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Abstract
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for a bipartite state. It provides a measure for quantifying quantum correlations in bipartite quantum system

and has operational significance in quantum metrology. In this work, we derive explicitly expressions for local

quantum uncertainty for X two-qubit states which are of paramount importance in various field of quantum

information. As illustration, we consider two-qubit states extracted from the multi-qubit Dicke states.
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1 Introduction

Quantum correlations in multipartite systems are a fundamental resource in various protocols of quantum in-

formation processing [1, 2, 3, 4]. In this respect, the characterization the degree of quantumness of correlations

between the different parts of a composite system is highly desirable. During the last two decades, several quan-

tifiers were investigated in the literature (for a recent review see [5]). The literature contains different proposals

measures of quantum correlations. The most familiar ones are the concepts of concurrence, entanglement of for-

mation, quantum discord and its different geometric versions [6, 7, 8, 9, 10, 11]. The interest in quantum discord

lies in the existence of nonclassical correlations even in separable states [10, 11] which are entirely captured by

entanglement.This explains the the particular interest and the impressive efforts dedicated to the significance

and the computation of quantum discord in different quantum systems. However, the derivation of the explicit

expression of quantum discord of an arbitrary quantum system is very challenging in general. Quantum discord

based on von Neumann entropy can be computed only for a restricted set of two-qubit systems.

An alternative way to overcome this problem consists in utilizing geometric methods to quantify the distance

between a bipartite state and its closed one encompassing only classical correlations [12, 13, 14] (see also

[15, 16, 17, 18]). Two variants of geometric quantum discord were introduced in terms of Schatten p-norm:

trace norm (p = 1) and Hilbert-Schmidt norm (p = 2). However, the geometric quantum discord based on

Hilbert-Schmidt norm is contractive under local operations by the unmeasured party and therefore can be a

good indicator of quantum correlations [19, 20]. The explicit derivation of discord-like correlations for X states

by means of trace discord was reported in [21]. But, one should recognize the computability of this quantifier

is drastically difficult especially for higher dimensional quantum systems (qudits).

In contrast with the entropic and geometric quantifiers, an alternative reliable and computable discord-like

measure was reported in [22]. This quantifier employs the concept of quantum uncertainty on local observables

by mean of the formalism of the skew information, introduced in Ref. [23], to determine the uncertainty in the

measurement of an observable. More precisely, the local quantum uncertainty is given by the minimum of the

skew information over all possible local observables acting on one party of a bipartite system. This minimization

can be analytically worked out in deriving the quantum correlations for any qubit-qudit bipartite system [22].

It is remarkable that the local quantum uncertainty is related to quantum Fisher information [24, 25, 26] which

is the key ingredient in estimating precisions in quantum metrology protocols [22].

In this paper, we give the explicit analytical expressions of local quantum uncertainty for a generic family

of two qubit X states. This completes the the recently obtained results for Bell diagonal, Werner and isotropic

states [27, 28]. As illustration we consider the pairwise quantum correlation in multipartite symmetric qubit

states.

The paper is structured as follows. In the first section, we give a brief review of the concept of local quantum

uncertainty. The explicit anlaytical for of this measure of discord-like quantum correlations is derived for an

arbitrary two-qubit X states. As by product, we recover the local quantum uncertainty for Bell diagonal states

[27] and for orthogonally invariant two-qubit states derived in [28]. To illustrate our purpose, we consider

collective n qubit systems possessing parity and exchange symmetries. In particular, we consider the pairwise
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quantum discord for two qubit states in Dicke states. We also derive the pairwise local quantum in balanced

superpositions of spin coherent states for which we consider two partitioning schemes. The first bipartition

lies on the factorization property of SU(2) coherent states. In this picture a j-spin coherent state factorizes

as a product of 2j identical qubit states ( 12 -spin coherent states). The second scheme is obtained by a trace

procedure over the degree of freedom of 2j−2 qubits. A special focus is dedicated to even and odd spin coherent

states. Concluding remarks close this paper.

2 Local quantum uncertainty in two qubit X states

For a general two-qubit X-state, the quantification of local quantum uncertainty is available for some subsets

of three parameters states [35, 27, 28]. An extension to five real parameters is considered in this section. We

provide a method to compute the quantum correlations for a general two-qubit X- state which depends on seven

real parameters. This class includes the maximally entangled Bell states, Werner states [34] which include both

separable and nonseparable states, as well as others.

2.1 Local quantum uncertainty: definition

In quantum mechanics, the uncertainty of an observable H in a quantum state ρ is usually quantified by the

variance as

V(ρ,H) = Tr(ρH2)− (TrρH)2.

For pure states, the variance is of purely quantum nature. But, for mixed states, it comprises both classical and

quantum contributions. The discrimination between classical and quantum parts is of paramount importance

in quantum information theory. In this sense, to deal only with the quantum part of the variance, one employs

the the formalism of skew information defined as [23, 24]

I(ρ,K) = Tr(ρH2)− Tr(
√
ρH

√
ρH)

It expresses the information contained in the state ρ that is unaccessible by measuring the observable H. The

skew information vanishes only and only when ρ and H commute. The difference C(ρ,K) = V(ρ,K)− I(ρ,K)

has the meaning of classical mixing uncertainty. The disentanglement of the variance into classical and quantum

parts is behind the relevance of the skew information in quantifying non classical correlations. Indeed, when

the state ρ = ρ12 describes a two-qubit system and H = H1 ⊗ I2 is a local observable acting only on the first

qubit, the lower bound of the skew information leads to nonclassical correlations of the discord type [1113]. In

fact, quantum discord quantifies the amount of information in a bipartite system which accessed by performing

local measurements on one part of the global system. In this sense, The local quantum uncertainty is defined

by the minimization of the skew information over local observables with fixed non-degenerate spectrum [22]

