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Abstract

These notes originated from a formal course of lectures delivered during the academic years
2012 — 2013, 2014 — 2015 to Master students of theoretical physics and also from informal
lectures given to Master and doctoral students in theoretical physics who were and still are
preparing their dissertations under my supervision.
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Chapter 1

Summary of (General Relativity
Essentials

1.1 Equivalence Principle

The classical (Newtonian) theory of gravity is based on the following two equations. The
gravitational potential ® generated by a mass density p is given by Poisson’s equations (with
G being Newton constant)

V20 = 47Gp. (1.1)
The force exerted by this potential ® on a particle of mass m is given by
F=-mVa. (1.2)

These equations are obviously not compatible with the special theory of relativity. The above
first equation will be replaced, in the general relativistic theory of gravity, by Einstein’s equa-
tions of motion while the second equation will be replaced by the geodesic equation. From the
above two equations we see that there are two measures of gravity: V2® measures the source
of gravity while V& measure the effect of gravity. Thus V®, outside a source of gravity where
p = V2® = 0, need not vanish. The analogues of these two different measures of gravity, in
general relativity, are given by the so-called Ricci curvature tensor R, and Riemann curvature
tensor R,,qp3 respectively.

The basic postulate of general relativity is simply that gravity is geometry. More pre-
cisely gravity will be identified with the curvature of spacetime which is taken to be a pseudo-
Riemannian (Lorentzian) manifold. This can be made more precise by employing the two
guiding ”principles” which led Einstein to his equations. These are:

e The weak equivalence principle: This states that all particles fall the same way in a grav-
itational field which is equivalent to the fact that the inertial mass is identical to the
gravitational mass. In other words, the dynamics of all free particles, falling in a gravi-
tational field, is completely specified by a single worldline. This is to be contrasted with
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charged particles in an electric field which obviously follow different worldlines depending
on their electric charges. Thus, at any point in spacetime, the effect of gravity is fully
encoded in the set of all possible worldlines, corresponding to all initial velocities, passing
at that point. These worldlines are precisely the so-called geodesics.

In measuring the electromagnetic field we choose ”background observers” who are not
subject to electromagnetic interactions. These are clearly inertial observers who follow
geodesic motion. The worldline of a charged test body can then be measured by observing
the deviation from the inertial motion of the observers.

This procedure can not be applied to measure the gravitational field since by the equiv-
alence principle gravity acts the same way on all bodies, i.e. we can not insulate the
"background observers” from the effect of gravity so that they provide inertial observers.
In fact, any observer will move under the effect of gravity in exactly the same way as the
test body.

The central assumption of general relativity is that we can not, even in principle, construct
inertial observers who follow geodesic motion and measure the gravitational force. Indeed,
we assume that the spacetime metric is curved and that the worldlines of freely falling
bodies in a gravitational field are precisely the geodesics of the curved metric. In other
words, the ”background observers” which are the geodesics of the curved metric coincide
exactly with motion in a gravitational field.

Therefore, gravity is not a force since it can not be measured but is a property of spacetime.
Gravity is in fact the curvature of spacetime. The gravitational field corresponds thus to
a deviation of the spacetime geometry from the flat geometry of special relativity. But
infinitesimally each manifold is flat. This leads us to the Einstein’s equivalence principle:
In small enough regions of spacetime, the non-gravitational laws of physics reduce to
special relativity since it is not possible to detect the existence of a gravitational field
through local experiments.

e Mach’s principle: This states that all matter in the universe must contribute to the local
definition of ”inertial motion” and ”"non-rotating motion”. Equivalently the concepts of
"inertial motion” and "non-rotating motion” are meaningless in an empty universe. In the
theory of general relativity the distribution of matter in the universe, indeed, influence the
structure of spacetime. In contrast, the theory of special relativity asserts that ”inertial
motion” and "non-rotating motion” are not influenced by the distribution of matter in
the universe.

Therefor, in general relativity the laws of physics must:

1) reduce to the laws of physics in special relativity in the limit where the metric g, becomes
flat or in a sufficiently small region around a given point in spacetime.
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2) be covariant under general coordinate transformations which generalizes the covariance
under Poincaré found in special relativity. This means in particular that only the metric
g and quantities derived from it can appear in the laws of physics.

In summary, general relativity is the theory of space, time and gravity in which spacetime is a
curved manifold M, which is not necessarily R*, on which a Lorentzian metric g, is defined.
The curvature of spacetime in this metric is related to the stress-energy-momentum tensor of
the matter in the universe, which is the source of gravity, by Einstein’s equations which are
schematically given by equations of the form

curvature o source of gravity. (1.3)

This is the analogue of (1.1). The worldlines of freely falling objects in this gravitational field are
precisely given by the geodesics of this curved metric. In small enough regions of spacetime,
curvature vanish, i.e. spacetime becomes flat, and the geodesic become straight. Thus, the
analogue of (1.2) is given schematically by an equation of the form

worldline of freely falling objects = geodesic. (1.4)

1.2 Relativistic Mechanics

In special relativity spacetime has the manifold structure R* with a flat metric of Lorentzian
signature defined on it. In special relativity, as in pre-relativity physics, an inertial motion is
one in which the observer or the test particle is non-accelerating which obviously corresponds
to no external forces acting on the observer or the test particle. An inertial observer at the
origin of spacetime can construct a rigid frame where the grid points are labeled by 2! = z,
2?2 = y and 23 = 2. Furthermore, she/he can equip the grid points with synchronized clocks
which give the reading 2° = ct. This provides a global inertial coordinate system or reference
frame of spacetime where every point is labeled by (2°, 2%, 2%, 2®). The labels has no intrinsic
meaning but the interval between two events A and B defined by —(z% — %)+ (2% —2%3)? is an
intrinsic property of spacetime since its value is the same in all global inertial reference frames.
The metric tensor of spacetime in a global inertial reference frame {z*} is a tensor of type (0, 2)
with components 7, = (—1,+1,4+1,41), i.e. ds* = —(da®)? + (dz")®. The derivative operator
associated with this metric is the ordinary derivative, and as a consequence the curvature of
this metric vanishes. The geodesics are straight lines. The timelike geodesics are precisely the
world lines of inertial observables.

Let t* be the tangent of a given curve in spacetime. The norm 7,,t"t" is positive, negative
and zero for spacelike, timelike and lightlike(null) curves respectively. Since material objects
can not travel faster than light their paths in spacetime must be timelike. The proper time
along a timelike curve parameterized by t is defined by

CT:/\/—nWt“tth. (1.5)
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This proper time is the elapsed time on a clock carried on the timelike curve. The so-called ”twin
paradox” is the statement that different timelike curves connecting two points have different
proper times. The curve with maximum proper time is the geodesic connecting the two points
in question. This curve corresponds to inertial motion between the two points.

The 4—vector velocity of a massive particle with a 4—vector position x* is U* = dx*/dr
where 7 is the proper time. Clearly we must have UFU, = —c?. In general, the tangent vector
U* of a timelike curve parameterized by the proper time 7 will be called the 4—vector velocity
of the curve and it will satisfy

UrU, = —c*. (1.6)

A free particle will be in an inertial motion. The trajectory will therefore be given by a timelike
geodesic given by the equation

U 9,U" = 0. (1.7)

Indeed, the operator U*9, is the directional derivative along the curve. The energy-momentum
4—vector p* of a particle with rest mass m is given by

p' = mU". (1.8)
This leads to (with v = 1//1 — @2/c? and @ = di/dt)
E =cp® =myc? |, p=myi. (1.9)
We also compute
P'p, = —mPc® & E = \/m2c* + P2, (1.10)

The energy of a particle as measured by an observed whose velocity is v* is then clearly given
by

E = —p"v,. (1.11)

1.3 Differential Geometry Primer

1.3.1 Metric Manifolds and Vectors

Metric Manifolds: An n—dimensional manifold M is a space which is locally flat, i.e. locally
looks like R™, and furthermore can be constructed from pieces of R™ sewn together smoothly.
A Lorentzian or pseudo-Riemannian manifold is a manifold with the notion of ”distance”,
equivalently ”"metric”, included. ”Lorentzian” refers to the signature of the metric which in
general relativity is taken to be (—1,+1,4+1,41) as opposed to the more familiar/natural
”Euclidean” signature given by (+1,+1,41,+1) valid for Riemannian manifolds. The metric
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is usually denoted by g, while the line element (also called metric in many instances) is written
as

ds® = g, dz"dz”. (1.12)
For example Minkowski spacetime is given by the flat metric
G = M = (=1, +1,4+1,4+1). (1.13)

Another extremely important example is Schwarzschild spacetime given by the metric

R, Ry

ds®* = —(1 — =2)dt? + (1 — =) dr* 4 r2dQ>. (1.14)
r r

This is quite different from the flat metric 7, and as a consequence the curvature of Schwarzschild

spacetime is non zero. Another important curved space is the surface of the 2—dimensional

sphere on which the metric, which appears as a part of the Schwarzschild metric, is given by
ds® = r2dQ? = r*(df* + sin*0d¢?). (1.15)
The inverse metric will be denoted by ¢, i.e.

Y 7];). (1.16)

Charts: A coordinate system (a chart) on the manifold M is a subset U of M together with
a one-to-one map ¢ : U — R™ such that the image V' = ¢(U) is an open set in R", i.e. a set
in which every point y € V is the center of an open ball which is inside V. We say that U is
an open set in M. Hence we can associate with every point p € U of the manifold M the local
coordinates (z!, ..., 2™) by

¢(p) = (2", ....a"). (1.17)

Vectors: A curved manifold is not necessarily a vector space. For example the sphere is not a
vector space because we do not know how to add two points on the sphere to get another point
on the sphere. The sphere which is naturally embedded in R? admits at each point p a tangent
plane. The notion of a "tangent vector space” can be constructed for any manifold which is
embedded in R". The tangent vector space at a point p of the manifold will be denoted by V.

There is a one-to-one correspondence between vectors and directional derivatives in R".
Indeed, the vector v = (v',...,v") in R™ defines the directional derivative > ., V"0, which acts
on functions on R"™. These derivatives are clearly linear and satisfy the Leibniz rule. We will
therefore define tangent vectors at a given point p on a manifold M as directional derivatives
which satisfy linearity and the Leibniz rule. These directional derivatives can also be thought
of as differential displacements on the spacetime manifold at the point p.

This can be made more precise as follows. First, we define s smooth curve on the manifold
M as a smooth map from R into M, viz v: R — M. A tangent vector at a point p can then
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be thought of as a directional derivative operator along a curve which goes through p. Indeed,
a tangent vector T at p = (t) € M, acting on smooth functions f on the manifold M, can be
defined by

T(f) = (7 011y (118)

In a given chart ¢ the point p will be given by p = ¢~ 1(x) where z = (z!,...,2") € R"
Hence (t) = ¢~!(z). In other words, the map « is mapped into a curve x(t) in R". We have
immediately

T(f)= (f ¢! ZX (1.19)
The maps X, act on functions f on the Manifold M as

Xulf) = o 067 (@) (1.20)

These can be checked to satisfy linearity and the Leibniz rule. They are obviously directional
derivatives or differential displacements since we may make the identification X, = 0,. Hence
these vectors are tangent vectors to the manifold M at p. The fact that arbitrary tangent
vectors can be expressed as linear combinations of the n vectors X, shows that these vectors
are linearly independent, span the vector space V), and that the dimension of V), is exactly n.
Equation (1.19) can then be rewritten as

T=> X,T" (1.21)

The components T* of the vector T are therefore given by

dxt

T“ — %Ln

(1.22)

1.3.2 Geodesics

The length [ of a smooth curve C' with tangent T on a manifold M with Riemannian metric
guv 1s given by

_ / N (1.23)

The length is parametrization independent. Indeed, we can show that
dt

[ = /dt\/g,wT“T = /ds\/gWS“S SH —T”d

s

In a Lorentzian manifold, the length of a spacelike curve is also given by this expression. For

(1.24)

a timelike curve for which ¢, 7%T° < 0 the length is replaced with the proper time 7 which is
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given by 7 = [ dt\/—guaT*T". For a lightlike (or null) curve for which Gy TT" = 0 the length
is always 0.

We consider the length of a curve C' connecting two points p = C(ty) and ¢ = C(t;). In a
coordinate basis the length is given explicitly by

t dxt dxv
W VI (1.25)

The variation in [ under an arbitrary smooth deformation of the curve C' which keeps the two
points p and ¢ fixed is given by

51— l/tldt( derde?y o (Lg derder  datdod?
— o2, T 279 Tar I

t1 YT D 7 JTR D7 m v
1 / 0t (g0 dzt dx ) <1 09, 52 dxt dx dzt dox )
to

N|=

5o 0 ar at T a

2 dt dt
1 ! dx* dx” _% 109/“/ szu dz” d dzt v d dzt v
- 5/to Mo g7 "ar) <§ T A L LA ))'
(1.26)

We can assume without any loss of generality that the parametrization of the curve C' satisfies
G (dxt/dt)(dz” /dt) = 1. In other words, we choose dt? to be precisely the line element (in-
terval) and thus 7" = dx#/dt is the 4—velocity. The last term in the above equation becomes
obviously a total derivative which vanishes by the fact that the considered deformation keeps
the two end points p and ¢ fixed. We get then
IS o[ 109, dz* dx¥  d dx*
o= 3 / diox (5 o7 dr df a@w’ﬁ))

. /tl dtox” (1 Oy da* dx” 09, dz” da* d%“)
to

2 20 dt dt  ox dt dt e

1/’51 (1 09y 09us  OGye da* dx” dzx“)
= | dtea | (P T — G
" ( )dt e 7" di?

2 2\ 0z° ox? oz

1 (M 1 dg dg 0gye\ dat dz¥  d*xP
- _ dt5 — PO py po o vo . .
2 /to o <29 ( Ox°  Ozv  OxH ) dt dt dt?

(1.27)

By definition geodesics are curves which extremize the length [. The curve C extremizes the
length between the two points p and ¢ if and only if 6/ = 0. This leads immediately to the
equation

dzt dz¥ d*xP
I* ., =0. 1.2
W dE T ae 0 (1.28)

This equation is called the geodesic equation. It is the relativistic generalization of Newton’s

second law of motion (1.2). The Christoffel symbols are defined by

1 /09w 0% Oguo
o — _ PO [ po
" g ( 0x° oxV? OxH )

5 (1.29)
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In the absence of curvature we will have g,, = 7, and hence I' = 0. In other words, the
geodesics are locally straight lines.

Since the length between any two points on a Riemannian manifold (and between any two
points which can be connected by a spacelike curve on a Lorentzian manifold) can be arbitrarily
long we conclude that the shortest curve connecting the two points must be a geodesic as it is
an extremum of length. Hence the shortest curve is the straightest possible curve. The converse
is not true: a geodesic connecting two points is not necessarily the shortest path.

Similarly, the proper time between any two points which can be connected by a timelike
curve on a Lorentzian manifold can be arbitrarily small and thus the curve with the greatest
proper time, if it exists, must be a timelike geodesic as it is an extremum of proper time. On the
other hand, a timelike geodesic connecting two points is not necessarily the path with maximum
proper time.

1.3.3 Tensors

Tangent (Contravariant) Vectors: Tensors are a generalization of vectors. Let us start
then by giving a more precise definition of the tangent vector space V. Let F be the set of all
smooth functions f on the manifold M, i.e. f: M — R. We define a tangent vector v at the
point p € M as a map v : F — R which is required to satisfy linearity and the Leibniz rule.
In other words,

v(af +bg) = av(f) +bv(g) , v(fg) = f(p)v(g) +gp)v(f), a,b e R, f,ge F. (1.30)

The vector space V, is simply the set of all tangents vectors v at p. The action of the vector v
on the function f is given explicitly by

_ 0
o(f) = DvXu(f) s Xu(f) = 5 (fo o7 @), (1.31)
pn=1
In a different chart ¢ we will have
! 8 !
Xul) = gaa(fod D=y oy (1.32)
We compute
0
Xulf) = g2(fo ™ )le=s0
0 , ,
= 7 f067H6 067 le=sir
"0z 0

= (.f O¢/_l(x/))|xl:¢/(p)

oz+ Ox'v
v=1

Ay (1.33)

ozt

v=1
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This is why the basis elements X, may be thought of as the partial derivative operators 9/0z".

! / .
u—1 V"X, We conclude imme-

The tangent vector v can be rewritten as v = > 7, v X, = >
diately that

v = vk (1.34)

This is the transformation law of tangent vectors under the coordinate transformation z# —

'k

Cotangent Dual (covariant) Vectors or 1-Forms: Let V' be the space of all linear maps
w* from V, into R, viz w* : 'V, — R. The space V' is the so-called dual vector space to V,,
where addition and multiplication by scalars are defined in an obvious way. The elements of
V© are called dual vectors. The dual vector space V' is also called the cotangent dual vector
space at p and the vector space of one-forms at p. The elements of V© are then called cotangent
dual vectors. Another nomenclature is to refer to the elements of V' as covariant vectors as
opposed to the elements of V,, which are referred to as contravariant vectors.

The basis {X**} of V.* is called the dual basis to the basis {X,} of V},. The basis elements
of VJ are given by vectors X** defined by

X"(X,) = ok, (1.35)
We have the transformation law
" OxH ,
X = X7 1.36
2. By (1.36)

From this result we can think of the basis elements X** as the gradients dx*, viz
XM = daxt. (1.37)

Let v = >, v"X, be an arbitrary tangent vector in Vj, then the action of the dual basis
elements X** on v is given by

XM (v) = o™ (1.38)

The action of a general element w* = L wpXPT ot Vi on v is given by
w*(v) = Zwuv”. (1.39)
o

Again we conclude the transformation law

) "\ Ozt
W, = — qu.

(1.40)
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Generalization: A tensor T of type (k,[) over the tangent vector space V), is a multilinear
map form (V7 x V¥ x .. x V) x (V, X V}, x ... x V) into R given by

T:VyxVEX X VExV,xV,x..xV,— R (1.41)

The domain of this map is the direct product of £ cotangent dual vector space V;; and [ tangent
vector space V,. The space T (k,[) of all tensors of type (k,l) is a vector space of dimension
n*.nl since dimV, = dimV = n.

The tangent vectors v € V), are therefore tensors of type (1,0) whereas the cotangent dual
vectors v € V are tensors of type (0,1). The metric g is a tensor of type (0,2), i.e. a linear

map from V, x V, into R, which is symmetric and nondegenerate.

1.4 Curvature Tensor

1.4.1 Covariant Derivative

A covariant derivative is a derivative which transforms covariantly under coordinates trans-
formations # — 2'. In other words, it is an operator V on the manifold M which takes a
differentiable tensor of type (k,[) to a differentiable tensor of type (k,l + 1). It must clearly
satisfy the obvious properties of linearity and Leibniz rule but also satisfies other important
rules such as the torsion free condition given by

V.V.f=V,V.f. feF. (1.42)

Furthermore, the covariant derivative acting on scalars must be consistent with tangent vectors
being directional derivatives. Indeed, for all f € F and t* € V,, we must have

Y, f = t(f) = t0,f. (1.43)

In other words, if V and V be two covariant derivative operators, then their action on scalar
functions must coincide, viz

'V f = "V, f = t(f). (1.44)

We compute now the difference V,(fw,) — V,(fw,) where w is some cotangent dual vector.
We have

@u(fwu) - Vu(fwu) = @u.f'wu + fﬁuwu - Vu.fwu - .fvuwu
= f(ﬁuwu - Vuwu)~ (145)

We use without proof the following result. Let w,, be the value of the cotangent dual vector w,
at a nearby point p, i.e. w, —w, is zero at p. Since the cotangent dual vector w, is a smooth
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function on the manifold, then for each p' € M, there must exist smooth functions f(a) Which

vanish at the point p and cotangent dual vectors ,u,(,a) such that

wz,/ — Wy = Z .f(oz),uz(xa)' (146)
We compute immediately

@u(w; —wy) = Vyu( (w, — wy) Z fio( uﬂu uﬂz(/a))- (1.47)

This is 0 since by assumption f(,) vanishes at p. Hence we get the result
Vw, — Vw, = Vuw, — V,w,. (1.48)

In other words, the difference @Mw,, — V,w, depends only on the value of w, at the point p
although both @“wy and V,w, depend on how w, changes as we go away from the point p since
they are derivatives. Putting this differently we say that the operator @u — V), is a linear map
which takes cotangent dual vectors at a point p into tensors, of type (0,2), at p and not into
tensor fields defined in a neighborhood of p. We write

Vw, = Vw, — CY .. (1.49)

The tensor C7 S stands for the map @ —V,, and it is clearly a tensor of type (1,2). By setting
=V,.f = VM f we get V,V,f = V f C" 'V, f. By employing now the torsion free
condltlon (1.42) we get immediately

o nr = o v (150)

Let us consider now the difference V,(w,t*) — V,,(w,t”) where t” is a tangent vector. Since
w,t’ is a function we have

Vu(wpt”) =V, (w,t”) = 0. (1.51)
From the other hand, we compute
Vu(w,t”) = Vu(wit”) = w, (V" — V" +C% 17). (1.52)
Hence, we must have
Vit =Vt +C 10 (1.53)

For a general tensor T#1#+ , , of type (k,l) the action of the covariant derivative operator
will be given by the expression

1een v Teee i 1...d... d T1een
v'yT“ Hi Vi va“ K V1.1 + E Ol 'yd,—r‘u Hi vy E C A/VjT/J, Hi vi...d...vp-
( J

(1.54)
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1.4.2 Parallel Transport

Let C be a curve with a tangent vector t*. Let v* be some tangent vector defined at each
point on the curve. The vector v* is parallelly transported along the curve C'if and only if

t"V 0" [curve = 0. (1.55)

If ¢ is the parameter along the curve C' then t* = dz# /dt are the components of the vector ¢*
in the coordinate basis. The parallel transport condition reads explicitly

dv” 5 A
E + I lu)\t“rl) = 0 (156)
By demanding that the inner product of two vectors v* and w* is invariant under parallel
transport we obtain, for all curves and all vectors, the condition

'V (gapv®w?) = 0 = V,gas = 0. (1.57)

Thus given a metric g, on a manifold M the most natural covariant derivative operator is the
one under which the metric is covariantly constant.

