty state, i.e., the

squeezed vacuum state er(a
2−a†2)/2|0〉, with N̄ = sinh2r. In terms of the squeeze

parameter r, the bound on the Fisher information takes the simple form Fmax =

α2e2r + sinh2r.
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It is useful to manipulate the bound (7.21) in the following way:

Fmax = 4α2N̄ +R = N2
tot − (α2 − N̄)2 +R . (7.22)

Here Ntot = α2 + N̄ is the total mean number of photons into both input ports, and

the remainder term is given by

R = N̄ + α2

(
2
√
N̄(N̄ + 1)− 2N̄ + 1

)
. (7.23)

Applying N̄ ≤
√
N̄(N̄ + 1) ≤ N̄ + 1

2
, we have Ntot = α2 + N̄ ≤ R ≤ 2α2 + N̄ =

Ntot + α2. When Ntot is large, the remainder term is negligible compared to N2
tot.

Moreover, when α2 = N̄ , we have Fmax = N2
tot +R, which gives the Heisenberg limit

on phase sensitivity plus a small correction that satisfies Ntot ≤ R ≤ 3Ntot/2. The

apparent violation of the Heisenberg limit comes from not having a fixed total number

of photons. That this configuration using coherent and squeezed light can achieve

the Heisenberg limit was shown in [PS08].

The case of primary practical interest has α2 � N̄ = sinh2r, in which case

the maximal Fisher information reduces to Fmax = α2e2r. This corresponds to the

standard picture of reduced fluctuations in the quadrature that produces differential

phase fluctuations in the interferometer, and it gives the standard phase sensitivity,

1/
√
Fmax = e−r/α, for a squeezed-state interferometer. Indeed, the Fisher bound can

be achieved by recombining the two optical paths at a second 50:50 beam splitter

to create an interferometer and performing direct detection of the two outputs. The

estimator can be taken to be the standard linear estimator that inverts the fringe

pattern of the differenced photocount to estimate the differential phase shift.

Though it might be surprising, squeezed vacuum remains the optimal state into

the secondary port even when the secondary port is allowed as many or more photons

as the coherent-state input. We can appeal to the results of Pezzé and Smerzi [PS08]

to show that the Mach-Zehnder configuration, with coherent-state and squeezed-

vacuum inputs and direct detection at the output, can achieve the QCRB (7.21) for

all values of the ratio α2/N̄ . Pezzé and Smerzi showed that for this configuration,

the classical Fisher information of the probability for the output sum and and
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difference photocounts, P (ns,nd|φd) = P (nd|ns,φd)P (ns), is equal to Fmax
2. When

α2 . N̄ = sinh2 r, however, the interferometer is running partially or mainly on the

phase dependence of the squeezed vacuum noise, and the standard linear estimator

mentioned above does not deliver optimal sensitivity [PS08, BS84]. Indeed, one

can use the convexity of the Fisher information [Coh68] to show that any estimator

that uses only the differenced photocount nd, ignoring the sum photocount ns, does

worse than keeping both,3 even though ns is insensitive to the differential phase shift

φd. Instead of using an estimator to verify that the classical Fisher bound—and,

hence, from our analysis, the QCRB—can be achieved, Pezzé and Smerzi simulated

a Bayesian analysis that indicates the classical bound can be achieved for all ratios

α2/N̄ .

We note that squeezed vacuum is not the state that maximizes the entanglement

of the two optical paths after the input beam splitter. A number state |N̄〉 in the

second mode leads to a larger value of the marginal entropy of the two paths [ACR05].

7.2 Quantum-enhanced interferometry

In this section we will relax one of the assumptions above. In particular we will not

require the input state in the first mode to be a coherent state anymore. We only

assume that the state input to the beam splitter is a product state |ψin 〉 = | ξ 〉⊗ |χ 〉,

where | ξ 〉 is the state of mode a and |χ 〉 is the state of mode b.

Our restriction to product states input to the initial beam splitter is natural—

indeed, it is the only sensible assumption—in the case of an interferometric setup.
2Pezzé and Smerzi [PS08] did not include this calculation, so we present it in App. (B).

There we show a more general result: the classical Fisher information for a Mach-Zehnder
configuration with direct detection at the output is given by the quantum Fisher information
Fdd of Eq. (7.17) for any input state |ψin〉 that has real expansion coefficients in the number
basis.

3Since the transformations in the interferometer preserve total photon number, the
probability of measuring a total photon number ns and a differenced photon number nd
at the output factors into P (ns,nd|φd) = P (nd|ns,φd)P (ns). Applying the convexity
property [Coh68] iteratively leads to Fns,nd

(φd) > Fnd
(φd).
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Product inputs do generally lead to modal entanglement, i.e., entanglement between

the two arms, after the initial beam splitter. In an interferometric setup, one is

relying on the beam splitter to create modal entanglement from product inputs. If, in

contrast, one allowed arbitrary, entangled states |Ξ 〉 of the two modes to be incident

on the beam splitter, one could dispense with the initial beam splitter, since one could

just as well input any entangled state B|Ξ 〉 directly into the two arms approaching

the phase shifters.

Again, the relevant part of the Quantum Fisher matrix to determine the sensitivity

of a relative phase shift Fdd from Eq. (7.9), is the variance of Nd of the state B|ψin〉

after the first beam splitter:

Fdd = 〈ψin|B†N2
dB|ψin〉 − 〈ψin|B†NdB|ψin〉2

= −〈(a†b− b†a)2〉+ 〈a†b− b†a〉2

= −〈a†a†bb〉 − 〈aab†b†〉+ 〈a†abb†〉+ 〈aa†b†b〉

+ 〈a†b〉2 + 〈ab†〉2 − 2〈a†b〉〈ab†〉 .

(7.24)

We still use the convention that expectation values are to be taken with respect to

the input state |ψin 〉: 〈O〉 = 〈ψin|O|ψin〉. Notice however that now this is a state of

both modes a and b, whilst before expectation values were only taken with respect to

the state in mode b.

To find the optimal performance, we maximize Fdd over all product input states,

subject to whatever additional constraints we impose on the input; i.e., we find the

input product state that maximizes the variance of Nd after the first beam splitter.

The expression (7.24) is valid for arbitrary inputs; specializing to product inputs gives

F = 2NaNb +Na +Nb − 〈a†a†〉〈bb〉 − 〈aa〉〈b†b†〉

− 2|〈a〉|2 |〈b〉|2 + 〈a†〉2〈b〉2 + 〈a〉2〈b†〉2 ,
(7.25)

where Na = 〈a†a〉 and Nb = 〈b†b〉 are the mean photon numbers in the two input

modes.

Liu et al. [LJW13] have considered a setup similar to the one we consider here, a

Mach-Zehnder interferometer with a product-state input. They focused on the Fisher
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information for an arbitrary state in mode a and a state that is a superposition of

even or odd photon numbers in mode b.

In the remainder of this section, we first find the optimal input state for a fixed

photon number and then find the optimal state for a constraint on mean photon

number.

7.2.1 Fixed photon number

If we fix the total photon number N = Na + Nb, all product states have the form

|n〉 ⊗ |N − n〉. Under these circumstances, only the first three terms in Eq. (7.25)

contribute to the Fisher information. Finding the maximum reduces to finding the n

that maximizes 2n(N − n); the maximum is achieved at n = N/2 for N even and at

n = (N ± 1)/2 for N odd, the two signs corresponding to an exchange of the input

modes. The maximal Fisher information is

Fmax =


N(N + 2)

2
, N even,

N(N + 2)− 1

2
, N odd.

(7.26)

The optimal state,

|ψin〉N =


|N/2〉 ⊗ |N/2〉 , N even,

|(N ± 1)/2〉 ⊗ |(N ∓ 1)/2〉 , N odd.
(7.27)

is the twin-Fock state for N even [HB93] and its closest equivalent for N odd. For

brevity, we use “twin-Fock state” to refer to both the even and odd input states in

the following; when we need to distinguish even and odd N , we refer to the former as

“identical twins” and the latter as “fraternal twins.”

The optimal state gives rise to a Quantum Cramér-Rao Bound (QCRB) for the

variance of the phase estimate given by

(∆φest
d )2 ≥ 1

Fmax

=


2

N(N + 2)
, N even,

2

N(N + 2)− 1
, N odd,

(7.28)
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which shows an asymptotic Heisenberg scaling. An input twin-Fock state leads to

modal entanglement between the two arms after the beam splitter [JLC13].

Holland and Burnett [HB93] introduced the twin-Fock state (for N even) and

considered the Heisenberg scaling of its phase sensitivity. Measurements that achieved

the Heisenberg scaling were demonstrated in [KPH+98, CGB03, GM10]. Robustness

of the identical-twin-Fock state against various errors was investigated in [KPH+98]

and [MH09], and sub-shot-noise precision for interferometry with identical-twin-Fock

states was demonstrated experimentally in [SLG+08].

Benatti et al. [BFM10] considered the Fisher information for detecting a differ-

ential phase shift in an interferometric setting, with the constraint that there be no

entanglement between the two inputs to the interferometer. They showed that the

identical-twin-Fock state has the Fisher information expressed by the N -even case of

Eq. (7.26).

If we were to remove the restriction of having a product input to the interferometer,

the optimal input would be the state that maximizes the variance of Nd after the first

beam splitter, i.e. the modally entangled input state |Ξ〉 that becomes a N00N state,

B|Ξ〉 = (|N , 0〉+ |0,N〉)/
√

2, after the beam splitter [Ger00, BKA+00, Dow08]. The

N00N state has a Fisher information F = N2; this is generally larger than the Fisher

information (7.26) of the twin-Fock input, because one is optimizing over a larger

set of input states to the initial beam splitter. For N = 1 and N = 2, however, the

twin-Fock product input does produce a N00N-like state on the other side of the

beam splitter: the N = 1 fraternal-twin-Fock input, |1〉 ⊗ |0〉, leads to the N00N-like

state B|1, 0〉 = (|1, 0〉 − i|0, 1〉)/
√

2 after the beam splitter, and the N = 2 identical-

twin-Fock input, |1〉 ⊗ |1〉, leads to the N00N state B|1, 1〉 = −i(|2, 0〉+ |0, 2〉)/
√

2.