U(ρ12) ≡ min
H1

I(ρ12,H1 ⊗ I2), (1)

The properties, reliability and computability of this discord-like quantifier were reported in [22]. Indeed, the local

quantum uncertainty vanishes for the so-called classical-quantum states of the form ρ12 =
∑

i pi|i⟩1⟨i|⊗ρ2 , where
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{|i⟩} is an orthonormal basis. Furthermore, this measure possess the invariance property under local unitary

transformations and does not increase under local quantum transformations on the unmeasured subsystem. In

this sense, the local quantum uncertainty provides a reliable discord-like measure. The explicit calculation of

this quantum correlations indicator was reported in [22] for a 2 × d bipartite system (qubit-qudit system). In

particular, for a two qubit system (spin-12 particles), The local quantum uncertainty writes [22]

U(ρ12) = 1−max(λ1, λ2, λ3), (2)

where λi (i = 1, 2, 3) denote the eigenvalues of the 3× 3 matrix W whose matrix elements are given by

ωij ≡ Tr(
√
ρ12 σi ⊗ σ0

√
ρ12 σj ⊗ σ0), (3)

where σ0 stands for the identity matrix I and i, j = 1, 2, 3. The matrices σi (i = 1, 2, 3) are the usual Pauli

matrices. The optimization in the equation (2) simplifies when the state posses ceratin symmetries. This has

been done for some symmetric class of states [22, 27, 28]. In this paper, we take a step further and focus on

the local quantum uncertainty for the family of X states which include various types of quantum states usually

used in investigating entanglement and quantum correlations in various condensed matter models such ones

describing spin collective systems.

2.2 Local quantum uncertainty for X states

In the computational basis of the Hilbert space associated with a two qubit system, the X density matrices have

non-zero entries only along the diagonal and anti-diagonal and therefore they are parameterized by seven real

parameters [29, 30]. The corresponding symmetry is fully characterized by the su(2)× su(2)× u(1) subalgebra

of the full su(4) algebra describing an arbitrary two-qubit system [31]. The X states have already found

applications in several investigations of concurrence, entanglement of formation, quantum discord [32, 33]. The

density matrix for a two-qubit X state writes as

ρ =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

 . (4)

in the computational basis {|00⟩, |01⟩, |10⟩, |11⟩}. The entries are subjected to the normalization property (Trρ =

1), the positivity condition (ρ11ρ44 ≥ |ρ14|2 and ρ22ρ33 ≥ |ρ23|2) and the complex conjugation requirement

(ρ14 = ρ14 and ρ23 = ρ32 ). The phase factors eiθ14 = ρ14

|ρ14| and e
iθ23 = ρ23

|ρ23| of the off diagonal elements can be

removed using the local unitary transformations

|0⟩1 → exp

(
− i

2
(θ14 + θ23)

)
|0⟩1 |0⟩2 → exp

(
− i

2
(θ14 − θ23)

)
|0⟩2.

Hence, the anti-diagonal entries of the density matrix can be made positive. Hereafter, we assume that the

elements of the density matrix are non negative. The eigenvalues of the density matrix ρ write

λ1 =
1

2
t1 +

1

2

√
t21 − 4d1, λ2 =

1

2
t2 +

1

2

√
t22 − 4d2, λ3 =

1

2
t2 −

1

2

√
t22 − 4d2, λ4 =

1

2
t1 −

1

2

√
t21 − 4d1
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with t1 = ρ11 + ρ44, t2 = ρ22 + ρ33, d1 = ρ11ρ44 − ρ14ρ41 = ρ11ρ44 − ρ214, and d2 = ρ22ρ33 − ρ32ρ23 =

ρ22ρ33 − ρ232. The Fano-Bloch decomposition of the state ρ writes as

ρ =
1

4

∑
α,β

Rαβσα ⊗ σβ (5)

where the correlation matrix Rαβ are given by Rαβ = Tr(ρ σα⊗σβ) with α, β = 0, 1, 2, 3. Explicitly, they write

R03 = 1− 2ρ22 − 2ρ44, R30 = 1− 2ρ33 − 2ρ44, R11 = 2 (ρ32 + ρ41),

R22 = 2 (ρ32 − ρ41), R00 = ρ11 + ρ22 + ρ33 + ρ44 = 1, R33 = 1− 2ρ22 − 2ρ33.

For simultaneously non vanishing t1 and t2, the square root of the density matrix ρ writes, in the computational

basis, as

√
ρ =



ρ11+
√
d1√

t1+2
√
d1

0 0 ρ14√
t1+2

√
d1

0 ρ22+
√
d2√

t2+2
√
d2

ρ23√
t2+2

√
d2

0

0 ρ32√
t2+2

√
d2

ρ33+
√
d2√

t2+2
√
d2

0

ρ41√
t1+2

√
d1

0 0 ρ44+
√
d1√

t1+2
√
d1

 . (6)

and the associated eigenvalues
√
λ1,

√
λ2 are given by

√
λ3 and

√
λ4 are given by√

λ1 =
1

2

√
t1 + 2

√
d1 +

1

2

√
t1 − 2

√
d1,

√
λ2 =

1

2

√
t2 + 2

√
d2 +

1

2

√
t2 − 2

√
d2

√
λ3 =

1

2

√
t2 + 2

√
d2 −

1

2

√
t2 − 2

√
d2,

√
λ4 =

1

2

√
t1 + 2

√
d1 −

1

2

√
t1 − 2

√
d1.

