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Abstract

A special emphasis is devoted to the concept of local quantum uncertainty as an indicator of quantum

correlations. We study quantum discord for a class of two-qubit states parameterized by two parameters.

Quantum discord based on local quantum uncertainty, von Neumann entropy and trace distance (Schatten 1-

norm) are explicitly derived and compared. The behavior of quantum correlations, quantified via local quantum

uncertainty, under decoherence effects is investigated. We show that the discord-like local quantum uncertainty

exhibits the possibility of freezing behavior during its evolution.
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1 Introduction

Characterizing quantum correlations in multipartite quantum systems is one of the most challenging topics in

quantum information theory. Various measures to quantify the degree of quantumness in multipartite quantum

systems were introduced in the literature. The most familiar ones are the concurrence, the entanglement of

formation, the quantum discord and its various geometric versions [1, 2, 3, 4, 5]. The interest in quantum corre-

lations other than entanglement lies in the existence of nonclassical correlations even in separable states [6, 7].

In fact, entanglement does not account for all nonclassical aspects of correlations, especially in mixed states.

This yielded many works dedicated to introduce quantum correlation quantifiers beyond entanglement. As the

total correlation is the sum of two contributions: a classical part and quantum part, different concepts were

considered to develop the best way to distinguish between classical and quantum correlations. In this context,

the entropy-based quantum discord [6, 7] is probably the quantifier which has been intensively investigated in

the literature for different purposes and from several perspectives (see for instance [5]). However, the analytical

evaluation of entropic quantum discord is, from a computational side, difficult to achieve for an arbitrary bipar-

tite system and only partial results were obtained for some special two-qubit states. To overcome such technical

difficulties geometric variants of quantum discord were introduced by employing Schatten p-norms. The first

geometric formulation of quantum discord was developed in [8] by adopting the Hilbert-Schmidt norm (p = 2)

to measure the distance between a given state and the set of zero-discord states. This quantum correlations

indicator is is easily computable [9, 10, 11, 12] but it suffers from its non-contractibility under trace preserving

channels [13]. In fact, the Hilbert-Schmidt based quantum discord can increase under local operations on the

unmeasured qubit. The Bures norm (trace norm with p = 1) is the only Schatten p-norm which is contractible

[14]. This distance was used successfully to describe the quantum correlations in several two-qubit systems

[14, 15, 16].

The issue concerning the measures of quantum correlations continues to draw special attention in quan-

tum information science. Recently, the concept of local quantum uncertainty was proposed as an indicator of

quantum discord in bipartite systems. It is based on the notion skew information introduced by Wigner to

determine the uncertainty in the measurement of an observable [17]. The local quantum uncertainty is defined

as the minimum of the skew information over all possible local observables. This measure offers an appropriate

tool to evaluate the analytical expressions of quantum correlations encompassed in any qubit-qudit bipartite

system [18]. The local quantum uncertainty is related to the quantum Fisher information [19, 20, 21] which is a

key ingredient in quantum metrology protocols [22]. Also, it quantifies the speed of the local (unitary) evolution

of a bipartite quantum system [18].

In this paper, the analytical derivation of quantum discord is essentially approached in the context of local

quantum uncertainty formalism. We consider a special family of rank-2 X states which includes various types

of two-qubit states of interest in different models of collective spin systems. One may quote for instance Dicke

model [23] and Lipkin-Meshkov-Glick model [24] for which the quantum discord was investigated in relation

2



with their critical properties and quantum phase transitions (see for instance [25, 26, 27, 28]). Remarkably, it

has been shown that the quantum discord provides a suitable indicator to understand the role of quantum cor-

relations in characterizing quantum phase transitions [29](see also [30]). We note also that the set of two-qubit

under consideration are of special relevance in investigating quantum correlations in bipartite states extracted

from multi-qubit Dicke states and their superpositions(e.g., generalized GHZ states, even and odd spin coherent

states) [31]. Besides the explicit derivation of the local quantum uncertainty, we also determine the von Neu-

mann entropy-based quantum discord and the trace distance discord for this class of two-qubit states. Another

facet of this work concerns the dynamics of the local quantum uncertainty under decoherence effects due to the

unavoidable interaction of a quantum system with its environment.

The paper is structured as follows. In section 2, we give the explicit expressions for local quantum uncertainty,

the von Neumann entropy-based quantum discord and the trace norm quantum discord for a special class of

two-qubit states of particular relevance in investigating bipartite quantum correlations in various collective spin

models. In section 3, under four typical quantum decoherence channels (bit flip, phase flip, bit-phase flip and

generalized amplitude damping), we give the analytic expressions of local quantum uncertainty. In particular,

we show the freezing character of local quantum uncertainty in some particular situations. Concluding remarks

close this paper.