Thus the twin-Fock inputs for N = 1 and N = 2 have the same Fisher information

as the N00N state; for N > 2, however, the N00N-state Fisher exceeds that of the

twin-Fock input and is a factor of 2 larger asymptotically for large N .
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7.2.2 Fixed mean photon number

We now move on to a constraint on the mean photon number Na +Nb; in this section

N denotes this total mean photon number. The proof for the optimal input state

consists of two steps. The first step finds the optimal states | ξ 〉 and |χ 〉 under the

assumption that both Na and Nb have fixed values. It turns out that the form of the

optimal states is independent of how the total mean photon number N is divided up

between Na and Nb. In the second step, we show that the optimal split of resources

is an equal division, Na = Nb = N/2.

We begin the first step by noticing that the quantity on the second line of Eq. (7.25)

is either negative or zero. We ignore this quantity for the moment. As we see shortly,

the product input state that maximizes the top line has 〈a〉 = 〈b〉 = 0 and, therefore,

also maximizes the quantum Fisher information F . Furthermore, in this first step,

Na and Nb are assumed to be fixed, so maximizing the top line reduces to maximizing

−〈a†a†〉〈bb〉 − 〈aa〉〈b†b†〉. (7.29)

We can always choose the phase of mode a, i.e., multiply a by a phase factor, to make

〈aa〉 real and positive, i.e., 〈aa〉 = 〈a†a†〉 ≥ 0. With this choice we need to maximize

−〈aa〉(〈bb〉+ 〈b†b†〉) = 〈aa〉(〈p2〉 − 〈x2〉) , (7.30)

where in the second form we introduce the quadrature components x and p for mode b,

i.e., b = (x+ ip)/
√

2.

The proof continues along the lines of the proof in the previous section (Eq. (7.20)):(
〈p2〉 − 〈x2〉

)2
=
(
〈p2〉+ 〈x2〉

)2 − 4〈x2〉〈p2〉

= (2Nb + 1)2 − 4〈x2〉〈p2〉

≤ (2Nb + 1)2 − 4〈(∆x)2〉〈(∆p)2〉

≤ (2Nb + 1)2 − 1

= 4Nb(Nb + 1) .

(7.31)

The first inequality is saturated if and only if 〈x〉 = 〈p〉 = 0; equality is achieved

in the second inequality if and only if the input state |χ 〉 of mode b is a minimum-
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uncertainty state. This situation is identical to that in Sec. (7.1): the optimal choice

for |χ 〉 is squeezed vacuum with x the squeezed quadrature and p the anti-squeezed

quadrature.

What is left now is to maximize

2
√
Nb(Nb + 1)〈aa〉 =

√
Nb(Nb + 1)(〈aa〉+ 〈a†a†〉) (7.32)

over the input states | ξ 〉 of mode a for which 〈aa〉 is real and positive. This is the

same maximization we just performed for mode b, except for a sign change, whose

effect is to exchange the squeezed and anti-squeezed quadratures. The optimal state

| ξ 〉 is squeezed vacuum with p as the squeezed quadrature and x as the anti-squeezed

quadrature.

Summarizing, the optimal input state is Sa(−r)|0〉 ⊗ Sb(r′)|0〉, where r and r′ are

real and positive and Sc(γ) = exp[1
2
(γc2 − γ∗c†2)] is the squeeze operator for a field

mode c. The values of the squeeze parameters are determined by Na = sinh2 r and

Nb = sinh2 r′. Notice that, as promised, the optimal state has 〈a〉 = 〈b〉 = 0 and thus

maximizes the Fisher information (7.25); the maximum value is

F = 2NaNb +Na +Nb + 2
√
Na(Na + 1)Nb(Nb + 1) . (7.33)

The second step of the proof is now trivial. For a constraint on the total mean

photon number N = Na+Nb, it is straightforward to see that Eq. (7.33) is maximized

by splitting the photons equally between the two modes, i.e., Na = Nb = N/2. The

resulting optimal input state has r = r′,

|ψin〉opt = Sa(−r)|0〉 ⊗ Sb(r)|0〉 , (7.34)

and the maximal Fisher information and corresponding QCRB are

F = N(N + 2) , (∆φest
d )2 ≥ 1

Fmax

=
1

N(N + 2)
. (7.35)

This again exhibits Heisenberg scaling and, without the factor of 2 that appears in

the fixed-photon-number result (7.26), achieves the 1/N2 Heisenberg limit.
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A question that naturally arises is that of the optimal measurement. In App. B

we show, building on work of Pezze and Smerzi [PS08], that the classical Fisher

information of photon counting after a second 50:50 beam splitter is the same as

the quantum Fisher information, provided the coefficients of the expansion of the

input state in the number basis are real. This requirement is met by the optimal

state (7.34).

Unlike the situation where there is a strong mean field, however, the interferometer

with dual squeezed-vacuum inputs runs on modulated noise, so the mean of the

differenced photocount after a second 50:50 beam splitter gives no information about

the phase. One strategy for extracting the phase information is to look directly at the

fluctuations by squaring the differenced photocount and thus effectively measuring

N2
d [KPH+98, STL+14]; one can show4 that the sensitivity at the optimal operating

point achieves the QCRB (7.35).

Notice now that since BaB† = (a + ib)/
√

2 and BbB† = (b + ia)/
√

2, we have

B(a2 − b2)B† = a2 − b2. Thus the beam splitter leaves unchanged the product of

squeeze operators in the optimal input state (7.34),

BSa(−r)Sb(r)B† = Sa(−r)Sb(r) , (7.36)

and this in turn means that the optimal input state is an eigenstate of the beam

splitter,

B|ψin〉opt = BSa(−r)Sb(r)|0, 0〉 = |ψin〉opt . (7.37)

Thus the state after the 50:50 beam splitter is the same product of squeezed vacua

as before the beam splitter5. The Heisenberg limit is thus achieved without any
4The squared error in estimating φd from 〈N2

d 〉 is given by (∆φest
d )2 =

Var(N2
d )/|∂〈N2

d 〉/∂φd | = 1/N(N + 2) + (cos2 φd/4 sin2 φd)[7 + 2/N + N/(N + 2)], from
which we can see that at the optimal operating point, φd ' π/2, this procedure achieves the
QCRB.

5Since B(a2 +b2)B† = 2iab, we have BSa(r)Sb(r)B
† = eir(ab+a

†
b
†
). This means that dual,

equally squeezed vacua into the two input ports, Sa(r)|0〉 ⊗ Sb(r)|0〉, become a two-mode

squeezed state eir(ab+a
†
b
†
)|0〉 ⊗ |0〉 after the beam splitter. This well-known situation is not,

however, the one that gives maximal Fisher information.
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entanglement between the arms of the interferometer. In fact, Jiang, Lang, and

Caves [JLC13] showed that the state |ψin〉opt is the only nonclassical product state,

i.e., not a coherent state, that produces no modal entanglement after a beam splitter.

These results indicate that, as in [SQ15], modal entanglement is not a crucial resource

for quantum-enhanced interferometry.

Caves pointed out that using squeezed states in an interferometer allows one to

achieve sensitivities below the shot-noise limit [Cav81]; this original scheme, often

simply dubbed “squeezed-state interferometry,” involves injecting squeezed vacuum

into the secondary input port of an interferometer. That squeezing the light into

the primary input port, in addition to inputting squeezed light into the secondary

port, is advantageous was first shown by Bondurant and Shapiro [BS84] and further

investigated by Kim and Sanders [KS96]. All these papers, however, included a mean

field in at least one of the input modes. Paris argued [Par99] that if one considers

arbitrary squeezed-coherent states as interferometer inputs, putting all the available

power into the squeezing, instead of into a mean field, yields better fringe visibility.

Under a Gaussian constraint, Refs. [PFB+12] and [DDJK14] showed that a state that

maximizes the Fisher information for a detecting a differential phase shift after a

beam splitter is dual squeezed vacua; relative to these last results, the contribution of

this section is to remove the assumption of Gaussianity, replacing it with a restriction

to product inputs.

A problem with using Fisher information to find optimal states under a mean-

number constraint is that one can come up with states that seemingly violate the

Heisenberg limit. This was noted for single-mode schemes by Shapiro [SSW89] and

later by Rivas [RL12]. For the former case, Braunstein and co-workers showed

that under a precise asymptotic analysis, no violation of the Heisenberg limit oc-

curs [Bra92a, BLC92, LBC93]. For the latter case, it was shown that the Fisher

information does not provide a tight bound, which makes a Fisher analysis uninforma-

tive [Tsa12, GM12]. If we were to allow arbitrary (entangled) states |Ξ〉 as inputs in

our scheme, we would run into the same problem6. Requiring product inputs removes
6Since the Fisher information is the variance of Nd after the beam splitter, it is given
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this pathology of the Fisher information, therefore providing additional motivation

for our product constraint.

We have analyzed a real-world scheme for measuring differential phase shifts.

First we looked at the case where a coherent state illuminates one side of a 50:50

beam splitter and an arbitrary quantum state of light the other. We showed that

given a constraint on the total mean number of photons, the optimal state to put

into the secondary input port is a squeezed vacuum state, regardless of the relative

mean photon numbers of the two inputs. Then we looked at the more general case

where both sides of the 50:50 beam splitter are illuminated by arbitrary quantum

states of light, with the only requirement that the joint state is of product form. We

demonstrated that in this case the optimal choice is to use squeezed vacua in both

modes, again independent of the relative mean photon number. For a joint mean

number constraint the optimal choice is to divide the photons evenly.

by Var(Nd) = Var(Na) + Var(Nb) − 2 Covar(Na,Nb). If mode b is in vacuum, we have
Var(Nd) = Var(Na), and this is the quantity that was made arbitrarily large under a
mean-number constraint in [RL12].
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Chapter 8

Quantum-enhanced interferometry

with losses

The main motivation for the work discussed in Chap. 7 was the infeasibility of optimal

states previously discussed for quantum-enhanced interferometry. We emphasized the

importance of additional constraints, motivated by practical considerations, when

discussing the advantage promised by the use of nonclassical states of light in a real

world interferometer. Contrary to these efforts of stressing realistic concerns, however,

the work in Chap. 7 assumed an idealized interferometer, that is, an interferometer

that is not subjected to any form of noise. This chapter remedies this defect by

analyzing interferometers subjected to photon loss.