The Fano-Bloch representation of the matrix (6) writes as

√
ρ =

1

4

∑
α,β

Rαβσα ⊗ σβ

with Rαβ = Tr(
√
ρ σα ⊗ σβ). The non vanishing matrix correlation elements Rαβ are explicitly given by

R00 =

√
t1 + 2

√
d1 +

√
t2 + 2

√
d2 R03 =

1

2

R30 +R03√
t1 + 2

√
d1

− 1

2

R30 −R03√
t2 + 2

√
d2

R30 =
1

2

R30 +R03√
t1 + 2

√
d1

+
1

2

R30 −R03√
t2 + 2

√
d2

R11 =
1

2

R11 +R22√
t2 + 2

√
d2

+
1

2

R11 −R22√
t1 + 2

√
d1

R22 =
1

2

R11 +R22√
t2 + 2

√
d2

− 1

2

R11 −R22√
t1 + 2

√
d1

R33 =

√
t1 + 2

√
d1 −

√
t2 + 2

√
d2

To determine a closed form of the matrix elements ωij (3), we use the following relations of the Pauli matrices

{σi, σj} = 2δij Tr(σiσj) = 2δij Tr(σiσjσkσl) = 2(δijδkl − δikδjl + δilδjk),

one shows that the matrix W , associated with the X density matrix (4) is diagonal and the diagonal elements

write

ωii =
1

4

[∑
β

(
R2

0β −
∑
k

R2
kβ

)]
+

1

2

∑
β

R2
iβ (7)

where i, k = 1, 2, 3 and β = 0, 1, 2, 3. They can be cast in the following form

ωii =
1

4
ηαβ(RRt)αβ +

1

2
(RRt)ii (8)
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where the summation over repeated indices is understood, the subscript t stands for transposition transforma-

tion, η is the diagonal matrix η = (1,−1,−1,−1). They involve only the non vanishing Fano-Bloch components

of the square root of the density matrix ρ12. Using the expressions of the matrix elements Rαβ , the eigenvalues

ωii (i = 1, 2, 3) can be also expanded in terms of the correlation matrix elements Rαβ of the state ρ12 as

ω11 =
1

4

[
4

(√
λ1 +

√
λ4

)(√
λ2 +

√
λ3

)
+

(R2
11 −R2

22) + (R2
03 −R2

30)

(
√
λ1 +

√
λ4)(

√
λ2 +

√
λ3)

]
(9)

ω22 =
1

4

[
4

(√
λ1 +

√
λ4

)(√
λ2 +

√
λ3

)
+

(R2
22 −R2

11) + (R2
03 −R2

30)

(
√
λ1 +

√
λ4)(

√
λ2 +

√
λ3)

]
(10)

ω33 =
1

2

[(√
λ1 +

√
λ4

)2

+

(√
λ2 +

√
λ3

)2]
+

1

8

[
(R03 +R30)

2 − (R11 −R22)
2(√

λ1 +
√
λ4

)2

]

+
1

8

[
(R03 −R30)

2 − (R11 +R22)
2(√

λ2 +
√
λ3

)2

]
, (11)

where the quantities ti and di (i = 1, 2) are also expressed as

t1 =
1

2
(R00 +R33), t2 =

1

2
(R00 −R33)

d1 =
1

16

[
(R00 +R33)

2 − (R30 +R03)
2 − (R11 −R22)

2

]
, d2 =

1

16

[
(R00 −R33)

2 − (R30 −R03)
2 − (R11 +R22)

2

]
,

in terms of the components Rαβ . We observe that for the X states (39) with positive entries, R11 is always

lager than R22. It follows that ω11 ≥ ω22 and only two distinct situations have to separately treated, that is

ω11 ≥ ω33 and ω11 ≥ ω33 and the local quantum uncertainty for the states (39) simply as

U(ρ12) = 1−max(ω11, ω33). (12)

2.3 Particular cases

We have already considered X states with non vanishing entries. For this class of two-qubit states, the density

matrices split in two 2×2 bloc matrices corresponding to decoupling Hilbert subspaces (1−4) and (2−3). Now,

we consider the situations where t1 = 0 or t2 = 0 corresponding respectively to 2× 2 sub-block matrices (1− 4)

and (2 − 3). Indeed, when t1 = 0, the trace condition imposes t2 = 1 and vice-versa. Note that t1 vanishes if

and only if ρ11 = ρ44 = 0 and the positivity condition of the density matrix ρ (4) implies ρ14 = ρ41 = 0. In this

case, we have d1 = 0. Similarly, t2 = 0 implies ρ22 = ρ33 = 0 , ρ23 = ρ32 = 0 and d2 = 0.

2.4 Block matrices (2-3)

In this case the correlation matrix elements of the matrix
√
ρ write simply as

R00 = −R33 =

√
1 + 2

√
ρ22ρ33 − ρ223, R11 = R22 =

2ρ23√
1 + 2

√
ρ22ρ33 − ρ223

, R30 = −R03 =
ρ22 − ρ33√

1 + 2
√
ρ22ρ33 − ρ223

Therefore, for t1 = 0 the equation (8) gives ω11 = 0, ω22 = 0 and

ω33 =
1

2

[
1 + 2

√
ρ22ρ33 − ρ223

]
+

1

2

[
(ρ22 − ρ33)

2 − 4ρ223

1 + 2
√
ρ22ρ33 − ρ223

]
(13)

in terms of the matrix elements of the density ρ12.
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2.5 Block matrices (1-4)

Similarly, in the special case where t2 = 0 (or equivalently ρ22 = ρ33 = ρ23 = ρ32 = 0), the Fano-Bloch elements

of the matrix
√
ρ are given by

R00 = R33 =

√
1 + 2

√
ρ11ρ44 − ρ214, R11 = −R22 =

2ρ14√
1 + 2

√
ρ11ρ44 − ρ214

, R03 = R30 =
ρ11 − ρ44√

1 + 2
√
ρ11ρ44 − ρ214

It follows that for the X states with t2 = 0, one gets ω11 = 0, ω22 = 0 and

ω33 =
1

2

[
1 + 2

√
ρ11ρ44 − ρ214

]
+

1

2

[
(ρ11 − ρ44)

2 − 4ρ214

1 + 2
√
ρ11ρ44 − ρ214

]
(14)

in terms of the non vanishing density matrix elements. In such two special situations, the local quantum

uncertainty is simply given by 1− ω33.

