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Abstract

A special emphasis is devoted to the concept of local quantum uncertainty as indicator of quan-

tum correlations. We study quantum discord for a class of two-qubit states parameterized by two

parameters. Quantum discord based on local quantum uncertainty, von Neumann entropy and trace

distance (Schatten 1-norm) are explicitly derived and compared. The behavior of the local quantum

uncertainty quantifier under decoherence effects is investigated .
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1 Introduction

Characterizing quantum correlations in multipartite quantum systems is one of the most challeng-

ing topics in quantum information theory. Various measures to quantify the degree of quantumness

in a multipartite quantum system were introduced in the literature. The most familiar ones the

concurrence, the entanglement of formation, the quantum discord and its various geometric versions

[1, 2, 3, 4, 5]. The interest in quantum correlations other than entanglement lies in the existence of

nonclassical correlations even in separable states [6, 7]. In fact, entanglement does not account for all

nonclassical aspects of correlations, especially in mixed states. This yielded many works dedicated to

introduce quantum correlation quantifiers beyond entanglement. As the total correlation is the sum

of two contributions: a classical part and quantum part, different concepts were considered to develop

the best way to distinguish between classical and quantum correlations. In this context, the entropy

based quantum discord [6, 7] is probably the quantifier which has been intensively investigated in the

literature for different purposes and from several perspectives (see for instance [5]). However, it must

be noticed that the analytical evaluation of quantum discord which is in general very challenging.

Only partial results were obtained for few two-qubit systems. To overcome such technical difficulties

and to find reliable and computable quantifiers, geometric variants of quantum discord were intro-

duced by considering different geometrical measures. Indeed, The 2-norm (Hilbert-Schmidt norm)

version of the quantum discord was introduced in [8]. This quantum correlation indicator is easily

computable [9, 10, 11, 12]. However, despite its computability for any bipartite quantum system,

the Hilbert-Schmidt based quantum discord can increase under local operations on the unmeasured

qubit. This drawback of quantum correlation quantifier based on Hilbert-Schmidt norm comes from

the non-contractibility of the 2-norm (Schatten 2-norm) [13]. Now, it is well known that the only

norm among the Schatten p-norm which is contractible is the Bures norm (trace norm with p = 1)

and which constitutes a suitable tool to quantify geometrically the quantum discord (see for instance

[14, 15]).

Quantifying quantum correlations in multipartite quantum systems continues to draw special at-

tention in quantum information science. Hence, another reliable geometric quantifier of discord-like

correlations was recently introduced by employing the so-called local quantum uncertainty. This

quantifier uses the notion skew information introduced in [16] to determine the uncertainty in the

measurement of an observable. The local quantum uncertainty is given by the minimum of the skew

information over all possible local observales. This measure offers an appropriate tool to evaluate the

analytical expressions of quantum correlations encompassed in any qubit-qudit bipartite system [17].

The local quantum uncertainty is related to the quantum Fisher information [18, 19, 20] which is a

key ingredient in quantum metrology protocols [21]. Also, it quantifies the speed of the local (unitary)

evolution of a bipartite quantum system [17].
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In this paper the analytical derivation of quantum discord is essentially approached in the context

of local quantum uncertainty formalism. We consider a particular family of rank-2 X states which

includes various types of two-qubit states of interest in different models of collective spin systems like

for instance Dicke model [22] and Lipkin-Meshkov-Glick model [23] where the quantum discord was

investigated in relation with their critical properties and quantum phase transitions (see for instance

[24, 25, 26, 27]). Remarkably, it has been shown that the quantum discord provides a suitable indicator

to understand the role of quantum correlations in characterizing quantum phase transitions [28](see

also [29]). We note also that the set of two-qubit under consideration are of special relevance in in-

vestigating quantum correlations in bipartite states extracted from multi-qubit Dicke states and their

superpositions(e.g., generalized GHZ states, even and odd spin coherent states) [30]. Thus, beside the

explicit derivation of local quantum uncertainty, we also the amount of quantum correlations in such

states when measured by von Neumann entropy or trace distance. Another facet of this work concerns

the dynamics of the local quantum uncertainty under decoherence effects induced by the unavoidable

interaction of a quantum system with environment. Four typical quantum decoherence channels are

considered. The explicit expressions of local quantum uncertainty are derived for each case. We will

show that in some cases the local quantum uncertainty is unaffected by the decoherence channel effects.

The paper is structured as follows. In section 2, we give the explicit expressions for local quantum

uncertainty, the von Neumann entropy based quantum discord and the trace norm quantum discord

for a class of two-qubit states which are, as we mentioned already, relevant in investigating bipartite

quantum correlations in various collective spin models. In section 3, under four quantum decoherence

channels (bit flip, phase flip, bit-phase flip and generalized amplitude damping), we give the ana-

lytic expressions of local quantum uncertainty. In particular, we show the freezing character of local

quantum uncertainty in some special cases. Concluding remarks close this paper.
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2 General presentation

The manuscript discusses EPR steering in the context of optomechanical systems. The proposed setup

consists of two optomechanical cavities, which are driven by two-mode-squeezed (TMS) light on the

red mechanical sideband, and whose output is monitored by separate homodyne detectors. The TMS

drive generates entanglement between the cavity modes, which is swapped to the mechanical systems

by the optomechanical (beam-splitter) interaction. Evaluating the covariance matrix of the bipartite

mechanical system, the authors show that the generated state fulfills the Reid EPR steering criterion.