2 Local quantum uncertainty, entropic quantum discord and geo-

metric quantum for rank two X states

The two-qubit density matrices which display non-zero entries only along the main- and anti-diagonals are

usually called X-states. They generalize several two-qubit states as for instance Bell-diagonal states (see [1]),

Werner states [32], isotropic states [33]. Their particular relevance was first identified in investigating the phe-

nomenon of sudden death of entanglement [34] and since then extended to many other contexts of quantum

information theory. A generic X-state is parameterized by seven real parameters and the corresponding symme-

try is fully characterized by the su(2)× su(2)×u(1) subalgebra of the full su(4) algebra describing an arbitrary

two-qubit system [35]. This symmetry reduction from su(4) to su(2)× su(2)× u(1) renders easy many analyti-

cal calculations of concurrence, entanglement of formation, quantum discord and leads to interesting results in

studying their properties and their evolution under dissipative processes (see for instance [36, 37]).

In this work, we consider the set of two-qubit density matrices which have the following form

ρ =


c1 0 0

√
c1c2

0 1
2 (1− c1 − c2)

1
2 (1− c1 − c2) 0

0 1
2 (1− c1 − c2)

1
2 (1− c1 − c2) 0

√
c1c2 0 0 c2

 (1)

in the computational basis B = {|00⟩, |01⟩, |10⟩, |11⟩}. The parameters c1 and c2 satisfy the conditions 0 ≤ c1 ≤ 1

, 0 ≤ c2 ≤ 1 and 0 ≤ c1 + c2 ≤ 1. We assume that all entries of the matrix ρ are positives. In fact, the local
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unitary transformation, acting on the qubits 1 and 2 of the system,

|0⟩k → exp

(
i

2
(θ1 + (−)kθ2)

)
|0⟩k k = 1, 2

eliminates the phase factors of the off diagonal elements and the rank of the density matrix ρ remains unchanged.

In the Fano-Bloch representation, the matrix density ρ (1) writes

ρ =
1

4

∑
α,β

Rαβσα ⊗ σβ

where the correlation matrix elements Rαβ are given by Rαβ = Tr(
√
ρ σα ⊗ σβ) with α, β = 0, 1, 2, 3, σi

(i = 1, 2, 3) are the usual Pauli matrices and σ0 is 2× 2 identity matrix. The non-vanishing correlation matrix

elements are given by

R30 = R03 = c1 − c2 R33 = 2(c1 + c2)− 1, R11 = 1− (
√
c1 −

√
c2)

2 R22 = 1− (
√
c1 +

√
c2)

2. (2)

The density matrix (1) is invariant under parity symmetry and exchange transformation (ρ commutes with

σ3 ⊗ σ3 and the permutation operator which exchanges the qubit state |i, j⟩ to |j, i⟩ leaves ρ unchanged).

These symmetries simplify considerably the complexity of the analytical evaluations of bipartite correlations.

Indeed, from a practical viewpoint, our interest on this type of X states (1) relies upon their simple analytical

manipulation in contrast with an arbitrary two-qubit state for which one is forced to resort heavy numerical

analysis.

2.1 Local quantum uncertainty: Definition

The concept of local quantum uncertainty is now considered as a promising quantifier of quantum correlation.

This is essentially due to its easiness of computability and its reliability. It quantifies the minimal quantum

uncertainty in a quantum state due to a measurement of a local observable [18]. For a bipartite quantum state

ρ12, the local quantum uncertainty is defined as

U(ρ12) ≡ min
K1

I(ρ12,K1 ⊗ I2), (3)

where K1 is some local observable on the subsystem 1, I2 is the identity operator leaving unchanged the

subsystem 2 and

I(ρ12,K1 ⊗ I2) = −1

2
Tr([

√
ρ12,K1 ⊗ I2]2) (4)

is the skew information [17, 19]. The skew information represents the non-commutativity between the state

ρ12 and the observable K1. The analytical evaluation the local quantum uncertainty requirers a minimization

procedure over the set of all observales acting on the subsystem 1. A closed form for qubit-qudit systems was

derived in [18]. Accordingly, for the two-qubit states (1) the expression of the local quantum uncertainty is

given by [18]

U(ρ) = 1− λmax{W}, (5)

where λmax{W} denotes the maximum eigenvalue of the 3× 3 matrix W whose matrix elements are defined by

ωij ≡ Tr{√ρ(σi ⊗ σ0)
√
ρ(σj ⊗ σ0)}, (6)
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with i, j = 1, 2, 3. The local quantum uncertainty provides an appropriate quantifier of the minimum amount of

uncertainty in a bipartite quantum state. For pure bipartite states, it reduces to linear entropy of the reduced

densities of the subsystems. Also, it vanishes for classically correlated states. Another interesting property of

local quantum uncertainty is its invariance under local unitary operations. This quantum correlations indicator

enjoys all required properties to quantify consistently the quantum discord in bipartite systems [18]. Hence,

in what follows, we derive the analytical expression of local quantum uncertainty in the two-parameter states

(1). This is compared with the geometric quantum discord based on the trace distance [13, 14, 15] and the

entropy-based quantum discord originally defined in [6, 7]. To get the explicit form of the matrix elements (6),

one needs the squared matrix
√
ρ. It is given by

√
ρ =


c1√

c1+c2
0 0

√
c1c2√
c1+c2

0 1
2

√
1− c1 − c2

1
2

√
1− c1 − c2 0

0 1
2

√
1− c1 − c2

1
2

√
1− c1 − c2 0

√
c1c2√
c1+c2

0 0 c2√
c1+c2

 (7)

in the computational basis. In Fano-Bloch representation, it rewrites as

√
ρ =

1

4

∑
α,β

Rαβσα ⊗ σβ

with Rαβ = Tr(
√
ρ σα ⊗ σβ). The non vanishing matrix correlation elements Rαβ are explicitly given by

R00 =
√
c1 + c2 −

√
1− c1 − c2, R03 = R30 = c1 − c2

R11 =
√
1− c1 − c2 + 2

√
c1c2√
c1 + c2

, R22 =
√
1− c1 − c2 − 2

√
c1c2√
c1 + c2

, R33 =
√
c1 + c2 −

√
1− c1 − c2.