The dominant source of noise in linear optical setups is loss of photons. For an

interferometric setting, several authors have shown independently [FI08, KDD10,

KSD11], that photon losses will invariably degrade the sought after ‘Heisenberg

scaling’, F ∝ N2, of the quantum Fisher information to a shot-noise type scaling of

F ∝ N as N →∞. While this seems devastating at the first glance, it does not mean

that nonclassical states of light are useless for realistic interferometry: While the

scaling of the quantum Fisher information asymptotically limits to the same scaling

one would get employing only classical resources, nonclassical states can still beat

the shot noise limit by a constant factor that depends on the specifics of the setup.
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Moreover, given a particular real world setup, the photon numbers involved might be

below the point at which the asymptotic scaling is relevant.

Nevertheless, the above at least indicates that it is critical to include losses in an

analysis of the performance of an interferometric setup. In this chapter we extend the

analysis performed in Chap. 7 by taking linear losses into account. These losses can be

readily modeled by introducing two beam splitters into the setup we were considering

before, as we illustrate in Fig. 8.1. These beam splitters, which are assumed to be

identical, with transmissivity η, allow photons to leak out of the primary system

modes, which have annihilation operators a and b, into two ancillary ‘loss-modes’, E1

and E2, which are traced out subsequently. The average fraction of photons lost at

each loss beamsplitter is 1− η. The rest of the setup is analogous to the one discussed

in the previous chapter. Notice that we place the auxiliary beam splitters after the

phase shifts. In App. B we show that for the following discussion it does not matter

where these beam splitters are placed.
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Figure 8.1: Modified interferometric setting for the analysis including linear losses.
While most of this setup is identical to Fig. 7.1, two auxiliary beamsplitters,
shown in blue, both with transmissivity η, are introduced to model linear losses in
the two arms, here assumed to be identical in the two arms. The phase shifts φ1

and φ2 in the ancillary modes after the interaction with the main system do not
change any physical quantity we are considering; they should be thought of as a
mathematical trick to obtain a better bound for the quantum Fisher information.
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Including losses means that an initial pure state is taken to a mixed state. Thus

we cannot make use of Eq. (6.19) to calculate the quantum Fisher information. As

there is no explicit expression for the Fisher information for mixed states, it becomes

impossible to solve the optimization problem of finding the most sensitive input state

analytically. To circumvent this problem we will use the following strategy.

First we will adapt to our setting an upper bound CQ on the quantum Fisher

information, introduced by Escher et al. [EdMFD11a, EdMFD11b]. Then we will

explicitly calculate the quantum Fisher information FQ for the input state we found

to be optimal in the lossless case. A subsequent comparison of CQ with FQ will show

that in the cases of practical interest, the results of Chap. 7 still hold.

In [EdMFD11a, EdMFD11b] an upper bound CQ(ρ0, {Πl(x)}) on the quantum

Fisher information FQ(ρ0) was introduced. This bound depends on the Kraus

operators {Πl(x)} used to describe the system’s evolution; the Kraus operators

depend on the parameter x to be estimated. While picking any set of Kraus operators

will yield an upper bound, Escher et al. showed that there always exists a set of Kraus

operators for which this bound is tight, i.e., yields the quantum Fisher information.

This bound is given by [EdMFD11a]

CQ(ρ0, {Πl(x)}) = 4
[
〈H1(x)〉0 − 〈H2(x)〉20

]
, (8.1)

where the expectation values are taken with respect to the state ρ0 = BρinB
† after

the beamsplitter. The operators H1 and H2 are given in terms of the Kraus operators,

H1(x) =
∑
l

dΠ†l (x)

dx

dΠl(x)

dx
, (8.2)

H2(x) = i
∑
l

dΠ†l (x)

dx
Πl(x). (8.3)

As in the Supplemental Material for [EdMFD11a], we choose our Kraus operators

to be those defined in the number basis of the ancillary modes:

Πk,l = 〈kE1
, lE2
|U |0E1

, 0E2
〉 (8.4)

=

√
(1− η)k

k!

√
(1− η)l

l!
ei(ϕ1na+φ1k)ηna/2ak ei(ϕ2nb+φ2l)ηnb/2bl. (8.5)
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Here na = a†a and nb = b†b are the number operators for the two primary modes.

The joint system-environment unitary U corresponds the setting depicted in Fig. 8.1:

It contains the phase shifts in modes a and b, respectively, followed by mixing at the

beam splitters of a with ancillary mode E1 and of b with ancillary mode E2, and

finally by phase shifts φ1 and φ2 of the two ancillary modes. The beam splitters have

transmissivity η, and the modes E1 and E2 start out in the vacuum state.

We choose the additional ancillary phase shifts to be φ1 = −(γ + 1)ϕ1 and φ2 =

−(γ+1)ϕ2. The introduction of the additional parameter γ is inspired by [EdMFD11a],

where it is interpreted as coming from the ‘position’ of the beamsplitter in the following

sense. If there are no additional ancillary phase shifts and the loss beamsplitters are

positioned after the phase shifters for modes a and b, as depicted in Fig. 8.1, then

γ = −1. If, instead, the loss beamsplitters are positioned before the primary phase

shifters, then γ = 0. To obtain a tighter bound for CQ one optimizes over γ; the

optimal value, it turns out, is in general not within the interval [−1, 0]. Hence, we

offer a different interpretation of this parameter as merely a mathematical trick to

obtain the best bound.

After some manipulation, which is summarized in App. B, we find

CQ,γ = [1− (1 + γ)(1− η)]2 〈∆N2
d 〉+ (1 + γ)2η(1− η)N̄t, (8.6)

where N̄ = N̄a + N̄b is the mean total photon number entering the interferometer.

The parameter γ can take any value without changing any physical quantity of the

system. To get the best upper bound, we minimize Eq. (8.6) over all γ. As we discuss

in App. B, the optimal choice for γ is

γopt =
〈∆N2

d 〉
(1− η)〈∆N2

d 〉+ ηN̄t

− 1. (8.7)

Plugging this into Eq. (8.6), we find the optimized bound to be

CQ,γopt
=

ηN̄t〈∆N2
d 〉

(1− η)〈∆N2
d 〉+ ηN̄t

. (8.8)

Notice that, as mentioned above, N̄t is considered to be constant when we are

looking for optimal states, as this is the resource we are using. We can show that the
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expression in Eq. (8.8) is a monotonically increasing function of the Fisher information

for pure states, i.e., 〈∆N2
d 〉 (see Chap. B). This means that to obtain an upper bound

on the Fisher information with losses for all possible input states that obey our

constraints, we can simply put into Eq. (8.8) the state we found to be optimal for

the lossless case. We will do this for two cases we considered in the lossless setting.

First we will focus on the case where the input in mode a is the coherent state |α 〉,

as in Fig. 8.1.

8.1 Lossy interferometry with laser light

To get an upper bound for the quantum Fisher information with losses for the case

where a coherent state |α 〉 is fed into mode a of the interferometer, we simply take

Eq. (7.17) and plug it into Eq. (8.8) to get

CQ,γopt
=

η(N̄b + N̄a)(2N̄a〈∆p2〉+ N̄b)

(1− η)(2N̄a〈∆p2〉+ N̄b) + η(N̄a + N̄b)
= CQ, (8.9)

where

〈∆p2〉 = N̄b +
√
N̄b(N̄b + 1) + 1/2. (8.10)

While we used a specific state (the optimal state for the lossless scenario) to obtain

Eq. (8.9), we emphasize that the upper bound on the quantum Fisher information in

Eq. (8.9) is an upper bound for all possible input states satisfying our constraints.

More specifically, CQ,γopt
is an upper bound on the quantum Fisher information for

the states that are truly optimal in the lossy setting.

To proceed, we will now calculate the exact expression for the Fisher information of

the state |α 〉⊗Sb(r)|0〉. In general, there is no straightforward way to do this, as one

needs to find the symmetric logarithmic derivative operator L, which unfortunately

is only defined implicitly (see Chap. 6). Monras [Mon13] and Jiang [Jia14] indepen-

dently derived manifestly equivalent explicit expressions for the Fisher information

of arbitrary Gaussian states. As the state we are interested in is Gaussian, we will
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make use of Jiang’s work in the following.1

The Fisher information for an arbitrary Gaussian state is given by

FQ =
1

2
tr(Γ̇Φ) + 2ḋTΓ−1ḋ . (8.11)

Here d is the vector of first moments, i.e., di = tr[Riρ], and Γ is the covariance matrix,

i.e., Γij = 2 tr[(Ri − di) ◦ (Rj − dj)ρ], with R = (X1,X2,P1,P2)
T being the vector

of canonical positions and momenta. The circle ◦ denotes the symmetric product

(anticommutator), and thus this covariance matrix is twice the conventional one; this

gives it the the nice feature that it is the unit matrix for the vacuum. In Eq. (8.11),

the dot denotes a derivative of Γ with respect to the parameter we want to estimate,

in our case, φd. The matrix Φ is defined implicitly by Γ and Γ̇ through

Γ̇ = ΓΦΓ + JΦJ , (8.12)

where J is the fundamental antisymmetric symplectic matrix,

J =

 0 I

−I 0

 . (8.13)

If we do a symplectic basis change to the basis where Γ is diagonal (so-called

standard form), i.e., SΓST = Γs, we can calculate the symplecticly invariant quantity
1
2
tr(Γ̇Φ) = 1

2
tr(Γ̇sΦs), as Φs now has an explicit form in terms of Γs and Γ̇s [Jia14].

Following this procedure, we are able to evaluate the quantum Fisher information for

the state we are considering under losses:

FQ = ηN̄b +
ηN̄a

1− η + η/2〈∆p2〉

= ηN̄b +
N̄a η

(
1 + 2 N̄b η + 2η

√
N̄b(1 + N̄b)

)
1 + 4 N̄b (1− η) η

. (8.14)

1While the expression for the Fisher information in [Mon13] is more compact, it involves
calculating the (pseudo) inverse of a (2N)2 × (2N)2 Matrix. Using Mathematica on a
personal laptop, the case N = 2 already proved infeasible to do symbolically. The way
presented in [Jia14] seems less computationally intense and was therefore preferred in this
work.
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Here 〈∆p2〉 is as in Eq. (8.10). Now we are left with comparing the two quantities

CQ and FQ. Notice that CQ = FQ in the absence of losses, i.e., η = 1, and also when

all the photons are lost, i.e., η = 0.