2.6 Special subsets of two qubit X states

To exemplify the results of the previous section, we focus now on some special class of two-qubit states for

which the analysis becomes particulary. We shall consider three special X states: (i) Werner states, (ii) Bell-

diagonal states and (iii) orthogonal invariant two-qubit states. These three types of two-qubit states are X

states with correlation elements verifying (i) R11 = R22 = R33 and R30 = R03 = 0, (ii) R11 ̸= R22 ̸= R33 and

R30 = R03 = 0, (iii) Rii ̸= Ri+1 i+1 = Ri+2 i+2 and R30 = R03 = 0 with i = 1, 2, 3 (mod 3).

2.6.1 Werner states

The two-qubit Werner states given by [34]

ρW =
1− f

3
σ0 ⊗ σ0 +

4f − 1

3
|ψ−⟩⟨ψ−| (15)

are the mixtures of maximally chaotic state and the maximally entangled state |ψ−⟩ = 1√
2
(|01⟩+ |10⟩) and f is

the fidelity which characterizes the overlap between Bell state and isotropic state (0 ≤ f ≤ 1). The Concurrence

of Werner states writes C(ρW) = max(0, 2f − 1) and they are separable for f ≤ 1
2 and entangled for 1

2 ≤ f ≤ 1.

In the Fano-Bloch representation, the states ρW write

ρW =
1

4

(
σ0 ⊗ σ0 +

1− 4f

3

3∑
i=1

σi ⊗ σi

)
. (16)

Using the results (9), ( 10) and ( 11), one gets

ω11 = ω22 = ω33 =
2

3
(1− f) +

2√
3

√
f(1− f) (17)

and the local quantum uncertainty is simply given by

U(ρW) = 1− 2

3
(1− f) +

2√
3

√
f(1− f) (18)

which coincides with the result derived [35].
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2.6.2 Two qubit Bell states

The subset of X states which are diagonal in the Bell basis are parameterized by three parameters. The

corresponding density matrices are of the form

ρB =
1

4
(σ0 ⊗ σ0 +

3∑
i=1

ciσi ⊗ σi) (19)

Using the results (9), (10) and (11), the eigenvalues of the matrix ω (cf. equation (3)) write ω11, ω22 and ω33

rewrites also as

ω11 =
1

2

(√
(1− c1)2 − (c2 + c3)2 +

√
(1 + c1)2 − (c2 − c3)2

)
(20)

ω22 =
1

2

(√
(1− c2)2 − (c3 + c1)2 +

√
(1 + c2)2 − (c3 − c1)2

)
(21)

ω33 =
1

2

(√
(1− c3)2 − (c1 + c2)2 +

√
(1 + c3)2 − (c1 − c2)2

)
(22)

in terms of the correlation elements c1, c2 and c3 which coincides with the result derived in [27].

2.6.3 Orthogonal invariant two-qubit states

Any two qubit state invariant under the operation O ⊗ O ( with O an arbitrary orthogonal matrix) can be

expanded in terms of the three generators I , F1 and F2 as [28]

ρO = aI + bF1 + cF2 (23)

where the real parameters a, b and c are positive and satisfy 4a+2b+2c = 1 (trace condition), I is the identity

and the operators F1 and F2

F1 =
∑
ij

|ij⟩⟨ji| F2 =
∑
ij

|ii⟩⟨jj|

in the computational basis. The density matrix (23) is X shaped

ρO =


a+ b+ c 0 0 c

0 a b 0

0 b a 0

c 0 0 a+ b+ c

 . (24)

and using the results (9), (10) and (11), one verifies

ω11 = ω33 = 2

(√
(a+ b)(a+ b+ 2c) +

√
a2 − b2

)
ω22 = 2

(√
(a− b)(a+ b+ 2c) + (a+ b)

)
and one recovers the results obtained in [28].

3 local quantum uncertainty in symmetric multi-qubit systems

The multi-qubit symmetric states were shown relevant for different purposes in quantum information science [36,

37, 38, 39, 40, 41, 42, 43]. In this paper, we shall mainly focus on multipartite Dicke states and an ensemble

of n spin-1/2 prepared even and odd spin coherent states. For this end, we consider n identical qubits. The
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corresponding Hilbert space the n tensored copies of H = span{|0⟩, |1⟩} Hn := H⊗n. In particular, multi-

partite states in Hn possessing the exchange symmetry are especially interesting from experimental as well as

mathematical point of views. The Majorana [44] or Dicke [45] representation are the standard descriptions of

an arbitrary symmetric n-qubit state. In the Majorana picture, a symmetric multi-qubit state is given by (up

to a normalization factor)

|ψs⟩ =
1

n!

∑
σ∈Sn

|ησ(1), . . . , ησ(n)⟩, (25)

where each single qubit state writes as |ηi⟩ ≡ (1 + ηiη̄i)
− 1

2 (|0⟩ + ηi|1⟩) (i = 1, . . . , n) with the sum is over

the elements of the permutation group Sn of n objects. Alternatively, any symmetric n-qubit states can be

expressed in Dicke representation using the symmetric Dicke states defined by [45]

|n, k⟩ =
√
k!(n− k)!

n!