Reporting the matrix (7) in the equation (6), it is simple to check that the matrix W (6) is diagonal and the

diagonal elements are given by

ω11 =

√
1− (c1 + c2)

c1 + c2
(
√
c1 +

√
c2)

2, ω22 =

√
1− (c1 + c2)

c1 + c2
(
√
c1 −

√
c2)

2, ω33 =
(c1 − c2)

2

c1 + c2
. (8)

We note that the eigenvalue ω11 is always larger than ω22 so that ωmax = max(ω11, ω33). It is simply verified

that the states for which ω11 ≥ ω33 are parameterized by c1 and c2 satisfying the following condition√
(c1 + c2)(1− (c1 + c2))− (

√
c1 −

√
c2)

2 ≥ 0. (9)

To examine this condition, the set of states of type (1) is partitioned as

{ρ ≡ ρc1,c2 , 0 ≤ c1 + c2 ≤ 1} =
∪

α∈[0,1]

{ρα ≡ ρc1,α−c1 , 0 ≤ c1 ≤ α}

with c1 + c2 = α. Therefore, for a fixed value of α and 0 ≤ c1 ≤ α, the condition (9) becomes

2
√
c1

√
α− c1 +

√
α (

√
1− α−

√
α) ≥ 0. (10)

From this condition, one can see that (ω11 − ω33) is always positive for α ≤ 1
2 and this implies ωmax = ω11.

Conversely, for α ≥ 1
2 , one verifies that the condition (10) is satisfied for α− ≤ c1 ≤ α+ but not satisfied for

0 ≤ c1 ≤ α− or α+ ≤ c1 ≤ α where the quantities α− and α+ are defined by

α± =
α

2
± 1

2

√
α
√
1− α

(
2
√
α−

√
1− α

)
. (11)
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Accordingly, the maximum eigenvalue of the local uncertainty matrix W (6) for α ≥ 1
2 writes as

ωmax =


ω33 for 0 ≤ c1 ≤ α−

ω11 for α− ≤ c1 ≤ α+

ω33 for α+ ≤ c1 ≤ α

(12)

To give expression of the local quantum uncertainty measure, the situations where the parameter α is greater

or smaller than 1
2 are treated separately. Hence, for α ≤ 1

2 , the local quantum uncertainty takes the form

U(ρ) = 1−
√

1− α

α
(
√
c1 +

√
α− c1)

2 with 0 ≤ c1 ≤ α. (13)

For α ≥ 1
2 , the local quantum uncertainty is given by two different expressions. Indeed, one obtains

U(ρ) = 1−
√

1− α

α
(
√
c1 +

√
α− c1)

2 for α− ≤ c1 ≤ α+, (14)

and

U(ρ) = 1− (2c1 − α)2

α
for 0 ≤ c1 ≤ α− and α+ ≤ c1 ≤ α. (15)

The quantum discord quantified by local quantum uncertainty in the states ρ (1) is depicted in figure 1 for

different values of α. We notice that the local quantum uncertainty is non zero except for c1 = c2 = 1
4 with

α = 1
2 . The discord-like local quantum uncertainty goes beyond entanglement. This can be verified by means

of Wootters concurrence [38] which is given by the following expression

C12(ρ) = |(
√
c1 +

√
c2)

2 − 1|. (16)

for the two-qubit states (1). Setting α = c1+ c2, it is simple to check that for α ≤ 1
2 all two-qubit states of type

(1) are entangled except the state with c1 = c2 = 1
4 . Similarly, one verifies that for α > 1

2 , the states ρα are

entangled except those with (c1, c2) =
1
2

(
α+

√
2α− 1, α−

√
2α− 1

)
and (c1, c2) =

1
2

(
α−

√
2α− 1, α+

√
2α− 1

)
which are separable. For this special set of separable states, the local quantum uncertainty is non-zero as it

can be verified from the equations (14) and (15). The only state with zero local quantum uncertainty is the

separable state with c1 = c2 = 1
4 when α = 1

2 .

The figure 1 shows that for α ≤ 1
2 the local quantum uncertainty is minimal in the states with c1 = c2 = α

2

that are given by

ρ
(
c1 =

α

2
, c2 =

α

2

)
= (1− α)|ψ1⟩⟨ψ1|+ α|ψ2⟩⟨ψ2| (17)

in terms of the Bell states |ψ1⟩ and |ψ2⟩ defined by

|ψ1⟩ = 1√
2
(|01⟩+ |10⟩) , |ψ2⟩ = 1√

2
(|00⟩+ |11⟩). (18)

On the other hand, the maximal amount of quantum correlations in the states with α ≤ 1
2 is reached when

(c1 = 0, c2 = α) or (c1 = α, c2 = 0) which are given respectively by

ρ(c1 = 0, c2 = α) = α|11⟩⟨11|+ (1− α)|ψ1⟩⟨ψ1| or ρ(c1 = α, c2 = 0) = α|00⟩⟨00|+ (1− α)|ψ1⟩⟨ψ1|. (19)

6



It is also important to stress that, for α ≤ 1
2 , states with small values of α contain more quantum correlations.