To begin the comparison, we we write the two quantities in the forms

CQ =
N̄a + N̄b

1− η
η

+
N̄a + N̄b

2N̄a〈∆p2〉+ N̄b

, (8.15)

FQ =
N̄a + N̄b − ηN̄b(1− 1/2〈∆p2〉)

1− η
η

+
1

2〈∆p2〉

. (8.16)

The case of primary interest to us is when mode a carries many more photons than

mode b, i.e.,

N̄a � N̄b. (8.17)

This again is motivated by our initial considerations and ties in very well with the

constraint we already had imposed on our setup: We fixed the input state in mode a

to be a coherent state, as the main power source of any practical interferometer will be

a commercially available laser; since the lasers used in high-precision interferometry

will carry many more photons (per averaging time) than any nonclassical state

currently feasible in the laboratory, the assumption of N̄a � N̄b is natural. Under

this assumption, it is clear that both CQ and FQ are close to

IQ =
N̄a + N̄b

1− η
η

+
1

2〈∆p2〉

. (8.18)

Moreover, for all values of N̄a and N̄b, both CQ and FQ are smaller than IQ. What

we do now is to investigate how much bigger and how much smaller under the

assumption (8.17).
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We now write the two quantities in the forms

1

CQ
=

1

IQ
+

1

2N̄a〈∆p2〉+ N̄b)
− 1

2〈∆p2〉(N̄a + N̄b)

' 1

IQ

[
1 +

N̄b

N̄a

IQ

2N̄a〈∆p2〉

(
1− 1

2〈∆p2〉

)]
, (8.19)

FQ = IQ

[
1− ηN̄b

N̄a + N̄b

(
1− 1

2〈∆p2〉

)]
. (8.20)

In the approximate expression for 1/CQ, we keep only the leading-order terms in

N̄b/N̄a. We can quantify the difference between the two quantities in terms of the

relative difference

CQ − FQ
CQ

' (1− η)
N̄b

N̄a

IQ
N̄a

(
1− 1

2〈∆p2〉

)2

' N̄b

N̄a

(
1− 1

2〈∆p2〉

)2
η

1 +
η

1− η
1

2〈∆p2〉

. (8.21)

This form makes clear that the upper bound on the Fisher information coincides

nearly exactly with the Fisher information for putting a squeezed vacuum state into the

second mode, under the operating conditions of a typical high-power interferometer.

Indeed, once one realizes that both CQ and FQ differ negligibly from IQ when N̄a � N̄b,

one might as well regard IQ as the bound on performance and compare FQ to it.

Then the relevant relative difference is

IQ − FQ
IQ

=
ηN̄b

N̄a + N̄b

(
1− 1

2〈∆p2〉

)
' η

N̄b

N̄a

(
1− 1

2〈∆p2〉

)
. (8.22)

The first expression is exact. The second applies when N̄a � N̄b and shows that in the

high-power limit, we may effectively regard IQ as the Fisher information of this sort

of interferometer. This tells us that increasing the squeezing improves the resolution

as long as 2〈∆p2〉 . η/(1− η). Of course, to increase the squeezing to this critical

value requires that the losses be large enough that N̄a � N̄b = sinh2 r ' 〈∆p2〉/2 '

η/(1− η), but this will generally be true for any conceivable losses in a high-power

interferometer. Once squeezing exceeds the critical value by any substantial amount,

the Fisher information limits to

IQ '
η

1− η
N̄a, (8.23)
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which has shot-noise scaling, but with an enhancement by the factor η/(1−η) relative

to the shot-noise limit. This is the same form as the bounds on sensitivity discussed

in [KDD10, KSD11, EdMFD11a].

This concludes our demonstration that under the assumption (8.17), the squeezed

vacuum state is so close to being the optimal choice to use in practical interferometry

that it is not worth considering any other possibility. To be useful in practice, however,

one needs to know what the optimal measurement scheme and estimator are. A

natural candidate is the standard linear estimator when doing a differenced photon

count, as it worked in the lossless case for the regime of high laser power we are now

interested in.

The relevant quantity to determine the precision of this estimator is given

by the error propagation formula. In our case the variance of the estimator is〈
∆N2

d

〉
/
∣∣∂φd〈Nd〉

∣∣2. In general, this quantity will be dependent on the parameter one

wants to estimate, here φd. Hence there will be an optimal operating point for the

interferometer. In this case the optimal point is φd = π/2. In terms of the coherent

state amplitude α and the squeezing parameter r, we have

〈
∆N2

d

〉∣∣∂φd〈Nd〉
∣∣2 =

α2e−2r + sinh2 r +
1− η
η

α2 +
1− η
η

sinh2 r

(α2 − sinh2)2 ; (8.24)

Making again the assumption of high laser power, i.e., α2 � sinh2 r, this becomes

e−2r +
1− η
η

α2 ' 1

IQ
. (8.25)

Comparing this to 1/FQ, we see again that we have found the optimal estimation

procedure.

An analysis in the same spirit has been carried out in [DDanBS13], to demonstrate

the optimality of LIGO. The assumptions in this work, however, differ from the ones

we have made and hence provide an independent confirmation of the usefulness of

squeezed-light interferometry.
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8.2 Lossy interferometry

Analogous to Sec. 7.2 in Chap. 7, we will now repeat this analysis with one assumption

relaxed: Instead of fixing the input state in mode a to be a coherent state, in the

following we only assume the input state to be of a product form.

Again we make use of the upper bound (8.8). Given Eq. (7.35), the upper bound

on the quantum Fisher information of all states that obey the constraints we are

considering is

CQ,γopt
=

ηN̄t(N̄t + 2)

(1− η)(N̄t + 2) + η
=

η2N̄t(N̄t + 2)

η(1− η)N̄t + η(2− η)
= CQ. (8.26)

To calculate the exact Fisher information in the lossy interferometer for the two

vacuum squeezed states in Eq. (7.34), we again make use of Jiang’s formalism [Jia14].

It turns out that the calculation in this case is easier than the one we had to do

when we were considering a coherent state in the first input port: the second term in

Eq. (8.11) is zero because all the first moments are zero, and the first term is not so

hard to calculate because the symplectic eigenvalues are degenerate, meaning that

we do not have to perform a full symplectic diagonalisation procedure [Jia14]. The

result for the quantum Fisher information is

FQ =
η2N̄t(N̄t + 2)

η(1− η)N̄t + 1
. (8.27)

Comparing this to Eq. (8.26), we see that the two quantities differ only in their

denominator. They are equal when η = 0 or η = 1.

If we let η = 1− ε, we have η(2− η) = 1− ε2, so when losses are small, i.e., ε� 1,

CQ and FQ differ only at second order in ε. This was to be expected, as it is a general

feature of the bound (8.8) that in the regime of low losses, CQ is nearly equal to FQ.

More interesting is the case when the losses are not negligible. Here we need the

input power to be strong enough that η(1− η)N̄t � 1, in which case CQ and FQ are

both nearly equal to (N̄t + 2)η/(1− η). Thus, under these circumstances, the two

squeezed vacua are essentially the optimal input product states for interferometry,

even in the presence of losses.
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In this chapter the we extended the results of the previous chapter to the case

where the interferometer is subject to photon losses. We have shown that when the

interferometer is powered mainly by laser light, squeezed vacuum is still the optimal

choice for the second input port no matter how large the losses are. When allowing

an arbitrary product state to enter the interferometer, squeezed vacua in both input

ports are optimal if their mean photon number is large enough.



123

Chapter 9

Conclusion

In the first half of this thesis, we considered several entropic measures of nonclassical

correlations. All of these measures purport to quantify the degree of nonclassicality in

bipartite quantum states. Just as important as the degree of nonclassicality, however,

is the boundary these measures set between quantum and classical states. For the

measures employing an unconditioned measurement, a joint state is classical if and

only if it is diagonal in a product basis. Both forms of discord, however, consider

a joint state to be classical if it is diagonal in a conditional product basis pointing

from A to B; clearly this boundary between quantum and classical is a consequence

of a conditioned measurement strategy. All the measures differ in the “amount” of

nonclassicality they assign to states they deem not classical.

The boundary between quantum and classical is important by itself, first, because it

can usually be extended to multipartite systems even when the measure of nonclassical

correlations is not so easily extended and, second, because it serves as the basis

for interesting questions about quantum-information processing. As mentioned

in the Introduction, Eastin [Eas10] has recently investigated whether concordant

computations can be simulated classically. A concordant computation is one such

that after every elementary gate, the state of the whole computer is diagonal in a

product basis. The entire computation is just a matter of changing the product basis,

yet Eastin finds it difficult in general to simulate such computations efficiently.
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This discussion raises at least two other questions, the first of which concerns

the boundary between quantum and classical. The boundaries induced by the

nonclassical-correlation measures considered here are natural—naïve is perhaps a

better word—in that the classicality of a state is defined in terms of properties of

its eigenvectors. This is quite different from the distinction between separable and

entangled states [Wer89], which pays no attention to the properties of the joint state’s

eigenvectors; a state is separable if and only if it has an ensemble decomposition—not

an eigendecomposition—in terms of product states. The boundaries for the measures

discussed in this paper do require a classical state to have unentangled eigenvectors,

but they are more restrictive than saying that a state is classical if its eigenvectors

are product states. There are orthonormal bases of product states that are neither

product bases nor conditional product bases [BDF+99]. The boundaries considered

here, imposed by the measurement strategies, clearly have to do with wanting the

product states in a joint eigenbasis to persist into the marginal eigenbasis of one or

both subsystems. A natural question is wheher there is some other way of setting

the quantum-classical boundary so that a joint state is classical if and only if it has

unentangled eigenvectors?

Any measure of nonclassical correlations assigns a number to a joint quantum state;

the second question has to do with what this “amount” means. The demon-based

measures have an operational interpretation as the work deficit suffered by local

demons that are required to work only with the subsystems. Recently, there have

been two closely related proposals for operational interpretations of quantum discord

in terms of state-merging protocols [CAB+11, MD11]. Quantum discord has also been

connected to the entanglement loss when mixed states are created from entangled

states followed by entanglement distillation from those mixed states [CdOF11]. Such

operational interpretations are essential to understand the meaning of a measure of

nonclassical correlations. Whenever a measure of nonclassical correlations is proposed,

the amount of nonclassicality must ultimately gain meaning through an operational

interpretation.

The second half of this dissertation discussed a topic from a different branch
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of quantum information theory, motivated by more practical considerations. Ever

since it was shown that squeezed states can enhance the sensitivity of a laser inter-

ferometer [Cav81], schemes have been proposed trying to improve on this idea by

presenting a setup that is even more efficient in the use of the resource at hand. It is

of particular interest to find the nonclassical input state to the interferometer that

performs best under various constraints. The N00N state was hallowed by many

as the ‘optimal’ state to distinguish a small phase shift between two modes of light.