∑
σ∈Sn

|0, . . . , 0︸ ︷︷ ︸
n−k

, 1, . . . , 1︸ ︷︷ ︸
k

⟩, (26)

where k is the number of excitations excitations (k = 0, 1, · · · , n). The Dicke states generate an orthonormal

basis of the symmetric Hilbert subspace of dimension (n+ 1).

Therefore, permutation invariance, in symmetric multi-qubit states, implies a restriction to n+1 dimensional

subspace from the entire 2n dimensional Hilbert space. The Dicke states (26) constitute a special subset of the

symmetric multi-qubit states (25) corresponding to the situation where the first k-qubit are such that ηi = 0

for i = 0, 1, . . . k and the remaining qubits are in the states |ηi = 1⟩ with i = k + 1, . . . , n. The states (26) are

the eigenstates of the collective spin operators J2 and Jz defined as

Jα =
1

2

n∑
i=1

σiα α = x, y, z

where the operators σiα stand for the spin 1
2 -Pauli operators. In this respect, the symmetric qubit states (26)

are completely determined by the quantum angular momentum j = 2n which may take integer or half integer

values ( j = 1
2 , 1,

3
2 , . . .) specifying the irreducible representations classes of the group SU(2). The (2j + 1)-

dimensional Hilbert space is spanned by the irreducible tensorial set {|j,m⟩,m = −j,−j + 1, · · · , j − 1, j} ≡

{|n, k⟩ = |j = n
2 ,m+ j⟩, k = 0, 1, · · · , n} characterizing the spin-j representations of the group SU(2).

3.1 Pairwise Local quantum uncertainty in Dicke states

Dicke states [55] were extensively investigated in connection with the development of quantum information

science. They are the basic tool from which one can build various quantum states that are relevant in quantum

information as for instance GHZ states, W states, SU(2) coherent states and spin squeezed states [56, 57, 58,

59, 60].

As we shall consider the pairwise local quantum uncertainty in symmetric states of type (43), we need the

reduced two-qubit density matrices extracted from the whole n particles system. The general form of bipartite

9



density matrix writes as

ρij =


ρ11 ρ∗21 ρ∗31 ρ∗41
ρ21 ρ22 ρ∗32 ρ∗42
ρ31 ρ32 ρ33 ρ∗43
ρ41 ρ42 ρ43 ρ44

 (27)

in the computational basis {|00⟩, |01⟩, |10⟩, |11⟩} where the matrix elements are given by

ρ11 =
1

4
(1 + 2⟨σi3 ⊗ σj0⟩+ ⟨σi3 ⊗ σj3⟩) ρ44 =

1

4
(1− 2⟨σi3 ⊗ σj0⟩+ ⟨σi3 ⊗ σj3⟩) (28)

ρ21 = ρ31 =
1

2
(⟨σi+ ⊗ σj0⟩+ ⟨σi+ ⊗ σj3⟩) ρ42 = ρ43 =

1

2
(⟨σi+ ⊗ σj0⟩ − ⟨σi+ ⊗ σj3⟩) (29)

ρ22 = ρ33 =
1

4
(1− ⟨σi3σi+ ⊗ σj3⟩) (30)

ρ32 = ⟨σi+ ⊗ σj−⟩ (31)

ρ41 =
1

4
(⟨σi1 ⊗ σj1⟩ − ⟨σi2 ⊗ σj2⟩+ i2⟨σi1 ⊗ σj2⟩). (32)

For collective spin models, the pairwise reduced density matrix in the standard basis, {|↓↓⟩, |↓↑⟩, |↑↓⟩, |↑↑⟩} (with

σz|↑⟩ = |↑⟩ and σz|↓⟩ = −|↓⟩) [46], can be derived in terms of the collective operators spin. Indeed, for states,

with symmetry exchange, we have

⟨σiα ⊗ σj0⟩ =
⟨Jα⟩
n

, ⟨σiα ⊗ σjα⟩ =
4⟨J2

α⟩ − n

n(n− 1)

⟨σi1 ⊗ σj2⟩ =
⟨J1J2 + J2J1⟩
n(n− 1)

, ⟨σi+ ⊗ σj3⟩ =
4⟨J+J3 + J3J+⟩

n(n− 1)

where α = 1, 2, 3. It follows that the explicit expressions for the elements of the reduced density matrix are

given by

ρ11 =
n2 − 2n+ 4⟨J2

z ⟩+ 4(n− 1)⟨Jz⟩
4n(n− 1)

, ρ44 =
n2 − 2n+ 4⟨J2

z ⟩ − 4(n− 1)⟨Jz⟩
4n(n− 1)

(33)

ρ21 = ρ31 =
(n− 1)⟨J+⟩+ ⟨J+Jz + JzJ+⟩

2n(n− 1)
, ρ42 = ρ43 =

(n− 1)⟨J+⟩±⟨J+Jz + JzJ+⟩
2n(n− 1)

(34)

ρ22 = ρ33 = ρ23 = ρ32 =
n2 − 4⟨J2

z ⟩
4n(n− 1)

=
⟨J2

x + J2
y ⟩ − n/2

n(n− 1)
, (35)

ρ41 =
⟨J2

+⟩
n(n− 1)

, (36)

For states with parity symmetry, the density matrix commutes with the operator σ3 ⊗ σ3. This implies ρ12 =

ρ13 = ρ42 = ρ43 = 0. In fact, for states with parity symmetry, we have ⟨J1⟩ = ⟨J2⟩ = 0 and ⟨J1J3⟩ = ⟨J2J3⟩ = 0.