There exists a unique covariant derivative operator V,, which satisfies V,,g,3 = 0. The proof
goes as follows. We know that V,g,4 is given by

Vidas = Vugas — C7 yagyp — C7 upgany- (1.58)

By imposing V,g.3 = 0 we get

Vidas = C7 pagys + C7 ypgany- (1.59)
Equivalently

6049;16 =C" ap9~p +C7 aBf9ury- (160)

659#(1 =C" uB9va +C7 aBf9ury- (161)

Immediately, we conclude that

ﬁugaﬁ + 60{9#5 - ﬁﬁg,ua = 20" nadyp- (162)
In other words,
1 - - -
C7 o = 5975(%%6 + Vagus = Vagua)- (1.63)

This choice of C7 ,, which solves V,g,3 = 0 is unique. In other words, the corresponding
covariant derivative operator is unique. The most important case corresponds to the choice

Va4 = 0, for which case C° , is denoted I' ,, and is called the Christoffel symbol.
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Equation (1.56) is almost the geodesic equation. Recall that geodesics are the straightest
possible lines on a curved manifold. Alternatively, a geodesic can be defined as a curve whose
tangent vector ¢ is parallelly transported along itself, viz t#V ,#” = 0. This reads in a coordinate
basis as

2.V o A
%+FV M%‘% —0. (1.64)
This is precisely (1.28). This is a set of n coupled second order ordinary differential equations
with n unknown x#(t). We know, given appropriate initial conditions z*(ty) and daz*/dt|i—,,
that there exists a unique solution. Conversely, given a tangent vector t* at a point p of a

manifold M there exists a unique geodesic which goes through p and is tangent to t*.

1.4.3 The Riemann Curvature Tensor

Definition: The parallel transport of a vector from point p to point ¢ on the manifold M is
actually path-dependent. This path-dependence is directly measured by the so-called Riemann
curvature tensor. The Riemann curvature tensor can be defined in terms of the failure of
successive operations of differentiation to commute. Let us start with an arbitrary tangent
dual vector w, and an arbitrary function f. We want to calculate (V,V, — V,V,)w,. First we

have
VoVi(fwe) = VoV fwe + Vi fVawe + Vo f Viwe + [V Viw. (1.65)
Similarly
ViVa(fwe) = ViVofwe + Vo f Viwe + Vi fVwe + fVVowe. (1.66)
Thus
(VaVy = Vi Vo) (fwe) = f(VaVy — Vi Vo )we. (1.67)

We can follow the same set of arguments which led from (A.58) to (A.62) to conclude that
the tensor (V,V, — V,V,)w. depends only on the value of w, at the point p. In other words
V.V, — ViV, is a linear map which takes tangent dual vectors into tensors of type (0,3).
Equivalently we can say that the action of V,V, — V,V, on tangent dual vectors is equivalent
to the action of a tensor of type (1,3). Thus we can write

(VaVb — vaa)wc = Rabc dwd. (168)

The tensor Ry, ¢ is precisely the Riemann curvature tensor. We compute explicitly

VoViwe = Va(Owe —I'? pwq)
= O0a(Oywe — T pewy) — I ap(Oewe — T cowa) — T ae(Opwe — T petwq)
= 0,0we — 0.0 ey — T peOawg — T gpOewe + T T cewq — € oOywe + T€ 0o I'? pewq.
(1.69)
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Thus
(VoVy = ViVo)we = (abrd ae — 0l 4o + T oI e — T 3 T ae) W (1.70)
We get then the components
Rape @ = 0T 4e = 0uT? 4o + T oI 4 — T¢I e (1.71)

The action on tangent vectors can be found as follows. Let t* be an arbitrary tangent vector.
The scalar product t%w, is a function on the manifold and thus

(V,Nb — vaa)(tcwc) =0. (1.72)
This leads immediately to
(V,Nb — vaa)td = —Rupe dye (1.73)

Generalization of this result and the previous one to higher order tensors is given by the following
equation

k l
dy...d 2 didy...e...d § erdy...d
(vavb - vaa)T ok cr..c; — — Rabe T k c1...cp + Rabci etk ci...e...cy-

i=1 =1
(1.74)
Properties: We state without proof the following properties of the curvature tensor:

e Anti-symmetry in the first two indices:

Rape * = —Ripqe . (1.75)
e Anti-symmetrization of the first three indices yields 0:

Rias =0, R * = 3(ape *+ Ruay * + Raca ). (1.76)

e Anti-symmetry in the last two indices:
Rapea = —Ravde ; Ravea = Rave “gea- (L.77)

e Symmetry if the pair consisting of the first two indices is exchanged with the pair con-
sisting of the last two indices:

Rabcd = Rcdab- (178)
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e Bianchi identity:
1
V[aP'vbc}d ‘=0, v[aP'vbc}d ‘= g(vaRbcd “+ V.Rapa © + Vi Reaa e). (179)

e The so-called Ricci tensor R,., which is the trace part of the Riemann curvature tensor,
is symmetric, viz

Rac = Rca s Rac = Rabc b- (180)

e The Einstein tensor can be constructed as follows. By contracting the Bianchi identity
and using V,g,. = 0 we get

Ge ‘(VaRied © + VeRaps © + ViReas ©) = 0=V Rpg + VeRgpa € — VipReqg = 0. (1.81)
By contracting now the two indices b and d we get
" (VuRpg + VeRapa © — VoRag) =0= V,R—2V,R, " = 0. (1.82)
This can be put in the form
VeGy = 0. (1.83)

The tensor G, is called Einstein tensor and is given by

1
Gab = Rab - §gabR- (184)

The so-called scalar curvature R is defined by

R=R," (1.85)

1.5 The Stress-Energy-Momentum Tensor

1.5.1 The Stress-Energy-Momentum Tensor

We will mostly be interested in continuous matter distributions which are extended macro-
scopic systems composed of a large number of individual particles. We will think of such
systems as fluids. The energy, momentum and pressure of fluids are encoded in the stress-
energy-momentum tensor 7" which is a symmetric tensor of type (2,0). The component T
of the stress-energy-momentum tensor is defined as the flux of the component p* of the 4—vector
energy-momentum across a surface of constant x.

Let us consider an infinitesimal element of the fluid in its rest frame. The spatial diagonal
component 7% is the flux of the momentum p’ across a surface of constant z*, i.e. it is the
amount of momentum p’ per unit time per unit area traversing the surface of constant z?. Thus
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T% is the normal stress which we also call pressure when it is independent of direction. We
write T% = P;. The spatial off-diagonal component 7% is the flux of the momentum p° across
a surface of constant 27, i.e. it is the amount of momentum p’ per unit time per unit area
traversing the surface of constant 27 which means that 7% is the shear stress.

The component 7% is the flux of the energy p° through the surface of constant z°, i.e. it is
the amount of energy per unit volume at a fixed instant of time. Thus 7% is the energy density,
viz T% = pc? where p is the rest-mass density. Similarly, 7% is the flux of the momentum p
through the surface of constant x°, i.e. it is the ¢ momentum density times c¢. The T% is the
energy flux through the surface of constant ¢ divided by c. They are equal by virtue of the
symmetry of the stress-energy-momentum tensor, viz 7% = T,

1.5.2 Perfect Fluid

We begin with the case of "dust” which is a collection of a large number of particles in
spacetime at rest with respect to each other. The particles are assumed to have the same rest
mass m. The pressure of the dust is obviously 0 in any direction since there is no motion of
the particles, i.e. the dust is a pressureless fluid. The 4—vector velocity of the dust is the
constant 4—vector velocity U* of the individual particles. Let n be the number density of the
particles, i.e. the number of particles per unit volume as measured in the rest frame. Clearly
N = nU" = n(vyu;) is the flux of the particles, i.e. the number of particles per unit area per
unit time in the 2° direction. The 4—vector number-flux of the dust is defined by

N* = nU*. (1.86)

The rest-mass density of the dust in the rest frame is clearly given by p = nm. This rest-mass
density times ¢? is the © = 0, v = 0 component of the stress-energy-momentum tensor 7" in
the rest frame. We remark that pc?> = nmc? is also the p = 0, v = 0 component of the tensor
N#p” where N* is the 4—vector number-flux and p* is the 4—vector energy-momentum of the
dust. We define therefore the stress-energy-momentum tensor of the dust by

T = N'p” = (nm)U*U" = pUPU". (1.87)

The next fluid of paramount importance is the so-called perfect fluid. This is a fluid determined
completely by its energy density p and its isotropic pressure P in the rest frame. Hence 7% = pc?
and T = P. The shear stresses T (i # j) are absent for a perfect fluid in its rest frame. It
is not difficult to convince ourselves that stress-energy-momentum tensor 7" is given in this
case in the rest frame by

P P
™ = pUMU" + g(c%ﬂ“ +U"UY) = (p+ E)U“U” + P, (1.88)

This is a covariant equation and thus it must also hold, by the principle of minimal coupling
(see below), in any other global inertial reference frame. We give the following examples:

e Dust: P =0.
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e Gas of Photons: P = pc?/3.

e Vacuum Energy: P = —pc? < T% = —pcin.

1.5.3 Conservation Law

The stress-energy-momentum tensor 7" is symmetric, viz T* = T"*. It must also be
conserved, i.e.

9, = 0. (1.89)

This should be thought of as the equation of motion of the perfect fluid. Explicitly this equation
reads

0T = 0,(p-+ L)UMU” + (p+ Y@L+ URQUY) + P =0, (190)

We project this equation along the 4—vector velocity by contracting it with U,. We get (using
U,0,U" =0)

0,(pU") + HA,U" = 0. (1.91)

We project the above equation along a direction orthogonal to the 4—vector velocity by con-
tracting it with P* , given by

U*U,

Pt =84
C

(1.92)

Indeed, we can check that P* ,P¥ y = P* y and P* ,U” = 0. By contracting equation (1.90)
with P* , we obtain

P U,U
(p+ U 0Ux + (o + =5 2" P = 0. (1.93)
We consider now the non-relativistic limit defined by
Ut = (c,u;) , |u| << 1, P << pc? (1.94)

The parallel equation (1.91) becomes the continuity equation given by
A + V(pit) = 0. (1.95)
The orthogonal equation (1.93) becomes Euler’s equation of fluid mechanics given by

p(8yid + (@V)d) = —VP. (1.96)
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1.5.4 Minimal Coupling

The laws of physics in general relativity can be derived from the laws of physics in special
relativity by means of the so-called principle of minimal coupling. This consists in writing the
laws of physics in special relativity in tensor form and then replacing the flat metric 7, with
the curved metric g, and the derivative operator d,, with the covariant derivative operator V.
This recipe works in most cases.

For example take the geodesic equation describing a free particle in special relativity given
by U*9,U” = 0. Geodesic motion in general relativity is given by U*V,U" = 0. These are the
geodesics of the curved metric g, and they describe freely falling bodies in the corresponding
gravitational field.

The second example is the equation of motion of a perfect fluid in special relativity which
is given by the conservation law 0”7, = 0. In general relativity this conservation law becomes

VT, = 0. (1.97)

Also, by applying the principle of minimal coupling, the stress-energy-momentum tensor 7}, of
a perfect fluid in general relativity is given by equation (1.88) with the replacement n — g,
Viz

P
T = (p+ 5)U0 + Pgju. (1.98)

1.6 Einstein’s Equation

Although local gravitational forces can not be measured by the principle of equivalence,
i.e. since the spacetime manifold is locally flat, relative gravitational forces, the so-called tidal
gravitational forces, can still be measured by observing the relative acceleration of nearby
geodesics. This effect is described by the geodesic deviation equation.

1.6.1 Tidal Gravitational Forces

Let us first start by describing tidal gravitational forces in Newtonian physics. The force
of gravity exerted by an object of mass M on a particle of mass m a distance r away is

F = —PGMm/r* where 7 is the unit vector pointing from M to m and r is the distance
between the center of M and m. The corresponding acceleration is @ = —fGM/r* = —V®,
® = —GM/r. We assume now that the mass m is spherical of radius Ar. The distance between

the center of M and the center of m is r. The force of gravity exerted by the mass M on a
particle of mass dm a distance r + Ar away on the line joining the centers of M and m is given
by F' = —fGMdm/(r + Ar)?. The corresponding acceleration is

1 1 2Ar
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The first term is precisely the acceleration experienced at the center of the body m due to M.
This term does not affect the observed acceleration of particles on the surface of m. In other
words, since m and everything on its surface are in a state of free fall with respect to M, the
acceleration of dm with respect to m is precisely the so-called tidal acceleration, and is given
by the second term in the above expansion, viz

= —(AFNV) (VD). (1.100)

1.6.2 Geodesic Deviation Equation

In a flat Euclidean geometry two parallel lines remain always parallel. This is not true in
a curved manifold. To see this more carefully we consider a one-parameter family of geodesics
7vs(t) which are initially parallel and see what happens to them as we move along these geodesics
when we increase the parameter t. The map (f,s) — 7,(t) is smooth, one-to-one, and its
inverse is smooth, which means in particular that the geodesics do not cross. These geodesics
will then generate a 2—dimensional surface on the manifold M. The parameters ¢t and s can
therefore be chosen to be the coordinates on this surface. This surface is given by the entirety
of the points x#(s,t) € M. The tangent vector to the geodesics is defined by

ozt
[
T ETa

This satisfies therefore the equation T#V,T% = 0. The so-called deviation vector is defined by

(1.101)

_ Oxt

St = —. 1.102

ds ( )
The product S*ds is the displacement vector between two infinitesimally nearby geodesics.
The vectors T" and S* commute because they are basis vectors. Hence we must have [T, S|* =
T'Vv,S* — S¥V, TF = 0 or equivalently

TV, 5" = S*V,T*". (1.103)

This can be checked directly by using the definition of the covariant derivative and the way it
acts on tangent vectors and equations (1.101) and (1.102).

The quantity V# = T"V,S* expresses the rate of change of the deviation vector along a
geodesic. We will call V# the relative velocity of infinitesimally nearby geodesics. Similarly
the relative acceleration of infinitesimally nearby geodesics is defined by A* = T"V,V#*. We
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compute
Ar = TV, VH
TV ,(T*V,S")
TV, (S*V,\TH)
(TN, S*).V\TH + TSV, V\T"
(S*V, TN .NV\T" + T"SNV\V,T" — R\, "T7)
= SAVA(T"V,TH") — Ry, "TVS T°
= R\, "T"S*T°. (1.104)
This is the geodesic deviation equation. The relative accelaration of infinitesimally nearby
geodesics is 0 if and only if R,,, * = 0. Geodesics will accelerate towards, or away from, each

other if and only if R, ), * # 0. Thus initially parallel geodesics with V# = 0 will fail generically
to remain parallel.

1.6.3 Einsetin’s Equation

We will assume that, in general relativity, the tidal acceleration of two nearby particles is
precisely the relative acceleration of infinitesimally nearby geodesics given by equation (1.104),
Viz

AF = =Ry, MTVSMTC
= —Ry "U"A2U°. (1.105)

This suggest, by comparing with (1.100), we make the following correspondence
Rono "UU?  0,0"9. (1.106)
Thus
R "UYU™ < AD. (1.107)
By using the Poisson’s equation (1.1) we get then the correspondence
Ry "UYU? & 4nGp. (1.108)
From the other hand, the stress-energy-momentum tensor 7" provides the correspondence
T,,U"U° < pct. (1.109)

We expect therefore an equation of the form

Ryt T, A7G
e <~ RVU - =
471G A A

Tyo. (1.110)
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This is the original equation proposed by Einstein. However, it has the following problem.
From the fact that VYG,, = 0, we get immediately VVR,, = V,R/2, and as a consequence
V'T,s = ¢*V,R/87G. This result is in direct conflict with the requirement of the conservation
of the stress-energy-momentum tensor given by V*7T,, = 0. An immediate solution is to
consider instead the equation

1 8rG
GVO’ = Rl/o’ -3 I/O’R = —Tyo'~ 1.111
29 ct ( )
The conservation of the stress-energy-momentum tensor is now guaranteed. Furthermore, this

equation is still in accord with the correspondence R,,U"U? <+ 87Gp. Indeed, by using the

result R = —47GT/c¢* we can rewrite the above equation as
8rG 1
R, =—F T — zguoT). 1.112
T (T — 500T) (1112)

We compute R, UrU" = (87G/c*) (T, U*U” + ¢*T/2). By keeping only the p = 0, v = 0
component of 7}, and neglecting the other components the right hand side is exactly 47Gp as
it should be.

1.6.4 Newtonian Limit

The Newtonian limit of general relativity is defined by the following three requirements:
1) The particles are moving slowly compared with the speed of light.

2) The gravitational field is weak so that the curved metric can be expanded about the flat
metric.

3) The gravitational field is static.

Geodesic Equation: We begin with the geodesic equation, with the proper time 7 as the
parameter of the geodesic, is

et de’ A
R (1.113)

odr dr dr?

The assumption that particles are moving slowly compared to the speed of light means that

dzx dt
— —]. 1.114
Tl << el ] (1.114)
The geodesic equation becomes
dt d*x?
T? go(—)? = 0. 1.115
¢ OO(dT) * dr? ( )

We recall the Christoffel symbols

1
e, = §gd0(aagbc + ObJac — Oclab)- (1.116)
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Since the gravitational field is static we have

1
I g0 = —igdcacgoo- (1.117)
The second assumption that the gravitational field is weak allows us to decompose the metric
as
Gab = Nab + hab ) |hab| << 1. (1118)
Thus
d 1 dc
' g0 = 3 Dehoo- (1.119)

The geodesic equation becomes

d*zr 2, dt
g2 9 achoo(—T) - (1.120)

In terms of components this reads

d?z® dt

7 =5 aohoo(—ah_) =0. (1.121)
d’zt A dt ., dt

_ & g — 9 -2 1.122
d7_2 2 /)7 azhOO(dT) 2 azhOO(dT) ( )

The first equation says that dt/dr is a constant. The second equation reduces to

d?zt P 2P
el 532'}100 =—0;®, hy = - (1.123)

Einstein’s Equations: Now we turn to the Newtonian limit of Einstein’s equation R,, =
881G (T, — % gvoT)/c* with the stress-energy-momentum tensor 7}, of a perfect fluid as a source.
The perfect fluid is describing the Earth or the Sun. The stress-energy-momentum tensor is
given by T, = (p + P/*)U,U, + Pg,,. In the Newtonian limit this can be approximated by
the stress-energy-momentum tensor of dust given by 7}, = pU,U, since in this limit pressure
can be neglected as it comes from motion which is assumed to be slow. In the rest frame of the
perfect fluid we have U* = (U?,0,0,0) and since g, U*U” = —c* we get U° = ¢(1 + hgo/2) and
Uy = c(—1+ hgo/2) and as a consequence

TOO = p02(1 + hoo) 5 T()O = pC2(1 — hoo). (1124)
The inverse metric is obviously given by ¢ = —1 — hgg since g*’g,, = d4. Hence

T = —pc’. (1.125)
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The =0, v = 0 component of Einstein’s equation is therefore

ArG
ROO = 2 p(l - hoo). (1126)

We recall the Riemann curvature tensor and the Ricci tensor

Ruo ™ = 0,1 g — 0T g +1° 0T 5 —T° .1 5. (1.127)

R;w = R,uz/o Y. (1128)
Thus (using in particular Ry © = 0)
Roo = Roio "' = 0iT" g0 — 0T 40 + T 00T ie — T oI ge- (1.129)

The Christoffel symbols are linear in the metric perturbation and thus one can neglect the third
and fourth terms in the above equation. We get then

. 1
ROO - &FZ 00 — —iAhO(]. (1130)

Einstein’s equation reduces therefore to Newton’s equation, viz

4G

1
—5 Ao = —5"p = A® = dnGp. (1.131)

1.7 Killing Vectors and Maximally Symmetric Spaces

A spacetime which is spatially homogeneous and spatially isotropic is a spacetime in which
the space is maximally symmetric. A maximally symmetric space is a space with the maximum
number of isometries, i.e. the maximum number of symmetries of the metric. These isometries
are generated by the so-called Killing vectors.