This situation is completely different for α ≥ 1
2 . In fact, as depicted in the right sub-figure of Fig.1, the

local quantum uncertainty increases as the parameter α increases. Also, the local quantum uncertainty starts

exhibiting a minimal amount of quantum correlations in the states (c1 = α
2 , c2 = α

2

)
(17) but as α increases the

quantum correlations are minimal for the states (c1 = 0, c2 = α) or (c1 = α, c2 = 0) (19). This behavior can

be seen from Fig.1 by comparing for instance the curves corresponding to α = 0.6 and α = 0.9. Similarly, the

maximal amount of quantum correlations is no longer obtained for states with (c1 = 0, c2 = α) or (c1 = α, c2 = 0)

like in the case where α ≤ 1
2 (see the left sub-figure of Fig.1). For the states with α ≥ 1

2 , the maximal local

quantum uncertainty is attainable when (c1 = α+, c2 = α−) or (c1 = α−, c2 = α+) where the quantities α+ and

α− are given by (11). It is remarkable that in these particular states encompassing a large amount of quantum

correlations, the local quantum uncertainty presents a double sudden change. This is essentially due to the jump

between the eigenvalues ω11 and ω33 of the local quantum uncertainty matrix. This intriguing phenomenon has

no analogue with von Neumann based quantum discord as we shall discuss in what follows.

0.1 0.2 0.3 0.4 0.5
c1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LQU

Α=0.5

Α=0.4

Α=0.3

Α=0.2

Α=0.1

0.0 0.2 0.4 0.6 0.8
c10.0

0.1

0.2

0.3

0.4

0.5

LQU

Α=0.6

Α=0.7

Α=0.8

Α = 0.9

Figure 1. The Local quantum uncertainty U versus the parameter c1 for different values of α.

2.2 Entropy-based quantum discord

The quantum discord in two-qubit states is defined as the difference between the mutual information and the

classical correlations in a bipartite quantum system [6, 7]

D(ρ) = I(ρ)− C(ρ). (20)

The total correlation is usually quantified by the mutual information I given by

I(ρ) = S(ρ1) + S(ρ2)− S(ρ), (21)

where ρ is the state of a bipartite quantum system formed by two qubits labeled as 1 and 2, the operator

ρ1(2) = Tr1(2)(ρ) is the reduced state of 1(2) and S(ρ) is the von Neumann entropy of the quantum state ρ.

The non vanishing eigenvalues of the density matrix ρ (1) are λ1 = c1 + c2 and λ2 = 1− (c1 + c2) and the joint

entropy writes as

S(ρ) = H(c1 + c2) (22)

where H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function. The eigenvalues of the reduced

density matrices ρ1 and ρ2 are identical. They are given by 1
2 (1+c1−c2) and

1
2 (1−c1+c2) so that the marginal
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entropy for ρ1 and ρ2 are given by

S(ρ1) = S(ρ2) = H

(
1 + c1 − c2

2

)
. (23)

Reporting (22) and (23) in the definition (21), the mutual information writes as

I(ρ) = 2H

(
1 + c1 − c2

2

)
−H(c1 + c2). (24)

To determine the classical correlations C(ρ), one adopts the method developed in [39] for rank-2 two-qubit

states. Indeed, this method simplifies considerably the analytical derivation of the entropic quantum discord.

It consists in purifying the two-qubit system by a third qubit describing the environment and making use of

the Koashi-Winter theorem [40]. This theorem constitutes the key ingredient to get the quantum discord in

two-qubit systems described by density matrices of rank 2. Moreover, it establishes a nice connection between

the quantum discord and the entanglement of formation (for more details see the references [41, 42, 43]). In

this approach, the classical correlation C(ρ) is expressed in term of the entanglement of formation between the

second qubit and the third qubit representing the environment. To apply this approach for the class of states of

interest in this work and to employ the Koashi-Winter theorem, we first consider the purification of the states

of type (1) that we rewtite as follows

ρ = λ1|Φ1⟩⟨Φ1|+ λ2|Φ2⟩⟨Φ2|

where λ1 and λ2 are the eigenvalues of ρ and |Φ1⟩ and |Φ2⟩ are the corresponding eigenstates:

|Φ1⟩ =
√
c1√

c1 + c2
|0, 0⟩+

√
c2√

c1 + c2
|1, 1⟩, |Φ2⟩ =

1√
2
|0, 1⟩+ 1√

2
|1, 0⟩. (25)