Hence the pairwise reduced density matrix is X shaped and writes as

ρij =


ρ11 0 0 ρ∗41
0 ρ22 ρ22 0

0 ρ22 ρ22 0

ρ41 0 0 ρ44

 (37)
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We note that the local unitary transformation

|0⟩k → exp

(
i

2
(θ)

)
|0⟩k

eliminates the phase factors of the matrix element ρ41 with ρ41 = |ρ41|eiθ and k = 1, 2 labels the subsystems 1

and 2. It follows that non-zero elements of the correlation matrix take the simple form

R03 = R30 = ρ11 − ρ44 R11 = 2(ρ22 + |ρ41|) R22 = 2(ρ22 − |ρ41|) R33 = 1− 4ρ22 (38)

The Dicke states are defined as the equal superposition of all basis states of n qubits having exactly k

excitations (26). Nowadays it is commonly accepted that this family of symmetric states can be an useful

resource in various quantum protocols for two main reasons. First, they can be generated experimentally (see

[53]). indeed, the generation of Dicke states with trapped-ion qubits have been proposed [47]. On the other

hand, quantum correlations in Dicke states are highly robust in presence of external decoherence effects and

especially measurements on individual qubits [48]. From the equation (??), it is simply verified that the reduced

density matrix ρ12, describing two qubits extracted from the state (26), is given by

ρ12 =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

 (39)

with ρ14 = ρ41 = 0 and the non vanishing elements are

ρ11 =
k(k − 1))

n(n− 1)
, ρ44 =

(n− k)(n− k − 1)

n(n− 1)
, ρ22 = ρ23 = ρ32 = ρ33 =

k(n− k)

n(n− 1)
. (40)

From the correlation matrix elements (38), one obtains

R11 = R22 =
2k(n− k))

n(n− 1)
, R33 = 1− 4k(n− k)

n(n− 1)
, R03 = R30 =

2k − n

n
. (41)

Using the expressions (9), (10) and (11), one finds

ω11 = ω22 =

√
2k(n− k)

n(n− 1)

(√
k(k − 1) +

√
(n− k)(n− k − 1)

)
, ω33 = 1 + 2

k(k − n)

n(n− 1)
. (42)

3.2 Pairwise local quantum uncertainty in even and odd spin coherent states

Any symmetric state |ψs⟩ (25) can be expanded in terms of Dicke states (26) as follows

|ψs⟩ =
1

n!

n∑
k=0

ck |n, k⟩, (43)

where the ck (k = 0, . . . , n) stand for the complex expansion coefficients. In particular, when the qubit are all

identical (ηi = η for all qubits), it is simply verified that the coefficients ck are given by

ck = n!

√
n!

k!(n− k)!

ηk

(1 + ηη̄)
n
2

(44)

and the symmetric multi-qubit states (25) write

|ψs⟩ := |n, η⟩ = (1 + ηη̄)−
n
2

n∑
k=0

√
n!

k!(n− k)!
ηk |n, k⟩, (45)
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which are exactly the j = n
2 -spin coherent states (see for instance [49]). In particular, the state |n, η⟩ can be

identified for n = 1 with spin- 12 coherent state with |0⟩ ≡ | 12 ,−
1
2 ⟩ and |1⟩ ≡ | 12 ,+

1
2 ⟩). The standard SU(2)

coherent states are obtained by the action of an element of the coset space SU(2)/U(1)

Dj(ξ) = exp(ξJ+ − ξ∗J−) , (46)

on the extremal state |j,−j⟩. This action gives the states

|j, η⟩ = Dj(ξ)|j,−j⟩ = exp(ξJ+ − ξ∗J−)|j,−j⟩ = (1 + |η|2)−j exp(ηJ+)|j,−j⟩ , (47)

where η = (ξ/|ξ|) tan |ξ|. In the standard angular momentum basis {|j,m⟩}, they write

|j, η⟩ = (1 + |η|2)−j

j∑
m=−j

[
(2j)!

(j +m)!(j −m)!

]1/2
ηj+m|j,m⟩ . (48)

They satisfy the resolution to identity property∫
dµ(j, η)|j, η⟩⟨j, η| = I , dµ(j, η) =

2j + 1

π

d2η

(1 + |η|2)2
. (49)

The spin coherent states are not orthogonal to each other:

⟨j, η1|j, η2⟩ = (1 + |η1|2)−j(1 + |η2|2)−j(1 + η∗1η2)
2j . (50)

The resolution to identity makes possible to expand an arbitrary state in terms of the coherent states |j, η⟩. In

the special case j = 1
2 , the spin coherent states (48) reduce to

|η⟩ = 1√
1 + η̄η

| ↓⟩+ η√
1 + η̄η

| ↑⟩. (51)

Here and in the following |η⟩ is short for the spin- 12 coherent state | 12 , η⟩ with | ↑⟩ ≡ | 12 ,
1
2 ⟩ and | ↓⟩ ≡ | 12 ,−

1
2 ⟩).

It is important to notice that the tensorial product of two SU(2) coherent states |j1, η⟩ and |j2, η⟩ produces a

spin-(j1 + j2) coherent state labeled by the same variable:

|j1, η⟩ ⊗ |j2, η⟩ = (Dj1 ⊗Dj2) (|j1, j1⟩ ⊗ |j2, j2⟩) = Dj1+j2 |j1 + j2, j1 + j2⟩ = |j1 + j2, η⟩. (52)

Only coherent states possess this remarkable property. It allows to write any spin-j coherent states as a 2j

tensorial product of spin- 12 coherent states:

|j, η⟩ = (|η⟩)⊗2j
=

(
1√

1 + η̄η
| ↓⟩+ η√

1 + η̄η
| ↑⟩

)⊗2j

= (1 + η̄η)−j

+j∑
m=−j

(
2j

j +m

) 1
2

ηj+m|j,m⟩,

reflecting that a spin-j coherent state may be viewed as a multipartite state containing 2j qubits.