In fact the N00N state is only optimal under the constraint that the interferometer

deals with a fixed number of photons. While the photon number is certainly a crucial

resource, the relevant quantity corresponding to the energy consumed in ‘one run’ of

the experiment is the mean photon number needed to create the current input state.

The only reason to impose a constraint of fixed photon number in an optical setup

is to ease the analysis of finding the optimal state. This, however, defies the very

purpose of the undertaking: any state that performs better than the optimal state

for a fixed photon number will be more relevant for estimation purposes regardless

of whether it is provably optimal or not. In this dissertation we took a different

approach. While we also imposed additional constraints in our search for an optimal

state, our constraints are well motivated by practical considerations.

First, we looked at the situation where an interferometer is mainly powered by

strong laser light, modeled by a coherent state entering the interferometer’s first

input port. We showed that given a constraint on the total mean number of photons,

the optimal state to put into the secondary input port is a squeezed vacuum state,

regardless of the relative mean photon numbers of the two inputs. A question that

begs for further attention here is whether one could come up with a simple optimal

estimator when the squeezed light carries as many or more photons than the coherent

input. Extending our analysis to include photon losses, we demonstrated that such a

setup, currently being implemented at LIGO, is indeed optimal for practical purposes,

confirming the findings of Ref. [DDanBS13] from a different viewpoint.

The second practical situation we explored is that where the input to the interfer-

ometer is of product form. Product states are typically easier to create than more
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general states, as one does not have to entangle the two optical modes. Under this

assumption of a product input, we demonstrated that the optimal choice for the input

state is to use squeezed vacua in both input ports of the interferometer. It turns out

that this state is not only easier to produce than a N00N state, it even performs

slightly better than a N00N state, in terms of mean photon number. Extending our

analysis, we also showed that our state is far more robust to photon losses than a

N00N state. Moreover, our findings indicate that modal entanglement does not play

a crucial role in quantum-enhanced interferometry.

An outstanding question is still that of the optimal state under nothing but a

mean photon number constraint. While Fisher information cannot be used to find the

optimal state in this context, a question of considerable interest is whether there exist

other techniques allowing for the analysis of this general setting where the input is

not required to be of product form. It is interesting to note that a two-mode squeezed

vacuum as the input to the interferometer, though highly entangled, yields the same

sensitivity that we found [STL+14]: the first beam splitter of the interferometer

unentangles the state producing again single-mode-squeezed vacua in both modes

with a different phase relation relative to our input state. A simpler objective than

finding the state with the optimal performance perhaps would be to come up with

one single state that performs better than the dual squeezed vacua that we found.

Until such a state is found, we advocate the use of squeezing in interferometers as a

more reasonable approach to obtain a quantum enhancement than focusing on the

improvement of techniques using N00N or other exotic states.
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Appendix A

Supplemental material to the

correlation-measures chapters

A.1 The POVM inequality

A quantum state written in its eigenbasis,

ρ =
∑
α

λα|eα〉〈eα| , (A.1)

is subjected to a POVM with elements Ej. This gives outcome probabilities

pj = tr(Ejρ) =
∑
α

λαqj|α , (A.2)

where qj|α = 〈eα|Ej|eα〉 is the probability for outcome j given state |eα〉〈eα|. We

define

µj ≡ trEj =
∑
α

qj|α , (A.3)

which implies that qj|α/µj is a normalized probability distribution on α.



Appendix A. Supplemental material to the correlation-measures chapters 128

Now let f(x) = −x log x and proceed through the following steps:

H(pj) =
∑
j

f(pj)

=
∑
j

f

(∑
α

qj|α
µj

λαµj

)
≥
∑
α,j

qj|α
µj

f(λαµj) (A.4)

= −
∑
α,j

qj|αλα log(λαµj)

= −
∑
α,j

qj|αλα log λα −
∑
α,j

λαqj|α log µj

= −
∑
α

λα log λα −
∑
j

pj log µj (A.5)

= S(ρ)−
∑
j

pj log(trEj) . (A.6)

The inequality (A.4) uses that f(x) is a concave function and that qj|α/µj is a

probability distribution over α. The step leading to Eq. (A.5) uses that qj|α is a

normalized distribution over j.

A.2 Nonnegativity and ordering of the WPM mea-

sure and discord

In this Appendix we show that the WPM measure is bounded below by quantum

discord and that the quantum discord is nonnegative. We proceed by assuming

that systems A and B are subjected to measurements described by POVMs with

rank-one POVM elements Ea and Fb, as in measurement strategy (b). For conve-

nience, we use the fact that any set of POVM elements can be extended to rank-one

orthogonal projection operators in a space of higher dimension, an extension called

the Naimark extension [Nai40]. Formally, we have an orthonormal basis |ea〉 in the

higher-dimensional space such that Ea = PA|ea〉〈ea|PA, where PA projects onto the

original Hilbert space of system A, which is the space where the states of system A
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live; similarly, there is an orthonormal basis |fb〉 such that Fb = PB|fb〉〈fb|PB, where

PB projects onto the original Hilbert space of system B.

We can write the joint probability for outcomes a and b as

pab = tr(Ea⊗FbρAB) = tr
(
PA|ea〉〈ea|PA⊗PB|fb〉〈fb|PBρAB

)
= 〈ea, fb|ρAB|ea, fb〉 ,

(A.7)

where the last equality follows because ρAB lives in the original Hilbert space of A

and B, so we can discard the projectors into that space. Other results we need below

include

ρB|a =
trA(EaρAB)

pa
=
〈ea|ρAB|ea〉

pa
, (A.8)

where

pa = tr(EaρA) = 〈ea|ρA|ea〉 . (A.9)

We now extend the joint state ρAB to a space with two additional systems, C

and D. We let C have dimension equal to the number of outcomes a, with an

orthonormal basis |ga〉, we let D have dimension equal to the number of outcomes b,

with orthonormal basis |hb〉. The extended state,

ρ′ABCD =
∑

a,a
′
,b,b
′

|ea, fb〉〈ea, fb|ρAB|ea′ , fb′〉〈ea′ , fb′| ⊗ |ga〉〈ga′ | ⊗ |hb〉〈hb′ | , (A.10)

can be regarded as a state where systems C and D record the measurement outcomes

in their orthonormal bases. Notice that the entropy of the extended state is

S ′(A,B,C,D) = S(A,B) . (A.11)

The proof follows from two applications of the strong-subadditivity property of

von Neumann entropy [NC00]. Various marginals of the extended state and their von
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Neumann entropies enter into the proof:

ρ′ABD =
∑
a,b,b

′

pa|ea〉〈ea| ⊗ |fb〉〈fb|ρB|a|fb′〉〈fb′ | ⊗ |hb〉〈hb′ | , (A.12)

ρ′AC =
∑
a,a
′

|ea〉〈ea|ρA|ea′〉〈ea′ | ⊗ |ga〉〈ga′ | , (A.13)

ρ′BD =
∑
b,b
′

|fb〉〈fb|ρB|fb′〉〈fb′| ⊗ |hb〉〈hb′| , (A.14)

ρ′AB =
∑
a,b

pab|ea, fb〉〈ea, fb| , ρ′A =
∑
a

pa|ea〉〈ea| , (A.15)

ρ′B =
∑
a

pb|fb〉〈fb| , (A.16)

ρ′C =
∑
a

pa|ga〉〈ga| , ρ′D =
∑
a

pb|hb〉〈hb| . (A.17)

These have von Neumann entropies

S ′(A,B,D) = H(A) +
∑
a

paS(B|a) , (A.18)

S ′(A,C) = S(A) , S ′(B,D) = S(B) , (A.19)

S ′(A,B) = H(A,B) , S ′(A) = S ′(C) = H(A) , (A.20)

S ′(B) = S ′(D) = H(B) . (A.21)

The proof now comes in a rush. Recalling Eq. (4.37), we use the above results to

write

[S(A : B)−H(A : B)]− [H{Ea}(B|A)− S(B|A)]

= −S ′(A,B,D)− S ′(B) + S ′(A,B) + S ′(B,D)

= S ′(A|B)− S ′(A|B,D) ≥ 0 . (A.22)

The inequality is precisely the expression of strong subadditivity for systems A, B,

and D. It shows that

M(WPM)
1b ≥M(discord)

2c = D(A→ B) . (A.23)

Concentrating now on discord, we write

H{Ea}(B|A)− S(B|A) = −S ′(A,B,C,D)− S ′(A) + S ′(A,B,D) + S ′(A,C)

= S ′(B,D|A)− S ′(B,D|A,C) ≥ 0 , (A.24)
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where again the inequality is strong subadditivity, this time for systems BD, A, and

C. This inequality shows that discord is always nonnegative.

The equality conditions for strong subadditivity [HJPW04] can be applied to

inequalities (A.22) and (A.24). From the latter inequality, we learn thatM(discord)
2c =

D(A → B) is zero if and only if ρAB is diagonal in a conditional product basis

pointing from A to B. Datta [Dat10], in the proof of his Theorem 2, has shown

how to use the equality conditions for strong subadditivity to obtain this necessary

and sufficient condition for zero discord. From (A.22), we learn that M(WPM)
1b =

M(discord)
2c = D(A → B) if and only ρAB is diagonal in a conditional product basis

pointing from B to A. Combining these two results, we have that the WPM measure

is zero if and only if ρAB is diagonal in a product basis.

A.3 Projective measurements vs. POVMs for

WPM and discord

In this Appendix, we elaborate an example given by WPM [WPM09], which exhibits

a joint state that requires the use of rank-one POVMs, not just orthogonal-projection-

valued measurements, to maximize the classical mutual information in evaluating the

WPM measure. We extend these results to show that for the same states, rank-one

POVMs are required for evaluating the discord.