As an example, if 9,g,,, = 0, for some fixed value of o, then the translation 2 — 27+a” is a
symmetry and thus it is an isometry of the curved manifold M with metric g,,,. This symmetry
will be naturally associated with a conserved quantity. To see this let us first recall that the
geodesic equation can be rewritten in terms of the 4—vector energy-momentum p* = mU* as
PV ,p, = 0. Explicitly

mdpy
dt

FA ,ul/pup)\
1

§8Vgup.p”pp. (1.132)

Thus if the metric is invariant under the translation z° — 2 4 a? then 9,g,,, = 0 and as a
consequence the momentum p, is conserved as expected.
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For obvious reasons we must rewrite the condition which expresses the symmetry under
27 — x° + a” in a covariant fashion. Let us thus introduce the vector K = 0 via its
components which are given (in the basis in which 9,g,, = 0) by

K" = (o))" = oV (1.133)

g

Clearly then p, = p,K*. Since 0,¢,,, = 0 we must have dp, /dt = 0 or equivalently d(p,K*)/dt =
0. This means that the directional derivative of the scalar quantity p,K* along the geodesic is
0, viz

P’V (puK*) = 0. (1.134)
We compute
1
P’V (p K") = p'p"V K, = §p“p”(VuK,, +V,K,). (1.135)
We obtain therefore the so-called Killing equation
VK, + V,K, =0. (1.136)

Thus for any vector K which satisfies the Killing equation V,K, + V, K, = 0 the momentum
puK* is conserved along the geodesic with tangent p. The vector K is called a Killing vector.
The Killing vector K generates the isometry which is associated with the conservation of p, K*.
The symmetry transformation under which the metric is invariant is expressed as infinitesimal
motion in the direction of K.

Let us check that the vector K* = ¢¥ satisfies the Killing equation. Immediately, we have
K, = g, and

VK, +V,K, = 0u9ve + 0u9usc — 2I'" 11u9ps

= aag/u/
= 0 (1.137)

Thus if the metric is independent of 7 then the vector K* = §* will satisfy the Killing equation.
Conversely if a vector satisfies the killing equation then one can always find a basis in which
the vector satisfies K* = 0*. However, if we have more than one Killing vector we can not find
a single basis in which all of them satisfy K* = ¢*.

Some of the properties of Killing vectors are:

vV,V,K*=R,,, "K". (1.138)

V.V, K" =R, K" (1.139)
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K"V,R =0. (1.140)

The last identity in particular shows explicitly that the geometry does not change under a
Killing vector.

The isometries of R" with flat Euclidean metric are n independent translations and n(n —
1)/2 independent rotations (which form the group of SO(n) rotations). Hence R" with flat
Euclidean metric has n 4+ n(n — 1)/2 = n(n + 1)/2 isometries. This is the number of Killing
vectors on R™ with flat Euclidean metric which is the maximum possible number of isometries
in n dimensions. The space R" is therefore called maximally symmetric space. In general a
maximally symmetric space is any space with n(n + 1)/2 Killing vectors (isometries). These
spaces have the maximum degree of symmetry. The only Euclidean maximally symmetric
spaces are planes R"™ with 0 scalar curvature, spheres S™ with positive scalar curvature and
hyperboloids H" with negative scalar curvature !.

The curvature of a maximally symmetric space must be the same everywhere (translations)
and the same in every direction (rotations). More precisely, a maximally symmetric space must
be locally fully characterized by a constant scalar curvature R and furthermore must look like
the same in all directions, i.e. it must be invariant under all Lorentz transformations at the
point of consideration.

In the neighborhood of a point p € M we can always choose an inertial reference frame
in which ¢,, = 1,,. This is invariant under Lorentz transformations at p. Since the space is
maximally symmetric the Riemann curvature tensor R,,, at p must also be invariant under
Lorentz transformations at p. This tensor must therefore be constructed from 7,,,, the Kronecker
delta d,, and the Levi-Civita tensor €,,5, which are the only tensors which are known to
be invariant under Lorentz transformations. However, the curvature tensor satisfies R\, =
Ry Buvry = —Runs Runy = Ry By = 0 and Vi, R, 54, = 0. The only combination
formed out of 7,,, 0, and €,,, which satisfies these identities is R,y = (72 T0y — MuyTwr)
with x a constant. This tensorial relation must hold in any other coordinate system, viz

R;w)\-y = K(gu)\gwy - gu'\/gw\)- (1'141)

We compute R\ 7 = k(g0 — 525],4), Ry = Ry ¥ = k(n—1)g, and hence R = kn(n—1).
In other words the scalar curvature of a maximally symmetric space is a constant over the
manifold. Thus the curvature of a maximally symmetric space must be of the form

R
R“l’)‘“{ = m(gu)\gyw - gwgy,\). (1142)

Conversely if the curvature tensor is given by this equation with R constant over the manifold
then the space is maximally symmetric.

!The corresponding maximally symmetric Lorentzian spaces are Minkowski spaces M™ (R = 0), de Sitter
spaces dS™ (R > 0) and Anti-de Sitter spaces AdS™ (R < 0).
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1.8 The Hilbert-Einstein Action

The Einstein’s equations for general relativity reads
1
R, — §gWR = 8nGT,,. (1.143)

The dynamical variable is obviously the metric g,,. The goal is to construct an action principle
from which the Einstein’s equations follow as the Euler-Lagrange equations of motion for the
metric. This action principle will read as

S = /d"x L(g). (1.144)

The first problem with this way of writing is that both d"x and L are tensor densities rather
than tensors. We digress briefly to explain this important different.
Let us recall the familiar Levi-Civita symbol in n dimensions defined by

€u..pn = 1 even permutation
= —1 odd permutation
= 0 otherwise. (1.145)

This is a symbol and not a tensor since it does not change under coordinate transformations,
The determinant of a matrix M can be given by the formula

v,y detM = ¢, ., M, M, (1.146)
By choosing M* , = 0x*/Jy” we get the transformation law
N oy . orH"  Qxtn
6”1“'Vn = det% €u1"'“"%.”ay’/n . (1147)

In other words €, ., is not a tensor because of the determinant appearing in this equation.
This is an example of a tensor density. Another example of a tensor density is detg. Indeed
from the tensor transformation law of the metric g:w = g (02t /0y®) (02" /0y®) we can show
in a straightforward way that

detg = (det%)_2 detg. (1.148)

The actual Levi-Civita tensor can then be defined by

€propn = V detg €. - (1.149)

Next under a coordinate transformation x — y the volume element transforms as

d"x — d"y = detg—y d"z. (1.150)
T
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In other words the volume element transforms as a tensor density and not as a tensor. We
verify this important point in our language as follows. We write

d"r = da’ ANdzt A .. ANda™ !
1
= mém___,mdx”l Ao A datm. (1.151)

Recall that a differential p—form is a (0,p) tensor which is completely antisymmetric. For
example scalars are 0—forms and dual cotangent vectors are 1—forms. The Levi-Civita tensor
€u1..n 15 & 4—form. The differentials dz* appearing in the second line of equation (1.151)
are 1—forms and hence under a coordinate transformation x — y we have da* — dy* =
dx’ Oyt /Ox”. By using this transformation law we can immediately show that dz" transforms
to d"y exactly as in equation (1.150).

It is not difficult to see now that an invariant volume element can be given by the n—form
defined by the equation

dV = +/detg d"x. (1.152)

We can show that

1
dV = ] detg €,,. . dx" A oA datn
1
= mem,,,undx‘“ A ... A\ dxhn
= €. pdr" ® ... ®dxtm
= (1.153)

In other words the invariant volume element is precisely the Levi-Civita tensor. In the case of
Lorentzian signature we replace detg with —detg.
We go back now to equation (1.144) and rewrite it as

S = /d":v L(g)
= [ d"z\/—detg L(g). (1.154)

Clearly £ = \/—detg L. Since the invariant volume element d"z\/—dety is a scalar the function
£ must also be a scalar and as such can be identified with the Lagrangian density.

We use the result that the only independent scalar quantity which is constructed from the
metric and which is at most second order in its derivatives is the Ricci scalar R. In other words
the simplest choice for the Lagrangian density L is

L(g) =R. (1.155)
The corresponding action is called the Hilbert-Einstein action. We compute
58 = / d"zd+/—detg g R, + [ d"z\/—detg 6g" R, + | d"x\/—detg g" O R,,.
(1.156)
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We have

OR,, = O0R,"
0,017 4y — 0,017 0, + 8T TP 3 =T ,T7 )

= (V007 ,, — TP 20T, + T 017 5, + T2 017 3,) — (V017 ,, — 17 26T, + T 017y,

+ N W‘SFP p/\) + 5(F)\ uvrp pA T I pr/rp u/\)
= V007 4 — V007 .

In the second line of the above equation we have used the fact that 6I'” ,, is a tensor since it
is the difference of two connections. Thus

d"zy/—detg g"oR,, = /d"x —detg g"” <VP5FP u — V007 p,,)

= d"xz+\/—detg V, <g‘“’5f‘p u — g7 or* uv)- (1.158)
We compute also (with 69, = —guag,569°°)

1
ore wo = _gp)\ (vudguk + vudgu)\ - V)\(sg;w)

2
_ _1 Ap Ap p s af
= 73 9 V09" + gV, 0g GuaGvg VP0G ). (1.159)
Thus
d"z+/—detg g""0R,, = d"zy/—detg V, <guyvpég‘“’ - Vﬂég“p). (1.160)

By Stokes’s theorem this integral is equal to the integral over the boundary of spacetime of the
expression g, Vog" — V ,0g"” which is 0 if we assume that the metric and its first derivatives
are held fixed on the boundary. The variation of the action reduces to

68 = / d"z6\/—detg ¢ R, + [ d"xz\/—detg 69" R,,. (1.161)
Next we use the result
5/ ety = — 3/t b (1162
Hence
6S = /d"x\/Tetg 59" (R — %g,WR). (1.163)

This will obviously lead to Einstein’s equations in vacuum which is partially our goal. We want
also to include the effect of matter which requires considering the more general actions of the
form

1 mn
S = T6nC d"z \/—detg R+ Sy. (1.164)

(1.157)
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Sy = [ d*z \/—detg L. (1.165)

The variation of the action becomes

1
— "ry/—detg 8g"( _Z
0S 167TG d"z+/—detg dg QQMVR)“—(SSM
1 1 1 0Su
= d" —detg 6¢g"' | —— (R, — =g R) + . 1.166
v/ ety 64 [167@( o= B e | (L160
In other words
1 05 1 1 1 6Sy
= — (R,, — —guwR) + , 1.167
v/ —detg dgrv 167TG( COSEL )+ \/—det 59”“ ( )
Einstein’s equations are therefore given by
1
R, — ig,wR = 8nGT,,. (1.168)
The stress-energy-momentum tensor must therefore be defined by the equation
2 0Sy
T, = ——0o" 2M 1.169
: /—detg dgH” ( )
As a first example we consider the action of a scalar field in curved spacetime given by
1
Sy = | d"z+/—detg [— 59‘“’V“¢V,,¢ —Vi(p)|. (1.170)
The corresponding stress-energy-momentum tensor is calculated to be given by
T = V,6V,¢ — —gwgmv Vo — guV(9). (1.171)

As a second example we consider the action of the electromagnetic field in curved spacetime
given by

Sy = | d"z+/—detg { g“”go‘BFWFaB. (1.172)

In this case the stress-energy-momentum tensor is calculated to be given by

jn%

1
TW = prapv | — Zgf“fFaBFaﬂ. (1.173)



Chapter 2

Black Holes

2.1 Spherical Star

2.1.1 The Schwarzschild Metric

We consider a matter source which is both static and spherically symmetric. Clearly a static
source means that the components of the metric are all independent of time. By requiring also
that the physics is invariant under time reversal, i.e. under ¢ — —t, the components go; which
provide space-time cross terms in the metric must be absent. We have already found that the
most general spherically symmetric metric in 3—dimension is of the form

dii? = 2P dr? 4 1202, (2.1)

The most general static and spherically symmetric metric in 4—dimension is therefore of the
form

ds? = = 2q? + di® = =M 24 + 2P dr? + r2d02. (2.2)

We need to determine the functions a(r) and §(r) from solving Einstein’s equations. First we
need to evaluate the Christoffel symbols. We find

FO Orz&,a
[ oo =0ve®@™® T7 =0,8, " gg=—re 2%, " o6 = —re~ 2 sin? 0
1
rY,,==,1° 6 = —sinb cost
T
1 cos
F¢r i I‘¢ — ) 2.3
¢ %7 Sing (2:3)

The non-zero components of the Riemann curvature tensor are
ROT‘T 0 = _Rr(]r 0 = 8304 -+ (8,«0&)2 — 8758,104
Rogo * = —Rooo * = re"*9,a

R0¢¢ 0— —R¢0¢ 0— re_w&a sin2 0. (24)
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Rog " = —Reo " = (Bfar + (8,0)* — 0,80, 0)e* )
Rugo "= —Royg " = —re 0,

quﬁqﬁ "= —R¢r¢ "= —7“6_26@5 sin? 6. (2.5)

1

RO@O = —Reoo o — —8T0462(a_ﬁ)
T
1

Rrer b= _RGTT b= _arﬁ
T

Rogy ¥ = —Ryo4 ¥ —sin?0(e ™ —1). (2.6)

1 -
Rogo * = —Rym * = ;@0462(0‘ g
1

Rygr © = =Ry ¥ = - -0
Rogo ® = —Rgpo * =1 — 2. (2.7)
We compute immediately the non-zero components of the Ricci tensor as follows
Roo = Roro "+ Rogo © + Rogo © = (8,?a + (0,a)? — 0,80, + %&a) eXe=h)
Rev = Reor * 4 Roge "4 Brgy ® = 00— (0,0)° + 0,00, + 20,
Roo = Roos ° + Rovo ™ + Rygo ¢ =28 (r&ﬂ —ro.o — 1) +1
Rys = Ryop "+ Ryrg "+ Rygy * = sin® {e—% (mTﬁ —rfo — 1) + 1} : (2.8)
We compute also the scalar curvature

R= 2% (03@ + (0,a)* — 0,80« + %(&a —0,.0) + %(1 — 626)). (2.9)

Now we are in a position to solve Einstein’s equations outside the static spherical source (the
star). In the absence of any other matter sources in the region outside the star the Einstein’s
equations read

R, = 0. (2.10)

We have immediately three independent equations
2
O*a + (0,a)? — 0,80,a + ;&a =0
2
Oa + (0,0)* — 0,40, — ;&B =0

e % (r&ﬂ — 10, — 1) +1=0. (2.11)
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By subtracting the first two conditions we get 0,(a 4+ ) = 0 and thus o = —f + ¢ where c¢ is
some constant. By an appropriate rescaling of the time coordinate we can redefine the value
of a as a + ¢ where ¢ is an arbitrary constant. We can clearly choose this constant such that
a = —f. The third condition in the above equation (2.11) becomes then

e (2rd,a+1) = 1. (2.12)
Equivalently
O, (re**) = 1. (2.13)
The solution is (with R is some constant)
e =1--", (2.14)

The first and the second conditions in equation (2.11) take now the form

0o+ 2(0,0)* + %&a =0 (2.15)
We compute
RS 2 RS(QT - RS)
_ — s o) 2.1
o 2(r2 — Ryr) ’ O 2(r? — Rgr)? (2.16)

In other words the form (2.14) is indeed a solution.
The Schwarzschild metric is the metric corresponding to this solution. This is the most
important spacetime after Minkowski spacetime. It reads explicitly

ds? = —(1 — %)édﬁ +(1— %)_10[7“2 + r?dQ°. (2.17)

In the Newtonian limit we know that (with ® the gravitational potential and M the mass of
the spherical star)

P 2GM
goo = —(1 + 2;) =—(1-

). (2.18)

c2r
The goo component of the Schwarzschild metric should reduce to this form for very large dis-
tances which here means r >> R,. By comparison we obtain

2GM

c2

Ry =

. (2.19)

This is called the Schwarzschild radius. We stress that M can be thought of as the mass of the
star only in the weak field limit. In general M will also include gravitational binding energy.
In the limit M — 0 or r — oo the Schwarzschild metric reduces to the Minkowski metric.
This is called asymptotic flatness.
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The powerful Birkhoff’s theorem states that the Schwarzschild metric is the unique vacuum
solution (static or otherwise) to Einstein’s equations which is spherically symmetric !.

We remark that the Schwarzschild metric is singular at » = 0 and at » = Rs. However only
the singularity at r = 0 is a true singularity of the geometry. For example we can check that
the scalar quantity R**°R,,,.s is divergent at r = 0 whereas it is perfectly finite at r = R, 2.
Indeed the divergence of the Ricci scalar or any other higher order scalar such as RF*P R, at
a point is a sufficient condition for that point to be singular. We say that » = 0 is an essential
singularity.

The Schwarzschild radius r = Ry is not a true singularity of the metric and its appearance
as such only reflects the fact that the chosen coordinates are behaving badly at » = R,. We
say that r = Ry is a coordinate singularity. Indeed it should appear like any other point if we
choose a more appropriate coordinates system. It will, on the other hand, specify the so-called
event horizon when the spherical sphere becomes a black hole.

2.1.2 Particle Motion in Schwarzschild Spacetime

We start by rewriting the Christoffel symbols (2.3) as

R
I, = >
0 2r(r — Ry)
r RS(T - RS) r RS r r :
F OOZT,F rr:—m,r QQZ—T‘I‘RS,F ¢¢:(_T+RS)SIH29
1
r? ., = . r? ¢ = —sin b cost
1 cos
9 ,.5==,1%4= : 2.2
o 0 Sing (2.20)
The geodesic equation is given by
d?z” dz* dx¥
Pow———=0. 2.21
e T ey =Y (221)
Explicitly we have
d?z° R, da%dr
——=0. 2.22
2 T — Ry dh dx (222)
d27” RS(T—RS) d:L’O 2 Rs dr 2 do 2 2 dq5 2
er WU ) By s (PN R |[(E in20(=2)*| = 0. (2.23
pet o G T my ) 0 B | (Gy) st () (2:23)
d’0  2dr db do 2
oy 2T g ) =0. 2.24
e + CId sm@cos@(d)\) 0 ( )

IExercise: Try to prove this theorem. This is quite difficult so it is better to consult references right away.
2Exercise: Verify this explicitly.
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2
@+2@@+2C086d9d¢_0

R 2.2
d\?  rdidA sin @ d\ d\ (225)

The Schwarzschild metric is obviously invariant under time translations and space rotations.
There will therefore be 4 corresponding Killing vectors K, and 4 conserved quantities given by
dz*
a\ -’

The motion of a particle under a central force of gravity in flat spacetime has invariance under

Q =K, (2.26)

time translation which leads to conservation of energy and invariance under rotations which
leads to conservation of angular momentum. The angular momentum is a vector in 3 dimensions
with a length (one component) and a direction (two angles). Conservation of the direction
means that the motion happens in a plane. In other words we can choose 6 = 7/2.

In Schwarzschild spacetime the same symmetries are still present and therefore the four
Killing vectors K, must be associated with time translation and rotations and the four conserved
quantities () are the energy and the angular momentum. The two Killing vectors associated
with the conservation of the direction of the angular momentum lead precisely, as in the flat
case, to a motion in the plane, viz

T
b=3. (2.27)

The metric is independent of 2° and ¢ and hence the corresponding Killing vectors are

K* = (90) = 8 = (1,0,0,0) , Ky = guo = (—(1 — 22),0,0,0). (2.98)
T

R = (0y)" = 8% = (0,0,0,1) , R, = gus = (0,0, 0,7%sin”6). (2.29)

The corresponding conserved quantities are the energy and the magnitude of the angular mo-
mentum given by

dzt R, dx°
_p dat g o, do
L =R, oy =7 sin Gd)\. (2.31)

The minus sign in the energy is consistent with the definition p, = p,K* = cp,(0i)". Fur-
thermore E is actually the energy per unit mass for a massive particle whereas for a massless
particles it is indeed the energy since the momentum of a massless particle is identified with its
4—vector velocity. A similar remark applies to the angular momentum. Note that E should be
thought of as the total energy including gravitational energy which is the quantity that really
needs to be conserved. In other words FE is different from the kinetic energy —p,v® which is
the energy measured by an observer whose velocity is v*. Note also that the conservation of
angular momentum is precisely Kepler’s 2nd law.
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There is an extra conserved quantity along the geodesic given by
dxt dx¥
— g 2.32
We compute
de gy detde Pt do
X A\ Tdx dx - ImTaNe an
dgu, dz" dz” dz® dz® dz¥
- 29, " ag————
AN AN dh I T
dz® dz® dx?
———————10yGap — 2I'"
d)\ d)\ d)\ |: Pg B8 Bgﬂpi|
dz® dx? dx?
IS [3p9a5 — I apgus — 1" pﬁgua}
et de? da
dx dx dx
(2.33)
We clearly need to take
€ = ¢? , massive particle. (2.34)
e = 0, massless particle. (2.35)
The above conserved quantity reads explicitly
E? 1 dr.o L?
Equivalently
dr 2 R,  L?
(Z5) — (=5 +a=0 (2.37)
We also rewrite this as
1,dr.2
Z(ZZ =&. 2.
5(5y) +V) =€ (2.38)
L
£ =SB ~e). (2.39)
1 R, L? €
pu— _ 1 —_—— _ —_
Vi) = G- e - s
GM L[> GML?
R A il (2.40)

c3r 22 c2r3
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This is the equation of a particle with unit mass and energy £ in a potential V(7). In this
potential only the last term is new compared to Newtonian gravity. Clearly when » — 0 this
potential will go to —oo whereas if the last term is absent (the case of Newtonian gravity) the
potential will go to +00 when r — 0. See figure GR1a.
The potential V(r) is different for different values of L. It has one maximum and one
minimum if ¢L/GM > v/12. Indeed we have
dv(r) L2

= 0 e?—

2 __
o AL =0. (2.41)

For massive particles the stable (minimum) and unstable (maximum) orbits are located at

\/ L4 L2cheL I+ \/ L4 12G20eL2
max = , Trnin = - 2.42
" : 2GM (2.42)
Both orbits are circular. See figure GR1b. In the limit L — oo we obtain
3GM L?
T = 2.4
Tmax C2 bl 7ﬂrﬂlrl GM ( 3)

The stable circular orbit becomes farther away whereas the unstable circular orbit approaches
3GM/c.
In the limit of small L, the two orbits coincide when

12G2 M2 L? M
L — 072 —0e L=y (2.44)
&
At which point
L 6GM
= : (2.45)

Tmax = Tmin = 20GM 2

This is the smallest radius possible of a stable circular orbit in a Schwarzschild spacetime.
For massless particles (¢ = 0) there is a solution at r = 3GM/c?. This corresponds always
to unstable circular orbit. We have then the following criterion

6GM
stable circular orbits : r > ——. (2.46)
c
3GM 6GM
unstable circular orbits : <r<——. (2.47)

3 c

These are of course all geodesics, i.e. orbits corresponding to free fall in a gravitational field.
There are also bound non-circular orbits which oscillates around the stable circular orbit. For
example if a test particle starts from a point rya < 72 < Tin at which € = V(rq) < 0 it will
move in the potential until it hits the potential at a point 71 > ry;, at which & = V' (ry) where
it bounces back. The corresponding bound precessing orbit is shown on figure GRlec.
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There exists also scattering orbits. If a test particle comes from infinity with energy & > 0
then it will move in the potential and may hit the wall of the potential at ry.x < 1o < rmp for
which €& = V(ry) > 0. If it does not hit the wall of the potential (the energy £ is sufficiently
large) then the particle will plunge into the center of the potential at r = 0. See figures GR1d
and GRle.

