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Abstract

We discuss the role of quantum correlations in quantum metrology. We consider a two-qubit state

family which describes various quantum system. We derive the explicite expression of quantum Fisher

information



1 Introduction

Quantum information processing has emerged as a rich, exciting field due to both its potential appli-

cations in cryptography [1] and computational speed-up [2, 3], and its value role in designing quantum

systems that can be used to study fundamental physics in previously inaccessible regimes. The suc-

cesses of this context is achieved by identify the key particulars of quantum phenomenon ”coherence”

[4]. This phenomenon is a necessary ingredient for any quantum behavior, emerging from wave-like

probability distributions of measurement outcomes. Yet, subtler quantum features emerge when mul-

tipartite systems are considered. Quantum entanglement in multipartite quantum systems, comprising

two or more parts, constitutes a key concept to distinguish between quantum and classical correlations

also subsequently to understand quantum classical boundary. Besides its fundamental aspects, en-

tanglement is intensively studied, and it is usually considered the most promising resource to provide

speed-up to information protocols [5].

The states of any multipartite quantum system can be classified as being pure and mixed quantum

states: the pure states are divided in entangled and classically correlated states, while mixed states

can be categorized in entangled and separable states. Recently several studies have been carried on

the main goal: if nonentangled states can enjoy some form of quantumness [6]. In generale, almost all

separable states of multipartite systems are inherently quantum; they show a kind of quantum correla-

tions called ”discord”, which is not observable when the state of the system is described by a classical

probability distribution. In addition, these states are known as ”Discordant states” , they responsible

on the characterizing a non classical correlation via local quantum Uncertainty [7, 8]. Therefore, the

quantum discord is an indicator of quantumness of correlations in a composite system, usually revealed

via the state disturbance induced by local measurements [9, 10]. Recent results suggested that discord

might enable quantum advantages in specific computation or communication settings. In addition,

various purposes were introduced in this respect[11, 12].

Quantum metrology is another topic which can be studied in the presence of quantum correlation.

In particular, the quantum correlation measure based on quantum Fisher information enables us to

gain a deeper insight on how quantum correlations are instrumental in setting metrological precision

[13, 14]. Several operational interpretations in this context have been proposed in the recent years

[15, 16, 17, 18]. More specifically, a general quantitative equivalence between discord-type quantum

correlations and the guaranteed precision in estimating technologically relevant parameters (such as

phase) is established theoretically, and observed experimentally [19, 20].

In general, how to precisely measure the values of physical quantities; such as the phases of light

in interferometers, magnetic strength, gravity and so on, is always an important topic in physics.

Metrology have found various applications in this order. It is concerned with the largest possi-

ble precision achievable in various parameter estimation tasks and frame measurement schemes to

achieve that precision. Quantum Fisher information (QFI) plays central role in quantum metrology

[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] and its inverse depicts the lower bound on the variance

of the estimator θ̂ for the parameter θ due to the Cramr-Rao theorem [33]

Varρ(θ̂) ≥ 1/[νF(ρ,H)], (1)
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where ν ≫ 1 is the number of repetitions of the experiment, Var(·) describes the variance and F is the

quantum Fisher information (QFI) [34, 35], this recent quantity evaluates the precision of the state ρ

to the phase shift assuming that the best measurement strategy is performed. In addition, for single

parameter estimation, the best estimator statistical saturates the quantum Cramr-Rao bound:

Varρ(θ̂best) = 1/[νF(ρ,H)], (2)

Our whole analysis is centralized on interpretation of the role discord in the context of quantum

metrology, This approach can be seen by quantify quantum correlations discord-like in terms of QFI.

In fact, discord has been studied on its own because of some interesting properties: it can be created

by local operations and classical communications (LOCC) and it is intrinsically robust under noisy

dynamics [11].

In this paper, we discuss role of discord-type quantum correlations in metrology. We also give the

description of local Quantum Uncertainty for bipartite systems which can translated into an improved

sensitivity in parameter estimation. We obtain the special kind of quantum discord called ” Quantum

Interferometric Power”. To be specific, we show that the Local Quantum Uncertainty and the Quan-

tum Interferometric Power are parent discord-like measures which quantify the minimum amount of

precision in interferometric phase estimation. We also discuss the role of bipartite discordant state on

the measurement of the phase parameter. In fact, we analyze the effects of the quantum correlations

on the efficiency of phase estimation by using different kinds of locales observables.

This paper is organized as follows. In Section 2 we present the basic of standard metrology task,i.e. an

interferometric phase estimation protocol, where building up discord in the impute state guarantees

non vanishing precision for any Hamiltonian generating the phase shift. In Section 3 we remind the

basis of the Fisher information by introducing the definition of the QFI in terms of the estimator

parameter. Section 4 is devoted to present a simple numerical example to clarify the role of discord

in phase estimation. We conclude in Section 5 with some remarks and comments.

2 Quantum discord in quantum metrology: Definition

Quantum mechanics predicts that measurements of incompatible observables carry a minimum un-

certainty which is independent of technical deficiencies of the measurement apparatus or incomplete

knowledge of the state of the system. Nothing yet seems to prevent a single physical quantity, such

as phase, from being measured with arbitrary precision. In a recent work [7], it has been shown that

an intrinsic quantum uncertainty on a single observable KA = KA ⊗ IB is ineludible in a number of

physical situations when revealed on local observables of a bipartite system, such uncertainty defines

an entire class of bona fide measures of nonclassical correlations of discord-type. All situations in this

concepts requires a specific quantum effect which is provably measured via the function ” Wigner-

Yanase skew information ”. This function quantify the quantum uncertainty on a single observable,

it’s defined by

J(ρ,K) = −1
2Tr[

√
ρ,K]2

= Tr[ρK2 −√
ρK

√
ρK]

(3)
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The Wigner-Yanase skew information is a nonnegative, convex function of the commutator [ρ,KA].