Attaching a qubit 3 to the two-qubit system 1− 2, we write the purification of ρ as

|Φ⟩123 =
√
λ1|Φ1⟩ ⊗ |0⟩3 +

√
λ2|Φ2⟩ ⊗ |1⟩3 (26)

such that the whole system 123 is described by the pure state ρ123 = |Φ⟩123⟨Φ| from which one extracts the

density matrix ρ23 = Tr1ρ123 associated to the subsystem 2 − 3. As we are dealing with two-qubit states of

rank 2, the analytical expression of the classical correlations can be obtained by means of the Koashi-Winter

theorem [40, 39, 19, 42]. Indeed, one has

C(ρ) = S(ρ2)− E(ρ23). (27)

where S(ρ2) is given by (23) and the entanglement of formation E(ρ23) is defined by

E(ρ23) = H(
1

2
+

1

2

√
1− |C23|2). (28)

Using the Wootters formula [38], the concurrence C23 for the bipartite state ρ23 writes

|C23|2 = 2(1− c1 − c2)(
√
c1 −

√
c2)

2. (29)

Reporting the Koashi-Winter relation (27) in the definition (20) and using the equation (21), the quantum

discord in the states ρ takes the simple form

D(ρ) = S(ρ1) + E(ρ23)− S(ρ), (30)
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which can be rewritten, using the expressions (22), (23) and (28), as

D(ρ) = H

(
1 + c1 − c2

2

)
+H(

1

2
+

1

2

√
1− 2(1− c1 − c2)(

√
c1 −

√
c2)2)−H(c1 + c2), (31)

in terms of the parameters c1 and c2. Setting α = c1 + c2, the quantum discord in the states ρα, with a fixed

value of α, is given by

D(ρα) = H

(
1− α

2
+ c1

)
+H

(
1

2
+

1

2

√
1− 2(1− α)(α− 2

√
c1
√
α− c1)

)
−H(α). (32)

Figure 2 shows that the entropic quantum discord D(ρα) exhibits similar behavior as the quantum discord

based on local quantum uncertainty for α ≤ 1
2 . The minimal amount of quantum correlations is obtained in the

states ρα with (c1 = c2 = α
2 ) (17) and the maximally correlated states are the states with (c1 = 0, c2 = α) and

(c1 = α, c2 = 0) given by (19). However, for the states ρα with α ≥ 1
2 , we observe that the entropic quantum

discord D(ρα) and quantum discord based on local quantum uncertainty U(ρα) behave differently. Indeed, for

the particular values α = 0.6 or α = 0.7, one can see that the maximal amount of entropic quantum discord is

reached for (c1 = 0, c2 = α) and (c1 = α, c2 = 0) contrarily to quantum correlations based on local quantum

uncertainty for which the maximum is attained for the states (c1 = α+, c2 = α−) or (c1 = α−, c2 = α+) where

α+ and α− are given by (11). Furthermore, the entropic quantum discord for the states ρα with α = 0.8 or

α = 0.9 is maximal when (c1 = c2 = α
2 ) while the maximum of the quantum discord based on local quantum

uncertainty U(ρα) is obtained when (c1 = α+, c2 = α−) or (c1 = α−, c2 = α+). Also, from figure 2, it can be

inferred that the minimal value of the quantum discord D(ρα) for α = 0.8 or α = 0.9 is not obtained in the

states with (c1 = 0, c2 = α) and (c1 = α, c2 = 0) as it is the case with local quantum uncertainty (see figure 1).

0.1 0.2 0.3 0.4 0.5
c1

0.2

0.4

0.6

0.8

D

Α=0.5

Α=0.4

Α=0.3

Α=0.2

Α=0.1

0.2 0.4 0.6 0.8 1.0
c1

0.1

0.2

0.3

0.4

0.5

D

Α=0.9

Α=0.8

Α=0.7

Α=0.6

Figure 2. The quantum discord D(ρα) versus the parameter c1 for different values of α.

2.3 Geometric quantum discord

The lack of a closed-form expression of quantum discord based on von Neumann entropy motivated the intro-

duction of the geometric quantifiers of quantum correlations. The first geometric variant of quantum discord

was introduced in [8] by means of Hilbert-Schmidt norm. However, as pointed out in [13], the Hilbert-Schmidt

quantum discord cannot be considered as a good indicator of the quantumness of correlations. In fact, the

Hilbert-Schmidt quantum discord can increase under local operations on unmeasured qubit [13, 44]. To over-

come this drawback, the trace norm (or 1-norm) was employed as a reliable geometric quantifier of quantum
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discord [14]. The expressions of trace distance quantum discord have been analytically derived for general

Bell-diagonal states [14, 45] and for an arbitrary two-qubit X state [46]. The trace distance quantum discord

for a two-qubit state ρ is defined by

Dg(ρ) =
1

2
min
χ∈Ω

||ρ− χ||1, (33)

where the trace distance is defined by ||ρ − χ||1 = Tr
√

(ρ− χ)†(ρ− χ). It measures the distance between the

state ρ and the classical-quantum state χ belonging to the set Ω of classical-quantum states. A generic state

χ ∈ Ω is of the form χ =
∑

k pk Πk,1 ⊗ ρk,2 where {pk} is a probability distribution, Πk,1 are the orthogonal

projector associated with the qubit 1 and ρk,2 is density matrix associated with the second qubit. For two-qubit