Consider a joint state

ρAB =

dB∑
j=1

pjρj ⊗ |ej〉〈ej| =
dB∑
j=1

pjρj ⊗ Pj , (A.25)

where the states |ej〉 make up an orthonormal basis for system B. The marginal

states are given by

ρA =
∑
j

pjρj , ρB =
∑
j

pjPj , (A.26)
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and this gives

S(B) = H(pj) , (A.27)

S(A,B) = H(pj) +
∑
j

pjS(ρj) , (A.28)

S(A|B) = S(A,B)− S(B) =
∑
j

pjS(ρj) , (A.29)

S(B|A) = S(A,B)− S(A) = H(pj) +
∑
j

pjS(ρj)− S(A) , (A.30)

S(A : B) = S(B)− S(B|A) = S(A)−
∑
j

pjS(ρj) . (A.31)

The quantum mutual information is the Holevo quantity for the ensemble of states ρj
with probabilities pj. This is not surprising because ρAB describes a situation where

B sends a message to A: the message has the letters j, with probabilities pj ; B keeps

a record of the message in the orthogonal states |ej〉 and encodes the letters in the

states ρj.

The state (A.25) has zero discord when communication goes from B to A, i.e.,

D(B → A) = 0, because ρAB is diagonal in a conditional product basis pointing from

B to A. Generally, it has nonzero discord, D(A → B), when communication goes

from A to B. The results of Appendix A.2 show that the WPM measure equals

D(A → B) for such states. We return to discord below; for now, we focus on the

WPM measure. Given any unconditioned, local measurements on A and B, the joint

probability for results a and b is

pab =

dB∑
j=1

pjpa|jpb|j , (A.32)

where pa|j = tr(Eaρj) and pb|j = tr(FbPj). We can think of pab as the marginal of a

joint distribution for a, b, and j:

pabj = pjpa|jpb|j . (A.33)

That A and B are conditionally independent means that pa|bj = pa|j, which implies

that H(A|J) = H(A|B, J). Thus we have

H(A : J)−H(A : B) = H(A|B)−H(A|J) = H(A|B)−H(A|B, J) ≥ 0 , (A.34)



Appendix A. Supplemental material to the correlation-measures chapters 133

where the final inequality follows from classical strong subadditivity, which says that

additional conditioning cannot increase the entropy. Measuring B in the eigenbasis

|ej〉 gives H(A : B) = H(A : J), so we can conclude that the maximum mutual

information is attained on this measurement. The WPM measure reduces to a form

that only requires a maximization over the measurement on A:

M(WPM)
1b = S(A : B)−max

(b)
H(A : B) = S(A : B)−max

{Ea}
H(A : J) . (A.35)

We now proceed to specialize the joint state ρAB in four ways. First, we assume

that system A is a qubit and that the ensemble states,

ρj =
1

2
(IA + σ ·nj) , (A.36)

are pure; i.e., the vectors nj are unit vectors. The measurement on A is described by

rank-one POVM elements

Ea = qa(IA + σ ·ma) , (A.37)

where the vectors ma are unit vectors. The completeness relation for the POVM

implies that the quantities qa make up a normalized probability distribution and that

∑
a

qama = 0 . (A.38)

The probability for result a, given state ρj, is

pa|j = tr(Eaρj) = qa(1 + nj ·ma) , (A.39)

and the joint probability for results a and j is

paj = tr(ρABEa ⊗ Pj) = pjtr(Eaρj) = pjqa(1 + nj ·ma) . (A.40)

The second specialization is to assume that the states ρj are distributed so that

dB∑
j=1

pjnj = 0 ⇐⇒ ρA =

dB∑
j=1

pjρj =
1

2
IA . (A.41)
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With this assumption we have that the probability for result a is pa = qa and thus

that S(B|A) = H(pj)− S(A) = H(pj)− 1 and S(A : B) = S(A) = 1. The classical

mutual information is

H(A : J) = H(A)−H(A|J) =
∑
j,a

paj log(pa|j/pa) =
∑
a

qaF (ma) , (A.42)

where we define the function

F (m) ≡
dB∑
j=1

pj(1 + nj ·m) log(1 + nj ·m) . (A.43)

The WPM measure is now given byM(WPM)
1b = 1− H̃(A : J), where

H̃(A : J) ≡ max
{Ea}

H(A : J) = max
{qa,ma}

∑
a

qaF (ma) . (A.44)

Before going on to the third specialization, let’s consider the quantum discord

when conditioning on A. We again make the first two specializations: a joint state of

the form (A.25), with A being a qubit, and the states ρj being the pure states (A.36),

distributed according to Eq. (A.41). We measure the POVM (A.37) on A. The

probability for result a is pa = qa, and the state of B, conditioned on result a, is

ρB|a =
trA(EaρAB)

pa
=

dB∑
j=1

pjpa|j
qa

Pj =

dB∑
j=1

pj(1 + nj ·ma)Pj , (A.45)

which has quantum entropy

S(B|a) = −
dB∑
j=1

pj(1 + nj ·ma) log
(
pj(1 + nj ·ma)

)
. (A.46)

The conditional classical entropy that goes into the definition (4.38) of discord becomes

H̃(B|A) = min
{Ea}

∑
a

paS(B|a) = H(pj)− max
{qa,ma}

∑
a

qaF (ma) = H(pj)−H̃(A : J) ,

(A.47)

so the discord is given by

D(A→ B) =M(discord)
2c = H̃(B|A)−S(B|A) = 1− H̃(A : J) =M(WPM)

1b . (A.48)
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As expected, the discord is the same as the WPM measure for this set of joint states.

Our third specialization is to assume that the ensemble probabilities are all equal,

i.e., pj = 1/dB, and the fourth, needed to work out examples, is that the vectors nj
are symmetrically distributed, pointing to the vertices of an equilateral triangle or of a

regular polyhedron. Within this configuration, we first maximize the function F (m).

The high degree of symmetry guarantees that the extrema of F (m) occur along

the symmetry axes of the triangle or polyhedron. Having determined the maximum

value, Fmax, one knows that this maximum is an upper bound on H̃(A : J). The

high degree of symmetry further guarantees that one can make up a POVM out of

the directions ma that give the maximum value, with qa chosen to be the same for

all these directions; since this choice achieves the bound, one has H̃(A : J) = Fmax.

Moreover, if no two of the directions ma are oppositely directed, the upper bound

cannot be achieved with a projection-valued measurement. One ends up knowing,

first, the common value of the WPM measure and quantum discord and, second, that

the optimal measurement cannot be described by orthogonal projection operators.

For a triangle (tetrahedron) of states, the maximum value of F is attained on

the vectors that are directed opposite to the vectors that define the state. The

maximum value is Fmax = log 3
2
for the triangle and Fmax = log 4

3
for the tetrahedron.

The optimal measurement is the trine (tetrahedron) measurement that uses the

triangle (tetrahedron) dual to the state triangle (tetrahedron). Both the WPM

measure and discord are equal to 1 − log 3
2

= log 4
3

= 0.415 for the triangle and to

1− log 4
3

= log 3
2

= 0.585 for the tetrahedron.

We stress that the examples in this Appendix require that subsystem B have

three or more Hilbert-space dimensions. These examples thus do not exclude the

possibility that projection-valued-measures suffice for WPM and discord for a pair of

qubits.

It is worth noting that if one asks about demon discord, the quantity one needs

to evaluate, instead of being the classical conditional entropy (A.47), is the classical
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joint entropy (4.49). Making the first two specializations gives a demon discord

M(dd)
3c = min

{qa,ma}

(
H(qa)−

∑
a

qaF (ma)

)
. (A.49)

The additional contribution from H(qa) prejudices this minimum toward using a

smaller number of outcomes for the measurement on A and thus toward orthogonal-

projection-valued measurements. Indeed, for the triangle of states, with a trine

measurement made in the dual triangle, the argument of the minimum is equal to

1. For an orthogonal-projection-valued measurement, with m1 pointing toward one

vertex of the state triangle and m2 in the opposite direction, the argument is equal

to 4
3
− 1

2
log 3 = 0.541, which thus becomes the demon discord. For this joint state,

the optimal measurement for demon discord is orthogonal-projection-valued.

A.4 Demon-based measures and rank-one POVMs

In this Appendix, we modify the formula for the net classical work to show that the

local demons cannot do worse in terms of net classical work by restricting themselves

to rank-one POVMs.

We use the general measurement formalism of Sec. 4.2.2, which allows us to do

strategies (b) and (c) simultaneously. The state of system A after a measurement

yields result a is

ρA|a =
Aa(ρA)

pa
, (A.50)

and the state of system B after measurements that yield outcomes a and b is given

by

ρB|ab =
Bb|c(a)(ρB|a)

pb|a
. (A.51)

As the systems are transformed to the maximally mixed state, the local demons can

extract work

W+ = log(dAdB)−
∑
a

paS(ρA|a)−
∑
a,b

pabS(ρB|ab) . (A.52)
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The cost of erasing the measurement record, given communication between the

demons, is W− = H(A,B), giving a net classical work

Wc = W+−W− = log(dAdB)−H(A,B)−
∑
a

paS(ρA|a)−
∑
a,b

pabS(ρB|ab) . (A.53)

The measure of nonclassical correlations requires maximizing Wc over all possible

measurements.

After finishing the first round of measurements, instead of extracting work, the

local demons can make further measurements in the eigenbases of ρA|a and ρB|ab. The

overall measurement is now described by rank-one POVMs. After these measurements,

the subsystems are left in pure states, so the local demons can extract work W+ =

log(dAdB) as the systems are transformed to the maximally mixed state, but they

have a more detailed measurement record, so their erasure cost is greater. If we let

λα|a be the eigenvalues of ρA|a and λβ|ab be the eigenvalues of ρB|ab, then after these

measurements, the new erasure cost is

W− = H(A,B) +
∑
a

paH(λα|a) +
∑
a,b

pabH(λβ|ab) . (A.54)

Since the classical entropies of the eigenvalues are the same as the quantum entropies,

the net classical work is the same as that given in Eq. (A.53). The reduction in

classical work from not using rank-one POVMs has been transferred to an increased

erasure cost when making measurements described by rank-one POVMs. We conclude

that the demons cannot do worse by restricting themselves to rank-one POVMs, thus

justifying our assumption of rank-one POVMs in Sec. 4.2.3.
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Appendix B

Supplemental material to the

interferometry chapters

B.1 Lossless Interferometry (Supplemental material

to chapter 7)

B.1.1 Classical Fisher Information for an interferometric

configuration

In this section we guide the reader through the calculation of classical Fisher infor-

mation for a Mach-Zehnder interferometer with direct detection at the output and

show that it is the same as the quantum Fisher information for a broad class of input

states. The result of this calculation for the coherent-state–sqeezed-vacuum input

was reported by Pezzé and Smerzi [PS08].