The manuscript is divided into an introduction (section 1), a theoretical description of the op-

tomechanical systems (section 2), and a discussion of steering (both general and in the context of

the proposed setup) (section 3) and a conclusion (section 4). The presented analysis is theoretically

sound. As a whole, the manuscript is, however, mediocre in terms of presentation (language, clarity)

and content.

From the outset the authors fail to explain what the concrete goal of their work is. In the introduc-

tion they discuss general aspects of EPR steering and its possible application in quantum information

processing. At the end of the section they mention their motivation to study optomechanical systems

(high-precision measurements, quantum information processing), but they fail to connect this motiva-

tion to the concept of EPR steering. This leaves me wondering: Why do they deem an optomechanical

implementation of EPR steering interesting? Is it the fundamental or the applied aspects? If it is the

latter, which applications do they have in mind?

This lack of a clear goal makes it difficult to judge the manuscript’s quality and if the author’s

actually achieved their goal. To be precise, the manuscript presents a protocol to generate a mechanical

resource state for EPR steering; it does not present a complete protocol to demonstrate steering using

optomechanical systems. Although the authors talk about homodyne detection at first (figure 1),

measurements are completely neglected in the rest of the manuscript. This may sound like a trivial

objection, but the mechanical quantum state can only be inferred using measurements of the output

light. This has two effects: It introduces additional noise (which I think should not be a problem), but

it also makes it harder to argue that the measured steering is actually mechanical steering and not

only due to the TMS input light (which in the current setup would also be detected by the homodyne

detection). In this respect I find the presented analysis severely incomplete (it might be easy to rescue,

however).

I have several miscellaneous comments and suggestions:

- In the introduction, the authors explain the concept of steering by saying that LMCC can be

used to steer a quantum state nonlocally. This is not very helpful.

- Section 2 should be shortened considerably. The applied approximations have been discussed

extensively in the literature and there is no reason to reproduce them here. Additionally, I see no

reason to apply the rotating wave approximation, at least not to get numerical results.

- In section 3, the optomechanical parameters are taken from reference [41], which was published
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in 2007. This publication is not at all ”recent” in the field of optomechanics. Additionally, the thermal

occupation numbers assumed to produce the plots are completely unrealistic for a 1MHz mechanical

resonator. The conclusion that demonstration of EPR steering using optomechanical systems is feasible

cannot be drawn based on these parameters.

- Instead of using C and nth as independent parameters, it would be interesting to look at the

dependence with respect to C/nth, which is the ”thermal cooperativity”.

- The authors claim that figure 2 and 3 show that the steerability is bounded by entanglement.

As shown in [9] this must indeed be the case, but only if entanglement is measured in terms of

Renyi-2-entropy, not logarithmic negativity (logneg)! The claim is therefore invalid!

- The observation that the logneg cannot detect EPR steerability is trivial given that the logneg

is defined completely symmetric with respect of exchange of parties (as is evident from eq (35)). This

should not be more than a sidenote and not a selling point of the manuscript in the abstract.

- The plots in figures 2 and 3 should be scaled such that the axis labels align correctly for better

comparability.

- The labeling of the modes ain does not match the description used in the text.

In conclusion, I find the manuscript lacking in several respects and cannot recommend publication

in its current form.
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3 Local quantum uncertainty, entropic quantum discord and geo-

metric quantum for rank two X states

The two-qubit density matrices which display non zero entries only along the main- and anti-diagonals

are usually calledX-states. They generalize several two-qubit states as for instance Bell-diagonal states

(see [31]), Werner states [32], isotropic states [33]. Their particular relevance was first identified in

investigating the phenomenon of sudden death of entanglement [34]and since then extended to many

other context in connection of quantum information theory. A generic X-state is parameterized by

seven real parameters and the corresponding symmetry is fully characterized by the su(2)×su(2)×u(1)
subalgebra of the full su(4) algebra describing an arbitrary two-qubit system [35]. This symmetry re-

duction from su(4) to su(2)× su(2)× u(1) renders easy many analytical calculations of concurrence,

entanglement of formation, quantum discord and leads to interesting results in studying their proper-

ties and especially their evolution under dissipative processes were reported in the literature ( see for

instance [36, 37]).

3.1 Local quantum uncertainty: Definition

The concept of local quantum uncertainty is now considered as a promising quantifier of quantum

correlation. This is essentially due to its easiness of computability and its reliability. It quantifies the

minimal quantum uncertainty in a quantum state due to a measurement of a local observable [17].