X states, the minimization in (33) was analytically worked out to get the explicit expression of trace distance

quantum discord in [46]. Thus, for the states ρ under consideration (1), it writes as

Dg(ρ) =
1

2

√
R2

11 max{R2
33, R

2
22 +R2

03} −R2
22 min{R2

11, R
2
33}

max{R2
33, R

2
22 +R2

03} −min{R2
11, R

2
33}+R2

11 −R2
22

, (34)

where the correlation matrix elements are given by (2). Using the expressions (2), one verifies that

R2
22 −R2

33 +R2
03 = 2(1− (c1 + c2))(

√
c1 −

√
c2)

2,

and max{R2
33, R

2
22 +R2

03} = R2
22 +R2

03. It follows that the geometric quantum discord (34) rewrites as

Dg(ρ) =
1

2

[
Θ(|R33| − |R11|) |R11|+Θ(|R11| − |R33|)

√
R2

11(R
2
22 +R2

03)−R2
22R

2
33

R2
11 −R2

33 +R2
03

]
(35)

where Θ(.) is the usual Heaviside function. Clearly, one has to treat separately the states with |R33| ≤ |R11| and

|R11| ≤ |R33|. As previously, we set c1 + c2 = α. It is simple to verify that for 0 ≤ α ≤ 2
3 , |R11| is always larger

than |R33|. For the situation where 2
3 ≤ α ≤ 1, the two-qubit states ρα satisfy the conditions |R33| ≤ |R11|

when c1 ∈ [c−, c+] and |R11| ≤ |R33| when c1 ∈ [0, c−] ∪ [c+, α] with

c± =
α

2
±
√
(1− α)(2α− 1). (36)

are the solutions of the equation |R11| = |R33| for a fixed value of α. As by-product, the expression (35) becomes

Dg(ρα) =
1

2

√(
1− (

√
c1 +

√
α− c1)2

)2

+ 4
√
c1(α− c1)(

√
c1 −

√
α− c1)2 for 0 ≤ α ≤ 2

3
(37)

and for the states ρα with 2
3 ≤ α ≤ 1, one gets

Dg(ρα) =



1
2

(
1− (

√
c1 −

√
α− c1)

2

)
for 0 ≤ c1 ≤ c−

1
2

√(
1− (

√
c1 +

√
α− c1)2

)2

+ 4
√
c1(α− c1)(

√
c1 −

√
α− c1)2 for c− ≤ c1 ≤ c+

1
2

(
1− (

√
c1 −

√
α− c1)

2

)
for c+ ≤ c1 ≤ α

(38)

In figure 3, the 1-norm geometric quantum discord shows a quasi similar behavior as the quantum discord

based on local quantum uncertainty plotted in figure 1. Indeed, for α < 1
2 the trace distance quantum correla-

tions is maximal in the states ρα with (c1 = 0, c2 = α) and (c1 = α, c2 = 0) given by (19). Also, the amount of
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quantum correlations is minimal in the state with (c1 = c2 = α
2 ) given by (17). This agrees with results obtained

with the local quantum uncertainty. The behaviors of these two quantifiers become sensibly different for α ≥ 1
2 .

Indeed, for α = 1
2 the variation of the geometric discord, with respect to the parameter c1, is quasi linear.

The geometric discord exhibits also a double sudden change when (c1 = c+, c2 = c−) and (c1 = c−, c2 = c+)

(c± are given by (36)) which are different from the two-qubit states corresponding to (c1 = α+, c2 = α−) and

(c1 = α−, c2 = α+) ( α± are given by (11)) where the double sudden change occurs with the local quantum

uncertainty. This dissimilitude poses a serious challenge and particularly when one needs to employ the sudden

change of quantum correlations in a multipartite system to understand the quantum phase transitions.
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Figure 3. The geometric quantum discord Dg(ρα) versus the parameter c1 for α ≤ 2
3 and α ≥ 2

3 .

3 Local quantum uncertainty under decoherence

Quantum correlations dynamics under decohering effects has received a great deal of attention and various de-

coherence scenarios (Markovian or non-Markovian) were investigated [47]-[54]. In particular, it has been shown

that the entanglement suffers from sudden death [55]-[60] and the entropic quantum discord is more robust

than entanglement [61]. In fact, when a two-qubit state is under the influence of a local noisy environment, the

entanglement can suddenly disappear while the quantum discord shows more resilience against the decoherence

effects. Dynamics of trace distance quantum discord was also studied for some two-qubit states. In particular,

it has been shown that this quantumness indicator exhibits in Bell diagonal states the so-called freezing phe-

nomenon; the quantum correlations remain constant during the evolution of the system [62]. In this section, we

focus on the dynamics of quantum discord quantified by local quantum uncertainty. To simplify our purpose,

we restrict the set two-qubit states given (1) to ones of Bell type by setting c1 = c2 = c. They are given by

ρ(c1 = c2 = c) =
1

4

(
σ0 ⊗ σ0 + σ1 ⊗ σ1 + (1− 4c)σ2 ⊗ σ2 − σ3 ⊗ σ3

)
(39)

where 0 ≤ c ≤ 1
2 . For open quantum systems, the Markovian dynamics can be entirely specified by a quantum

channel E : ρ −→ E(ρ) whose action on the state can be completely characterized as follows