By adjusting phases at the second 50:50 beam splitter in the Mach-Zehnder, we

can let it be described by the unitary operator B†. With this choice the Mach-Zehnder

performs the overall transformation B†UB = eiNsφs/2eiKφd/2 = eiNsφs/2eiJyφd , which

includes the common-mode phase shift φs and a Jy rotation of the input state by

angle −φd [YMK86]. The angle φd is the relative phase shift in the two arms, which
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we are trying to estimate. The probability for detecting n1 photons in the first output

mode a1 and n2 photons in the second output mode a2 is

P (n1,n2|φd) = |〈n1,n2|eiNsφs/2eiJyφd|ψin〉|2 = |〈n1,n2|eiJyφd|ψin〉|2 . (B.1)

This is also the probability to detect ns = n1 + n2 total photons at the output and

a difference nd = n1 − n2; written in terms of the eigenstates of sum and difference

photon numbers, this probability becomes

P (ns,nd|φd) = |〈ns,nd|eiJyφd|ψin〉|2 . (B.2)

It is convenient to switch to the angular-momentum basis |j,m〉 = |ns,nd〉 by

identifying j = ns/2 and m = nd/2. The probability becomes

P (ns,nd|φd) = |〈j,m|eiJyφd |ψin〉|2 =

∣∣∣∣∣
j∑

m
′
=−j

dj
m,m

′(−φd)〈j,m′|ψin〉

∣∣∣∣∣
2

, (B.3)

where we use the fact that Jy conserves total photon number (total angular momentum)

and we introduce the Wigner rotation matrices,

dj
m,m

′(−φd) = 〈j,m|eiφdJy |j,m′〉 = 〈j,m′|e−iφdJy |j,m〉 . (B.4)

Equation (B.3) is the form of the joint probability quoted in Eq. (5) of [PS08].

The case of interest is a product input, |ψin〉 = |α〉 ⊗ S|0〉, where S|0〉 = |0〉 is

the optimal squeezed vacuum input to the secondary input port. Without loss of

generality, we can assume that α is real. Then the optimal squeezed vacuum state is

squeezed along the quadrature axes of the input mode a2, and the input state takes

the form

|ψin〉 = |α〉 ⊗ S(r)|0〉 , S(r) = er(a
2−a†2)/2 . (B.5)

Under these assumptions, the amplitude 〈j,m|ψin〉 = 〈ns,nd|ψin〉 is real. That these

amplitudes are real is the only assumption about the input state that we use in the

following; our calculation thus applies to all product and nonproduct inputs for which

these amplitudes are real. Since the Wigner rotation matrix is real, as displayed in

Eq. (B.4), the sum in Eq. (B.3) is also real.
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The classical Fisher information for a Mach-Zehnder interferometer with direct

detection is

F (φd) =
∑
ns,nd

1

P (ns,nd|φd)

(
∂P (ns,nd|φd)

∂φd

)2

. (B.6)

Omitting indices and decorations for readability when there is no risk of confusion,

we can write

∂P

∂φd
= 2
√
P

j∑
m
′
=−j

〈j,m′|ψin〉
∂dj

m,m
′(−φd)

∂φd
, (B.7)

where we use the reality of the number-state expansion coefficients of |ψin〉, and thus

F (φd) = 4
∑
j

j∑
m=−j

(
j∑

m
′
=−j

〈j,m′|ψin〉
∂dj

m,m
′(−φd)

∂φd

)2

= 4
∑
j

j∑
m=−j

j∑
q,q
′
=−j

〈ψin|j, q〉〈j, q|Jye−iJyφd|j,m〉

× 〈j,m|eiJyφdJy|j, q′〉〈j, q′|ψin〉

= 4
∑
j

j∑
q,q
′
=−j

〈ψin|j, q〉〈j, q|J2
y |j, q′〉〈j, q′|ψin〉 .

(B.8)

Since Jy does not change the total angular momentum, we can write this as

F (φd) = 4
∑
j,j
′

j∑
q,q
′
=−j

〈ψin|j, q〉〈j, q|J2
y |j′, q′〉〈j′, q′|ψin〉 = 〈ψin|K2|ψin〉 . (B.9)

For an input state that has real expansion coefficients in the number basis, we also

have

〈ψin|K|ψin〉 = 2
∑
j,m

〈ψin|Jy|j,m〉〈j,m|ψin〉

= −i
∑
j,m

〈ψin|(J+ − J−)|j,m〉〈j,m|ψin〉

= −i
∑
j,m

[C+(j,m)〈ψin|j,m+ 1〉 − C−(j,m)〈ψin|j,m− 1〉]〈j,m|ψin〉

= −i
∑
j,m

[C+(j,m)− C−(j,m+ 1)]〈ψin|j,m+ 1〉〈j,m|ψin〉

= 0 , (B.10)
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where C±(j,m) =
√
j(j + 1)−m(m± 1). The reality of the expansion coefficients is

used to get to the last expression, which vanishes because C+(j,m) = C−(j,m+ 1).

The identity (B.10) allows us to write the classical Fisher information (B.9) as

F (φd) = 〈ψin|K2|ψin〉 − (〈ψin|K|ψin〉)2 = Fdd , (B.11)

where Fdd is the quantum Fisher information for the differential phase shift (see

Eq. (7.9) in Chap. 7). The equality of the classical and quantum Fisher informations

applies to all input states that have real expansion coefficients in the number basis. It

also applies to states obtained from such input states by rotating both input modes

by the same angle θ, i.e., by applying eiNsθ to both modes. Applying this rotation to

the state (B.5) removes the assumption that α is real.

While the direct calculation of the classical Fisher information was very instructive,

there is a simpler way showing the equality of quantum and classical Fisher information

for photon counting in both output ports of the interferometer. As in Eq. (6.36), all

we need to show is that

Im{〈∂θψ(θ)| j,m〉 〈j,m| ψ(θ)〉} = 0, (B.12)

where |ψ(θ) 〉 = eiJyφd |ψin 〉. As discussed earlier,

〈j,m|eiJyφd|ψin〉 =

j∑
m
′
=−j

dj
m,m

′(−φd)〈j,m′|ψin〉 (B.13)

is a real quantity assuming the expansion coefficients of the input state in the number

basis are real. Hence its derivative is real and Eq. (B.12) is satisfied.

B.1.2 Modal entanglement after the initial beam splitter

Here we present simple argument, due to Z. Jiang, to show that only coherent states

in the secondary input port yield a product state after the initial beam splitter. A

more general proof can be found in [JLC13].

We begin by noting that the product input state can be written as

|ψin〉 = |α〉 ⊗ |χ〉 = D(a1,α)|0〉 ⊗D(a2, β)|χ0〉 , (B.14)
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where D(a,α) = eαa
†−α∗a is the displacement operator, β = 〈χ0|a2|χ0〉 is the mean

amplitude of the state |χ〉, and |χ0〉 = D(a2,−β)|χ〉 has this mean amplitude removed.

The state after the initial beamsplitter is

B|ψin〉 = D
(
a1, (α− iβ)/

√
2
)
⊗D

(
a2, (β − iα)/

√
2
)
B|0,χ0〉 . (B.15)

The two displacement operators act locally in the two arms, so the modal entanglement

of B|ψin〉 is the same as the modal entanglement of B|0,χ0〉. Specifically, the

displacement of the primary mode before the beamsplitter does not contribute to

the entanglement after the beamsplitter [ACR05]; likewise, the displacement of the

secondary mode before the beamsplitter does not contribute to the post-beamsplitter

entanglement. Showing that B|ψin〉 is a product state only if |χ〉 is a coherent state

is equivalent to showing that B|0,χ0〉 is a product state only if |χ0〉 is the vacuum

state.

If B|0,χ0〉 is a product state, then after the beamsplitter,

0 = 〈a†1〉〈a2〉 = 〈a†1a2〉 = 〈0,χ0|B†a†1a2B|0,χ0〉 . (B.16)

Using B†a†1a2B = 1
2
(−ia†1a1 + ia†2a2 + a†1a2 + a†2a1), we get

0 =
i

2
〈χ0|a†2a2|χ0〉 . (B.17)

showing that |χ0〉 is the vacuum state, as promised.

We have shown that any state other than a coherent state into the secondary

input port leads to modal entanglement after the beamsplitter.

B.2 Lossy interferometry (Supplemental material to

Chap. 8)

In this part of the Appendix we guide the reader through most of the steps in the

calculations presented in Chap. 8.
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B.2.1 Escher et al.’s bound

First we will elaborate on how we obtained Expression 8.8. Plugging the explicit

form for our Kraus operators (Eq. (8.5)) into Eqs. (8.2) and (8.3) we obtain

H1(φd, η; γ) =
1

4

∑
l,k

(1− η)l

l!

(1− η)k

k!
a†lb†k (Nd − (γl − γk))2 ηNsalbk , (B.18)

H2(φd, η; γ) =
1

2

∑
l,k

(1− η)l

l!

(1− η)k

k!
a†lb†k (Nd − (γl − γk)) ηNsalbk . (B.19)

Examining H1 and using

(Nd − (γl − γk))2 = (na − γl)2 + (nb − γk)2 − 2(na − γl)(nb − γk), (B.20)

we find

H1(φd, η; γ) =
1

4
HE

1,a +
1

4
HE

1,b −
1

2
HE

2,a ·HE
2,b , (B.21)

where HE
n,d refers to Hn in [EdMFD11b] applied to mode d. Given the results derived

there we can streamline the presentation here to give

H1(φd, η; γ) =
1

4

[
(1− (1 + γ)(1− η))2n2

a + (1 + γ)2η(1− η)na
]

+
1

4

[
(1− (1 + γ)(1− η))2n2

b + (1 + γ)2η(1− η)nb
]

− 1

2
(1− (1 + γ)(1− η))2nanb

=
1

4
(1− (1 + γ)(1− η))2 (na − nb)2

+
1

4
(1 + γ)2η(1− η)(na + nb) . (B.22)

Again with the help of [EdMFD11b], we can write H2 as

H2(φd, η; γ) =
1

2

[∑
l

(1− n)l

l!
a†l(na − γl)ηnaal

−
∑
k

(1− η)k

k!
b†k(nb − γk)ηnbbk

]
=

1

2
[(1− (1 + γ)(1− η))] (na − nb). (B.23)
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Putting all this together, we find

CQ,γ = [1− (1 + γ)(1− η)]2 〈∆N2
d 〉+ (1 + γ)2η(1− η)N̄t . (B.24)

Now we can optimize this bound over the parameter γ:

∂

∂γ
CQ

!
= 0 → γopt =

〈∆N2
d 〉

(1− η)〈∆N2
d 〉+ ηN̄t

− 1 . (B.25)

Here we see why an interpretation of γ as the ‘position’ of the auxiliary beam splitters,

as done in [EdMFD11b], is problematic. To achieve Heisenberg scaling, one needs

〈∆N2
d 〉 ∼ N̄2

t , in which case γopt asymptotes to 1/(1 − η) when N̄t is large and is,

therefore, not confined to the range [−1, 0] as suggested by the interpretation used

in [EdMFD11b].