For a bipartite quantum state ρ12, the local quantum uncertainty is defined as

U(ρ12) ≡ min
K1

I(ρ,K1 ⊗ I2), (1)

where K1 is some local observable on the subsystem 1, I2 is the identity operator and

I(ρAB,K) = −1

2
Tr([

√
ρAB,K]2) (2)

is the skew information [16, 18]. The skew information represents the non-commutativity between

the state and the observable K1. The analytical evaluation the local quantum uncertainty requirers a

minimization procedure over the set of all observales acting on the part 1. A closed form for qubit-

qudit systems was derived in [17]. In particular, for qubits (12 -spin particles), the expression of the

local quantum uncertainty is given by [17]

U(ρ) = 1− λmax{W}, (3)

where λmax denotes the maximum eigenvalue of the 3×3 matrixW whose matrix elements are defined

by

ωij ≡ Tr{√ρ(σi ⊗ I2)
√
ρ(σj ⊗ I2)}, (4)

with i, j = 1, 2, 3. The local quantum uncertainty provides an appropriate quantifier of the minimum

amount of uncertainty in a bipartite quantum state. For pure bipartite states, it reduces to linear
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entropy of the reduced densities of the subsystems. Also, it vanishes for classically correlated states.

Another interesting property of local quantum uncertainty is its invariance under local unitary opera-

tions. This quantum correlations indicator enjoys all required properties of being a reliable quantifier

[17]. Hence, in what follows, we shall employ the local quantum uncertainty to study the pairwise

quantum correlation in a family of two-qubit states.

3.2 Two qubit X states

In this section, we consider a two-qubit system which is described by an X-shaped mixed state. The

X states are encountered in various quantum systems in condensed matter physics. In fact, X states

provide the general form of reduced density operators of arbitrary quantum spin chains with parity

symmetry. Two-qubit X states include various types of quantum states usually used in investigating

entanglement and quantum correlations. They have non-zero entries only along the diagonal and anti-

diagonal and therefore they are parameterized by seven real parameters. The corresponding symmetry

is fully characterized by the su(2) × su(2) × u(1) subalgebra of the full su(4) algebra describing an

arbitrary two-qubit system. Many analytical calculations of concurrence, entanglement of formation,

quantum discord can be carried out easily for X states leading to interesting results in studying their

properties and especially their evolution under dissipative processes [36]. The density matrix for a

two-qubit X state writes as

ρ =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

 . (5)

in the computational basis {|00⟩, |01⟩, |10⟩, |11⟩}. The entries are subjected to constraints
∑4

i=1 ρii = 1,

ρ11ρ44 ≥ |ρ14|2 and ρ22ρ33 ≥ |ρ23|2.
The eigenvalues of the density matrix ρ are given by

λ1 =
1

2
t1+

1

2

√
t21 − 4d1, λ2 =

1

2
t2+

1

2

√
t22 − 4d2, λ3 =

1

2
t2−

1

2

√
t22 − 4d2, λ4 =

1

2
t1−

1

2

√
t21 − 4d1

with t1 = ρ11+ρ44, t2 = ρ22+ρ33, d1 = ρ11ρ44−ρ14ρ41, and d2 = ρ22ρ33−ρ32ρ23. The Fano-Bloch
decomposition of the state ρ writes as

ρ =
1

4

∑
α,β

Rαβσα ⊗ σβ

where the correlation matrix Rαβ are given by Rαβ = Tr(
√
ρ σα ⊗ σβ). They write

R03 = 1− 2ρ22 − 2ρ44, R30 = 1− 2ρ33 − 2ρ44, R11 = 2 Re(ρ32 + ρ41), R22 = 2 Re(ρ32 − ρ41)

R12 = −2i Im(ρ41−ρ32) R21 = −2i Im(ρ41+ρ32), R00 = ρ11+ρ22+ρ33+ρ44 = 1, R33 = 1−2ρ22−2ρ33.
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It is simple to check that the square root of the density matrix ρ writes

√
ρ =



ρ11+
√
d1√

t1+2
√
d1

0 0 ρ14√
t1+2

√
d1

0 ρ22+
√
d2√

t2+2
√
d2

ρ23√
t2+2

√
d2

0

0 ρ32√
t2+2

√
d2

ρ33+
√
d2√

t2+2
√
d2

0

ρ41√
t1+2

√
d1

0 0 ρ44+
√
d1√

t1+2
√
d1


. (6)

The eigenvalues
√
λ1,

√
λ2,

√
λ3 and

√
λ4 of the matrix

√
ρ can be rewritten as

√
λ1 =

1

2

√
t1 + 2

√
d1 +

1

2

√
t1 − 2

√
d1,

√
λ2 =

1

2

√
t2 + 2

√
d2 +

1

2

√
t2 − 2

√
d2

√
λ3 =

1

2

√
t2 + 2

√
d2 −

1

2

√
t2 − 2

√
d2,

√
λ4 =

1

2

√
t1 + 2

√
d1 −

1

2

√
t1 − 2

√
d1

In Fano-Bloch representation, the matrix
√
ρ writes as

√
ρ =

1

4

∑
α,β

Rαβσα ⊗ σβ

with Rαβ = Tr(
√
ρ σα ⊗ σβ). The non vanishing matrix correlation elements Rαβ are explicitly given

by

R00 =

√
t1 + 2

√
d1 +

√
t2 + 2

√
d2 R03 =

1

2

R30 +R03√
t1 + 2

√
d1

− 1

2

R30 −R03√
t2 + 2

√
d2

R30 =
1

2

R30 +R03√
t1 + 2

√
d1

+
1

2

R30 −R03√
t2 + 2

√
d2

R11 =
1

2

R11 +R22√
t2 + 2

√
d2

+
1

2

R11 −R22√
t1 + 2

√
d1

R12 =
1

2

R12 +R21√
t1 + 2

√
d1

+
1

2

R12 −R21√
t2 + 2

√
d2

R21 =
1

2

R12 +R21√
t1 + 2

√
d1

− 1

2

R12 −R21√
t2 + 2

√
d2

R22 =
1

2

R11 +R22√
t2 + 2

√
d2

− 1

2

R11 −R22√
t1 + 2

√
d1

R33 =

√
t1 + 2

√
d1 −

√
t2 + 2

√
d2

At this stage, we have the tools to evaluate the matrix elements defined by

ωij = Tr

(
√
ρ (σi ⊗ σ0)