The even and odd spin coherent states are defined by

|j, η,m⟩ = Nm(|j, η⟩+ eimπ|j,−η⟩) (53)

where the integer m ∈ Z takes the values m = 0 (mod 2) and m = 1 (mod 2). The normalization factor Nm is

Nm =
[
2 + 2p2j cosmπ

]−1/2
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where p denotes the overlap between the states |η⟩ and | − η⟩. It is given by

p = ⟨η| − η⟩ = 1− η̄η

1 + η̄η
. (54)

For j = 1
2 , the even and odd coherent states coincide with | ↑⟩ and | ↓⟩. They can be identified with basis states

for a logical qubit as |0⟩ → | ↑⟩ and |1⟩ → | ↓⟩. In this manner, the states |j, η,m⟩ can be viewed as multipartite

fermionic coherent states:

|j, η,m⟩ = Nm((|η⟩)⊗2j
+ eimπ (| − η⟩)⊗2j

). (55)

The decomposition property (52) provides us with a picture where even and odd spin coherent states can be

considered as comprising multipartite spin subsystems. This is our main motivation to investigate the quantum

correlations present in a single spin coherent state. This issue is discussed in what follows.

3.2.1 Pure bipartite spin coherent states

Let us first consider the following balanced superposition of spin coherent states

|j, η, θ⟩ = Nθ(|j, η⟩+ eiθ|j,−η⟩) (56)

where the normalization factor is given by |Nθ|−2 = 2 + 2p2j cos θ. Using the factorization or the splitting

property of spin coherent states (52), the states (56) can be also expressed as

|j, η, θ⟩ = Nθ(|j1, η⟩ ⊗ |j2, η⟩+ eiθ|j1,−η⟩ ⊗ |j2,−η⟩) (57)

with j = j1 + j2. They can rewritten as a two qubit states in the basis

|ji, η, 0⟩ −→ |0⟩ji |ji, η, π⟩ −→ |1⟩ji , i = 1, 2.

defined by means of odd and even spin coherent associated with the angular momenta j1 and j2. Indeed, for

each subsystem, an orthogonal basis {|0⟩l, |1⟩l}, with l = j1 or j2, can be defined as

|0⟩l =
|l, η⟩+ |l,−η⟩√

2(1 + p2l)
|1⟩l =

|l, η⟩ − |l,−η⟩√
2(1− p2l)

. (58)

The bipartite density state ρ = |j, η,m⟩⟨j, η,m| is pure. The concurrence in this pure bipartite system writes

Cj1,j2(θ) =
√
1− p4j1

√
1− p4j2

1 + p2j cos θ
. (59)

Using the Schmidt decomposition, the state (57) can be written as

|j, η, θ⟩ =
√
λ+|+⟩1 ⊗ |+⟩2 +

√
λ−|−⟩1 ⊗ |−⟩2 (60)

where λ± denote the eigenvalues of the reduced density of the first subsystem ρj1 = Trj2(ρ) obtained by tracing

out the spin j2 . They write as

λ± =
1

2

(
1±

√
1− C2

)
. (61)
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in terms of the concurrence C ≡ Cj1,j2(θ) given by (59). In the basis {|+⟩1⊗|+⟩2, |+⟩1⊗|−⟩2, |−⟩1⊗|+⟩2, |−⟩1⊗

|−⟩2}, the density matrix ρj1,j2(θ) = |j, η, θ⟩⟨j, η, θ| takes the form

ρj1,j2(θ) =


λ+ 0 0

√
λ+λ−

0 0 0 0

0 0 0 0√
λ+λ− 0 0 λ−

 (62)

Using the result (7), one verifies that ω11 = 0 , ω22 = 0 and ω33 = 1−4λ+λ−. It follows that the local quantum

uncertainty coincides with the squared concurrence (59)

U(ρj1,j2(θ)) = C2
j1,j2(θ). (63)

For θ = mπ (m ∈ Z), the logical qubits |j, η,m = 0⟩ and |j, η,m = 1⟩ coincide with even and odd spin coherent

states. They behave like a multipartite state of Greenberger-Horne-Zeilinger (GHZ) type [50] in the asymptotic

limit p→ 0. Indeed, in this limit, the states |η⟩ and | − η⟩ approach orthogonality and an orthogonal basis can

be defined such that |0⟩ ≡ |η⟩ and |1⟩ ≡ | − η⟩. Thus, the state |j, η,m⟩ becomes of GHZ-type

|j, η,m⟩ ∼ |GHZ⟩2j =
1√
2
(|0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩+ eimπ|1⟩ ⊗ |1⟩ ⊗ · · · ⊗ |1⟩) (64)

which is maximally entangled and the bipartite local quantum uncertainty is U(ρj1,j2(θ = mπ)) = 1.

Another interesting limiting case concerns the situation where p2 → 1 (or η → 0 ). In this case the state

|j, η,m = 0 (mod 2)⟩ (55) reduces to ground state of a collection of 2j fermions

|j, 0, 0 (mod 2)⟩ ∼ | ↓⟩ ⊗ | ↓⟩ ⊗ · · · ⊗ | ↓⟩, (65)

which is completely separable and

U(ρj1,j2(θ = mπ) = 0.

The odd spin coherent state |j, η, 1 (mod 2)⟩ becomes a multipartite state of W type [51]

|j, 0, 1 (mod 2)⟩ ∼ |W⟩2j =
1√
2j

(| ↑⟩⊗ | ↓⟩⊗ · · ·⊗ | ↓⟩+ | ↓⟩⊗ | ↑⟩⊗ . . .⊗| ↓⟩+ · · ·+ | ↓⟩⊗ | ↓⟩⊗ · · ·⊗ | ↑⟩) . (66)

and, in this limiting situation, the local quantum uncertainty is given by

U(ρj1,j2(θ = π)) = 4
j1j2
j1 + j2

.