In contrast to Newtonian gravity these orbits do not correspond to conic section as we will
show next.

2.1.3 Precession of Perihelia and Gravitational Redshift

Precession of Perihelia The equation for the conservation of angular momentum reads

2 do

L=r"—. 2.48
Y (2.48)
Together with the radial equation
1, dr.2
(== Vir)=E. 2.49
() V() (2.49)
We have for a massive particle the equation
dr.o2 crt  2GMr? , 2GMr riE?
o _ — = ) 2.
G+ - - = (2.50)

In the case of Newtonian gravity equation (2.41) for a massive particle gives r = L?/GM. This
is the radius of a circular orbit in Newtonian gravity. We perform the change of variable

L2

= ) 2.51
YT GMr (2.51)
The above last differential equation becomes
de\2 L o 2G*M?*2*  L*E?
(%) + rehVE R 2r +x° — 2 e (2.52)
We differentiate this equation with respect to = to get
d*x 3G2M?
We solve this equation in perturbation theory as follows. We write
r =29+ 1. (254)
The Oth order equation is
d2
0 142 =0. (2.55)

o
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The 1st order equation is

d*z, 3G?M?

The solution to the Oth order equation is precisely the Newtonian result
xo =14 ecos¢. (2.57)

This is an ellipse with eccentricity e = ¢/a = /1 — b?/a? with the center of the coordinate
system at the focus (c,0) and ¢ is the angle measured from the major axis . The semi-major
axis a is the distance to the farthest point whereas the semi-minor axis b is the distance to
the closest point. In other words at ¢ = m we have g = 1 — e = a(l — €?)/(a + ¢) and at
¢ =0 we have 7g = 1 + e = a(l — €?)/(a — ¢). By comparing also the equation of the ellipse
a(1—e?)/r = 1+ ecos ¢ with the solution for 5 we obtain the value of the angular momentum

L? = GMa(1 — é?). (2.62)
The 1st order equation becomes
d¢2 +x = Tcz(l—l—ecosgb)

3G*M*? e? e
Tc?(l + 5 + - cos 2¢ + 2ecos ). (2.63)

3The ellipse is the set of points where the sum of the distances r; and 75 from each point on the ellipse to
two fixed points (the foci) is a constant equal 2a. We have then

r1+re = 2a. (2.58)

Let 2¢ be the distance between the two foci F; and Fy and let O be the middle point of the segment [Fy, F5].
The coordinates of each point on the ellipse are x and y with respect to the Cartesian system with O at the
origin. Clearly then r1 = \/(c+ x)? + y? and 73 = /(¢ — 2)? + y2. The equation of the ellipse becomes

r Y (2.59)

The semi-major axis is a and the semi-minor axis is b = va? — ¢2. We take the focus Fy as the center of our
system of coordinates and we use polar coordinates. Then x = r cosf — ¢ and y = rsin 6 and hence the equation
of the ellipse becomes (with eccentricity e = ¢/a)

a(l—e?)

=1—ecosf. (2.60)
r

If we had taken the focus F instead as the center of our system of coordinates we would have obtained

a(l —e?)

=1+ ecosf. (2.61)
r
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Remark that

2

dTSQ(QSSinQS) + ¢sin¢ = 2cos ¢
2
40 (cos2¢) + cos 2¢ = —3 cos 2¢. (2.64)
Then we can write
d*y, 3G?M? e? 3G2M?  €? )
W—l—yl = W(1+5) , ylle—w(—gcos%ﬁjtegbsmqﬁ). (2.65)
Define also
W
= (2.66)
G (1+ )
The differential equations becomes
d22’1
The solution is immediately given by
3G?M? e’ 3G2M? | €? )
z21=14+ecosp < x; = Tc?(l + 5)(1 + ecos ) + Tcz(—g cos 2¢ + e sin ¢). (2.68)
The complete solution is
21/ 2 2 )2 2
r = [1 + 352702(1 + %)} (1+ecos¢) + %(—% cos2¢ + epsin ¢). (2.69)
We can rewrite this in the form
3G?M> e? 3G2M?  €?
r = [1 + Tc?(l + 5)] (14 ecos(l1—a)g) + TCZ(_E cos 2¢). (2.70)
The small number « is given by
3G?M?

The last term in the above solution oscillates around 0 and hence averages to 0 over successive
revolutions and as such it is irrelevant to our consideration.

The above result can be interpreted as follows. The orbit is an ellipse but with a period
equal 27 /(1 — «) instead of 27r. Thus the perihelion advances in each revolution by the amount

6mG2M?

L2c2

Ap =2 = (2.72)
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By using now the value of the angular momentum for a perfect ellipse given by equation (2.62)

we get
6rGM
Ap=————. 2.73
¢ a(l —e?)c? (2.73)
In the case of the motion of Mercury around the Sun we can use the values
M
GC—2 =1.48 x 10°cm , a = 5.79 x 10"%cm , e = 0.2056. (2.74)
We obtain
6mGM . )
A¢Mercury = m = 503 X 10 rad/orblt. (275)

However Mercury completes one orbit each 88 days thus in a century its perihelion will advance
by the amount

100 x 365 180 x 3600
AdMercury = §78 x 5.03 x 10_7# arcsecond /century
= 43.06 arcsecond/century. (2.76)

The total precession of Mercury is around 575 arcseconds per century* with a 532 arcseconds per
century due to other planets and 43 arcseconds per century due to the curvature of spacetime
caused by the Sun®.

Gravitational Redshift We consider a stationary observer (U* = 0) in Schwarzschild space-

time. The 4—vector velocity satisfies g, U*U” = —c* and hence
S (2.77)
/1 - 2G;M
The energy (per unit mass) of a photon as measured by this observer is
dxt
b= 0y
2G'M dt
= /1= ===
VT e an
E
= = (2.78)

/1 20M
1—- c2r

The E? is the conserved energy (per unit mass) of the Schwarzschild metric given by (2.30).
Thus a photon emitted with an energy E.; at a distance r; will be observed at a distance
ro > 11 with an energy FE., given by

E.

2.79
P (279)

4There is a huge amount of precession due to the precession of equinoxes which is not discussed here.
5There is also a minute contribution due to the oblatness of the Sun



GR, B.Ydri 47

Thus the energy E,» < E,;, i.e. as the photon climbs out of the gravitational field it gets
redshifted. In other words the frequency decreases as the strength of the gravitational field
decreases or equivalently as the gravitational potential increases. This is the gravitational
redshift. In the limit r >> 2G'M/c? the formula becomes

E o, D M
Bp _ 1 81 %2 5 GM

=2 2.80
E., N r (2.80)

2.1.4 Free Fall

For a radially (vertically) freely object we have d¢/dA = 0 and thus the angular momentum
is 0, viz L = 0. The radial equation of motion becomes

dri2 2GM 5 9
—) - = FE° — " 2.81
(drye 26 : 51
This is essentially the Newtonian equation of motion. The conserved energy is given by
2GM  dt
E=c(1- 2.82
el cr >d)\ (2:82)

We also consider the situation in which the particle was initially at rest at r = r;, viz

dr
— =, = 0. 2.83
o (2:3)
This means in particular that
2GM
oo XM (2.84)
T
The equation of motion becomes
dri2 2GM 2GM
Bk E — . 2.
(dA) r T (2:85)

We can identify the affine parameter A with the proper time for a massive particle. The proper
time required to reach the point r = ry is

T 1 Tf T/r,l
T = / d\ = —(2GM) ™2 / dry/ . (2.86)
0 i /rz' - T

The minus sign is due to the fact that in a free fall dr/d\ < 0. By performing the change of

variables r = r;(1 + cos ) /2 we find the closed result

3

]

8GM

(o +sinay). (2.87)

This is finite when » — 2GM/c?>. Thus a freely falling object will cross the Schwarzschild
radius in a finite proper time.
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We consider now a distant stationary observer hovering at a fixed radial distance r.,. His
proper time is

2GM

T 2.2
s,

t. (2.88)

Too = 4/ 1

By using equations (2.81) and (2.82) we can find dr/dt. We get

dr 1dA d\ 1
T g E oL
dt a Eeg)
e, 2GM (., . 2GM)\?
= E(l = )(E (1 = )) (2.89)
Near r = 2GM/c* we have
dr I 2GM
= — — . 2.
dt TR (2.90)
The solution is
2GM At
— = — . 2.91
M exp(— 5t (2.1

Thus when r — 2GM/c? we have t — oco.

We see that with respect to a stationary distant observer at a fixed radial distance r., the
elapsed time 7., goes to infinity as r — 2GM/c?. The correct interpretation of this result
is to say that the stationary distant observer can never see the particle actually crossing the
Schwarzschild radius r, = 2G M /c? although the particle does cross the Schwarzschild radius in
a finite proper time as seen by an observer falling with the particle.

2.2 Schwarzschild Black Hole

We go back to the Schwarzschild metric (2.17), viz (we use units in which ¢ = 1)

2GM, o | () 2GM

T T

) rdr? + r?d02. (2.92)

ds* = —(1 —

For a radial null curve, which corresponds to a photon moving radially in Schwarzschild space-
time, the angles 6 and ¢ are constants and ds? = 0 and thus

2GM 2GM
0=—(1- G )dt2 +(1- ¢ )_1dr2. (2.93)
T T
In other words
dt 1

=t (2.94)
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This represents the slope of the light cone at a radial distance r on a spacetime diagram of
the t — r plane. In the limit »r — oo we get £1 which is the flat Minkowski spacetime result
whereas as r decreases the slope increases until we get +oo as 1 — 2G M. The light cones
close up at r = 2GM (the Schwarzschild radius). See figure GR2.

Thus we reach the conclusion that an infalling observer, as seen by us, never crosses the event
horizon r;, = 2G'm in the sense that any fixed interval A7 of its proper time will correspond to
a longer and longer interval of our time. In other words the infalling observer will seem us to
move slower and slower as it approaches r, = 2GM but it will never be seen to actually cross
the event horizon. This does not mean that the trajectory of the infalling observer will never
reach ry = 2G'M because it actually does, however, we need to change the coordinate system
to be able to see this.

We integrate the above equation as follows

dr

T

= + <7‘ +2GM log(m — 1)) + constant

= =7, + constant. (2.95)

We call r, the tortoise coordinate which makes sense only for » > 2G M. The event horizon
r = 2GM corresponds to 1, —» co. We compute dr, = rdr/(r — 2GM) and as a consequence
the Schwarzschild metric becomes

2GM

r

ds* = (1 — )(—dt* + dr?) + r2dQ?. (2.96)

Next we define v =¢t+r, and u =t — r,. Then

ds* = —(1 — %)dvdu + r2dQ?. (2.97)

For infalling radial null geodesics we have t = —r, or equivalently v = constant whereas for
outgoing radial null geodesics we have t = +r, or equivalently u = constant. We will think
of v as our new time coordinate whereas we will change u back to the radial coordinate r via
u=v—2r, =v—2r—4GMlog(r/(2GM) — 1). Thus du = dv —2dr/(1 —2GM/r) and as a
consequence

ds* = —(1 — %)dv + 2dvdr + r*d?. (2.98)

These are called the Eddington-Finkelstein coordinates. We remark that the determinant of
the metric in this system of coordinates is ¢ = —r*sin® # which is regular at r = 2GM, i.e. the
metric is invertible and the original singularity at r = 2GM is simply a coordinate singularity
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characterizing the system of coordinates (t,7,0,¢). In the Eddington-Finkelstein coordinates
the radial null curves are given by the condition
2GM | dv dv
1-— — —=2|—=0. 2.99
( r )dr dr ( )

We have the following solutions:

e dv/dr =0 or equivalently v = constant which corresponds to an infalling observer.

e dv/dr # 0 or equivalently dv/dr = 2/(1 — 2¢M). For r > 2GM we obtain the solution
v = 2r +4GM log(r/2GM — 1) + constant which corresponds to an outgoing observer
since dv/dr > 0. This actually corresponds to u = constant.

e dv/dr # 0 or equivalently dv/dr = 2/(1 — 2¢M)_ For r < 2GM we obtain the solution
v = 2r + 4GMlog(1 — r/2GM) + constant which corresponds to an infalling observer
since dv/dr < 0.

e For r = 2G M the above equation reduces to dvdr = 0. This corresponds to the observer
trapped at r = 2G M.

The above solutions are drawn on figure GR3 in the plane (v — r) — r, i.e. the time axis (the
perpendicular axis) is v —r and not v. Thus for every point in spacetime we have two solutions:

e The points outside the event horizon such as point 1 on figure GR3: There are two
solutions one infalling and one outgoing.

e The points inside the event horizon such as point 3 on figure GR3: There are two solutions
both are infalling.

e The points on the event horizon such as point 2 on figure GR3: There are two solutions
one infalling and one trapped.

Several other remarks are of order:

e The light cone at each point of spacetime is determined (bounded) by the two solutions
at that point. See figure GR3.

e The left side of the light cones is always determined by infalling observers.
e The right side of the light cones for r > 2G M is always determined by outgoing observers.
e The right side of the light cones for r < 2G'M is always determined by infalling observers.

e The light cone tilt inward as r decreases. For r < 2GM the light cone is sufficiently tilted
that no observer can escape the singularity at » = 0.

e The horizon r = 2G M is clearly a null surface which consists of observers who can neither
fall into the singularity nor escape to infinity (since it is a solution to a null condition
which is trapped at r = 2GM).
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2.3 The Kruskal-Szekres Diagram: Maximally Extended
Schwarzschild Solution

We have shown explicitly that in the (v, r, 0, ¢) coordinate system we can cross the horizon at
r = 2G M along future directed paths since from the definition v = t+r, we see that for a fixed
v (infalling null radial geodesics) we must have t = —r, + constant and thus as r — 2G M we
must have t — +00. However we have also shown that we can cross the horizon at r = 2GM
along past directed paths corresponding to v = 2r, + constant or equivalently u = constant
(outgoing null radial geodesics) and thus as 1 — 2G M we must have ¢t — —oo. We have
also been able to extend the solution to the region r < 2G M.

In the following we will give a maximal extension of the Schwarzschild solution by construct-
ing a coordinate system valid everywhere in Schwarzschild spacetime. We start by rewriting
the Schwarzschild metric in the (u,v, 0, @) coordinate system as

2GM

ds* = —(1 —
s ( .

Ydvdu + r*dQ*. (2.100)

The radial coordinate r should be given in terms of u and v by solving the equations

1
S(0—u) = r+zGMlog(2GLM —1). (2.101)
The event horizon » = 2G M is now either at v = —oo or u = +o00. The coordinates of the

event horizon can be pulled to finite values by defining new coordinates v’ and v" as

= exp(anr)
v = exp el
r r+t
= 5C —1exp(4GM). (2.102)
’ u
v = —ew(-ggy)
r r—t
= _HQGM_leXp(ZLGM)' (2.103)
The Schwarzschild metric becomes
32G3 M3 r P
2_ _Te= . 2 102
ds® = exp( QGM)dU du + r°dQ”. (2.104)

It is clear that the coordinates u and v are null coordinates since the vectors 9d/0u and 9/0v
are tangent to light cones and hence they are null vectors. As a consequence v and v’ are null
coordinates. However, we prefer to work with a single time like coordinate while we prefer the
other coordinate to be space like. We introduce therefore new coordinates T and R defined for




GR, B.Ydri 52

1 . / T T t

Rzﬁ(v —u)= 2GM—1eXp(4GM)cosh4GM.

Clearly T is time like while R is space like. This can be confirmed by computing the metric.
This is given by

(2.106)

ds* = ——— exp(= QGLM)(—CZT2 +dR?) +r?d”. (2.107)

We see that T is always time like while R is always space like since the sign of the components
of the metric never get reversed.
We remark that

T> - R* = vu

742G M log(sg77 — 1)

oGM
T
) exp

= —exp

T
(1= 3537 SEE (2.108)

The radial coordinate r is determined implicitly in terms of 7" and R from this equation, i.e.
equation (2.108). The coordinates (T, R, 0, ¢) are called Kruskal-Szekres coordinates. Remarks
are now in order

e The radial null curves in this system of coordinates are given by
T = £R + constant. (2.109)
e The horizon defined by r —s 2GM is seen to appear at T2 — R? — 0, i.e. at (2.109) in

the new coordinate system. This shows in an elegant way that the event horizon is a null
surface.

e The surfaces of constant r are given from (2.108) by 7% — R? = constant which are
hyperbolae in the R — T plane.

e For r > 2GM the surfaces of constant ¢ are given by T/R = tanht¢/4GM = constant
which are straight lines through the origin. In the limit ¢ — 400 we have T/R — +1
which are precisley the horizon r = 2G M.

e For r < 2G'M we have

1 ’ ’ T T t
T—§(v +u)=4/1- QGMeXp(ZlGM)COSthGM' (2.110)
Ret(w —u)= /1- " (—" ) sinh —" (2.111)
B oM P\aem’ M A '

The metric and the condition determining r implicitly in terms of 7" and R do not change

form in the (7', R, 0, ¢) system of coordinates and thus the radial null curves, the horizon
as well as the surfaces of constant r are given by the same equation as before.
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e For r < 2G M the surfaces of constant t are given by 17/R = 1/tanht/4GM = constant
which are straight lines through the origin.

e It is clear that the allowed range for R and T is (analytic continuation from the region
T? — R* <0 (r > 2GM) to the first singularity which occurs in the region T? — R* < 1
(r <2GM))

—0 < R<+o0, TP - R*< 1. (2.112)

A Kruskal-Szekres diagram is shown on figure GR4. Every point in this diagram is actually
a 2—dimensional sphere since we are suppressing 6 and ¢ and drawing only R and 7. The
Kruskal-Szekres diagram gives the maximal extension of the Schwarzschild solution. In some
sense it represents the entire Schwarzschild spacetime. It can be divided into 4 regions:

e Region 1: Exterior of black hole with r > 2GM (R > 0 and T? — R? < 0). Clearly future
directed time like (null) worldlines will lead to region 2 whereas past directed time like
(null) worldlines can reach it from region 4. Regions 1 and 3 are connected by space like
geodesics.

e Region 2: Inside of black hole with r < 2GM (T > 0, 0 < T? — R* < 1). Any future
directed path in this region will hit the singularity. In this region r becomes time like
(while t becomes space like) and thus we can not stop moving in the direction of decreasing
r in the same way that we can not stop time progression in region 1.

e Region 3: Parallel exterior region with r > 2GM (R < 0, T? — R?> < 0). This is another
asymptotically flat region of spacetime which we can not access along future or past
directed paths.

e Region 4: Inside of white hole with r < 2GM (T < 0, 0 < T? — R* < 1). The white
hole is the time reverse of the black hole. This corresponds to a singularity in the past
at which the universe originated. This is a part of spacetime from which observers can
escape to reach us while we can not go there.

2.4 Various Theorems and Results

The various theorems and results quoted in this section requires a much more careful and
detailed analysis much more than what we are able to do at this stage.

e Birkhoff’s Theorem: The Schwarzschild solution is the only spherically symmetric
solution of general relativity in vacuum.

This is to be compared with Coulomb potential which is the only spherically symmetric
solution of Maxwell’s equations in vacuum.
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e No-Hair Theorem (Example): General relativity coupled to Maxwell’s equations ad-
mits a small number of stationary asymptotically flat black hole solutions which are
non-singular outside the event horizon and which are characterized by a limited num-
ber of parameters given by the mass, the charge (electric and magnetic) and the angular
momentum.