√
ρ (σj ⊗ σ0)

)
where i and j take the values 1, 2, 3. Using the following identities

{σi, σj} = 2δij Tr(σiσj) = 2δij Tr(σiσjσkσl) = 2(δijδkl − δikδjl + δilδjk),

one shows that the matrix W is diagonal and the diagonal elements are

ωii =
1

4

[∑
β

(
R2

0β −
∑
k

R2
kβ

)]
+

1

2

∑
β

R2
iβ

where i = 1, 2, 3 and β = 0, 1, 2, 3. Explicitly, the elements ωij write

ωij = δij

[
1

4

∑
β

(
R2

0β −
∑
k

R2
kβ

)]
+

1

2

∑
β

RiβRjβ

8



where β = 0, 1, 2, 3 and k = 1, 2, 3. The diagonal elements are

ωii =
1

4

[∑
β

(
R2

0β −
∑
k

R2
kβ

)]
+

1

2

∑
β

R2
iβ

and the off-diagonal elements are

ωij =
1

2

∑
β

RiβRjβ i ̸= j

Explicitly, we have

ω11 =
1

4

[
4

(√
λ1 +

√
λ4

)(√
λ2 +

√
λ3

)
+

(R2
11 −R2

22) + (R2
12 −R2

21) + (R2
03 −R2

30)

(
√
λ1 +

√
λ4)(

√
λ2 +

√
λ3)

]
(7)

ω22 =
1

4

[
4

(√
λ1 +

√
λ4

)(√
λ2 +

√
λ3

)
+

(R2
22 −R2

11) + (R2
21 −R2

12) + (R2
03 −R2

30)

(
√
λ1 +

√
λ4)(

√
λ2 +

√
λ3)

]
(8)

ω33 =
1

2

[(√
λ1 +

√
λ4

)2

+

(√
λ2 +

√
λ3

)2]
+

1

8

[
(R03 +R30)

2 − (R11 −R22)
2 − (R12 +R21)

2(√
λ1 +

√
λ4

)2

]

+
1

8

[
(R03 −R30)

2 − (R11 +R22)
2 − (R12 −R21)

2(√
λ2 +

√
λ3

)2

]
(9)

ω12 = ω21 =
1

2

(
R11R21 +R12R22

)
=

1

2

R11R21 +R22R12

(
√
λ1 +

√
λ4)(

√
λ2 +

√
λ3)

(10)

ω13 = ω31 = 0, ω23 = ω32 = 0 (11)

9



4 Pairwise correlations for Z2-symmetric quantum spin lattices

We will consider here an interacting pair of spins-1/2 in a spin lattice, which is governed by a Hamil-

tonian H that is both real and exhibits Z2 symmetry, i.e. invariance under π-rotation around a given

spin axis. By taking this spin axis as the z direction, this implies the commutation of H with the

parity operator
⊗N

i=1 σ
3
i , where N denotes the total number of spins and σ3i is the Pauli operator

along the z-axis at site i. Note that a number of spin models are enclosed within these requirements

as, for instance, the XXZ spin chain and the transverse field Ising model. Disregarding spontaneous

symmetry breaking (see, e.g., Refs. [?, ?, ?] for a treatment of spontaneously broken ground states),

the two-spin reduced density matrix at sites labelled by i and j in the basis {| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩},
with | ↑⟩ and | ↓⟩ denoting the eigenstates of σ3, will be given by

ρ =


a 0 0 f

0 b1 z 0

0 z b2 0

f 0 0 d

 . (12)

In terms of spin correlation functions, these elements can be written as

a =
1

4

(
1 +Gi

z +Gj
z +Gij

zz

)
,

b1 =
1

4

(
1 +Gi

z −Gj
z −Gij

zz

)
,

b2 =
1

4

(
1−Gi

z +Gj
z −Gij

zz

)
,

d =
1

4

(
1−Gi

z −Gj
z +Gij

zz

)
,

z =
1

4

(
Gij

xx +Gij
yy

)
,

f =
1

4

(
Gij

xx −Gij
yy

)
, (13)

where Gk
z = ⟨σkz ⟩ (k = i, j) is the magnetization density at site k and Gij

αβ = ⟨σiασ
j
β⟩ (α, β = x, y, z)

denote two-point spin-spin functions at sites i and j, with the expectation value taken over the quantum

state of the system. Note that, in case of translation invariance, we will have that Gk
z = Gk′

z (∀ k, k′)
and, therefore, b1 = b2. Moreover, observe also that the density operator given in Eq. (12) can be

decomposed as

ρ =
1

4

[
I ⊗ I +

3∑
i=1

(
ciσ

i ⊗ σi
)
+ c4I ⊗ σ3 + c5σ

3 ⊗ I

]
, (14)

with

c1 = 2z + 2f,

c2 = 2z − 2f,

c3 = a+ d− b1 − b2,

c4 = a− d− b1 + b2,

c5 = a− d+ b1 − b2. (15)
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In particular, for translation invariant systems, we have that c4 = c5. In order to determine classi-

cal and quantum correlations, we first evaluate the mutual information as given by Eq. (??). The

eigenvalues of ρ read

λ0 =
1

4

[
(1 + c3) +

√
(c4 + c5)