Generally, the Wigner-Yanase theorem imposes a limitation on the measurement of observables in

the presence of a conserved quantity, and the notion of Wigner-Yanase skew information quantifies

the amount of information on the values of observables not commuting with the conserved quantity

[36, 37, 38].

In the following, we focus on a general bipartite state ρ = ρAB and on local observable KA on

subsystem A. In fact, The minimum skew information on a single local observable defines the local

quantum uncertainty (LQU) as:

UA(ρAB) = min
kA

J(ρAB,K
A). (4)

Accordingly, the quantum discord which was originally introduced in the information-theoretic context

is also defined by the minimum decrease of the mutual information J(ρAB) (after a local measurement

identified by the Kraus operators {MA
i }); as

DA(ρAB) = J(ρAB)−max
MA

i

J(ρMA
i (A)B) (5)

where J(ρAB) denotes the total correlation present in bipartite system AB, the second terms of the

above equation defines the classical correlation which depends on Measurement MA
i .

Therefore, UA(ρAB) satisfies all the properties reliable discord-like measures: it vanish iff ρ is classically

correlated, ρAB =
∑

i pi|i⟩⟨i|A ⊗ τiB; it is invariant under local unitary; it nonincreasing under local

operations on B; it reduces to an entanglement monotone for pure states.

The role of quantum discord in quantum metrology was first investigated by Modi et al [8], and

important contributions in this order were made recently in [39, 40]. In the scenario considered in

[40], an experimenter (Alice), must prepare the input state ρA without any prior information about

the Hamiltonian HA. It’s assumed that the phase direction is unveiled at the output state. Thus, Alice

is still allowed to carry out the most informative measurement and build the best possible estimator.

As the sensitivity of the probe is given by the amount of coherence with respect to the eigenbasis of

the Hamiltonian, there is no input which guarantees any degree of precision in the estimation.

However, the situation is different if Alice collaborates with a second player Bob and implements a two-

arm interferometer to perform the estimation; Alice and Bob share a bipartite state ρAB undergoing a

local unitary evolution UA = e−iθHA on the subsystem of Alice with a non-degenerate HamiltonianHA.

The final state UAρABU
†
A is then used to estimate the unknown parameter θ, this parameter can always

be estimated with nonzero precision for any states ρAB of bipartite quantum system type-Discordant.

This result is useful for our propose. In fact, we give an example of a bipartite quantum state to

ensure the success of the estimation regardless of the phase direction. Interestingly, it has been also

shown in [40], that this result is investigated by introducing a new quantifier of quantum correlations:

interferometric power. The interferometric power is able to capture the worst-case precision of the

procedure, and conclude that the presence of discord in a quantum state guarantees its usefulness for

quantum metrology. Experiment supporting these theoretical results has also been reported in [40].

Our goal is to quantify quantum correlation discord-like in terms of QFI, and for that we define the

minimum of QFI by

P(ρAB;HA) =
1

4
min
HA

F (ρAB;HA), (6)
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where this minimum is intended over all Hamiltonians {HA}, and we inserted a normalization factor 1
4

for convenience. We shall refer to (6) as the interferometric power (QIP) of the input state ρAB, since it

naturally quantifies the guaranteed precision that such a state allows in an interferometric configuration

[?]. Following the properties of QFI [41], the (QIP) acquires several interesting properties: it is non

negative; invariant under local unitary transformations and non increasing under local operations on

B; and in general P(HA) ̸= P(HB) except for symmetric quantum states ( systems of pure states).

All these important properties indulge us to avow that the P(ρAB;HA) is the measure of discord-like

quantum correlation.

3 Measure of precision via the quantum Fisher information process

The quantum correlation measure based on quantum Fisher information enables us to gain a deeper

insight on how quantum correlations are instrumental in setting metrological precision [42, 8, 40] . The

quantum Fisher information is not just limited in the field of quantum metrology. It has been widely

applied in other aspects of quantum physics [43, 44] , like quantum information and open quantum

systems. Thus, it is necessary and meaningful to study the quantum Fisher information as well as

its properties and dynamical behaviors under various forms. In a recent study [45], it has been found

that quantum Fisher information can be expressed for density matrices with arbitrary rank, and it

can be reduce to the form of the convex roof of variance [46]. This result is useful for our purpose.

In this report, we give a general expression of quantum Fisher information for a non-full rank density

matrix. For this end, we denote the spectral decomposition of the density matrix ρθ which still non-full

rank as

ρθ =

M∑
i=1

λi|ψi⟩⟨ψi|, (7)

Here, M is the rank of the density matrix ρθ, which equals to the dimension of the support of ρθ, λi

and |ψi⟩ are the ith eigenvalue and eigenstate of the density matrix, respectively.

In this representation, the quantum Fisher information F is defined as below [46]

F = tr(ρθL
2) (8)

where L is the so-called symmetric logarithmic derivative operator and determined by

∂θρθ =
1

2
(Lρθ + ρθL) (9)

Using this representation, the expression of QFI for a non-full rank density matrix [47]

F =

M∑
i=1

(∂θλi)
2

λi
+

M∑
i=1

4λi⟨∂θψi|∂θψi⟩ −
M∑

i,k=1

8λiλk
λi + λk

|⟨ψi|∂θψk⟩|2 (10)

which can intuitively interpreated as the ” velocity” at which the density matrix moves for a given

parameter value. This physical interpretation comes from the fact that the QFI is dependent on the

parameterized density matrix ρθ and its first derivative ∂θρθ.