In contrast with the above result there exists in general relativity an infinite number of
planet solutions and each solution is generically characterized by an infinite number of
parameters.

e Event Horizon: Black holes are characterized by their event horizons. A horizon is
a boundary line between two regions of spacetime. Region I consists of all points of
spacetime which are connected to infinity by time like geodesics whereas region II consists
of all spacetime points which are not connected to infinity by time like geodesics, i.e.
observers can not reach infinity starting from these points. The boundary between regions
[ and II, which is the event horizon, is a light like (null) hyper surface.

The event horizon can be defined as the set of points where the light cones are tilted over
(in an appropriate coordinate system). In the Schwarzschild solution the event horizon
occurs at r = 2G M which is a null surface although r = constant is time like surface for
large r.

In a general stationary metric we can choose a coordinate system where d,g,, = 0 and
on hypersurfaces ¢ = constant the coordinates will resemble spherical polar coordinates
(r,0,¢) sufficiently far away. Thus hypersurfaces r = constant are time like with the
topology S% x R as r — oo. It is obvious that d,r is a normal one-form to these
hypersurfaces with norm

g" = g"o,ro,r. (2.113)

If the time like hypersurfaces r = constant become null at some r = rg then we will get
an event horizon at r = ry since any time like geodesic crossing to the region r < rgy will
not be able to escape back to infinity. For r > rg we have clearly ¢"" > 0 whereas for
r < rg we have ¢"" < 0. The event horizon is defined by the condition

9" (rg) =0. (2.114)

e Trapped Surfaces:In general relativity singularities are generic and they are hidden
behind event horizons. As shown by Hawking and Penrose singularities are inevitable if
gravitational collapse reach a point of no return, i.e. the appearance of trapped surface.

Let us consider a 2—sphere in Minkowski spacetime. We consider then null rays emanating
from the sphere inward or outward. The rays emanating outward describe growing spheres
whereas the rays emanating inward describe shrinking spheres. Consider now a 2—sphere
in Schwarzschild spacetime with » < 2GM. In this case the rays emanating outward
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and inward will correspond to shrinking spheres (r is time like). This is called a trapped
surface.

A trapped surface is a compact space like 2—dimensional surface with the property that
outward light rays are in fact moving inward.

e Singularity Theorem (Example): A trapped surface in a manifold M with a generic
metric g, (which is a solution of Einstein’s equation satisfying the strong energy condition
6) can only be a closed time like curve or a singularity.

e Cosmic Censorship Conjecture: In general relativity singularities are hidden behind
event horizons. More precisely, naked singularities can not appear in the gravitational
collapse of a non singular state in an asymptotically flat spacetime which fulfills the
dominant energy condition ”.

e Hawking’s Area Theorem: In general relativity black holes can not shrink but they
can grow in size. Clearly the size of the black hole is measured by the area of the event
horizon.

Hawking’s area theorem can be stated as follows. The area of a future event horizon
in an asymptotically flat spacetime is always increasing provided the cosmic censorship
conjecture and the weak energy condition hold & 9.

e Stokes’s Theorem : Next we recall stokes’s theorem

/Zdw:/aZw. (2.115)

/ &e/Jg] V= / &y /Il oV, (2.116)
by [9)))

Explicitly this reads

The unit vector o* is normal to the boundary 9X. In the case that X is the whole space,
the boundary 9% is the 2—sphere at infinity and thus ¢* is given, in an appropriate system
of coordinates, by the components (0, 1,0,0).

e Energy in GR: The concept of conserved total energy in general relativity is not straight-
forward.

6Exercise: The strong energy condition is given by Tt > T* \t°t,/2 for any time like vector t*. Show
that this is equivalent to p+ P > 0 and p+ 3P > 0.

"Exercise: The dominant energy condition is given by T},,t#t¥ > 0 and T),,T" APt < 0 for any time like
vector t#. Show that these are equivalent to p > |P|.

8Exercise: The weak energy condition is given by T),,t"t” > 0 for any time like vector t*. Show that these
are equivalent to p > 0 and p+ P > 0.

9Exercise: Show that for a Schwarzschild black hole this theorem implies that the mass of the black hole can
only increase.
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For a stationary asymptotically flat spacetime with a time like Killing vector field K* we
can define a conserved energy-momentum current J4: by '°

Jh = K, T (2.117)

Let ¥ by a space like hypersurface with a unit normal vector n* and an induced metric
7i;. By integrating the component of Ji along the normal n* over the surface ¥ we get
an energy, viz

ET:/d3a: v n,Jh. (2.118)
b

This definition is however inadequate since it gives zero energy in the case of Schwarzschild
spacetime.

Let us consider instead the following current

Jyp = K,R"
1
= 87rGK,,(T‘“’—§g“”T). (2.119)
We compute now
V.Jy = K/NV,R". (2.120)

By using now the contracted Bianchi identity V,G* = V(R — g""R/2) = 0 or equiv-
alently V,R*" = VYR/2 we get

1
Vi = K V'R (2.121)

The derivative of the scalar curvature along a Killing vector must vanish ! and as a
consequence Jp, is conserved. The corresponding energy is defined by

Er NG (2.122)

:47TG »

The normalization is chosen for later convenience. The Killing vector K* satisfies among
other things V,V*K"” = R* K, '* and hence the vector J4 is actually a total derivative,

V1Z

Ji = V,VrK", (2.123)

9Exercise: Verify that J/ is conserved by using the fact that the energy-momentum tensor is conserved
(V,T" =0) and the fact that K* is a Killing vector (V,K, + V, K, =0).

HExercise: Show this explicitly.

12Exercise: Show this explicitly. This is one of the formula which might be used in the previous exercise.
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The energy Er becomes
E :i/d?’x 5 n,V,VFK"
R 47TG » woy

_ ﬁ [ a5V, () - ﬁ [0 y7 Von, K (2.121)
In the second term we can clearly replace V,n, with (V,n,—V,n,)/2 = (0,n,—0,n,)/2.
The surface ¥ is space like and thus the unit vector n* is time like. For example X can be
the whole of space and thus n* must be given, in an appropriate system of coordinates,
by the components (1,0,0,0). In this system of coordinates the second term vanishes.
The above equation reduces to

_ L 3 7% 74
Ep = 47TG/2d z/7 V, (n,V*K"). (2.125)

By using stokes’s theorem we get the result

1
Er = — | dav/7® o,(n,V"K"). (2.126)
47TG oy
This is Komar integral which defines the total energy of the stationary spacetime. For
Schwarzschild spacetime we can check that Er = M '3, The Komar energy agrees with the
ADM (Arnowitt, Deser, Misner) energy which is obtained from a Hamiltonian formulation

of general relativity and which is associated with invariance under time translations.

2.5 Reissner-Nordstrom (Charged) Black Hole

2.5.1 Maxwell’s Equations and Charges in GR

Maxwell’s equations in flat spacetime are given by

0™ = —J. (2.127)

O Fon + 0Fp + 0, Fy, = 0. (2.128)

Maxwell’s equations in curved spacetime can be obtained from the above equations using the
principle of minimal coupling which consists in making the replacements 7,,, — ¢,, and 9, —
D,, where D, is the covariant derivative associated with the metric g,,. The homogeneous
equation does not change under these substitutions since the extra corrections coming from the
Christoffel symbols cancel by virtue of the antisymmetry under permutations of p, v and X\ 4.

13Exercise: Show this explicitly.
4 Exercise: Show this explicitly.
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This also means that the field strength tensor F),, in curved spacetime is still given by the same
formula as in the flat case, viz

F, = 0,A, — 0,A,. (2.129)
The inhomogeneous Maxwell’s equation in curved spacetime is given by
D,F" = —=J". (2.130)
We compute
D,F" = 0,F" +T" ,FY
= 0"+ %g“”@agupFa”. (2.131)

Let g = det g,, and let e; be the eigenvalues of the matrix g,,. We have the result

ov/—g 109 1 de; 1
-2 _ - = Zg*da. . 2.132
Thus
aa —g
D,F¥ = 9,F" 4 T FY, 2.133
. ) = (2133)

Using this result we can put the inhomogeneous Maxwell’s equation in the equivalent form
Ou(V/—gF") = —/—gJ". (2.134)
The law of conservation of charge in curved spacetime is now obvious given by
0u(v/—gJ*) = 0. (2.135)
This is equivalent to the form
D, J" =0. (2.136)
The energy-momentum tensor of electromagnetism is given by !°
« 1 (6% (0%
T = FuaFy * = S0 FogF Pt g JaA”. (2.137)

We define the electric and magnetic fields by Fy, = E; and Fj; = € By with €103 = —1.
The amount of electric charge passing through a space like hypersurface ¥ with unit normal
vector n* is given by the integral

Q = - / /A, "
by

= - / d*xy/yn, D, F*™ . (2.138)
%

15Fxercise: Construct a derivation of this result.
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The metric v;; is the induced metric on the surface ¥. By using Stokes’s theorem we obtain

Q = —/é)zdzx\/fy@)n“a,,F“”. (2.139)

The unit vector o# is normal to the boundary 0.
The magnetic charge P can be defined similarly by considering instead the dual field strength
tensor xFH = ¢ BF, 5 /2.

2.5.2 Reissner-Nordstrom Solution

We are interested in finding a spherically symmetric solution of Einsetin-Maxwell equations
with some mass M, some electric charge () and some magnetic charge P, i.e. we want to find
the gravitational field around a star of mass M, electric charge () and magnetic charge P.

We start from the metric

ds* = —A(r)dt? + B(r)dr® + r*(d6? + sin® 0d¢?). (2.140)
We compute immediately /—g = VABr?sin?#. The components of the Ricci tensor in this
metric are given by (with A = ¢%* B = ¢27)
2
Ry = (83& + (0,2)* — 0,80, + ;&a) e@=h)

R, = —0%a — (0,0)* + 0,80.a + %&ﬂ

Rgp = % (T&B —royo — 1) +1
Ryy =sin®0[e > (r0,8 — ro,a — 1) +1]. (2.141)

We also need to provide an ansatz for the electromagnetic field. By spherical symmetry the
most general electromagnetic field configuration corresponds to a radial electric field and a
radial magnetic field. For simplicity we will only consider a radial electric field which is also
static, viz

E.=f(r), BEg=E;=0, B, =By= By =0. (2.142)

We will also choose the current J* to be zero outside the star where we are interested in finding a
solution. We compute F*" = — f(r)/AB while all other components are 0. The only non-trivial
component of the inhomogeneous Maxwell’s equation is 9,(y/—¢gF™) = 0 and hence

r?f(r)y _ _ QVAB
\/A_)—O@f(r)— .

The constant of integration ) will play the role of the electric charge since it is expected that
A and B approach 1 when r — oo. The homogeneous Maxwell’s equation is satisfied since

O, ( (2.143)

the only non-zero component of F* ie. F is clearly of the form —9"A° for some potential
A° while the other components of the vector potential (A", A and A?) are 0.
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We have therefore shown that the above electrostatic ansatz solves Maxwell’s equations. We
are now ready to compute the energy-momentum tensor in this configuration. We compute

£2(r) 1 1 1
T,uu = AB (Zg,uoguo - Eg,urgur + 59#1/)
_ 2(T)diag(A ~B,72,r?sin?0). (2.144)
2AB ) ) Y
Also
TM v QVATMA
f2(r) ..
—1,—1,+1,+1). 2.14
sap das(—1, —1,+1,+1) (2.145)

The trace of the energy-momentum is therefore traceless as it should be for the electromagnetic
field. Thus Einstein’s equation takes the form

Ry, = 87GT,,. (2.146)

We find three independent equations given by

(83@ + (0,a)* — 0,80,a + %&a)A = 41G f2. (2.147)
(= 0a — (0,)* + 0,0,a + g(?rﬁ)A = —4nG f2. (2.148)
r
2
e (ro.8—ro,a—1) +1= 47rGf2£—B. (2.149)

From the first two equations (2.147) and (2.148) we deduce
O, (a4 ) = 0. (2.150)

In other words

’

a:—ﬁ+c<:>B:CZ. (2.151)

c and ¢ are constants of integration. By substituting this solution in the third equation (2.149)

we obtain
r 1 1 GQ*> b
—)=1-GQ? — =1 -, 2.152
aT(B) G 42 < B + 42 + r ( )
In other words
2 ! !
A=d 4 G0 e (2.153)

42 r
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The first equation (2.147) is equivalent to
2 2 2
0:A+ =0,A =8nGf~. (2.154)
r

By substituting the solution (2.153) back in (2.154) we get ¢ = 1. In other words we must have

’

1 GQ?  be
B_Z’A_1+4w2+7' (2.155)

Similarly to the Schwarzschild solution we can now invoke the Newtonian limit to set bc =
—2G'M. We get then the solution

2GM  GQ?
_2GMGQ

r Amr?’

A=1 (2.156)

If we also assume a radial magnetic field generated by a magnetic charge P inside the star we
obtain the more general metric 6

ds* = —A(r)dt* + A7 (r)dr? + r*(d6? + sin® 0do?). (2.157)
2GM  G(Q?+ P?
A=1- IC(Cahi) (2.158)
r 47r?
This is the Reissner-Nordstrom solution. The event horizon is located at » = rg where
2 P2
Alrg) =0 e r* —2GMr + G(QT;:) = 0. (2.159)
We should then consider the discriminant
2 P2

5= aceye - G ) (2.160)

™

There are three possible cases:

e The case GM? < (Q?+ P?)/4x. There is a naked singularity at r = 0. The coordinate r is
always space like while the coordinate t is always time like. There is no event horizon. An
observer can therefore travel to the singularity and return back. However the singularity
is repulsive. More precisely a time like geodesic does not intersect the singularity. Instead
it approaches r = 0 then it reverses its motion and drives away.

This solution is in fact unphysical since the condition GM? < (Q* + P?)/4r means that
the total energy is less than the sum of two of its components which is impossible.

16Exercise: Verify this explicitly.
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e The case GM? > (Q* + P?)/4x. There are two horizons at

re=GM + \/G2M2 _G@+ P (2.161)

AT
These are of course null surfaces. The horizon at » = r, is similar to the horizon of the
Schwarzschild solution. At this point the coordinate r becomes time like (A < 0) and a
falling observer will keep going in the direction of decreasing r. At r = r_ the coordinate
r becomes space like again (A > 0). Thus the motion in the direction of decreasing r can

be reverses, i.e. the singularity at » = 0 can be avoided.

The fact that the singularity can be avoided is consistent with the fact that » = 0 is a
time like line in the Reissner-Nordstrom solution as opposed to the singularity r = 0 in
the Schwarzschild solution which is a space like surface.

The observer in the region r < r_ can therefore move either towards the singularity
at r = 0 or towards the null surface r = r_. After passing r = r_ the coordinate r
becomes time like once more and the observer in this case can only move in the direction
of increasing r until it emerges from the black hole at r = r.

e The case GM? = (Q* + P?)/4n (Extremal RN Black Holes). There is a single horizon at
r = GM. In this case the coordinate r is always space like except at r = GM where it is
null. Thus the singularity can also be avoided in this case.

2.5.3 Extremal Reissner-Nordstrom Black Hole
The metric at GM? = (Q? 4+ P?)/4x takes the form

ds? = —(1 — G_M)%Zt? + (1 - G—M)—%zr? + 72(d6* + sin® Od¢?). (2.162)

r r

We define the new coordinate p = r — GM and the function H(p) = 1+ GM/p. The metric
becomes

ds*> = —H*(p)dt® + H*(p) (dp” + p*(d6* + sin® 0d¢”)). (2.163)

Equivalently

GM

ds® = —H*(Z)dt* + H*(¥)di® , H(?) =1+ G (2.164)
x

For simplicity let us consider only a static electric field which is given by E, = Fy, = Q/4xr?.

From the extremal condition we have Q? = 47GM?. For electrostatic fields we have Iy, =

—0,Ap and the rest are zero. Then it is not difficult to show that

Q 1 G
dr  JAnrGp+GM W T

Ag = 0. (2.165)
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Equivalently

L
H(p)

The metric (2.164) together with the gauge field configuration (2.166) with an arbitrary function

ATGAy=1— LA =0. (2.166)

H(Z) still solves the Einstein-Maxwell’s equations provided H () satisfies the Laplace equation

17

V2H = 0. (2.167)

The general solution is given by

|7 — T

N
H(@) =1+ GM: (2.168)
=1

This describes a system of N extremal RN black holes located at #; with masses M; and charges
Q? = 4rGM?.

2.6 Kerr Spacetime

2.6.1 Kerr (Rotating) and Kerr-Newman (Rotating and Charged)
Black Holes

e The Schwarzschild black hols and the Reissner-Nordstrom black holes are spherically
symmetric. Any spherically symmetric vacuum solution of Einstein’s equations possess a
time like Killing vector and thus is stationary.

In a stationary metric we can choose coordinates (¢, 2!, 22, #3) where the killing vector is
0;, the metric components are all independent of the time coordinate ¢ and the metric is
of the form

ds® = goo(w)dt® + 2goi(z)dtdz’ + gij(v)dx'da’. (2.169)

This stationary metric becomes static if the time like Killing vector 9, is also orthogonal
to a family of hypersurfaces. In the coordinates (¢,x!, 22 23) the Killing vector 0; is
orthogonal to the hypersurfaces t = constant and equivalently a stationary metric becomes
static if go; = 0.

e In contrast the Kerr and the Kerr-Newman black holes are not spherically symmetric and
are not static but they are stationary. A Kerr black hole is a vacuum solution of Einstein’s
equations which describes a rotating black hole and thus is characterized by mass and
angular momentum whereas the Kerr-Newman black hole is a charged Kerr black hole

I"Exercise: Derive explicitly this result.
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and thus is characterized by mass, angular momentum and electric and magnetic charges.
The rotation clearly breaks spherical symmetry and makes the black holes not static.
However since the black hole rotates in the same way at all times it is still stationary.
The Kerr and Kerr-Newman metrics must therefore be of the form

ds® = goo(w)dt® + 2g0i(z)dtdz’ + gij(v)dx'da’. (2.170)

e The Kerr metric must be clearly axial symmetric around the axis fixed by the angular
momentum. This will correspond to a second Killing vector .

e In summary the metric components, in a properly adapted system of coordinates, will
not depend on the time coordinate ¢ (stationary solution) but also it will not depend on
the angle ¢ (axial symmetry). Furthermore if we denote the two coordinates ¢t and ¢ by
2% and the other two coordinates by y* the metric takes then the form

ds® = gup(y)dadz® + g;;(y)da'da’. (2.171)

e In the so-called Boyer-Lindquist coordinates (¢, r, 0, ¢) the components of the Kerr metric
are found (Kerr (1963)) to be given by

2GM
g = —(1 — #) . p? =1r? 4 a’cos? . (2.172)
P
2G Mar sin® 0
gio =~ (2.173)
2

Grr ="K A =7?—2GMr +a*. (2.174)

2 sin?f 212 2N i
oo =P~ Gpp = o [(r* 4+ a®)* — a®Asin® 6)]. (2.175)

This solution is characterized by the two numbers M and a. The mass of the Kerr black
hole is precisely M whereas the angular momentum of the black hole is J = aM.

e In the limit @ — 0 (no rotation) we obtain the Schwarzschild solution

2G M 2G M
) y Grr = (1 - T)_l

g = —(1 — , Jop = 7’2 y Gopp = 7"2 Sil’l2 0. (2176)

r

e In the limit M — 0 we obtain the solution

r? + a?cos®

22 0 9= 12 +a’cos’ 0, ges = (r* +a®)sin?6. (2.177)

gtt:_l y Grr =
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A solution with no mass and no rotation must correspond to flat Minkowski spacetime.

Indeed the coordinates r, 6 and ¢ are nothing but ellipsoidal coordinates in flat space.

The corresponding Cartesian coordinates are ®

xr=Vr2+a?sinfcos¢, y=+vVr2+a’sinfsing , z =rcoséb. (2.178)

e The Kerr-Newman black hole is a generalization of the Kerr black hole which includes also
electric and magnetic charges and an electromagnetic field. The electric and magnetic
charges can be included via the replacement

2GMr — 2GMr — G(Q* + P?). (2.179)

The electromagnetic field is given by

_ Qr — Pacos6 4,

_ —Qarsin®0 + P(r* + a?) cos §
p? a p '

2

A, (2.180)

2.6.2 Killing Horizons

In Schwarzschild spacetime the Killing vector K = J; becomes null at the event horizon. We
say that the event horizon (which is a null surface) is the Killing horizon of the Killing vector
K = 0;. In general the Killing horizon of a Killing vector x* is a null hypersurface ¥ along
which the Killing vector x* becomes null. Some important results concerning Killing horizons
are as follows:

e Every event horizon in a stationary, asymptotically flat spacetime is a Killing horizon for
some Killing vector y*.

In the case that the spacetime is stationary and static the Killing vector is precisely K = 0,.
In the case that the spacetime is stationary and axial symmetric then the event horizon is a
Killing horizon where the Killing vector is a combination of the Killing vector R = 0; and the
Killing vector R = 0, associated with axial symmetry. These results are purely geometrical. In
the general case of a stationary spacetime then Einstein’s equations together with appropriate
assumptions on the matter content will also yield the result that every event horizon is a Killing
horizon for some Killing vector which is either stationary or axial symmetric.