Putting the optimal value for γ into Eq. (B.24) gives

CQ,γopt
=

ηN̄t〈∆N2
d 〉

(1− η)〈∆N2
d 〉+ ηN̄t

. (B.26)

To show the monotonicity of this expression as a function of 〈∆N2
d 〉, we simply

calculate its first derivative

∂

∂〈∆N2
d 〉
CQγopt =

N̄2
t η

2(
〈N2

d 〉(1− η) + N̄tη
)2 , (B.27)

which is obviously positive. Thus to maximize the bound, one finds the state that

maximizes 〈∆N2
d 〉 subject to whatever constrains one imposes, as in the lossless case.

When this maximal value of 〈∆N2
d 〉 is plugged into Eq. (B.26), it provides a CQ that

is an upper bound on the quantum Fisher information for all possible states satisfying

the constraints.

B.2.2 Exact Fisher Information for laser interferometry

with losses

Jiang provided a way to calculate explicitly the quantum Fisher information for

arbitrary Gaussian states [Jia14]:

FQ =
1

2
tr(Γ̇Φ) + 2ḋTΓ−1ḋ . (B.28)
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The various quantities in this expression are defined in Chap. 8.

For the state |α 〉 ⊗ Sb(r)|0〉 as the input to the interferometer, the state after the

phase shifts and losses has the following covariance matrix:

Γ11 = η (N̄b +
√
N̄b(N̄b + 1) cos(φs + φd) + 1 , (B.29)

Γ22 = η (N̄b −
√
N̄b(N̄b + 1) cos(φs − φd) + 1 , (B.30)

Γ33 = η (N̄b −
√
N̄b(N̄b + 1) cos(φs + φd) + 1 , (B.31)

Γ44 = η (N̄b +
√
N̄b(N̄b + 1) cos(φs − φd) + 1 , (B.32)

Γ12 = −η N̄b sinφd + η
√
N̄b(N̄b + 1) sinφs , (B.33)

Γ13 = −η
√
N̄b(N̄b + 1) sin(φs + φd) , (B.34)

Γ14 = η N̄b cosφd + η
√
N̄b(N̄b + 1) cosφs , (B.35)

Γ23 = −η N̄b cosφd + η
√
N̄b(N̄b + 1) cosφs , (B.36)

Γ24 = η
√
N̄b(N̄b + 1) sin(φs − φd) , (B.37)

Γ34 = −η N̄b sinφd − η
√
N̄b(N̄b + 1) sinφs . (B.38)

If we now do a symplectic basis change to the basis where Γ is diagonal (so-called

standard form), i.e., SΓST = Γs, we can calculate the symplecticly invariant quantity
1
2
tr(Γ̇Φ) = 1

2
tr(Γ̇sΦs), with Γ̇s = SΓ̇ST . The advantage of doing this change of basis

is that the equation for Φs can be solved explicitly in terms of Γs and Γ̇s. To perform

this basis change we need to find the matrix S, which is done though a symplectic

diagonalization procedure. Details on how to do this can be found in [Jia15]. To

make it easier for the reader to verify our calculation, we provide the matrix S for
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the state whose covariance matrix is shown above. The columns of S are given by

S1 =



sin[φd]√
2

−
2
√
N̄b(1+N̄b)ηsin[φd]+

(
1+2N̄bη+

√
1−4N̄b(−1+η)η

)
sin[φs]

2

√
1+
√

1−4N̄b(−1+η)η+2N̄bη
(

2−2η+
√

1−4N̄b(−1+η)η
)

− cos[φd]√
2

−2
√
N̄b(1+N̄b)ηcos[φd]+

(
1+2N̄bη+

√
1−4N̄b(−1+η)η

)
cos[φs]

2

√
1+
√

1−4N̄b(−1+η)η+2N̄bη
(

2−2η+
√

1−4N̄b(−1+η)η
)


, (B.39)

S2 =



1√
2

2
√
N̄b(1+N̄b)η+

(
1+2N̄bη+

√
1−4N̄b(−1+η)η

)
cos[φd−φs]

2

√
1+
√

1−4N̄b(−1+η)η+2N̄bη
(

2−2η+
√

1−4N̄b(−1+η)η
)

0

−
(

1+2N̄bη+
√

1−4N̄b(−1+η)η
)
sin[φd−φs]

2

√
1+
√

1−4N̄b(−1+η)η+2N̄bη
(

2−2η+
√

1−4N̄b(−1+η)η
)


, (B.40)

S3 =



cos[φd]√
2

−
2
√
N̄b(1+N̄b)ηcos[φd]+

(
1+2N̄bη+

√
1−4N̄b(−1+η)η

)
cos[φs]

2

√
1+
√

1−4N̄b(−1+η)η+2N̄bη
(

2−2η+
√

1−4N̄b(−1+η)η
)

sin[φd]√
2

2
√
N̄b(1+N̄b)ηsin[φd]−

(
1+2N̄bη+

√
1−4N̄b(−1+η)η

)
sin[φs]

2

√
1+
√

1−4N̄b(−1+η)η+2N̄bη
(

2−2η+
√

1−4N̄b(−1+η)η
)


, (B.41)

S4 =



0(
1+2N̄bη+

√
1−4N̄b(−1+η)η

)
sin[φd−φs]

2

√
1+
√

1−4N̄b(−1+η)η+2N̄bη
(

2−2η+
√

1−4N̄b(−1+η)η
)

1√
2

−2
√
N̄b(1+N̄b)η+

(
1+2N̄bη+

√
1−4N̄b(−1+η)η

)
cos[φd−φs]

2

√
1+
√

1−4N̄b(−1+η)η+2N̄bη
(

2−2η+
√

1−4N̄b(−1+η)η
)


. (B.42)

Adhering to the procedure in [Jia14], we are able to obtain Φs and calculate the first

term of FQ in Eq. (B.28):

1

2
tr(Γ̇Φ) = N̄bη. (B.43)

The second term in Eq. (B.28) is straightforward. The vector of first moments for
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our state has the form

d =
√
η α


cos
(
φs+φd

2

)
− sin

(
φs−φd

2

)
− sin

(
φs+φd

2

)
− cos

(
φs−φd

2

)

 . (B.44)

With Γ−1 being the inverse of the covariance matrix Γ, the second term in Eq. (B.28)

evaluates to

2ḋTΓ−1ḋ =
Na η

[
1 + 2 N̄b η + 2

√
N̄b(1 + N̄b) η

]
1 + 4 N̄b (1− η) η

. (B.45)

B.2.3 Position of the auxiliary beam splitters

As was shown in [EdMFD11b], the case where γ = 0 is mathematically equivalent to

the physical situation where no phase shift is performed in the ancillary modes, but

the ancillary beam splitter is moved before the main phase shift in the interferometer.

More generally, it is straightforward to show that the situation where the ancillary

beam splitters occur before the phase shift of the interferometer is mathematically

identical to the situation where they occur after the beam splitters, but with an

additional phase shift of ϕ1(2) in ancillary mode 1(2). As we can choose arbitrary

unitary transformations in the ancillary modes and get valid Kraus operators for

the bound we calculate, it is clearly irrelevant if the ancillary beam splitters are

positioned before or after the phase shift of the interferometer. In the following I will

show that a similar consideration also lets us move the ancillary beam splitters before

the first beam splitter of the interferometer, without changing any of the results.

To start, we will assume our ancillary beam splitters, B1 and B2, sit between the

interferometer’s phase shift and the initial beam splitter B of the interferometer. We

can write

B1 = e−µ(a
†
c−c†a)/2, B2 = e−µ(b

†
d−d†b)/2, (B.46)

where c and d are the annihilation operators of the two ancillary modes. Notice that

here we adopted a different beam splitter convention: To comply with the Krauss
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Figure B.1: First half of our interferometric setup. The ancillary modes start
out in the vacuum state. The 50:50 beam splitter of the interferometer B is
drawn in black, while the ancillary beam splitters, B1 and B2, with transmissivity
cos2(µ/2), are depicted in blue.

operators derived in [EdMFD11b], B1 and B2 are Jy-rotations while all the other

beam splitters in this document are Jx-rotations. With this, the first half of our

interferometric setup, which involves the unitary sequence B2B1B, is depicted in

Fig. B.1.

Using B†aB = (a− ib)/
√

2 and B†bB = (b− ia)/
√

2, we can write

B2B1B = BB†B2B1B

= B exp

[
− µ

2

1√
2

(
(b† + ia†)d− d†(b− ia)

+ (a† + ib†)c− c†(a− ib)
)]

= B exp

[
− µ

2

1√
2

(
b†(d+ ic)− b(d† − ic†) (B.47)

+ a†(c+ id)− a(c† − id†)
)]

= BBc,dB2B1B
†
c,d .

Here Bc,d denotes a 50 : 50 beam splitter between modes c and d,

Bc,d = e−i(c
†
d+d

†
c)π/4. (B.48)
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The last line in Eq. (B.47) corresponds to the physical situation depicted in Fig. B.2.

From Fig. (B.2)(b) we can see now that the only difference between having the

losses before or after the first beam splitter of the interferometer is a 50:50 beam

splitter mixing the ancillary modes after they have interacted with the system. Hence,

if we were to model the losses as occurring on the modes before the first beam splitter

of the interferometer, we could simply add the the last beam splitter in Fig. (B.2) in

order to end up with Kraus operators identical to Eq. (8.5). Then the rest of our

analysis of the upper bound in Chap. 8 would be applicable to this case without

further changes. Of course, the last beam splitter, acting as it does only on the

ancillary modes after they have interacted with primary modes, doesn’t make any

difference to the actual sensitivity of the interferometer.
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Figure B.2: (a) This physical situation is equivalent to the one pictured in
Fig. (B.1). (b) The first beam splitter between modes c and d has been removed
as it does not change anything, given that both ancillary modes start out in
vacuum.
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