The QIP for an arbitrary quantum of a bipartite system is obtained by applying the closed formula

derived in the appendix of [ref6],

P(ρAB) = ςmin[M ], (11)
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where ςmin[M ] is the smallest eigenvalue of the 3× 3 matrix M of elements

Mm,n =
1

2

∑
i,j:λi+λj ̸=0

(λi − λj)
2

λi + λj
⟨ψi|σmA ⊗ IB|ψj⟩⟨ψj |σnA ⊗ IB|ψi⟩ (12)

with {λi, ψi} being respectively the eigenvalues and eigenvectors of ρAB. This renders P(ρAB) an

operational and computable indicator of general non classica correlations for pratical purposes.

Subsequently, we consider a family of two qubit density matrices (2-rank density matrix) whose entries

are specified in terms of two real parametrs. They are defined as

ρQ =


c1 0 0

√
c1c2

0 1
2(1− c1 − c2)

1
2(1− c1 − c2) 0

0 1
2(1− c1 − c2)

1
2(1− c1 − c2) 0

√
c1c2 0 0 c2

 (13)

in the computational basis B = {|00⟩, 01⟩, 10⟩, 11⟩}. The parameters c1 and c2 satisfy the conditions

0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1 and 0 ≤ c1+c2 ≤ 1. We have taken all entires positives. To see how to calculate

the QFI, we take the state (13) as an example, This type of states include maximally entangled Bell

states and Werner states [48]. Here, the non-vanishing eigenvalues in terms of the parameters c1 and

c2, are respectively given by

λ+ = c1 + c2, λ− = 1− (c1 + c2), λ++ = 0 , λ−− = 0. (14)

In addition, the corresponding eigenstates to λ+ and λ− writes

|ψ+⟩ =
√

c1
c1+c2

(1, 0, 0,
√

c2
c1
), |ψ−⟩ =

√
2
2 (0, 1, 1, 0), |ψ++⟩ =

√
2
2 (0, 1,−1, 0), |ψ−−⟩ = −

√
c2

c1+c2
(1, 0, 0,

√
c1
c2
).

(15)

In this distribution, the quantum Fisher information for the states type (13) can be expressed by

F (ρQ) = 4λ+{⟨∂θψ+|∂θψ+⟩−|⟨ψ+|∂θψ+⟩|2}+4λ−{⟨∂θψ−|∂θψ−⟩−|⟨ψ−|∂θψ−⟩|2}−16
λ+λ−
λ+ + λ−

|⟨ψ+|∂θψ−⟩|2

(16)

In the other hand, the quantum interferometric power (12) can be formally given by

Mm,n = 1
2
(λ+−λ−)2

λ++λ−
{⟨ψ+|σm ⊗ 1|ψ−⟩⟨ψ−|σn ⊗ 1|ψ+⟩+ ⟨ψ−|σm ⊗ 1|ψ+⟩⟨ψ+|σn ⊗ 1|ψ−⟩}

+ 1
2
(λ+−λ++)2

λ++λ++
{⟨ψ+|σm ⊗ 1|ψ++⟩⟨ψ++|σn ⊗ 1|ψ+⟩+ ⟨ψ++|σm ⊗ 1|ψ+⟩⟨ψ+|σn ⊗ 1|ψ++⟩}

+ 1
2
(λ+−λ−−)2

λ++λ−−
{⟨ψ+|σm ⊗ 1|ψ−−⟩⟨ψ−−|σn ⊗ 1|ψ+⟩+ ⟨ψ−−|σm ⊗ 1|ψ+⟩⟨ψ+|σn ⊗ 1|ψ−−⟩}

+ 1
2
(λ−−λ++)2

λ−+λ++
{⟨ψ−|σm ⊗ 1|ψ++⟩⟨ψ++|σn ⊗ 1|ψ−⟩+ ⟨ψ++|σm ⊗ 1|ψ−⟩⟨ψ−|σn ⊗ 1|ψ++⟩}

+ 1
2
(λ−−λ−−)2

λ−+λ−−
{⟨ψ−|σm ⊗ 1|ψ−−⟩⟨ψ−−|σn ⊗ 1|ψ−⟩+ ⟨ψ−−|σm ⊗ 1|ψ−⟩⟨ψ−|σn ⊗ 1|ψ−−⟩}

(17)

Thus, one verifies that the matrix M is reduces to M11 0 0

0 M22 0

0 0 M33

 , (18)
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it is simple to verify that

M11 = 1− 2[1− (c1 + c2)][
√
c2 +

√
c1]

2,

M22 = 1− 2[1− (c1 + c2)][
√
c2 −

√
c1]

2,

M33 = 4 c1c2
(c1+c2)

+ {1− (c1 + c2)}.
(19)

To evaluate the quantum interferometric power defined in the equation (11), we first compare the

coefficients of the matrix M (19). Remark that the M22 is always greater than M33. In this case,

we discuse the smallest eigenvalue of the matrix M over the elements M11 and M33, it is simple to

verify that the difference M11 −M33 is positive when the parameters c1 and c2 satisfy the following

condition

2(c1 + c2)
2 − (

√
c1 +

√
c2)

2 ≥ 0. (20)

Otherwise, we have M11 ≤M33.

Indeed, for the set of states α ≤ 1
2 , the differnce M11 −M33 is non positive and the quantum interfer-

ometric power (17) writes

P =M11, (21)

which rewrites explicitly as

P = 1− 2[1− (c1 + c2)][
√
c2 +

√
c1]

2. (22)

On the other hand, for α ≥ 1
2 , the condition(20) is satisfied for

0 ≤ c1 ≤ α− , α+ ≤ c1 ≤ α (23)

where

α± =
1

2
α±

√
α3 − α4 (24)

In this case, the quantum interferometric power is given by

P =M33, (25)

Conversely, for α− ≤ c1 ≤ α+ the diffrence M11 −M33 is negative and the quantum interferometric

power reads

P =M11, (26)

The behavior of quantum interferometric power versus c1 is given in the figure 1 for different values

of α = c1 + c2(α = 0.1, 0.2, ..., 0.9) and for two different cases: α ≤ 1
2 and α. ≥ 1

2 .