2 + (c1 − c2)
2

]
,

λ1 =
1

4

[
(1 + c3)−

√
(c4 + c5)

2 + (c1 − c2)
2

]
,

λ2 =
1

4

[
(1− c3) +

√
(c4 − c5)

2 + (c1 + c2)
2

]
,

λ3 =
1

4

[
(1− c3)−

√
(c4 − c5)

2 + (c1 + c2)
2

]
. (16)

Therefore, the mutual information is given by

I(ρ) = S(ρA) + S(ρB) +

3∑
α=0

λα log λα, (17)

where

S(ρA) = −
(
rA1 log rA1 + rA2 log rA2

)
,

S(ρB) = −
(
rB1 log rB1 + rB2 log rB2

)
, (18)

with rA1 = (1 + c5)/2, r
A
2 = (1 − c5)/2, r

B
1 = (1 + c4)/2, and r

B
2 = (1 − c4)/2. Classical correlations

can be obtained by following a procedure that is similar to those of Refs. [?, ?], but applying it now

for the case of the general density matrix given by Eq. (12). We first introduce a set of projectors

for a local measurement on part B given by {Bk = VΠkV
†}, where {Πk = |k⟩⟨k| : k = 0, 1} is the

set of projectors on the computational basis (|0⟩ ≡ | ↑⟩ and |1⟩ ≡ | ↓⟩) and V ∈ U(2). Note that the

projectors Bk represent therefore an arbitrary local measurement on B. We parametrize V as

V =

(
cos θ

2 sin θ
2e

−iϕ

sin θ
2e

iϕ − cos θ
2

)
, (19)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. Note that θ and ϕ can be interpreted as the azimuthal and

polar angles, respectively, of a qubit over the Bloch sphere. By using Eq. (??) and the equation

Πkσ
iΠk = δi3(−1)kΠk, with δi3 denoting the Kronecker symbol, we can show that the state of the

system after measurement {Bk} will change to one of the states

ρ0 =
1

2

I + 3∑
j=1

q0jσ
j

⊗
(
VΠ0V

†
)
, (20)

ρ1 =
1

2

I + 3∑
j=1

q1jσ
j

⊗
(
VΠ1V

†
)
, (21)
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where

qk1 = (−1)k c1

[
w1

1 + (−1)kc4w3

]
,

qk2 = (−1)k c2

[
w2

1 + (−1)kc4w3

]
,

qk3 = (−1)k
[
c3w3 + (−1)kc5
1 + (−1)kc4w3

]
, (22)

with k = 0, 1 and

w1 = sin θ cosϕ,

w2 = sin θ sinϕ,

w3 = cos θ. (23)

Then, by evaluating von Neumann entropy from Eqs. (20) and (21) and using that S(VΠkV
†) = 0,

we obtain

S(ρk) = −(1 + θk)

2
log

(1 + θk)

2
− (1− θk)

2
log

(1− θk)

2
, (24)

with

θk =

√√√√ 3∑
j=1

q2kj . (25)

Therefore, the classical correlation for the spin pair at sites i and j will be given by

C(ρ) = max
{Bk}

(
S(ρA)− (S0 + S1)

2
− c4w3

(S0 − S1)

2

)
, (26)

where Sk = S(ρk). For some cases, the maximization in Eq. (26) can be worked out and an expression

purely in terms of the spin correlation functions can be obtained (e.g., the XXZ and Ising chains

below). In general, however, C(ρ) has to be numerically evaluated by optimizing over the angles θ

and ϕ. Once classical correlation is obtained, insertion of Eqs. (17) and (26) into Eq. (??) can be used

to determine the quantum discord.

5 The XXZ spin chain

Let us illustrate the discussion of classical and quantum correlations between two spins by considering

the XXZ spin chain, whose Hamiltonian is given by

HXXZ = −J
2

L∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 +∆σzi σ

z
i+1

)
, (27)

where periodic boundary conditions are assumed, ensuring therefore translation symmetry. We will

set the energy scale such that J = 1 and will be interested in a nearest-neighbor spin pair at sites i and

i + 1. Concerning its symmetries, the XXZ chain exhibits U(1) invariance, namely,
[
H,
∑

i σ
i
z

]
= 0,

which provides a stronger constraint over the elements of the density matrix than the Z2 symmetry.