2.6.3 Surface Gravity

Every Killing horizon is associated with an acceleration called the surface gravity. Let X be
a killing horizon for the Killing vector x*. We know that x*x, is zero on the Killing horizon
and thus V,(x*x.) = 2x,V.,x* must be normal to the Killing horizon in the sense that it is

18Fxercise: Show this explicitly.
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orthogonal to any vector tangent to the horizon. The normal to the Killing horizon is however
unique given by y* and as a consequence we must have

Xp VX! = —KXo. (2.181)

This means in particular that the Killing vector x* is a non-affinely parametrized geodesic on
the Killing horizon. The coefficient & is precisely the surface gravity. Since the Killing vector
£# is hypersurface orthogonal we have by the Frobenius’s theorem the result '

X(uViXo] = —EXu- (2.182)
We compute

VEX X VoXe) = 2k X o + 2XeVEX"V uxw + 2VF Y (Vo(XuXu) — X/JVO'XV)
= 4K°Xs + 2Xo VX' VX0 (2.183)

We get immediately the surface gravity
2 1 wa v

In a static and asymptotically flat spacetime we have y = K where K = 0, whereas in a
stationary and asymptotically flat spacetime we have y = K + QyR where R = J,. In both
cases fixing the normalization of K as K*K, = —1 at infinity will fix the normalization of x
and as a consequence fixes the surface gravity of any Killing horizon uniquely.

In a static and asymptotically flat spacetime a more physical definition of surface gravity
can be given. The surface gravity is the acceleration of a static observer on the horizon as seen
by a static observer at infinity. A static observer is an observer whose 4—vector velocity U* is
proportional to the Killing vector K*. By normalizing U* as U*U, = —1 we have

KH
Uh = —— (2.185)

V-KrK,

A static observer does not necessarily follow a geodesic. Its acceleration is defined by
At =U"V ,U". (2.186)
We define the redshift factor V' by

V= /—KrE,. (2.187)

9Exercise: Show this result explicitly.
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We compute

1 U,

AV = —— K K* IV K"
3 VoV + 7V
= LK"K“KC“VK —%V“K"
oo v
U
= _IYHKC
VV
U, U,
= _VYH(ZZKe r(ZOV\K°
VA(SEKT) + Y (5F)
1 1
= —=V!'U,K° H=)U,K°
VV +V (V)
= V/InV. (2.188)

The magnitude of the acceleration is
V/ V, VY
A= + (2.189)

The redshift factor V' goes obviously to 0 at the Killing Horizon and hence A goes to infinity.
The surface gravity is given precisely by the product V A, viz

k=VA=\/V,VVV. (2.190)

This agrees with the original definition (2.184) as one can explicitly check 2. For a Schwarzschild
black hole we compute 2!

1

"T UM

(2.191)

2.6.4 Event Horizons, Ergosphere and Singularity

e The event horizons occur at 7 = rg where ¢'"(rg) = 0. Since g™ = A/p* we obtain the
equation

r? —2GMr + a* = 0. (2.192)

The discriminant is 6 = 4(G*M? — a?). As in the case of Reissner-Nordstrém solution
there are three possibilities. We focus only on the more physically interesting case of
G?M? > a®. In this case there are two solutions

ry =GM £ VG2M? — a?. (2.193)

These two solutions correspond to two event horizons which are both null surfaces. Since
the Kerr solution is stationary and not static the event horizons are not Killing horizons

20Exercise: Verify this statement.
21 Exercise: Derive this result.
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for the Killing vector K = 0;. In fact the event horizons for the Kerr solutions are Killing
horizons for the linear combination of the time translation Killing vector K = 0; and the
rotational Killing vector R = 0, which is given by

Xt = K"+ QuR" (2.194)

We can check that this vector becomes null at the outer event horizon r,.. We check this
explicitly as follows. First we compute

_ 2GMr

K* =0 =o' = (1,0,0,0) & K, = gu = (—(1 =), 0,0,0). (2.195)
p

. 29
R* =0 = 8" = (0,0,0,1) & R, = guy = (0,0,0, % [(r2 + a?)2 — a®A sin? 0] (2.196)

Then
1
K"K, = ——(A —a’sin®0). (2.197)
p
sin” §
R‘R, = 7 [(r* 4+ a®)* — a®Asin® 6], (2.198)
2GMar sin® 6
RMK, = gy = —%. (2.199)
Thus
1 in” 4G Mar sin?
XX = —E(A —a?sin®0) + Q%{SIEQ o [(7“2 + a*)? — a®Asin? 9} — QHW.
(2.200)
At the outer event horizon r = r, we have A = 0 and thus
sin” §
V== (2 + a®)Qy — a]”. (2.201)
This is zero for
a
Oy =———. 2.202
LR ( )

As it turns out Qp is the angular velocity of the event horizon r = r, which is defined as
the angular velocity of a particle at the event horizon r = r, 22

22Exercise: Compute this velocity directly by computing the angular velocity of a photon emitted in the ¢
direction at some r in the equatorial plane § = 7/2 in a Kerr black hole.
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e Let us consider again the Killing vector K = 0;. We have

i(A — a’sin? ). (2.203)

K'K, = —

K pz
At r = r, we have K*K,, = a*sin®0/p* > 0 and hence this vector is space like at the
outer horizon except at = 0 (north pole) and § = 7 (south pole) where it becomes null.

The so-called stationary limit surface or ergosurface is defined as the set of points where
K"K, = 0. This is given by

A =a*sin’0 < (r — GM)?* = G*M? — a” cos® 0. (2.204)
The outer event horizon is given by
A=0s (rp —GM)?* = G*M? — d. (2.205)

The region between the stationary limit surface and the outer event horizon is called the
ergosphere. Inside the ergosphere the Killing vector K* is spacelike and thus observers
can not remain stationary. In fact they must move in the direction of the rotation of the
black hole but they can still move towards the event horizon or away from it.

e The naked singularity in Kerr spacetime occurs at p = 0. Since p? = r? + a? cos? § we get
the conditions

r=0, 6= (2.206)

T
5
To exhibit what these conditions correspond to we substitute them in equation (2.178)
which is valid in the limit M — 0. We obtain immediately x? + y? = a? which is a ring.
This ring singularity is, of course, only a coordinate singularity in the limit M — 0. For
M # 0 the ring singularity is indeed a true or naked singularity as one can explicitly check
23 The rotation has therefore softened the naked singularity at 7 = 0 of the Schwarzschild
solution but spreading it over a ring.

e A sketch of the Kerr black hole is shown on figure GRb5.

2.6.5 Penrose Process

The conserved energy of a massive particle with mass m in a Kerr spacetime is given by

E=-Kp' = —guK'D' — gsK'p’
2GMr dt  2GmMarsin®6 do
= 1— — —. 2.207
m( p? )dT + p? dr ( )

23Exercise: Show that RWQBR“”O"B diverges at p = 0.
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The angular momentum of the particle is given by

L=Rp" = gpuR’p°+ guR%D'
2
0
— B2 [0+ a%)? — a®Asin’ 6] =2
p

dqb 2GmMar sin® @ ﬂ
dr P2 dr’

(2.208)

The minus sign in the definition of the energy guarantees positivity since both K* and p* are
time like vectors at infinity and as such their scalar product is negative. Inside the ergosphere
the Killing vector K* becomes space like and thus it is possible to have particles for which
E=—-K,p" <0.

We imagine an object starting outside the ergosphere Wlth energy £(® and momentum p(©
and falling into the black hole. The energy F© = —K “p is positive and conserved along
the geodesic. Once the object enters the ergosphere it splits into two with momenta p» and
p@.
with momentum p® falls into the black hole.We have the momentum and energy conservations
p( ) =pM +p@ and E©) = EW + F@) 1t is possible that the infalling object with momentum

) have negative energy E® and as a consequence E©) will be less than E™. In other

The object with momentum p() is allowed to escape back to infinity while the object

WOl"dS the escaping object can have more energy than the original infalling object. This so-
called Penrose process allows us therefore to extract energy from the black hole which actually
happens by decreasing its angular momentum. This process can be made more explicit as
follows.

The outer event horizon of a Kerr black hole is a Killing horizon for the Killing vector
x* = K* + QuR*. This vector is normal to the event horizon and it is future pointing, i.e. it
determines the forward direction in time. Thus the statement that the particle with momentum
p? crosses the event horizon moving forward in time means that —p(2)”xﬂ > (0. The analogue
statement in a static spacetime is that particles with positive energy move forward in time, i.e.
E = —p@*K, > 0. The condition —p@*y, > 0 is equivalent to

L® < E® < 0. (2.209)
Qu
Since E® is assumed to be negative and Qy is positive the angular momentum L® is negative
and hence the particle with momentum p® is actually moving against the rotation of the black
hole. After the particle with momentum p* escapes to infinity and the particle with momentum
2) falls into the black hole the mass and the angular momentum of the Kerr black hole change
(decrease) by the amounts

AM =E®  AJ =LY, (2.210)

The bound L® < E® /Qp becomes

AJ <=2 (2.211)



GR, B.Ydri 71

Thus extracting energy from the black hole (or equivalently decreasing its mass) is achieved by
decreasing its angular momentum, i.e. by making the infalling particle carry angular momentum
opposite to the rotation of the black hole.

In the limit when the particle with momentum p® becomes null tangent to the event horizon
we get the ideal process AJ = AM/Qy.

2.7 Black Holes Thermodynamics

Let us start this section by calculating the area of the outer event horizon r = r of a Kerr
black hole. Recall first that

ry=GM +VG2M? — a2 (2.212)

We need the induced metric v;; on the outer event horizon. Since the outer event horizon is
defined by r = r, the coordinates on the outer event horizon are # and ¢. We set therefore
r=ry (A=0),dr=0and dt =0 in the Kerr metric. We obtain the metric

alsz\,:r+ = fyijd:cid:cj

9ood0® + gopddy®

(r: +a*)? sin®6 |,

3 + a? cos? 6 '

= (rl +a’cos*0)do® + (2.213)

The area of the horizon can be constructed from the induced metric as follows

A = /\/|det7|d9d¢

= /(ri + a?) sin 0dfd ¢
= 4n(r? +a?)

2,2
— 8GR (M + | M — MGS )
2
= 87G*(M* + 1/ M* — &). (2.214)

The area is related to the so-called irreducible mass M3, by
A
M = —
o 167G?

R PR
= (4 -5). (2.215)

The area (or equivalently the irreducible mass) depends on the two parameters characterizing
the Kerr black hole, namely its mass and its angular momentum. From the other hand we
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know that the mass and the angular momentum of the Kerr black hole decrease in the Penrose
process. Thus the area changes in the Penrose process as follows

8tG

- T [(ri +a*)AM — aAJ}
87G(rt + a?)

- T [AM — QuAJ]
- SGn AN - QuAd). (2.216)

QuvG2M? — a?

This is equivalent to
a [AM
AG M VG2 M2 — a2 - Qpy

A2 AM

a
iI‘I‘: 2Gm[QH _AJ] <:>AMirr:

—AJ].
(2.217)

However we have already found that in the Penrose process we must have AJ < AM/Qp. This
leads immediately to

AM;, > 0. (2.218)
The irreducible mass can not decrease. From this result we deduce immediately that
AA > 0. (2.219)

This is the second law of black hole thermodynamics or the area theorem which states that the
area of the event horizon is always non decreasing. The area in black hole thermodynamics
plays the role of entropy in thermodynamics.

We can use equation (2.215) to express the mass of the Kerr black hole in terms of the

irreducible mass M;,, and the angular momentum .J. We find
J2
A A7 J?

= ot 1 (2.220)

Now we imagine a Penrose process which is reversible, i.e. we reduce the angular momentum
of the black hole from J; to Jy such that AA = 0 (clearly AA > 0 is not a reversible process
simply because the reverse process violates the area theorem). Then

M2 = Mi?"r_'_

M} — M7} z(JZ.2 —J3). (2.221)
If we consider Jy = 0 then we obtain
4m A
M} —M; = —J} & M;j=——+1( =M. 2.222
i f A ']2 g f 167TG2 irr ( )
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In other words if we reduce the angular momentum of the Kerr black hole to zero, i.e. until
the black hole stop rotating, then its mass will reduce to a minimum value given precisely by
M;,.. This is why this is called the irreducible mass. In fact M;,, is the mass of the resulting
Schwarzschild black hole. The maximum energy we can therefore extract from a Kerr black
hole via a Penrose process is M — M;,,. We have

1 / J?
Emax:M_Mirr:M_%\/M2+ M4_@ (2223)

The irreducible mass is minimum at M? = J/G or equivalently GM = a (which is the case of

extremal Kerr black hole) and as a consequence Ey .y is maximum for GM = a. At this point

Epox =M — My, = M — iM =0.29M. (2.224)
V2
We can therefore extract at most 29 per cent of the original mass of Kerr black hole via Penrose
process.
The first law of black hole thermodynamics is essentially given by equation (2.216). This
result can be rewritten as

K
AM = 2 AA+ QAT (2.225)

The constant k is called the surface gravity of the Kerr black hole and it is given by

QuvVG2M? — o?
a
VP =@
r? + a?
- VEME — a7 (2.226)
2GM(GM +VG2M? — a?) '
The above first law of black hole thermodynamics is similar to the first law of thermodynamics
dU = TdS — pdV with the most important identifications

U+ M

S<—>£

T - (2.227)
27
The quantity kAA/(87(G) is heat energy while Q5 AJ is the work done on the black by throwing
particles into it.
The zeroth law of black hole thermodynamics states that surface gravity is constant on the
horizon. Again this is the analogue of the zeroth law of thermodynamics which states that

temperature is constant throughout a system in thermal equilibrium.



Chapter 3

Cosmology I: The Observed Universe

The modern science of cosmology is based on three basic observational results:

e The universe, on very large scales, is homogeneous and isotropic.
e The universe is expanding.

e The universe is composed of: matter, radiation, dark matter and dark energy.

3.1 Homogeneity and Isotropy

The universe is expected to look exactly the same from every point in it. This is the
content of the so-called Copernican principle. On the other hand, the universe appears perfectly
isotropic to us on Earth. Isotropy is the property that at every point in spacetime all spatial
directions look the same, i.e. there are no preferred directions in space. The isotropy of the
observed universe is inferred from the cosmic microwave background (CMB) radiation, which
is the most distant electromagnetic radiation originating at the time of decoupling, and which
is observed at around 3 K, which is found to be isotropic to at least one part in a thousand by
various experiments such as COBE, WMAP and PLANK.

The 9 years results of the Wilkinson Microwave Anisotropy Probe (WMAP) for the temper-
ature distribution across the whole sky are shown on figure (3.1). The microwave background
is very homogeneous in temperature with a mean of 2.7 K and relative variations from the
mean of the order of 5 x 107% K. The temperature variations are presented through different
colours with the "red” being hotter (2.7281 K) while the "blue” being colder 2.7279 K than the
average. These fluctuations about isotropy are extremely important since they will lead, in the
theory of inflation, by means gravitational interactions, to structure formation.

The Copernican principle together with the observed isotropy means in particular that the
universe on very large scales must look homogeneous and isotropic. Homogeneity is the property
that all points of space look the same at every instant of time. This is the content of the so-called
cosmological principle. Homogeneity is verified directly by constructing three dimensional maps
of the distribution of galaxies such as the 2—Degree-Field Galaxy Redshift survey (2dFGRS)
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and the Sloan Digital Sky survey (SDSS). A slice through the SDSS 3—dimensional map of the
distribution of galaxies with the Earth at the center is shown on figure (3.2).

Figure 3.1: The all-sky map of the CMB. Source: http://map.gsfc.nasa.gov/news/.

3.2 Expansion and Distances

3.2.1 Hubble Law

The most fundamental fact about the universe is its expansion. This can be characterized
by the so-called scale factor a(t). At the present time t, we set a(ty) = 1. At earlier times,
when the universe was much smaller, the value of a(¢) was much smaller.

Spacetime can be viewed as a grid of points where the so-called comoving distance between
the points remains constant with the expansion, since it is associated with the coordinates
chosen on the grid, while the physical distance evolves with the expansion of the universe
linearly with the scale factor and the comoving distance, viz

distancephysical = a(t) X distancecomoving- (3.1)

In an expanding universe galaxies are moving away from each other. Thus galaxies must be
receding from us. Now, we know from the Doppler effect that the wavelength of sound or light
emitted from a receding source is stretched out in the sense that the observed wavelength is
larger than the emitted wavelength. Thus the spectra of galaxies, since they are receding from
us, must be redshifted. This can be characterized by the so-called redshift z defined by

Zlﬁzzﬁ. (3.2)

emit >\

obs

14+2z=

For low redshifts z — 0, i.e. for sufficiently close galaxies with receding velocities much smaller
than the speed of light, the standard Doppler formula must hold, viz
A v
= ~ -

; (3.3)

z
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Figure 3.2: The Sloan Digital Sky survey. Source: http://www.sdss3.org/dr10/.
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This allows us to determine the expansion velocities of galaxies by measuring the redshifts of
absorption and emission lines. This was done originally by Hubble in 1929. He found a linear
relation between the velocity v of recession and the distance d given by

This is the celebrated Hubble law exhibited on figure (3.3). The constant Hy is the Hubble
constant given by the value

Hy =724+ 7(km/s)/Mpc. (3.5)
The Mpc is megapersec which is the standard unit of distances in cosmology. We have
1 parsec(pc) = 3.08 x 10'®cm = 3.26 light — year. (3.6)

The Hubble law can also be seen as follows. Starting from the formula relating the physical
distance to the comoving distance d = ax, and assuming no comoving motion & = 0, we can
show immediately that the relative velocity v = d is given by

v=Hd, H:%. (3.7)

The Hubble constant sets essentially the age of the universe by keeping a constant velocity. We
get the estimate

1
ty = — ~ 14 billion years. (3.8)
Hy

This is believed to be the time of the initial singularity known as the big bang where density,
temperature and curvature were infinite.

3.2.2 Cosmic Distances from Standard Candles
It is illuminating to start by noting the following distances:
e The distance to the edge of the observable universe is 14Gpc.
e The size of the largest structures in the universe is around 100Mpc.

e The distance to the nearest large cluster, the Virgo cluster which contains several thou-
sands galaxies, is 20Mpc.

e The distance to a typical galaxy in the local group which contains 30 galaxies is 50 —
1000kpc. For example, Andromeda is 725kpc away.

e The distance to the center of the Milky Way is 10kpc.

e The distance to the nearest star is 1pc.



GR, B.Ydri 78

e The distance to the Sun is 5upc.

But the fundamental question that one must immediately pose, given the immense expanses of
the universe, how do we come up with these numbers?

e Triangulation: We start with distances to nearby stars which can be determined using
triangulation. The angular position of the star is observed from 2 points on the orbit of
Earth giving two angles o and 3, and as a consequence, the parallax p is given by

p=m—a-—p. (3.9)

For nearby stars the parallax p is a sufficiently small angle and thus the distance d to the
star is given by (with a the semi-major axis of Earth’s orbit)

a
d=—. 3.10
) (3.10)
This method was used, by the Hipparchos satellite, to determine the distances to around

120000 stars in the solar neighborhood.

e Standard Candles: Most cosmological distances are obtained using the measurements of
apparent luminosity of objects of supposedly known intrinsic luminosity. Standard candles
are objects, such as stars and supernovae, whose intrinsic luminosity are determined
from one of their physical properties, such as color or period, which itself is determined
independently. Thus a standard candle is a source with known intrinsic luminosity.

The intrinsic or absolute luminosity L, which is the energy emitted per unit time, of a
star is related to its distance d, determined from triangulation, and to the flux [ by the
equation

L = l.47d>. (3.11)

The flux [ is the apparent brightness or luminosity which is the energy received per unit
time per unit area. By measuring the flux [ and the distance d we can calculate the
absolute luminosity L.

Now, if all stars with a certain physical property, for example a certain blue color, and
for which the distances can be determined by triangulation, turn out to have the same
intrinsic luminosity, these stars will constitute standard candles. In other words, all blue
color stars will be assumed to have the following luminosity:

Lblue color stars — 1-47Td2 (312)

triangulation*

This means that for stars farther away with the same blue color, for which triangulation
does not work, their distances can be determined by the above formula (3.11) assuming
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the same intrinsic luminosity (3.12) and only requiring the determination of their flux [
at Earth, viz

Lblue color stars
dblue color stars — — ;- (313)
4l

Some of the standard candles are:

— Main Sequence Stars: These are stars who still burn hydrogen at their cores pro-
ducing helium through nuclear fusion. They obey a characteristic relation between
absolute luminosity and color which both depend on the mass. For example, the
luminosity is maximum for blue stars and minimum for red stars. The position of a
star along the main sequence is essentially determined by its mass. This is summa-
rized in a so-called Hertzsprung-Russell diagram which plots the intrinsic or absolute
luminosity against its color index. An example is shown in figure (3.4).

All main-sequence stars are in hydrostatic equilibrium since the outward thermal
pressure from the hot core is exactly balanced by the inward pressure of gravitational
collapse. The main-sequence stars with mass less than 0.23M will evolve into white
dwarfs, whereas those with mass less than 10M will evolve into red giants. Those
main-sequence stars with more mass will either gravitationlly collapse into black
holes or explode into supernova.

The HR diagram of main-sequence stars is calibrated using triangulation: The abso-
lute luminosity, for a given color, is measured by measuring the apparent luminosity
and the distance from triangulation and then using the inverse square law (3.11).

By determining the luminosity class of a star, i.e. whether or not it is a main-
sequence star, and determining its position on the HR diagram, i.e. its color, we can
determine its absolute luminosity. This allows us to calculate its distance from us
by measuring its apparent luminosity and using the inverse square law (3.11).