Figure 1 with 0 ≤ α ≤ 0.5, gives the variation of quantum interferometric power for different values

of α. It can be clearly seen in this figure that, the QIP in the states (13) reaches its maximum value

0.82 for α = 0.1. This maximum value decreases as the parameter α increases. We can also seen that,

the QIP is maximal for two important situations ((c1 = 0, c2 = α),(c1 = α, c2 = 0)) and minimal for

the states with (c1 = c2 =
α
2 ). These situations are addressed in the following section.

The curve of the quantum interferometric power is completely different for with α ≥ 1
2 . In fact, the

QIP changes suddenly when c1 = α− and c1 = α+ (α− and α+ are given by the expressions (24)). This

sudden change of QIP occurs when the states ρQ(13) have a maximum amount of quantum correlation.

On the other hand, the behavior of Quantum Interferomletric Power presents three distinct phases:

0 ≤ c1 ≤ α−, α− ≤ c1 ≤ α+ and α+ ≤ c1 ≤ α. The minimal value of the Quantum Interferometric

Power P is obtained in the intermediate phase (α− ≤ c1 ≤ α+) for the states with (c1 = c2 =
α
2 )
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Figure 1. The quantum interferometric power P as function of the parameter c1 for α ≤ 1
2(α ≥ 1

2)

respectively.

4 Analytical expression of QFI for unitary parameterization process

with different kinds of Hamiltonians

The estimation protocol splits into three steps: preparation of an input state, which has to be sensitive

to the parameter variations, encoding of the information about the unknown parameter, which it is

assumed to be a unitary evolution, measurement of an appropriate observable in the output state. In

the present section, we are in the position to compute the phase uncertainty under different kinds of

Hamiltonians, this quantity is determined by computing the quantum Fisher information.

To determine the explicit form of quantum fisher information in the representation {λ±, |ψ±⟩}, we
consider an estimation of the parameter θ introduced by the following unitary operation

Uθ(H
A) = eiH

Aθ, (27)

where HA = HA ⊗ I. Here I is the 2 × 2 identity matrix and HA is the local Hamiltonian which is

generates a phase transformation defined as

HA = −→r .−→σ = r1σ1 + r2σ2 + r3σ3 (28)

where |r| = 1, i.e, −→r = {sinα cosβ, sinα sinβ, cosα} and −→σ are the Pauli matrices which reads as

σx = |0⟩⟨1|+ |1⟩⟨0|, σy = i(|1⟩⟨0| − |0⟩⟨1|) σz = |0⟩⟨0| − |1⟩⟨1| (29)

respectively. In this case, the QFI (16) reduces to

F (ρQ,HA) = λ+{F (ρQ,HA)|ψ⟩+}+ λ−{F (ρQ,HA)|ψ⟩−} − 16
λ+λ−
λ+ + λ−

|⟨ψ+|HA|ψ−⟩|2 (30)

In the mean time, F (ρQ,HA)|ψ⟩± reduces to the form that is proportional to the variance of operator

HA on the eigenstates, i.e,

F (ρQ,HA)|ψ⟩i = 4(∆2HA)|ψ⟩i , (31)

the subscript i is defined as i = +(−) respectively and (∆2HA)|ψ⟩i = ⟨ψi|(HA)2|ψi⟩ − |⟨ψi|HA|ψi⟩|2

is the variance. It is obvious that QFI is only constituted by the nonzero eigenvalues and the corre-

sponding eigenstates of the density matrix(13). Finaly, it can be expressed as

F (ρQ,HA) = 4− 4 cos2 α
(c1 − c2)

2

(c1 + c2)
− 8{1− (c1 + c2)}{(c1 + c2) sin

2 α+ 2
√
c1c2 sin

2 α cos 2β} (32)
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4.1 Analytical expression for direction σx

To compute the quantum Fisher information F (ρQ, σx), which it is assumed a unitary evolution along

the x-direction, i.e. Uθ(σ
A
x ) = eiσ

A
x θ. We concentrate on the expression of quantum Fisher information

defined in (32) and using {α = π
2 , β = 0}. It is easy to see that the QFI takes the following form

F (ρQ, σx) = 4− 8[1− (c1 + c2)][
√
c2 +

√
c1]

2 (33)

Figure 2. The quantum Fisher information F (ρQ, σx) along the x-direction versus c1 for α ≤ 1
2 and

α ≥ 1
2 .

The behavior of the quantum Fisher information along the x-direction F (ρQ, σx), as function of

the parameters c1, is represented in the figure 2 for two cases(α ≤ 1
2 and α ≥ 1

2). Figure 2 with α ≤ 1
2 ,

gives the variation of quantum correlation measures based on quantum Fisher information F (ρQ, σx)

for different values of α = c1+ c2 (α = 0.1, ..., 0.9). As it can be inferred from this figure, the quantum

Fisher information F (ρQ, σx) in the states (13) reaches its minimal value for c1 =
α
2 . These minimally

discordant states are given by

ρQ(c1 =
α

2
, c2 =

α

2
) = αρ

′
+ (1− α)ρ (34)

where the states ρ and ρ
′
are respectively given by

ρ = |ψ⟩⟨ψ|, ρ
′
= |ψ′⟩⟨ψ′ |, (35)