E(ρ) =
∑
ij

(Ei ⊗ Ej)ρ(Ei ⊗ Ej)
† (40)

where Ei denotes the Kraus operators describing the decohering process of a single qubit. The Kraus operators

satisfy the trace-preserving condition
∑

i(Ei)
†Ei = I. For several decoherence scenarios, the action of the
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decoherence channel is in general parameterized by a time dependent decoherence probability p . In what

follows, we will consider the dynamics of the local quantum uncertainty in the states (39) for certain noise

channels (i.e., phase flip, bit flip, and bit-phase flip and generalized amplitude damping)

3.1 The depolarizing quantum channel

The depolarizing channel is a decohering process used to describe three different types of errors: (i) bit flip

error, (ii) phase flip error or (iii) both [1].

(i) Bit flip error: For bit flip quantum channel, the Kraus operators are

E0 =
√
1− p/2, σ0 E1 =

√
p/2 σ1. (41)

Under the local action of the bit flip channel, the density matrix (39) evolves as

ρBF =
1

4

(
σ0 ⊗ σ0 +

3∑
i=1

RBF
ii σi ⊗ σi

)
(42)

where

RBF
11 = 1, RBF

22 = (1− 4c)(1− p)2, RBF
33 = (4c− 1)(1− p)2.

the explicit derivation of the local quantum uncertainty in the states (42) requires the square root of the density

matrix 42 and the expressions of the matrix elements ωij given by (6). Lengthy but straightforward calculation

gives

ωBF
11 =

√
1− (1− p)4(1− 4c)2, ωBF

22 = 0, ωBF
33 = 0, (43)

Clearly, for p = 0, one recovers the results (8) with c1 = c2 = c. The local quantum uncertainty is then given

by

U(ρBF) = 1−
√
1− (1− p)4(1− 4c)2. (44)

This reduces, for p = 0, to U(ρBF) = 1 −
√
1− (1− 4c)2 which can be obtained from the equations (13) and

(14). In the asymptotic limit p −→ 1, the quantum correlations are completely transferred to the environment.

(ii) Phase flip error : The phase flip channel describes the quantum noise process with loss of quantum

information without loss of energy. In the operator-sum representation formalism, the Kraus operators for single

qubit phase flip write

E0 =
√
1− p/2σ0, E1 =

√
p/2σ3. (45)

Under phase flip channel, the evolved quantum state writes as

ρPF =
1

4

(
σ0 ⊗ σ0 +

3∑
i=1

RPF
ii σi ⊗ σi

)
(46)

where the correlation elements are given by

RPF
11 = (1− p)2 RPF

22 = (1− 4c)(1− p)2 RPF
33 = (4c− 1).

In this decohering scenario, the matrix elements (6) take the form

ωPF
11 = 2

√
2
√
c(1− 2c) ωPF

22 = 2
√
2
√
c(1− 2c)

√
1− (1− p)4 ωPF

33 =
√
1− (1− p)4. (47)
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We note that ωPF
22 ≤ ωPF

11 and ωPF
22 ≤ ωPF

33 . This implies that ωPF
max is given by ωPF

11 or ωPF
33 . For a given value

of c, the condition ωPF
11 ≥ ωPF

33 is satisfied when the probability p is such that 0 ≤ p ≤ 1 −
√
|4c− 1|. It is

remarkable that in this case, the local quantum uncertainty,

U(ρPF) = 1− 2
√
2
√
c(1− 2c), (48)

remains constant (i.e, time independent). In this interval, the quantum correlations are unaffected by the noisy

environment and the local quantum uncertainty exhibits a freezing behavior. This reflects the fact that the

local quantum uncertainty is robust against the phase flip errors. This freezing behavior is followed by a sudden

change at the critical point pc = 1−
√
|4c− 1|. Hence for 1−

√
|4c− 1| ≤ p ≤ 1, the local quantum uncertainty

is given by

U(ρPF) = 1−
√
1− (1− p)4 (49)

and decays monotonically to disappear completely when p −→ 1.

(iii) Bit-phase flip error: The corresponding Kraus operators are given by

E0 =
√
1− p/2 σ0 E1 =

√
p/2 σ2, (50)

and their action on a state of type (39) leads to the following density matrix

ρBPF =
1

4

(
σ0 ⊗ σ0 +

3∑
i=1

RBPF
ii σi ⊗ σi

)
(51)

where the Fano-Bloch components are

RBPF
11 = (1− p)2, RBPF

22 = (1− 4c), RBPF
33 = (4c− 1)(1− p)2.