— Cepheid Variable Stars: These are massive, bright, yellow stars which arise in a
post main-sequence phase of evolution with luminosity of upto 1000 — 10000 times
greater than that of the Sun. These stars are also pulsating, i.e. they grow and
shrink in size with periods between 3 and 50 days. They are named after the o
Cephei star in the constellation Cepheus which is the first star of this kind. These
stars lie in the so-called instability strip of the HR diagram (3.5).

The established strong correlation between the luminosity and the period of pulsation
allows us to use Cepheid stars as standard candles. By determining the variability
of a given Cepheid star, we can determine its absolute luminosity by determining its
position on the period-luminosity diagram such as (3.6). From this we can determine
its distance from us by determining its apparent luminosity and using the inverse
square law (3.11).

The period-luminosity diagram is calibrated using main-sequence stars and triangu-
lation. For example, Hipparchos satellite had provided true parallaxes for a good
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Figure 3.3: The Hubble law. Source: Wikipedia.

sample of Galactic Cepheids.

— Type Ia Supernovae: These are the only very far away discrete objects within
galaxies that can be resolved due to their brightness which can rival even the bright-
ness of the whole host galaxy. Supernovae are 100000 times more luminous than
even the brightest Cepheid, and several billion times more luminous than the Sun.

Type Ia supernova occurs when a white dwarf star in a binary system accretes
sufficient matter from its companion until its mass reaches the Chandrasekhar limit
which is the maximum possible mass that can be supported by electron degeneracy
pressure. The white dwarf becomes then unstable and explodes. These explosions
are infrequent and even in a large galaxy only one supernova per century occurs on
average.

The exploding white dwarf star in a supernova has always a mass close to the Chan-
drasekhar limit of 1.4Mpy and as a consequence all supernovae are basically the
same, i.e. they have the same absolute luminosity. This absolute luminosity can
be calculated by observing supernovae which occur in galaxies whose distances were
determined using Cepheid stars. Then we can use this absolute luminosity to mea-
sure distances to even farther galaxies, for which Cepheid stars are not available, by
observing supernovae in those galaxies and determining their apparent luminosities
and using the inverse square law (3.11).

e Cosmic Distance Ladder: Triangulation and the standard candles discussed above:
main-sequence stars, Cepheid variable stars and type Ia supernovae provide a cosmic
distance ladder.
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Figure 3.4: The HertzsprungRussell diagram of 22000 stars from the Hipparcos catalogue to-
gether with 1000 low-luminosity stars, red and white dwarfs, from the Gliese catalogue of
Nearby stars. Source: Wikipedia.
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Figure 3.5: The instability strip. Source: http://www.astro.sunysb.edu/metchev/PHY515/cepheidpl.html.
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3.3 Matter, Radiation, and Vacuum

e Matter: This is in the form of stars, gas and dust held together by gravitational forces
in bound states called galaxies. The iconic Hubble deep field image, which covers a tiny
portion of the sky 1/30th the diameter of the full Moon, is perhaps the most conclusive
piece of evidence that galaxies are the most important structures in the universe. See
figure (3.7). The observed universe may contain 10'! galaxies, each one contains around
10! stars with a total mass of 10'2Mp. The density of this visible matter is roughly given
by

Pvisible = 10_319/Cm3- (314)

e Radiation': This consists of zero-mass particles such as photons, gravitons (gravita-
tional waves) and in many circumstances (neutrinos) which are not obviously bound by
gravitational forces. The most important example of radiation observed in the universe
is the cosmic microwave background (CMB) radiation with density given by

Pradiation = 10_349/Cm3- (315)

This is much smaller than the observed matter density since we are in a matter domi-
nated phase in the evolution of the universe. This CMB radiation is an electromagnetic
radiation left over from the hot big bang, and corresponds to a blackbody spectrum with
a temperature of 7' = 2.725 + 0.001K. See Figure (3.8).

e Dark Matter: This is the most important form of matter in the universe in the sense
that most mass in the universe is not luminous (the visible matter) but dark although its
effect can still be seen from its gravitational effect.

It is customary to dynamically measure the mass of a given galaxy by using Kepler’s third
law:

GM(r) = v*(r)r. (3.16)

In the above equation we have implicitly assumed spherical symmetry, v(r) is the orbital
(rotational) velocity of the galaxy at a distance r from the center, and M (r) is the mass
inside 7. The plot of v(r) as a function of the distance r is known as the rotation curve
of the galaxy.

Applying this law to spiral galaxies, which are disks of stars and dust rotating about a
central nucleus, taking r the radius of the galaxy, i.e. the radius within which much of
the light emitted by the galaxy is emitted, one finds precisely the mass density pyisiple =
1073'g/cm® quoted above. This is the luminous mass density since it is associated with
the emission of light.

1Strictly speaking radiation should be included with matter.



GR, B.Ydri 84

Optical observations are obviously limited due to the interstellar dust which does not
allow the penetration of light waves. However, this problem does not arise when making
radio measurements of atomic hydrogen. More precisely, neutral hydrogen (HI) atoms,
which are abundant and ubiquitous in low density regions of the interstellar medium,
are detectable in the 21 c¢cm hyperfine line. This transition results from the magnetic
interaction between the quantized electron and proton spins when the relative spins change
from parallel to antiparallel.

Observations of the 21 cm line from neutral hydrogen regions in spiral galaxies can there-
fore be used to measure the speed of rotation of objects. More precisely, since objects in
galaxies are moving, they are Doppler shifted and the receiver can determine their veloc-
ities by comparing the observed wavelengths to the standard wavelength of 21 cm. By
extending to distances beyond the point where light emitted from the galaxy effectively
ceases, one finds the behavior, shown on figure (3.9) which is given by

v ~ constant. (3.17)

We would have expected that outside the radius of the galaxy, with the luminous matter
providing the only mass, the velocity should have behaved as

v~ 1/rl2 (3.18)

The result (3.17) indicates that even in the outer region of the galaxies the mass behaves
as

M(r) ~r. (3.19)

In other words, the mass always grows with r. We conclude that spiral galaxies, and in
fact most other galaxies, contain dark, i.e. invisible, matter which permeates the galaxy
and extends into the galaxy’s halo with a density of at least 3 to 10 times the mass density
of the visible matter, viz

Phalo = (3 - 10) X Pvisible- (320)

This form of matter is expected to be 1) mostly nonbaryonic , 2)cold, i.e. nonrelativistic
during most of the universe history, so that structure formation is not suppressed and 3)
very weakly interacting since they are hard to detect. The most important candidate for
dark matter is WIMP (weakly interacting massive particle) such as the neutralinos which
is the lightest of the additional stable particles predicted by supersymmetry with mass
around 100 GeV.

e Dark Energy: This is speculated to be the energy of empty space, i.e. vacuum energy,
and is the dominant component in the universe: around 70 per cent. The best candidate
for dark energy is usually identified with the cosmological constant.
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Figure 3.7: The Hubble deep field. Source: Wikipedia.
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Figure 3.8: The black body spectrum. Source: Wikipedia.
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Figure 3.9: The galaxy rotation curve. Source: Wikipedia.

3.4 Flat Universe

The simplest isotropic and homogeneous spacetime is the one in which the line element is
given by

ds* = —dt* + a*(t)(da® + dy® + dz?)
= —dt* + a*(t)(dr® + r*(d6® + sin® 0d¢?)). (3.21)
The function a(t) is the scale factor. This is a flat universe. The homogeneity, isotropy and

flatness are properties of the space and not spacetime.
The coordinate or comoving distance between any two points is given by

dcomoving = \/AJIQ + AyQ + Az2. (322)

This is for example the distance between any pair of galaxies. This distance is constant in time
which can be seen as follows. Since we will view the distribution of galaxies as a smoothed
out cosmological fluid, and thus a given galaxy is a particle in this fluid with coordinates z°,
the velocity dz'/dt of the galaxy must vanish, otherwise it will provide a preferred direction
contradicting the isotropy property. On the other hand, the physical distance between any two
points depends on time and is given by

dphysical<t> = a(t>dcomoving- (323)

Clearly if a(t) increases with time then the physical distance dppysical(f) must increase with time
which is what happens in an expanding universe.

The energy of a particle moving in this spacetime will change similarly to the way that the
energy of a particle moving in a time-dependent potential will change. For a photon this change
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in energy is precisely the cosmological redshift. The worldline of the photon satisfies
ds* = 0. (3.24)

By assuming that we are at the origin of the spherical coordinates r, # and ¢, and that the
photon is emitted in a galaxy a comoving distance » = R away with a frequency w, at time .,
and is received here at time t = t, with frequency wy, the worldline of the photon is therefore
the radial null geodesics

ds* = —dt* +a*(t)dr® = 0. (3.25)

Integration yields immediately
o dt
R = / — (3.26)
. alt)
For a photon emitted at time t, + dt, and observed at time ¢y + 0ty we will have instead
to+dto dt
R = / — (3.27)
te+5te a(t)
Thus we get

Oty _ &e. (3.28)

In particular if §t. is the period of the emitted light, i.e. ¢, = 1/, the period of the observed
light will be different given by 0ty = 1/1. The relation between v, and v defines the redshift
z through

1 =— = —= . 3.29
+ z 3 ( )

This can be rewritten as

_ AN afte) —alte) _ alte) ,
e== 0 e =10+ (3.30)

The physical distance d is related to the comoving distance R by d = a(tg) R. By assuming that
R is small we have from ds? = 0 the result

to— to = / ’ a(t)dr = a(ty)R + O(R?). (3.31)

Thus
A B a(to)

z = —

A N a(to)

d+ ... (3.32)
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This is Hubble law. The Hubble constant is
a(to)

Hy = ) )
0= o) (3.33)
The Hubble time ¢ty and the Hubble distance dg are defined by
1
tH = FO s dH = CtH. (334)

The line element (7.74) is called the flat Robertson-Walker metric, and when the scale factor
a(t) is specified via Einstein’s equations, it is called the flat Friedman-Robertson-Walker metric.
The time evolution of the scale factor a(t) is controled by the Friedman equation

> 8nGp
a2 3

. (3.35)

For a detailed derivation see next chapter. p is the total mass-energy density. At the present
time this equation gives the relation between the Hubble constant Hy and the critical mass
density p. given by

_ (o) _ 87Gplt)

2 — — —
Hy = a(to) 3 = plto)

3H§ B
StG

pe. (3.36)

We can choose, without any loss of generality, a(tg) = 1. We have the following numerical
values

Hy = 100h(km/s)/Mpc , tg = 9.78h'Gyr , dg = 2998k *Mpc , p. = 1.88 x 107*°h%g/cm?.

(3.37)
The matter, radiation and vacuum contributions to the critical mass density are given by the
fractions
t t t
Oy = P (to) CQp = Pr(to) Q= pv 0). (3.38)
Pe Pe Pe
Obviously
1=Qu+Qr+ Q. (3.39)

The generalization of this equation to t # ¢, is given by

O O
pla) = pel—5 +—1 + Q). (3.40)

This can be derived as follows. By employing the principle of local conservation as expressed
by the first law of thermodynamics we have

dE = —PdV. (3.41)
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Thus the change in the total energy in a volume V', containing a fixed number of particles
and a pressure P, due to any change dV in the volume is equal to the work done on it. The
heat flow in any direction is zero because of isotropy. Alternatively because of homogeneity the
temperature 7" depends only on time and thus no place is hotter or colder than any other.

The volume dV is the physical volume and thus it is related to the time-independent co-
moving volume dVeomoving = dzdydz by dV = a*(t)dVeomoving. On the other hand, the energy F
is given in terms of the density p by E = pdV. The first law of thermodynamics becomes

& (pa't) = P4 (a0 .42

We have the following three possibilities

e Matter-Dominated Universe: In this case galaxies are approximated by a pressureless
dust and thus Py, = 0. Also in this case all the energy comes from the rest mass since
kinetic motion is neglected. We get then

d

%(pMa?’(t)) = 0= pu(t) = pm(to)

a®(to)

a’(t)

(3.43)

e Radiation-Dominated Universe: In this case Pr = pgr/3 (see below for a proof).
Thus

(a0 = =005 (@) = palt) = palto) 1) (344

dt 37 dt
It is not difficult to check that radiation dominates matter when the scale factor satisfies
a(t) < a(ty)/1000, i.e. when the universe was 1/1000 of its present size. Thus over most
of the universe history matter dominated radiation.

e Vacuum-Dominated Universe: In this case P, = —py. Thus
d d ao(to)
E(Pvag(t)) = Pva(ag(t)) = pv(t) = pv(to) D) (3.45)

In other words, py is always a constant and thus, unlike matter and radiation, it does not
decay away with the expansion of the universe. In particular, the future of any perpetually
expanding universe will be dominated by vacuum energy. In the case of a cosmological
constant we write

(3.46)

We compute immediately

Qur(t) = = M (3.47)
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O (3.48)
Qu () = p;(t) _ % (3.49)

The total mass-energy density is given by p(t) = p.Q(t) = p(Qur(t) + Qr(t) + Qv (t) or equiv-
alently

O O
pla) = pel—5 + 5 + Q). (3.50)

By using this last equation in the Friedmann equation we get the equivalent equation

L.
g+ Ver (@) =0, Viala) = -

1O Q%
5(7 + ? +a Qv) (351)

This is effectively the equation of motion of a zero-energy particle moving in one dimension
under the influence of the potential V.g(a). The three possible distinct solutions are:

e Matter-Dominated Universe: In this case 2y, = 1, Qzr = Qy = 0 and thus

1 1 1 t 2
Ver(a) = —— 2——:O:>a:(—)2/3,t0:3?.
0

= —— 3.52
% 2H2" " 2a o (3:52)

e Radiation-Dominated Universe: In this case Qr = 1, Q) = Qy = 0 and thus

1 1 ., 1 t\1/2
%H(a):—%ﬁﬁa—%:()éa:(%) ,t()

1

- 3.53
SH, (3.53)

In this case, as well as in the matter-dominated case, the universe starts at t = 0 with
a = 0 and thus p = oo, and then expands forever. This physical singularity is what we
mean by the big bang. Here the expansion is decelerating since the potentials —1/2a
and —1/2a? increase without limit from —oo to 0, as a increases from 0 to oo, and thus
corresponds to kinetic energies 1/2a and 1/2a? which decrease without limit from +oo to
0 over the same range of a.

e Vacuum-Dominated Universe: In this case 0y = 1, Q) = Qr = 0 and thus

a? 1 ., d s 4\
‘/Cff(a) = —5 = 2—H36L — E =0=a= eXp(Ho(t — t(])) s HO =C g (354)

In this case the Hubble constant is truely a constant for all times.

In the actual evolution of the universe the three effects are present. The addition of the vacuum
energy results typically in a maximum in the potential V.g(a) when plotted as a function of
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a. Thus the universe is initially in a decelerating expansion phase consisting of a radiation-
dominated and a matter-dominated regions, then it becomes vacuum dominated with an ac-
celerating expansion. This is because beyond the maximum the potential becomes decreasing
function of @ and as a consequence the kinetic energy is an increasing function of a.

In a matter-dominated universe the age of the universe is given in terms of the Hubble time
by the relation

2 2
. (3.55)

t = — =
"7 3H, 3

This gives around 9 Gyr which is not correct since there are stars as old as 12 Gyr in our own
galaxy.

The size of the universe may be given in terms of the Hubble distance dy. A more accurate
measure will be given now in terms of the conformal time 7 defined as follows

dt
dn = —. 3.56
"= m (3.56)

In the n — r spacetime diagram, radial geodesics are the 45 degrees lines. In this diagram the
big bang is the line n = 0, while our worldline may be chosen to be the line r = 0. At any
conformal instant 7 only signals from points inside the past light cone can be received. To each
conformal time 7 corresponds an instant ¢ given through the equation

toat
n— /0 it (3.57)

We have assumed that the big bang occurs at t = 0. Since ds* = a?(t)(—dn? + dr?) = 0, the
largest radius Therizon () from which a signal could have reached the observer at ¢ since the big
bang is given by
t !
dt
Thorizon@) =n= / N (358)
o a(t)
The 3—dimensional surface in spacetime with radius rorizon (¢) is called the cosmological horizon.

This radius rhezon(t) and as a consequence the cosmological horizon grow with time and thus a
larger region becomes visible as time goes on. The physical distance to the horizon is obviously

given by
bt
dhorson (t) = a(t)porpon () = a(t) /0 it (3.50)
The physical radius at the current epoch in a matter-dominated universe is
to
dnorison (t) = 12/ /0 723t = 2t = 8Gpe. (3.60)

This is different from the currently best measured age of 14 Gpc.
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3.5 Closed and Open Universes

There are two more possible Friedman-Robertson-Walker universes, beside the flat case,
which are isotropic and homogeneous. These are the closed universe given by a 3—sphere and
the open universe given by a 3—hyperboloid. The spacetime metric in the three cases is given

by
ds* = —dt* +a*(t)dl*. (3.61)
The spatial metric in the flat case can be rewritten as (with y =r)
di* = dx* + x*(d6* + sin? d¢?). (3.62)

Now we discuss the other two cases.

Closed FRW Universe: A 3—sphere can be embedded in R* in the usual way by
X2+ Y2+ 22+ W2 =1. (3.63)
We introduce spherical coordinates 0 < 6 <7, 0 < ¢ <27 and 0 < y <7 by
X =sinysinfcos¢ , Y =sinysinfsing , Z =sinycosf , W = cosy. (3.64)
The line element on the 3—sphere is given by

di* = (dX?+dY?+dZ? +dW?)gs
= dx? + sin® x(d#? + sin® 0dp?). (3.65)

This is a closed space with finite volume and without boundary. The comoving volume is given
by

av = /\/detgdA‘X
2 ™ ™
= / dgé/ d@sin@/ dy sin? y
0 0 0
= 277 (3.66)

The physical volume is of course given by dV (t) = a3(t)dV .

Open FRW Universe: A 3—hyperboloid is a 3—surface in a Minkowski spacetime M* anal-
ogous to a 3—sphere in R*. It is embedded in M* by the relation

X2+ Y 4+ 22 -T2 = 1. (3.67)
We introduce hyperbolic coordinates 0 < 6 <7, 0 < ¢ < 27 and 0 < y < oo by

X =sinh ysinfcos¢ , Y =sinh ysinfsin¢ , Z = sinh xy cos@ , T = cosh y. (3.68)
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The line element on this 3—surface is given by

di? = (dX?+dY?*+dZ* —dT?)ys
= dx? + sinh® x(d6? + sin® 0dp?). (3.69)

This is an open space with infinite volume.
The three metrics (3.62), (3.65) and (3.69) can be rewritten collectively as
dr?

di? = st r2(d6* + sin® 0d¢?). (3.70)

The variable r and the parameter k, called the spatial curvature, are given by

r = sinyx, k=41 : closed. (3.71)
r = x, k=0 : flat. (3.72)
r = sinhy, k=—1 : open. (3.73)

The metric of spacetime is thus given by
2

2 2 2
ds® = —dt*+ a*(t) 52

+ 7r2(d6* + sin® 0dp?) | . (3.74)

Thus the open and closed cases are characterized by a non-zero spatial curvature. As before,
the scale factor must be given by Friedman equation derived in the next chapter. This is given
by

a*>  8nGp ke

— —. 3.75
a? 3 a? (3:75)
At t =ty we get
8tGp(ty)  kc? 3kc?

H2 — _ = tn) — e = ———————. 3.76
0 3 2y = P e = grmaa (3.76)

The critical density is of course defined by

3H?

. = . 3.77
pe= g7 (3.77)

Thus for a closed universe the spacetime is positively curved and as a consequence the current
energy density is larger than the critical density, i.e. Q = p(tg)/p. > 1, whereas for an open
universe the spacetime is negatively curved and as a consequence the current energy density is
smaller than the critical density, i.e. Q = p(t9)/p. < 1. Only for a flat universe the current
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energy density is equal to the critical density, i.e. 2 = p(tg)/p. = 1. The above equation can
also be rewritten as

kc?
Q=1+ m. (3.78)

Equivalently
QM‘l'QR‘l'QV—l—QC:1:>QC:1—QM—QR—Q\/. (379)

The density parameter ()¢ associated with the spatial curvature is defined by

kc?

Qo= ————.
© T HZa(t)

(3.80)

We use now the formula

p(t) = pSUI)

_ Sy, Qs alt) = a(t)
- ’)0<a3<t>+a4<t>mv)’ ) = ety (3:81)

The Friedman equation can then be put in the form (with ¢ = t/ty = Hyt)

1 ,da.o o Qc
N 1Oy  Qp | .
Veg (@) = —5( =+ = +a*Qy). (3.83)

We need to solve (3.79), (3.82) and (3.83). This is a generalization of the potential problem
(6.48) corresponding to the flat FRW model to the generic curved FRW models. This is
effectively the equation of motion of a particle moving in one dimension under the influence
of the potential Vog(a) with energy Q¢ /2. There are therefore four independent cosmological
parameters 7, Qg, 2y and Hy. The solution of the above equation determines the scale factor
a(t) as well as the present age .

There are two general features worth of mention here:

e Open and Flat: In this case {2 < 1 and thus Q¢ =1 —Q > 0. From the other hand,
Vet < 0. Thus Vg is strictly below the line 2¢/2. In other words, there are no turning
points where "the total energy” ¢ /2 becomes equal to the ”potential energy” Vg, i.e.