The corresponding eigenstates denoted by |ψ⟩ and |ψ′⟩ can be written as

|ψ⟩ = 1√
2
(|01⟩+ |10⟩) , |ψ′⟩ = 1√

2
(|00⟩+ |11⟩), (36)

In the other hand, the maximal value of F (ρQ, σx) is obtained in the states with (c1 = 0, c2 = α) or

(c1 = α, c2 = 0). This value maximal correspond respectively to the states of the forms

ρQ(c1 = 0, c2 = α) = α|11⟩⟨11|+ (1− α)|ψ⟩⟨ψ|, (37)

and

ρQ(c1 = α, c2 = 0) = α|00⟩⟨00|+ (1− α)|ψ⟩⟨ψ|, (38)

The situation is completely different for α ≥ 1
2 . In fact, the quantum Fisher information increases as

the parameter c1 increases. For high values of c1(c1 = 0.45 for instance), more precision is provided in

the states with α = 0.9. Thus, the quantum Fisher information F (ρQ, σx) is maximal for c1 = c2 =
α
2 .

Remark: In this figure, as well as in the other figures presented in this section, the expression obtained

of QFIs are plotted normalized by a factor 1
4 .
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4.2 Analytical expression for direction σy

Let us derive the explicit expression of the quantum Fisher information F (ρQ, σy), we consider an

unitary evolution along the y-direction, i.e, Uθ(σ
A
y ) = eiσ

A
y θ (σAy = σy ⊗ I). In this cases, we have

{α = π
2 , β = π

2 } and the explicit expression of the quantum Fisher information F (ρQ, σy) in the state

(13) writes

F (ρQ, σy) = 4− 8[1− (c1 + c2)][
√
c2 −

√
c1]

2 (39)

Figure 3. The quantum Fisher information F (ρQ, σy) along the y-direction versus c1 for α ≤ 1
2 and

α ≥ 1
2 .

The figure 3 gives the quantum Fisher information F (ρQ, σy) along the y-direction as function of

the parameter c1 and c2 for different values of α = c1 + c2. For α ≤ 1
2 or α ≥ 1

2 , the quantum Fisher

information F (ρQ, σy) is maximal for the states satisfying c1 = c2 =
α
2 (34) and minimal for the states

which correspond (c1 = 0, c2 = α)(37) or (c1 = α, c2 = 0)(38). Indeed, the states ρQ(34) can gives a

good precision.

4.3 Analytical expression for direction F (ρQ, σz)

In such case, the unitary operator is defined as Uθ(σ
A
z ) = eiσ

A
z θ (σAz = σz ⊗ I). Especially it is easy to

show that for α = 0 and for any value of β, the quantum Fisher information (32) becomes

F (ρQ, σz) = 4− 4
(c1 − c2)

2

c1 + c2
(40)

We can see from figure 4 that the quantum Fisher information F (ρQ, σx) along the z-direction,

behaves like the quantum Fisher information F (ρQ, σy) along the y-direction depicted in figure 2 and

exhibits the fixed maximum values which move to the left-hand when the parameter α increases.

Indeed, the quantum Fisher information is maximum for c1 = c2 =
α
2 . This indicates that by suitably

choosing the input state, one could get the maximum QFI, which gives the minimum uncertainty of

the unknown parameter from Eq.(13). Another remark in this case, that for c1 = c2 the density matrix

ρQ(13) is a Bell-diagonal state.

• Analysis and results :

Having investigated and discussed the precision in the bipartite discordant states ρQ(13) for unitary

parametrization process with different kinds of Hamiltonians; σx, σy and σz. It can be inferred that,
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Figure 4. The quantum Fisher information F (ρQ, σz) along the z-direction versus c1 for α ≤ 1
2 and

α ≥ 1
2 .

these type of states are permitted to guarantee a nonzero phases precision for all the chosen generating

Hamiltonians (see figures 2, 3, 4 and 5). Consequently, our analysis shows that the quantum correlation

discord-like plays an important roles in quantummetrology. More specially, these quantum correlations

measured by QFI are enable to enhance the phase parameter precision.

In other hand, using the general description of quantum interferometric power, which given explicitly

as

P(ρAB;HA) =
1

4
min
HA

F (ρAB). (41)

We remark that F (ρQ, σy) ≥ F (ρQ, σx). In this case, we rewrite (41) as

P =
1

4
min{F (ρQ, σx), F (ρQ, σz)}, (42)

It is simple to verify that the difference F (ρQ, σx)−F (ρQ, σz) is positive when the parameters c1 and

c2 satisfy the following condition

2(c1 + c2)
2 − (

√
c1 +

√
c2)

2 ≥ 0. (43)

Otherwise, we have F (ρQ, σx) ≤ F (ρQ, σz).

Thus, for a fixed value of α ≤ 1
2 , the quantity F (ρQ, σx)− F (ρQ, σz) is non positive and the quantum

interferometric power (42) writes

P =
1

4
F (ρQ, σx), (44)

which rewrites explicitly as

P = 1− 2[1− (c1 + c2)][
√
c2 +

√
c1]

2. (45)

For α ≥ 1
2 , the condition(43) is satisfied for

0 ≤ c1 ≤ α− , α+ ≤ c1 ≤ α (46)

where

α± =
1

2
α±

√
α3 − α4 (47)

In this case, the quantum Interferometric power is given by

P =
1

4
F (ρQ, σz), (48)
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Conversely, for c1ϵ[α−, α+] the diffrence F (ρQ, σx)− F (ρQ, σz) is negative and the quantum Interfer-

ometric power reads

P =
1

4
F (ρQ, σx), (49)

The behavior of quantum interferometric power versus c1 is given in the figure 5 for different values

of α = c1 + c2 and for two different cases: α ≤ 1
2 and α ≥ 1

2

0.1 0.2 0.3 0.4 0.5
c1

0.0

0.2

0.4

0.8

1.0

Ã

0.2 0.4 0.6 0.8
c1

0.0

0.2

0.6

0.8

Ã

Figure 5. The variation of quantum interferometric power P based on QFI as function of the parameter

c1 for α ≤ 1
2(α ≥ 1

2)respectively.