12



Indeed, U(1) invariance ensures that the element f of the reduced density matrix given by Eq. (12)

vanishes. Moreover, the ground state has magnetization density Gk
z = ⟨σkz ⟩ = 0 (∀ k), which implies

that

a = d =
1

4
(1 +Gzz) ,

b1 = b2 =
1

4
(1−Gzz) ,

z =
1

4
(Gxx +Gyy) ,

f = 0. (28)

where, due to translation invariance, we write Gαβ = ⟨σiασi+1
β ⟩ (∀ i). Due to the fact that a = d, we

will have that c4 = c5 = 0, which considerably simplifies the computation of classical and quantum

correlations. Moreover, we will have that c1 = c2 = 2z and c3 = 4a − 1. Then, the maximization

procedure in Eq. (26) can be analytically worked out [?], yielding

C(ρ) =
(1− c)

2
log (1− c) +

(1 + c)

2
log (1 + c) , (29)

with c = max (|c1|, |c2|, |c3|). For the mutual information I(ρ) we obtain

I(ρ) = 2 +
3∑

i=0

λi log λi, (30)

where

λ0 =
1

4
(1− c1 − c2 − c3) ,

λ1 =
1

4
(1− c1 + c2 + c3) ,

λ2 =
1

4
(1 + c1 − c2 + c3) ,

λ3 =
1

4
(1 + c1 + c2 − c3) . (31)

In order to compute C(ρ) and Q(ρ) we write c1, c2, and c3 in terms of the ground state energy density.

By using the Hellmann-Feynman theorem [?, ?] for the XXZ Hamiltonian (27), we obtain

c1 = c2 =
1

2
(Gxx +Gyy) = ∆

∂εxxz
∂∆

− εxxz ,

c3 = Gzz = −2
∂εxxz
∂∆

, (32)

where εxxz is the ground state energy density

εxxz =
⟨ψ0|HXXZ |ψ0⟩

L
= −1

2
(Gxx +Gyy +∆Gzz) , (33)

with |ψ0⟩ denoting the ground state of HXXZ . Eqs. (32) and (33) hold for a chain with an arbitrary

number of sites, allowing the discussion of correlations either for finite or infinite chains. Indeed, ground

state energy as well as its derivatives can be exactly determined by Bethe Ansatz technique [?], which

13



allows us to obtain the correlation functions c1, c2, and c3. In Fig. ??, we plot classical and quantum

correlations between nearest-neighbor pairs for an infinite XXZ spin chain.

Note that, in the classical Ising limit ∆ → ∞, we have a fully polarized ferromagnet. The ground

state is then a doublet given by the vectors | ↑↑ · · · ↑⟩ and | ↓↓ · · · ↓⟩, yielding the mixed state

ρ =
1

2
| ↑↑ · · · ↑⟩⟨↑↑ · · · ↑ |+ 1

2
| ↓↓ · · · ↓⟩⟨↓↓ · · · ↓ |. (34)

Indeed, this is simply a classical probability mixing, with C(ρ) = I(ρ) = 1 and Q(ρ) = 0. The

same applies for the antiferromagnetic Ising limit ∆ → −∞, where a doubly degenerate ground state

arises. Moreover, observe that the classical (quantum) correlation is a minimum (maximum) at the

infinite order QCP ∆ = −1. On the other hand, both correlations are discontinuous at the first-order

QCP ∆ = 1. This is indeed in agreement with the usual behavior of entanglement both at infinite

and first-order QPTs. For an infinite-order QCP, entanglement commonly display a maximum at the

QCP [?, ?, ?], while for a first-order QCP, entanglement usually exhibits a jump at the QCP [?, ?].

Nevertheless, we note that in the specific case of the ferromagnetic QCP ∆ = 1 and for pairwise

entanglement measures such as concurrence [?] and negativity [?], no jump is detected, being hidden

by the operation max [?]. It is interesting to observe the behavior of the functions |c1| = |c2| and |c3|
that govern the classical and quantum correlations. For ∆ < −1, we have that |c1| = |c2| < |c3|, which
means that the classical correlation is governed by |c3|. For −1 < ∆ < 1, we have that |c1| = |c2| > |c3|,
with the crossing occurring exactly at the infinite-order QCP. Therefore, the correlations are governed

by different parameters in different phases. For ∆ ≥ 1, we obtain |c1| = |c2| = 0 and |c3| = 1, which

implies that C(ρ) = 1 and Q(ρ) = 0. These results are shown in Fig. ?? below.

6 The transverse field Ising model

Let us consider now the Ising chain in a transverse magnetic field, whose Hamiltonian is given by

HI = −J
L∑
i=1

(
σxi σ

x
i+1 + gσzi

)
, (35)

with periodic boundary conditions assumed, namely, σxL+1 = σx1 . As before, we will set the energy

scale such that J = 1 and will be interested in a nearest-neighbor spin pair at sites i and i+ 1. This

Hamiltonian is Z2-symmetric and can be exactly diagonalized by mapping it to a spinless free fermion

model with single orbitals. This is implemented through the Jordan-Wigner transformation

σzi = 1− 2c†ici,

σxi = −
∏
j<i

(
1− 2c†jcj

)(
ci + c†i

)
, (36)
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where c†i and ci are the creation and annihilation fermion operators at site i, respectively. By rewriting

Eq. (35) in terms of c†i and ci we obtain

HI = −J
L∑
i=1

(
c†ici+1 + c†i+1ci + c†ic

†
i+1 + cici+1

)
−Jg

L∑
i=1

(
1− 2c†ici

)
. (37)