The square root of the state ρBPF can be esaily calcualted and from the expressions of the matrix elements (6)

one obtains

ωBPF
11 = 2

√
2
√
c(1− 2c), ωBPF

22 =
√
1− (1− p)4, ωBPF

33 = 2
√
2
√
c(1− 2c)

√
1− (1− p)4. (52)

The local quantum uncertainty can be derived similarly to the phase flip process by exchanging ωPF
22 by ωBPF

33

and ωPF
33 by ωBPF

22 . This gives

U(ρBPF) = 1− 2
√
2
√
c(1− 2c) for 0 ≤ p ≤ pc (53)

and

U(ρBPF) = 1−
√
1− (1− p)4 for pc ≤ p ≤ 1, (54)

with pc = 1−
√
|4c− 1|. As with the phase flip channel, the local quantum uncertainty exhibits also a freezing

behavior in the interval [0, pc]. This behavior is essentially due to the phase flip errors since when the bit flip

error alone acts on the system, the local quantum uncertainty is monotonically decreasing. Furthermore, it is

remarkable that for both phase flip and Bit-phase flip, the freezing phenomenon occurs during the same period.

To investigate the duration of local quantum uncertainty freezing, we consider the variation of the critical point

pc with respect to the parameter c. We treat separately the situations where 0 ≤ c ≤ 1
4 and 1

4 ≤ c ≤ 1
2 . For
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0 ≤ c ≤ 1
4 , the critical point pc increases as the parameter c increases. As it can be verified from the equations

(48) and (53), increasing the parameter c, to get a large freezing interval, is accompanied by a diminution of the

amount of quantum correlations in the system. Similarly, for the states with 1
4 ≤ c ≤ 1

2 , large freezing intervals

are also obtained for states with less quantum correlations.

3.2 Generalized amplitude damping

Now we consider the dynamics of the states (39) under the effect of an amplitude-damping channel which

describes the dissipative interaction between the system and the environment. This process is modeled by

treating the environment as a large collection of independent harmonic oscillators interacting weakly with the

system. In the operator-sum representation formalism, the evolution of the system is described by the following

four Kraus operators

E0 =

√
p

2

[
(1 +

√
1− γ)σ0 + (1−

√
1− γ)σ3

]
, E1 =

√
pγ σ+,

E2 =

√
1− p

2

[
(
√
1− γ + 1)σ0 + (

√
1− γ − 1)σ3

]
, E3 =

√
(1− p)γ σ− (55)

where σ± = (σ1 ± iσ2)/2, p and γ are the decoherence probabilities [1]. To simplify the calculation of the local

quantum uncertainty, we fix p = 1
2 . In this special situation, the states (39) evolve as

ρGAD =
1

4

(
σ0 ⊗ σ0 +

3∑
i=1

RGAD
ii σi ⊗ σi

)
(56)

where

RGAD
11 = (1− γ), RGAD

22 = (1− 4c)(1− γ), RGAD
33 = (4c− 1)(1− γ)2.

After some lengthy but feasible algebraic manipulations of the matrix elements (6), one gets

ωGAD
11 =

√
1− (1− γ)2(1− 4c)2, ωGAD

22 =
√
γ(2− γ), ωGAD

33 =
√
γ(2− γ)

√
1− (1− γ)2(1− 4c)2. (57)

In this case, we have ωGAD
33 ≤ ωGAD

22 ≤ ωGAD
11 and the local quantum uncertainty is given by

U(ρGAD) = 1−
√
1− (1− γ)2(1− 4c)2. (58)

The quantum discord disappears in the asymptotic regime (p −→ 1). No freezing behavior can be observed

under this decohering process contrarily to phase flip or bit-phase flip channels which destroy the information

encoded in the phase relations without any exchange of energy.

4 Concluding remarks

The local quantum uncertainty constitutes presumably an efficient tool to characterize the quantum correlations

in bipartite quantum systems. This is mainly due to its reliability and easiness to use from a computational

viewpoint. In this spirit, we have derived the quantum discord for a special class of two-qubit states by employ-

ing the formalism of local quantum uncertainty. It has been shown that this indicator of quantumness might

exhibits a double sudden change in some particular circumstances. We believe that this behavior can relevant
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in investigating the role of quantum correlations in quantum phase transitions.

We have also derived, for this class of two-qubit states, the expressions of the quantum discord based on

von Neumann entropy and the geometric quantum discord defined by means of trace distance (Schatten one-

norm). The amount of quantum correlations measured with these three kinds of the quantum discords are

compared. Despite many concordances, they are not only quantitatively but also qualitatively different (see the

right sub-figures in figures 1, 2 and 3). To focus exclusively on the singular behaviors, the comparison revealed

that the local quantum uncertainty and the trace distance quantum discords exhibits double sudden change

but for different critical points. Such behavior cannot occur for the entropic quantum discord. We have also

notified some differences between the amount of quantum correlations quantified by local quantum uncertainty

and entropic quantum discord (see the right sub-figures in figures 1 and 2).

Quantum systems are inevitably subject to decoherence effects, hence it is crucial to find the situations where

the quantum correlations are not affected by environmental noises during their evolutions. In addressing this

issue for a special class of Bell-diagonal states subjected to depolarizing channels, we have observed the freezing

phenomenon of discord-like local quantum uncertainty which originates from the robustness of quantum discord

[61]. We note that a similar freezing phenomenon has been shown for one-norm quantum discord [14, 62]. To

guarantee a durable physical exploitation of the coherence, it is necessary to increase the freezing duration. This

can be achieved but with two-qubit states containing less amount of quantum correlations. Thus, the price to

pay for long-time freezing is the missing of quantum correlations.
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