In the figure 5 (α ≤ 1
2), the quantum correlations discord-like (Quantum Interferometric power)

measured by QFI is maximal for two important situations. These situations are gives by the states

37(38), respectively. Thus, the maximum metrological precision is achievable at the states with α = 0.1

(Pmax = 0.83), and it is determined by the inverse of P ([4νP]−1). This implies the saturation of

inequality of Cramer-Rao bound (1).

The behavior of quantum Interferometric Power P changes for states with α ≥ 1
2 . In fact, the QIP

changes suddenly when c1 = α− and c1 = α+ (α− and α+ are given by the expressions (47)). This

sudden change of QIP occurs when the states ρQ(13) have a maximum amount of quantum correlation.

Also, the behavior of quantum interferomletric Power presents three distinct phases: 0 ≤ c1 ≤ α−,

α− ≤ c1 ≤ α+ and α+ ≤ c1 ≤ α. The minimal value of the Quantum Interferometric Power P is

obtained in the intermediate phase (α− ≤ c1 ≤ α+) for the states given by (34).

Consequently, in the states with (c1 = 0, c2 = α)(37) or (c1 = α, c2 = 0)(38), and for the cases that

α has to be very small, the QIP can give a good precision.

Using the prescription provided in works [49] and [50] to measure the amount of entanglement in

bipartite quantum states. For the states describing in (13) and in the case (α ≥ 1
2), the concurrence

is given by

C = 2max{0, A1, A2}, (50)

where
A1 =

√
c1c2 − 1

2(1− c1 − c2)

A2 = 1
2(1− c1 − c2)−

√
c1c2

(51)

It follows that the concurrence is given by

C = (
√
c1 +

√
c2)

2 − 1 (52)

for

0 ≤ c1 ≤ c−, c+ ≤ c1 ≤ α (53)
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with c± = α±
√
2α−1
2 , and the system is entangled. However, for c− ≤ c1 ≤ c+, the concurrence is

zero and the entanglement disappears, i.e. the system is separable. It is important to stress that

the quantum interferometric power P is nonzero except in the particular case c− = c+ = 0.25. This

implies that even when entanglement disappears in a finite interval of c1, the metrological precision

does not vanish.

5 Delimiting quantum metrology

We pose in this part, on the untimate connection of QFI with quantum metrology and quantum

correlation present in a general bipartite system [51]. In quantum parameter estimation, a quantum

state ρ, undergoes a unitary transformation (in general a shift in phase) so that the evolve state

becomes ρθ = e−iθHρeiθH , where H is the Hamiltonian assumed to have non-degenerate spectrum.

The parameter θ is encoded in the state ρθ and the task is to estimate the unobservable parameter θ.

Interestingly, the lower bound on the error (or variance, ∆θ), in estimating θ, is independent of the

choice of the measurements (POVMs) performed after the unitary evolution and solely determined by

the dependence of the output state on the parameter θ. For a single shot experiment (ν = 1), it is

given by the celebrated quantum Cramr-Rao bound [52] as ∆θ ≥ 1
[F(ρ,H)] .

Our goal is to quantify quantum correlation in terms of QFI and for that we define the minimum of

QFI, QA(ρ), over all local Hamiltonians HA on A-party, as

QA(ρ) = min{HA}F(ρ,HA). (54)

In the presence of the quantum correlation, we have non-zero QA(ρ) and QFI is lower bounded as

QA(ρ) ≤ F(ρ,HA). Hence, the minimum of QFI QA(ρ), rewrites also as [51]

QA(ρ) = min{−→r }F(ρ,HA),

= 1− λmaxw ,
(55)

where λmaxw is the smallest eigenvalue of the real symmetric matrix [W ]ij , which given by

[w]ij =
∑
m̸=n

2λmλn
λm + λn

⟨m|σi ⊗ I|n⟩⟨n|σj ⊗ I|m⟩ (56)

In the other hand, the upper bound of QFI can also be derived and it is the maximal F(ρ,HA) over

all possible HA and can be calculated analytically as [51]

PA(ρ) = max{−→r }F(ρ,HA),

= 1− λminw ,
(57)

where λminw is the smallest eigenvalue of the real symmetric matrix [W ]ij(56).

The PA(ρ) possesses all the good properties as QA(ρ). Thus, the bounds on the QFI becomes PA(ρ) ≥
F(ρ,HA) ≥ QA(ρ). In particular, in the presence of quantum correlation (QA(ρ) ̸= 0), the error on

the estimated parameter, in a single shot experiment, is given by [51]

∆θmax ≥ ∆θ ≥ ∆θmin (58)
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where ∆θmax and ∆θmin are respectively given by

∆θmax = 1
QA(ρ) ; ∆θmin = 1

PA(ρ) . (59)

Remarkably the quantum bipartite states have intrinsic precision in metrology with local unitaries

that is inverse to the quantum correlation present in the system, while it is absent for the CQ states

(see Figure 5). This intrinsic precision is also tested experimentally [40].