In order to diagonalize HI we consider fermions in momentum space

ck =
1√
L

L∑
j=1

cje
−ikrj ,

c†k =
1√
L

L∑
j=1

c†je
ikrj , (38)

where c†k and ck are creation and annihilation fermion operators with momentum k, respectively, and

rj is the fermion position at site j. The wave vectors
−→
k satisfy the relation ka = 2πq/L, where a

denotes the distance between two nearest-neighbor sites and q = −M,−M + 1, · · · ,M − 1,M , with

M = (L − 1)/2 and L taken, for simplicity, as an even number. Then, by inverting Eq. (38) and

inserting the result in Eq. (37), we obtain

HI = J
∑
k

[
2 (g − cos ka) c†kck

+i sin ka
(
c†−kc

†
k + c−kck

)
− g
]
. (39)

Diagonalization is then obtained by eliminating the terms c†−kc
†
k and c−kck from the Hamiltonian

given by Eq. (39), which do not conserve the particle number. This is indeed achieved through

the Bogoliubov transformation in which new fermion operators γk and γ†k are introduced as linear

combination of ck and c†k

γk = ukck − ivkc
†
−k,

γ†k = ukc
†
k + ivkc−k, (40)

where uk and vk are real numbers parametrized by uk = sin θk
2 and vk = cos θk

2 . This parametrization

naturally arises as a consequence of the fermionic algebra {γk, γ†k′} = δkk′ , {γ†k, γ
†
k′} = {γk, γk′} = 0,

with δkk′ standing for the Kronecker delta symbol. Moreover, to recast the Hamiltonian in a diagonal

form we define θk by demanding that tan θk = sin ka/(g−cos ka). Therefore, by expressingHI in terms

of Bogoliubov fermions and by imposing the trace invariance of the Hamiltonian, Eq. (39) becomes

HI =
∑
k

εk

(
γ†kγk −

1

2

)
, (41)

with εk = 2J
√

1 + g2 − 2g cos ka. Hamiltonian (41) is diagonal, with ground state given by the γ-

fermion vacuum. The procedure above also applies for the evaluation of the matrix elements of the
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reduced density operator given by Eq. (13), which amounts for the computation of the magnetization

density Gz and the two-point functions Gαβ . This can be achieved by using that Gzz = G2
z−GxxGyy [?]

and by expressing the remaining correlation functions as

Gxx =
2

L

M∑
q=−M

[
cos

(
2πq

L

)
v2q + sin

(
2πq

L

)
uqvq

]
,

Gyy =
2

L

M∑
q=−M

[
cos

(
2πq

L

)
v2q − sin

(
2πq

L

)
uqvq

]
,

Gz =
1

L

M∑
q=−M

(
1− 2v2q

)
, (42)

where

uqvq =
1

2

sin
(
2πq
L

)
√
1 + g2 − 2g cos

(
2πq
L

)

v2q =
1

2

1−
(
g − cos

(
2πq
L

))
√

1 + g2 − 2g cos
(
2πq
L

)
 . (43)

Hence, we exactly determine the two-spin reduced density matrix. Classical and quantum correlations

can then be directly obtained from Eqs. (??) and (??). By numerically computing the classical

correlation in Eq. (26) for nearest-neighbor spin pairs at sites i and i + 1, we can show that the

maximization is achieved for any g by the choice θ = π/2 and ϕ = 0. Then, the measurement that

maximizes J(ρ : {Bk}) is given by {|+⟩⟨+|, |−⟩⟨−|}, with |+⟩ and |−⟩ denoting the up and down spins

in the x direction, namely, |±⟩ = (| ↑⟩ ± | ↑⟩)/
√
2. This numerical observation implies that w1 = 1,

w2 = w3 = 0. Therefore, Eq. (26) is ruled by the spin functions c1 = Gi,i+1
xx and c4 = c5 = Gi

z, i.e.

C(ρ) = Hbin (p1)−Hbin (p2) (44)

where Hbin is the binary entropy

Hbin(p) = −p log p− (1− p) log (1− p) (45)

and

p1 =
1

2

(
1 +Gi

z

)
,

p2 =
1

2

(
1 +

√(
Gi,i+1

xx

)2
+ (Gi

z)
2

)
(46)

We plot C(ρ) and Q(ρ) in Fig. ?? for a chain with 1024 sites. Note that, for g = 0 the system is a

classical Ising chain, whose ground state is a doublet given by the vectors |++ · · ·+⟩ and |−− · · · −⟩.
Therefore, the system is in the mixed state

ρ =
1

2
|++ · · ·+⟩⟨++ · · ·+ |+ 1

2
| − − · · · −⟩⟨− − · · · − |, (47)

16



with C(ρ) = I(ρ) = 1 and Q(ρ) = 0. On the other hand, in the limit g → ∞ the system is a

paramagnet (vanishing magnetization in the x direction), with all spins in state | ↑⟩. Therefore the

system will be described by the density operator

ρ = | ↑↑ · · · ↑⟩⟨↑↑ · · · ↑ |, (48)

which is a pure separable state, containing neither classical nor quantum correlations.

The QPT from ferromagnetic to paramagnetic state is a second-order QPT and occurs at g = 1.