3.2.2 Mixed bipartite states

Now, we consider bipartite mixed density matrices ρij obtained by a trace procedure consisting in removing all

degrees of freedom of all qubits except the two qubits i and j. Since we consider quantum systems possessing

the exchange symmetry, the trace procedure leads to 2j(2j − 1)/2 identical density matrices ρ12. After some

algebra, one gets

ρ12 = N 2(|η, η⟩⟨η, η|+ | − η,−η⟩⟨−η,−η|+ eimπq| − η,−η⟩⟨η, η|+ e−imπq|η, η⟩⟨−η,−η|). (67)

The quantity q occurring in (67) is defined by

q = p2j−2.
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Setting η = eiϕ
√

1−p
1+p , the density matrix takes the form

ρ12 =
1

4(1 + p2j cosmπ)

 (1+p)2(1+q cosmπ) 0 0 e−2iϕ(1−p2)(1+q cosmπ)

0 (1−p2)(1−q cosmπ) (1−p2)(1−q cosmπ) 0

0 (1−p2)(1−q cosmπ) (1−p2)(1−q cosmπ) 0

e2iϕ(1−p2)(1+q cosmπ) 0 0 (1−p)2(1+q cosmπ)

 (68)

in the computational basis. The phase factor ϕ will be taken equal to zero. In other words, the phase factor can

be removed by a loacal transformation and the local quantum uncertainty remains unchanged as we discussed

here above. The bipartite mixed density ρ12 (68) writes in Fano-Bloch representation as

ρ12 =
∑
αβ

Rαβσα ⊗ σβ (69)

where the non vanishing matrix elements Rαβ (α, β = 0, 1, 2, 3) are given by

R00 = 1, R11 =
1− p2

1 + p2j cosmπ
, R22 =

(p2 − 1) p2j−2 cosmπ

1 + p2j cosmπ
,

R33 =
p2 + p2j−2 cosmπ

1 + p2j cosmπ
, R03 = R30 =

p+ p2j−1 cosmπ

1 + p2j cosmπ
.

From the equations (9), (10) and (11), one obtains

ω11 =

√
1− p2

1 + p2

√
1− p4j−4

1 + p2j cosmπ
(70)

ω22 = p2

√
1− p2

1 + p2

√
1− p4j−4

1 + p2j cosmπ
(71)

ω33 =
2p2

1 + p2
1 + p2j−2 cosmπ

1 + p2j cosmπ
(72)

Since ω22 ≤ ω11, we have ωmax = max(ω11, ω22) and one verifies that

sign(ω11 − ω33) = sign

(
2(1− p4)− (1 + 3p4)(1 + p2(j−1) cosmπ)

)
Etudier le signe dans les j = 1, 3/2, 2, 5/2, .... pour m = 0 et m = 1

Tracer LQU en fonction de p2 pour j = 1, 3/2, 2, 5/2, ....

We note that for the special case j = 1, the state (56) is a pure state with j1 = j2 = 1/2. In this case, it is

simple to verify that ω11 = ω22 = 0 and ω33 = 4p2

(1+p2)2 for m = 0 and ω33 = 0 for m = 1. Therefore, in this case

the local quantum uncertainty writes

U(ρ1/2,1/2) =
(1− p2)2

(1 + p2)2

for m = 0 and

U(ρ1/2,1/2) = 1

for m = 1 in agreement with the result (63).

For j > 1 and p −→ 0, one obtains

ω11 = 1, ω22 = 0, ω33 = 0

15



and the local quantum uncertainty is zero.

Similarly, for j > 1 and p2 −→ 1, it is simple to check that the local quantum uncertainty vanishes for even

spin coherent states (m = 0). In this limiting situation, the matrix elements (70), (71) and (72) become

ω11 =
j − 2√

2j
, ω22 =

j − 2√
2j
, ω33 =

j − 1

j

for odd spin coherent states (m = 1). The local quantum uncertainty is then given by

U(ρ12(m = 1)) −→ 1

j
.

Ω11 = Ω33

Ω11 � Ω33
Ω11 � Ω33

j = 1

j =
3

2

j = 2

j =
5

2

0.0 0.2 0.4 0.6 0.8 1.0
p20.0
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0.6

0.8
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Figure 1. The local quantum uncertainty in symmetric states (m = 0) for different values of j.

j = 1

j =
3

2

j = 2

j =
5

2

j = 3

0.0 0.2 0.4 0.6 0.8 1.0
p20.0

0.2

0.4

0.6

0.8

1.0

LQU

Figure 2. The local quantum uncertainty in antisymmetric states (m = 1) for different values of j.

4 Concluding remarks

In conclusion, we have derived the analytical expression of local quantum uncertainty for two-qubit in X-states.

This quantum correlations quantifier provides an efficient and computable way to characterize the nature of

correlations present in a multi-partite quantum system. Moreover, the analytical results obtained in this paper
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covers some special class of two-qubit states recently investigated in the literature. We quote Bell states and

orthogonally invariant two-qubit system examined in [27] and [28], respectively. We also evaluated the pairwise

local quantum uncertainty in multi-partite systems with exchange and parity symmetries. As illustration, we

quantified the pairwise quantum correlations in balanced superpositions of Dicke states. Our interest in such

states is mainly motivated by their relevance in various collective spin systems such as Dicke model [52] and

Lipkin-Meshkov-Glick [54] model exhibiting quantum phase transition.
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