As above, to decide about delimiting quantum metrology based on the Fisher information, we introduce

the following quantity

∆θ = ∆θmax −∆θmin (60)

To compute this quantity in a two-qubit state defined by (13), and to investigate the relation given in

(58). we first compare the eigenvalues of the matrix [W ]ij , which are given by

λ1w = 2[1− (c1 + c2)][
√
c2 +

√
c1]

2,

λ2w = 2[1− (c1 + c2)][
√
c2 −

√
c1]

2,

λ3w = (c1−c2)2
c1+c2

,

(61)

Remark that λ1w is always greater than λ2w. At this point, we evaluate the expression of ∆θmax over

the maximum between the eigenvalues λ1w and λ3w. Also, the expression ∆θmin can be derived over

the minimum of the two eigenvalues λ2w and λ3w.

In order to give the explicit expression of ∆θmax, it is simple to verify that the difference λ1w − λ3w is

positive when the parameters c1 and c2 satisfy the following condition

(
√
c1 +

√
c2)

2 − 2(c1 + c2)
2 ≥ 0 (62)

Otherwise, we have λ1w ≤ λ3w. The above condition is satisfied in the situation with α ≤ 1
2 and the

expression of ∆θmax (60) writes

∆θmax = {1− 2(1− α)(
√
c1 +

√
α− c1)

2}−1 (63)

For α ≥ 1
2 , the condition (62) is satisfied also for

α− ≤ c1 ≤ α+ (64)

where

α± =
1

2
α±

√
α3 − α4, (65)

and the expression of ∆θmax takes the form (63).

Conversely, for 0 ≤ c1 ≤ α− and α+ ≤ c1 ≤ α the difference λ1w−λ3w is negative. In this case, one gets

∆θmax = {1− 1

α
(2c1 − α)2}−1 (66)

Now, we determin the explicit form of the quantity ∆θmin, We consider separately the situation

λminw = λ2w and λminw = λ3w. We first treat the situation where λ2w ≥ λ3w. In this case we find the

following condition

(
√
c1 −

√
c2)

2 − 2(c1 + c2)
2 ≥ 0. (67)
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It is interesting to note that this condition is satisfied when

0 ≤ c1 ≤ α−; α+ ≤ c1 ≤ α (68)

and for α ≤ 1
2 . Hence, the explicit form of ∆θmin coincide indeed with the expression described in

(66). Along the same line of reasoning, one verifies that λ2w ≤ λ3w for α− ≤ c1 ≤ α+ (c+ and c− are

given in (65)) and ∆θmin is necessarily of the form

∆θmin = (1− 2(1− α)(
√
c1 −

√
α− c1)

2}−1. (69)

On the other hand, for α ≥ 1
2 the difference λ2w − λ3w is non positive and in this case, the expression

of ∆θmin coincide with the form (69).

The set of eqautions (63), (66) and (69) establishes the correlation quantifiers based on quantum

Fisher information for two-qubit state (13). Indeed, using these expressions, the quantity ∆θ (59) is

given by

∆θ =
{(√c1 +

√
α− c1)

2 − 2α2}
{1− 2(1− α)(

√
c1 +

√
α− c1)2}{ α

(
√
c1+

√
α−c1)2

− (
√
c1 −

√
α− c1)2}

, (70)

and

∆θ =
8
√
c1 (α− c1)(1− α)

1− [4(1− α){α− (2c1 − α)2(1− α)}]
, (71)

for 0 ≤ c1 ≤ α−
∪

α+ ≤ c1 ≤ α and α− ≤ c1 ≤ α+, respectively (α ≤ 1
2).

Conversely, in the case that α ≥ 1
2 , one verifies that

∆θ =
{2α2 − (

√
c1 −

√
α− c1)

2}
{1− 2(1− α)(

√
c1 −

√
α− c1)2}{ α

(
√
c1−

√
α−c1)2

− (
√
c1 +

√
α− c1)2}

, (72)

for 0 ≤ c1 ≤ α−
∪

α+ ≤ c1 ≤ α, and ∆θ coincide with the expression (71) for α− ≤ α ≤ α+.

To corroborate our analysis, we give in the figure 6 the behavior of ∆θmax − ∆θmin present in the

states (13) for two case (α ≤ 1
2 and α ≥ 1

2). Figure 6 with α ≤ 1
2 ( α = c1 + c2) gives the numerical

result of ∆θmax −∆θmin versus the parameter c1. This result show that differnce ∆θmax −∆θmin is

minimal for the states with ((c1 = 0, c2 = α), (c1 = α, c2 = 0)) and maximal for the states with

(c1 = c2 = α
2 ). These two situations are addressed by ((37), (38)) and (34), respectively. Also, we

note that for α = 0.5 the precision is undefined in the states with (c1 = c2 =
α
2 ), this remark indicates

that the quantum interferometric power P is vanish when c1 = 0.25 ((α = 0.5) see figure 5).

The figure 6 with (α ≥ 1
2) shows a nonvanishing precision for any value of parameter c1 and α. On

the other hand, the difference of the amount ∆θmax −∆θmin is changes when (c1 = α− and (c1 = α+

(α− and α+ are given by the expressions (65)). This change occurs when the states ρ (13) have a

maximum value of quantum Fisher information (see Figure 5 with α ≥ 1
2 ). Also, The minimal value

of ∆θmax −∆θmin is obtained in the phase (0 ≤ c1 ≤ α−) for the states given by (37).

6 Entropic measures of bipartite quantum discord

6.1 Definition

Quantum discord has been calculated explicitly only for a rather limited set of two-qubit quantum

states and analytical expressions for more general quantum states are not known [53]. For a state ρAB
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Figure 6 . ∆θmax −∆θmin versus the parameter c1 for different values of α = c1 + c2.

of a bipartite quantum system composed of two particles or modes A and B, the quantum discord is

defined by the difference between total correlation and classical correlation (see (5)), this expression

can be rewritten as [?]

D(ρAB) = S(ρA) + S̃min − S(ρAB). (73)

in terms of von-Neumann entropy S(ρ) after performing taken an optimization over all perfect mea-

surement [53](seen also [?] and [?] ).