Signatures of this QPT can be found out by looking at the derivatives of either classical or quantum

correlations. Indeed, the QPT can be identified as a pronounced minimum of the first derivative of the

classical correlation, which is exhibited in Fig. ??. Note that the minimum logarithmically diverges

at g = 1 as the thermodynamic limit is approached (see inset of Fig. ??). In the case of quantum

correlations, its first derivative shows an inflexion point around g = 1, as displayed in Fig. ??. Indeed,

by looking at its second derivative in Fig. ??, the QPT is identified by a pronounced maximum, which

shows quadratic logarithmic divergence at g = 1 as the thermodynamic limit is approached (see inset

of Fig. ??).

The behavior of the quantum discord is therefore rather different from the entanglement behavior,

whose first derivative is already divergent at the QCP. Remarkably, the scaling of pairwise entan-

glement derivative in this case (see e.g. Refs. [?, ?]) is much closer to the scaling of the classical

correlation derivative (as given by Fig. ??) than that of the quantum correlation derivative (as given

by Fig. ??). As in the case of the XXZ model, it is interesting to observe that the spin functions

c1 = Gi,i+1
xx and c4 = c5 = Gi

z, which govern the correlations in the Ising chain [see Eqs. (44)-(46)],

exhibit a crossing at the QCP. This is shown in Fig. ?? for a chain with 1024 sites.

7 The LMG model

The discussion of correlations above can also be applied in collective systems. As an illustration, we

will consider here the LMG model [?], which describes a two-level Fermi system {|+⟩, |−⟩}, with each

level having degeneracy Ω. The Hamiltonian for LMG model is given by

H = λ
Ω∑

m=1

1

2

(
c†+mc+m − c†−mc−m

)
− 1

2N

Ω∑
m,n=1

(
c†+mc−mc

†
+nc−n + c†−nc+nc

†
−mc+m

)
.

(49)

The operators c†+m and c†−m create a particle in the upper and lower levels, respectively. This Hamil-

tonian can be taken as describing an effective model for many-body systems, with one level just below

the Fermi level and and the other level just above, with the level below being filled with Ω particles [?].

Alternatively, the LMG model can be seen as a one-dimensional ring of spin-1/2 particles with infinite
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range interaction between pairs. Indeed, the Hamiltonian can be rewritten as

H = λSz −
1

N

(
S2
x − S2

y

)
, (50)

where Sz =
∑N

m=1
1
2(c

†
+mc+m − c†−mc−m) and Sx + iSy =

∑N
m=1 c

†
+mc−m [?]. The system undergoes

a second-order QPT at λ = 1. As Ω → ∞, the ground state, as given by the Hartree-Fock (HF)

approach, reads

|HF ⟩ =
ω∏

m=1

a†0m|−⟩, (51)

where we have introduced new levels labelled by 0 and 1 governed by the operators

a†0m = cosα c†−m + sinα c†+m,

a†1m = − sinα c†−m + cosα c†+m. (52)

In Eq. (52), α is a variational parameter to be adjusted in order to minimize energy, which is achieved

according to the choice

λ < 1 ⇒ cos 2α = λ,

λ ≥ 1 ⇒ α = 0. (53)

Despite being an approximation, the HF ground state provides the exact description of the critical

point (for recent discussions of the exact spectrum of the LMG model, see Refs. [?, ?]). The pairwise

density operator for general modes i ≡ (+m) and j ≡ (−n) is given by

ρi,j =


⟨MiMj⟩ 0 0 0

0 ⟨MiNj⟩ ⟨c†icj⟩ 0

0 ⟨c†jci⟩ ⟨NiMj⟩ 0

0 0 0 ⟨NiNj⟩

 , (54)

where Mk = 1−Nk and Nk = c†kck, with k = i, j. By evaluating the matrix elements of ρ for the HF

ground state, we obtain

⟨M+mM−n⟩ = sin2 α cos2 α (1− δmn) ,

⟨M+mN−n⟩ = cos2 αδmn + cos4 α (1− δmn)

⟨N+mM−n⟩ = sin2 αδmn + sin4 α (1− δmn)

⟨N+mN−n⟩ = sin2 α cos2 α (1− δmn)

⟨c†+mc−n⟩ = sinα cosαδmn

⟨c†−nc+m⟩ = sinα cosαδmn. (55)

Note that Eq. (54) displays Z2 symmetry and, therefore, classical and quantum correlations can be

computed by using Eq. (26). Note also that, for m ̸= n, the density matrix is diagonal and the state

is completely pairwise uncorrelated. On the other hand, for m = n, there is an equal amount of
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classical and quantum correlations between the modes. These correlations vanish for λ > 1, which is

the fully polarized state. The result is plotted in Fig. ??. We can then observe that the derivatives of

both classical correlation and quantum discord exhibit a signature of the QPT (see inset of Fig. ??).

These signatures are in agreement with the caracterizations in terms of entanglement [?, ?] and Fisher

information [?].

8 Concluding remarks

Quantum correlations in a composite system can be measured by employing the local quantum un-

certainty.

We show that the quantum correlations quantified by local quantum uncertainty remain constant

during the evolution of a class of two qubits under specific decoherence channels. This remarkable

result is known in the literature as quantum correlation freezing. This result can bring a tool in

understanding the inevitable decoherence due to the interaction with the environment and possibly

open new ways to exploit quantum correlations from a practical point of view.
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