Where S(ρAB){S(ρA)} is the Von-Neumann entropy of the matrix density ρAB{ρA}, respectively.

According to the density matrix (11), the expressions of S(ρAB) and S(ρA)} are explicitly given by:

S(ρAB) = −λAB+ log2λ
AB
+ − λAB− log2λ

AB
− . , S(ρA) = −λA+log2λA+ − λA−log2λ

A
− (74)

Thus, the corresponding eigenvalues are defined by

λAB+ = c1 + c2 , λAB− = 1− (c1 + c2) (75)

in the case of the bipartite density matrix ρAB, and

λA+ = 1
2(1 + c1 − c2) , λA− = 1

2(1− c1 + c2) (76)

for the subsystem described by the reduced density matrix ρA. Here, the von-Neumann entropy

defined by S(ρ) = −xlog(x)− (1−x)log(1−x)(x present the eigenvalues of the system corresponding

) is exactly the binary entropy function H(x). Therefore, the expression of quantum discord (73) for

the bipartite state (11) can be simply obtained as

D(ρAB) = H(c1 + c2)−H(
1

2
(1 + c1 − c2)) + S̃min (77)

The final step in evaluating the quantum discord is the minimization of conditional entropy to get an

explicit expression of the quantum discord in the bipartite system: the following section is an objective

in this order.

6.2 Minimization of conditional entropy: Koashi-Winter relation

To minimize the conditional entropy S̃min, we shall use the purification method and the Koashi-Winter

relation [54]. This relation establishes the connection between classical correlation of a bipartite state
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ρQ = ρAB and the entanglement of formation of its complement ρBC . The density matrix described

in ρAB can be written as

ρAB = λAB+ |ψ1⟩AB⟨ψ1|+ λAB− |ψ2⟩AB⟨|ψ2| (78)

where the set of the eigenvalues and the corresponding eigenstates denoted by λAB+ (λAB− ) = λ+(λ−)

and |ψ1⟩AB(|ψ2⟩AB) = |ψ1⟩(|ψ2⟩) respectively, is defined previously in (12) and (13). The purification

of the state ρAB is realized by attaching a qubit C to the two-qubit system A and B. This yields

|ψ⟩ABC =
√
λAB+ |ψ1⟩AB ⊗ |0⟩C +

√
λAB− |ψ2⟩AB ⊗ |1⟩C (79)

such that the whole system ABC is described by the pure density matrix ρABC = |ψ⟩⟨ψ| from which

one has the bipartite densities ρAB = TrCρABC and ρBC = TrAρABC . According to koachi-Winter

relation [55], the minimal value of the conditional entropy coincides with the entanglement of formation

of ρBC :

S̃min = E(ρBC) = H(
1

2
+

1

2

√
1− |C(ρBC)|2) (80)

whereH(x) = −xlog2x−(1−x)log2(1−x) is the binary entropy function and C(ρBC) is the concurrence

of the density matrix ρBC given by [54]:

|C(ρBC)|2 = 2[1− c1 − c2](
√
c1 −

√
c2)

2 (81)

Finally, reporting (38), (39) in the definition (35), the explicit expression of quantum discord for the

density ρAB is

D(ρAB) = H

(
c1 +

1

2
(1− α)

)
+H

(
1

2
+

1

2

√
1− 2(1− α)(α− 2

√
c1(α− c1))

)
−H(α) (82)
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Figure 7. Quantum discord D(ρAB) as function of the parameter c1 for α ≤ 1
2 and α ≥ 1

2 .

In figure 7, we plot the quantum discord D(ρAB) as function of the parameters c1 and c2 for

different values of α = c1 + c2 (α=0.1, ...,0.9 ). For states with α ≤ 1
2 , the quantum discord decreases

as α increases, also it reaches the minimal value for c1 = α
2 . These ”minimally discordant” state

are given by (34). In addition, the maximal value of quantum discord is obtained in the states with

(c1 = 0, c2 = α) and (c1 = α, c2 = 0) which are previously given by 37(38) respectively.

In this case, we can conclude that quantum discord D(ρAB) for the states with (α ≤ 1
2) has the same

properties of ”Quantum Interferometric Power” P.

In the situation of states with α ≥ 1
2 . The quantum discord for the states with α = 0.6 is minimal
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at c1 = 0.3. this minimam discordant state given by (34), the quantum discord is almost constant in

the states with α = 0.7, However, the situation is completely different for α = 0.8 and α = 0.9 the

quantum discord D(ρAB) is evolve continuously for these states. Indeed, for the states with α = 0.9

(c1 = 0.45 for instence) the quantum discord is maximum (see condition (34)).

7 Concluding remarks

In summary, we have analyzed the role of quantum correlation of the bipartite mixed-state in quan-

tum metrology. In fact, we investigate the role of quantum discord in phase parameter estimation:

whenever a system shares discord, quantum Mechanics predicts that any local measurement has a

degree of uncertainty which translates into an improved sensitivity in parameter estimation. The Lo-

cal Quantum Uncertainty and the Quantum Interferometric Power are parent discord-like measures,

which quantify the minimum amount of precision in interferometric phase estimation.The best suited

measure of quantum correlation, which laid the basis of investigation, is the one based on quantum

Fisher information originally introduced in [46]. Our results suggest that the bipartite mixed states

type-discordant can be a promising resource for realizing quantum technology. In fact, for such states

quantum discord is present. This adds to the evidence that quantum discord may be responsible for

some quantum enhancements. An interesting question is to establish if the metrological measures of

discord, which have been introduced for the bipartite quantum systems, can be extended to quantify

multipartite correlations; we hope to treat this issue in a forthcoming work.
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