Y

"the kinetic energy” a?/2 never vanishes and thus we never have @ = 0. The universe

starts from a big bang singularity at a = 0 and keeps expanding forever.
e Closed: In this case 2 > 1 and thus Q¢ =1 — Q < 0. There are here two scenarios:

— The potential is strictly below the line {2¢/2 and thus there are no turning points.
The universe starts from a big bang singularity at a = 0 and keeps expanding forever.
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— The potential intersects the line {)¢/2. There are two turning points given by the
intersection points. We have two possibilities depending on where a = 1 is located
below the smaller turning point or above the larger turning point.

x a = 1 is below the smaller turning point. The universe starts from a big bang
singularity at @ = 0, expands to a maximum radius corresponding to the smaller
turning point, then recollapse to a big crunch singularity at a = 0.

x a = 1 is above the larger turning point. The universe collapses from a larger
value of a, it bounces when it hits the largest turning point and then reexpands
forever. There is no singularity in this case. This case is ruled out by current
observations.

For an FRW universe dominated by matter and vacuum like ours the above possibilities are
sketched in the plane of the least certain cosmological parameters €2, and Qy on figure (3.10).
Flat FRW models are on the line 2y = 1 — ;. Open models lie below this line while closed
models lie above it.

3.6 Aspects of The Early Universe

The most central property of the universe is expansion. The evidence for the expansion of
the universe comes from three main sets of observations. Firstly, light from distant galaxies is
shifted towards the red which can be accounted for by the expansion of the universe. Secondly,
the observed abundance of light elements can be calculated from big bang nucleosynthesis.
Thirdly, the cosmic microwave background radiation can be interpreted as the afterglow of
a hot early universe. The temperature of the universe at any instant of time ¢ is inversely
proportional to the scale factor a(t), viz

1
T ox —. 3.84
The early universe is obviously radiation-dominated because of the relativistic energies involved.
During this era the temperature is related to time by

t 100K
o= (3.85)

In particle physics accelerators we can generate temperatures up to 7' = 10" K which means

that we can probe the conditions of the early universe down to 107'%s. From 107'%s to today
the history of the universe is based on well understood and well tested physics. For example
at 1s the big bang nucleosynthesis (BBN) begins where light nuclei start to form, and at 10*
years matter-radiation equality is reached where the density of photons drops below that of
matter. After matter-radiation equality, which corresponds to a scale factor of about a = 1074,
the relation between temperature and time changes to

t (3.86)

X TaR"
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Figure 3.10: The FRW models in the 2, — Qy plane.
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The universe after the big bang was a hot and dense plasma of photons, electrons and protons
which was very opaque to electromagnetic radiation. As the universe expanded it cooled down
until it reached the stage where the formation of neutral hydrogen was energetically favored and
the ratio of free electrons and protons to neutral hydrogen decreased to 1/10000. This event is
called recombination and it occurred at around 7" ~ 0.3 eV or equivalently 378000 years ago
which corresponds to a scale factor a = 1/1200.

After recombination the universe becomes fully matter-dominated, and shortly after recom-
bination, photons decouple from matter and as a consequence the mean free path of photons
approaches infinity. In other words after photon decoupling the universe becomes effectively
transparent. These photons are seen today as the cosmic microwave background (CMB) radi-
ation. The decoupling period is also called the surface of last scattering.

3.7 Concordance Model

From a combination of cosmic microwave background (CMB) and large scale structure (LSS)
observations we deduce that the universe is spatially flat and is composed of 4 per cent ordinary
mater, 23 per cent dark matter and 73 per cent dark energy (vaccum energy or cosmological
constant A), i.e.

QO ~ 0. (3.87)



Chapter 4

Cosmology II: The Expanding Universe

4.1 Friedmann-Lemaitre-Robertson-Walker Metric

The universe on very large scales is homogeneous and isotropic. This is the cosmological
principle.

A spatially isotropic spacetime is a manifold in which there exists a congruence of timelike
curves representing observers with tangents u® such that given any two unit spatial tangent
vectors s{ and s§ at a point p, orthogonal to u®, there exists an isometry of the metric g,, which
rotates s{ into s while leaving p and u® fixed. The fact that we can rotate s{ into s§ means
that there is no preferred direction in space.

On the other hand, a spacetime is spatially homogeneous if there exists a foliation of space-
time, i.e. a one-parameter family of spacelike hypersurfaces ¥; foliating spacetime such that
any two points p,q € ¥; can be connected by an isometry of the metric g,,. The surfaces
of homogeneity >; are orthogonal to the isotropic observers with tangents u® and they must
be unique. In flat spacetime the isotropic observers and the surfaces of homogeneity are not
unique.

A manifold can be homogeneous but not isotropic such as R x S? or it can be isotropic
around a point but not homogeneous such as the cone around its vertex. However, a spacetime
which is isotropic everywhere must be also homogeneous, and a spacetime which is isotropic at
a point and homogeneous must be isotropic everywhere.

The requirement of spatial isotropy and homogeneity of spacetime means that there exists a
foliation of spacetime consisting of 3—dimensional maximally symmetric spatial slices >;. The
universe is therefore given by the manifold R x ¥ with metric

ds® = —cdt* + R*(t)di*. (4.1)
The metric on ¥ is given by
do* = dii* = ~y;jdu‘du’. (4.2)

The scale factor R(t) gives the volume of the spatial slice ¥ at the instant of time ¢. The coor-
dinates ¢, u', u? and u? are called comoving coordinates. An observer whose spatial coordinates
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u® remain fixed is a comoving observer. Obviously, the universe can look isotropic only with
respect to a comoving observer. It is obvious that the relative distance between particles at
fixed spatial coordinates grows with time ¢ as R(t). These particles draw worldlines in space-
time which are said to be comoving. Similarly, a comoving volume is a region of space which
expands along with its boundaries defined by fixed spatial coordinates with the expansion of
the universe.

A maximally symmetric metric is certainly a spherically symmetric metric. Recall that
the metric d7? = dx? + dy® + dz? of the flat 3—dimensional space in spherical coordinates is
di? = dr? +r2dQ? where dQ? = df? +sin® fd¢?. A general 3—dimensional metric with spherical
symmetry is therefore necessarily of the form

di® = P dr? + r2d0?. (4.3)
The Christoffel symbols are computed to be given by

FT rr — Tﬁ s FT 09 — _T€—2ﬁ(r) s FT o — T SiIl2 96_2B(T),FT rg — FT re — FT 0p = 0

(4.4)
1
% ,0==,T% 4y =—sinfcosd, I, =T% ,, =T% jp=T7 45 = 0. (4.5)
T
NSRS LA I R S ) (4.6)
" r’ sin@ ’ - "
The Ricci tensor is then given by
2
R.. = -0,0. (4.7)
T
Ryg=0, Ry=0. (4.8)
Rog = 1+e2(ro,p —1). (4.9)
Ry = 0. (4.10)
Ry = sin?0[1 + e 2°(ro,8 — 1)]. (4.11)

The above spatial metric is a maximally symmetric metric. Hence, we know that the 3—dimensional
Riemann curvature tensor must be of the form

@ _ _RY
Rijn = m(%k%z — YitVik)- (4.12)
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In other words, the Ricci tensor is actually given by

G _ (pey . i p® . BY
Ry = (R 7 = Ry = T%k- (4.13)
By comparison we get the two independent equations (with k = R® /6)
2
2ke? = Z0,.3. (4.14)
r
2kr? =1+¢e2(ro,3 —1). (4.15)
From the first equation we determine that the solution must be such that exp(—28) = —kr? +
constant, whereas from the second equation we determine that constant = 1. We get then the
solution
1
B = -3 In(1 — kr?). (4.16)
The spatial metric becomes
it T a0 (4.17)
U = r ) .
1 — kr?

The constant £ is proportional to the scalar curvature which can be positive, negative or 0. It
also obviously sets the size of the spatial slices. Without any loss of generality we can normalize
it such that k = +1,0, —1 since any other scale can be absorbed into the scale factor R(t) which
multiplies the length |di]| in the formula for ds®.

We introduce a new radial coordinate y by the formula

dr

dy = ——. 4.18
By integrating both sides we obtain
r=siny, k=+1
r=x, k=0
r=sinhy, k=—1. (4.19)
Thus the metric becomes
dii* = dx? + sin® xdQ? , k= +1
dii® = dy* +x*dQ* , k=0
dii* = dx* + sinh® xd? |, k= —1. (4.20)

The physical interpretation of this result is as follows:

e The case k = +1 corresponds to a constant positive curvature on the manifold > and is
called closed. We recognize the metric dii? = dx? +sin? xd2? to be that of a three sphere,
i.e. ¥ = S3. This is obviously a closed sphere in the same sense that the two sphere S?
is closed.



GR, B.Ydri 101

e The case k = 0 corresponds to 0 curvature on the manifold > and as such is naturally
called flat. In this case the metric du? = dx? + x2dQ2? corresponds to the flat three
dimensional Euclidean space, i.e. I' = R3.

e The case k = —1 corresponds to a constant negative curvature on the manifold ¥ and is
called open. We recognize the metric dii? = dx?+sinh? ydQ? to be that of a 3—dimensional
hyperboloid, i.e. ¥ = H?®. This is an open space.

The so-called Robertson-Walker metric on a spatially homogeneous and spatially isotropic
spacetime is therefore given by

dr?

2 2 112 2
ds* = —c*dt* + R (t)[l—k:r?

+ r2dQ?]. (4.21)

4.2 Friedmann Equations

4.2.1 The First Friedmann Equation

The scale factor R(t) has units of distance and thus r is actually dimensionless. We reinstate
a dimensionful radius p by p = Ror. The scale factor becomes dimensionless given by a(t) =
R(t)/Ro whereas the curvature becomes dimensionful x = k/RZ2. The Robertson-Walker metric
becomes

2

dp
2 2 742 2 2 2
ds® = —c*dt +a(t)[1_ﬁp2+pd§2}. (4.22)

The non-zero components of the metric are goo = —1, g,, = a*/(1 — kp?), goo = a*p*, Gop =
a®p?sin? . We compute now the non-zero Christoffel symbols

. . 2 . 2 . 2
aa 0 aap aap” sin” 6

il e R e - (4.23)
P a Kp o 2 0 _ 2\ 2
Fop—c N 1_Kp2,1“ o0 = —p(1 —kp~) , TP 45 = —p(1 —kp“)sin“ 6. (4.24)
rf 09:3 rf 9:1 I’ ,, = —sinfcosh (4.25)
ca’ p 0 ) ol : :
a 1 cosf
[?0=—,T% y=—, %= : 4.26
Y, (4.26)
The non-zero components of the Ricci tensor are
3G
Rop= 22 (4.27)

2a
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1 .. .9 2
R,, = m(aa + 24”4 2Kc7). (4.28)

2

Rg@ = 'O—Z(aa + 2@2 + 2/‘602) s R¢¢ =
C

p?sin? 6
2

(ad + 2a* + 2kc?). (4.29)

The scalar curvature is therefore given by

6 [a a\> ke
R=g¢g"R, =— (— + (—) + —) (4.30)

The Einstein’s equations are

8rG 1
RMV = 7(TMV — §gUVT) (431)
The stress-energy-momentum tensor
v P v v
™ = (p+ —)U'U” + Pg". (4.32)
c

The fluid is obviously at rest in comoving coordinates. In other words, U* = (¢,0,0,0) and
hence

T = diag(pc?, Pg'', Pg**, Pg**) = T, * = diag(—pc?, P, P, P). (4.33)
Thus T =T, " = —pc* + 3P. The u = 0, v = 0 component of Einstein’s equations is

G 1

a P
= ——(1; =T —3-=14 —). 4.34
Roo A ( 00+2 ):> 3a 7TG(p+302) ( 3 )

The u = p, v = p component of Einstein’s equations is

8rG 1 P
R,, = %(Tpp — 59 T) = aii +24° + 25¢” = 47G(p — —)a” (4.35)
There are no other independent equations. The Einstein’s equation (4.34) is known as the
second Friedmann equation. This is given by
a AnG P

i TGt (436)

Using this result in the Einstein’s equation (4.35) yields immediately the first Friedmann equa-
tion. This is given by

a*  8nGp Kk

a? 3 a?’

(4.37)

In most cases, in which we know how p depends on a, the first Friedmann equation is sufficient
to solve for the problem.
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4.2.2 Cosmological Parameters

We introduce the following cosmological parameters:
e The Hubble parameter H: This is given by
a
H=-. 4.38
’ (139)
This provides the rate of expansion. At present time we have
Hy = 100h km sec™! Mpc ™. (4.39)

The dimensionless Hubble parameter h is around 0.7 £ 0.1. The megaparsec Mpc is
3.09 x 10**cm.

e The density parameter () and the critical density p.: These are defined by

81rG p
3H?
pe= o (4.41)

e The deceleration parameter ¢: This provides the rate of change of the rate of the
expansion of the universe. This is defined by

§=——. (4.42)

P~ Pc
=0-1= . 4.43
Pe H?a? (4.43)
We get immediately the behavior
closed universe : k>0 Q>14 p>p,. (4.44)
flat universe : k=0 Q=1+ p=p.. (4.45)

open universe : <0< Q<1+ p<p. (4.46)
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4.2.3 Energy Conservation

Let us now consider the conservation law V,T* , = 9,7"* , +I'* 7%, —-T* ,T" , = 0.

In the comoving coordinates we have T}, ¥ = diag(—pc?, P, P, P). The v = 0 component of the
conservation law is

3a

ca

—cp— —(pc + P) = 0. (4.47)

In cosmology the pressure P and the rest mass density p are generally related by the equation
of state

P = wpc*. (4.48)
The conservation of energy becomes

p__ wn?
; 3(1+w)-. (4.49)

For constant w the solution is of the form
p ox a 30Fw), (4.50)
There are three cases of interest:

e The matter-dominated universe: Matter (also called dust) is a set of collision-less
non-relativistic particles which have zero pressure. For example, stars and galaxies may
be considered as dust since pressure can be neglected to a very good accuracy. Since
Py =0 we have w = 0 and as a consequence

oy o< a”® (4.51)

This can be seen also as follows. The energy density for dust comes entirely from the rest
mass of the particles. The mass density is p = nm where n is the number density which
is inversely proportional to the volume. Hence, the mass density must go as the inverse
of a® which is the physical volume of a comoving region.

e The radiation-dominated universe: Radiation consists of photons (obviously) but
also includes any particles with speeds close to the speed of light. For an electromagnetic
field we can show that the stress-energy-tensor satisfies T ,, = 0. However, the stress-
energy-momentum tensor of a perfect fluid satisfies 7, # = —pc? + 3P. Thus for radiation
we must have the equation of state Pr = prc?/3 and as a consequence w = 1/3 and hence

pr o< a (4.52)

In this case the energy of each photon will redshifts away as 1/a (see below) as the
universe expands which is the extra factor that multiplies the original factor 1/a® coming
from number density.
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e The vacuum-dominated universe: The vacuum energy is a perfect fluid with equation
of state Py = —py, i.e. w = —1 and hence

pv o< a’. (4.53)

The vacuum energy is an unchanging form of energy in any physical volume which does
not redshifts.

The null dominant energy condition allows for densities which satisfy the requirements p > 0,
p > |P|/c2or p <0, P=—c? <0, thus in particular allowing the vacuum energy to be
either positive or negative, and as a consequence we must have in all the above discussed cases
lw| < 1.

In general matter, radiation and vacuum can contribute simultaneously to the evolution of
the universe. Let us simply assume that all densities evolve as power laws, viz

pi = pioa” "M S w; = % — 1. (4.54)

The first Friedmann equation can then be put in the form

87G Kc?
2 P — —_— v — —
H - 3 i pz CL2
G
iC

In the above equation the spatial curvature is thought of as giving another contribution to the
rest mass density given by

3 ke
= 4.56
pe 87G a? (4.56)
This rest mass density corresponds to the values wg = —1/3 and ne = 2. The total density

parameter (2 is defined by Q = Y, 87Gp;/3H?. By analogy the density parameter of the spatial
curvature is given by

8tGpc Kc?
Q= = — . 4.57
¢ 3H? H?2a? (4.57)
The first Friedmann equation becomes the identity
=100 =1-0=1-Qy Q- Q. (4.58)

1,C

The rest mass densities of matter and radiation are always positive whereas the rest mass
densities corresponding to vacuum and curvature can be either positive or negative.
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The Hubble parameter is the rate of expansion of the universe. The derivative of the Hubble

parameter is
: i (a)’
H = —— |-
.~ ()

47G e Kc?
Sl ad SRS Dl ) Dl

)

Kc?

= —47TGZpi(1+wi) + ?

= —4nG Z pi(1+ w;). (4.59)
i,C

This is effectively the second Friedmann equation. In terms of the deceleration parameter this
reads
H
H?
An open or flat universe pc > 0 (k < 0) with p; > 0 will never contract as long as Y, »p; # 0

= —1-q¢. (4.60)

since H? Zi,C’ pi from the first Friedmann equation (4.55). On the other hand, we have
lw;| < 1, and thus we deduce from the second Friedmann equation (4.59) the condition H < 0
which indicates that the expansion of the universe decelerates.

For a flat universe dominated by a single component w; we can show that the deceleration
parameter is given by

1
4% = 5(1 + 3w;). (4.61)

This is positive and thus the expansion is accelerating for a matter dominated universe (w; = 0)
whereas it is negative and thus the expansion is decelerating for a vacuum dominated universe
(w; = —1). The current cosmological data strongly favors the second possibility.

4.3 Examples of Scale Factors

Matter and Radiation Dominated Universes: From observation we know that the uni-
verse was radiation-dominated at early times whereas it is matter-dominated at the current
epoch. Let us then consider a single kind of rest mass density p o< a™™. The Friedmann

1=n/2 The solution behaves as

equation gives therefore a o< a
an~ s (4.62)

For a flat (since pc = 0) universe dominated by matter we have Q2 = Q) =1 and n = 3. In
this case

a ~t3 , Matter — Dominated Universe. (4.63)
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This is also known as the Einstein-de Sitter universe. For a flat universe dominated by radiation
we have Q = Qp = 1 and n = 4 and hence a ~ t'/2.

a ~t2 , Radiation — Dominated Universe. (4.64)

These solutions exhibit a singularity at @ = 0 known as the big bang. Indeed the rest mass
density diverges as a — 0. At this regime general relativity breaks down and quantum gravity
takes over. The so-called cosmological singularity theorems show that any universe with p > 0
and p > 0 must start at a singularity.

Vacuum Dominated Universes: For a flat universe dominated by vacuum energy we have
H = constant since py = constant and hence a = exp(Ht). The universe expands exponentially.
The metric reads explicitly ds? = —c?dt? + exp(Ht)(dz? 4+ dy? + dz*). This is the maximally
symmetric spacetime known as de Sitter spacetime. Indeed, the corresponding Riemann cur-
vature tensor has the characteristic form of a maximally symmetric spacetime in 4—dimension.
Since de Sitter spacetime has a positive scalar curvature whereas this space has zero curvature
the coordinates (¢, x,y, z) must only cover part of the de Sitter spacetime. Indeed, we can show
that these coordinates are incomplete in the past.

From observation Qr << Qv c. We will therefore neglect the effect of radiation and set
Q = Qu + Q. The curvature is Q¢ =1 — Qp — Qy. Recall that Q¢ o< 1/a?, Qp o< 1/a® and
Qy o 1/a’. Thus in the limit a — 0 (the past), matter dominates and spacetime approaches
Einstein-de Sitter spacetime whereas in the limt « — oo (the future), vacuum dominates and
spacetime approaches de Sitter spacetime.

Milne Universe: For an empty space with spatial curvature we have
H? = ——. (4.65)

The curvature must be negative. This corresponds to the so-called Milne universe with a rest

2

mass density po ox a™%, i.e. n = 2. Hence the Milne universe expands linearly, viz

a ~t, Milne universe. (4.66)

The Milne universe can only be Minkowski spacetime in a certain incomplete coordinate system
which can be checked by showing that its Riemann curvature tensor is actually 0. In fact Milne
universe is the interior of the future light cone of some fixed event in spacetime foliated by
hyperboloids which have negative scalar curvature.

The Static Universe: A static universe satisfies @ = @ = 0. The Friedmann equations
become

ke 81 P
2 3 Pi Z(Pz + 3?) = 0. (4.67)
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Again by neglecting radiation the second equation leads to

3
(Pu + Py) = 3py = pu = 2py. (4.68)

PM TPy = ——
1

The first equation gives the scalar curvature

B 4Gppa®

K (4.69)

2
Expansion versus Recollapse: Recall that H = a/a. Thus if H > 0 the universe is
expanding while if H < 0 the universe is collapsing. The point a, at which the universe goes
from expansion to collapse corresponds to H = 0. By using the Friedmann equation this gives
the condition

paroas” + pvo + pooa, ® = 0. (4.70)

Recall also that Qcg = 1 — Qa0 — Qv and ; o p;/H?. By dividing the above equation on HZ
we get

QMOCL*_3 + QV(] -+ (1 - QMO - QV(])CL*_2 = 0 = Qvoai + (1 - QMO - Qvo)a* -+ QMO = 0
(4.71)

First we consider Qy9 = 0. For open and flat universes we have Q5 = Q0 < 1 and thus
the above equation has no solution. In other words, open and flat universes keep expanding.
For a closed universe €2y = 23,0 > 1 and the above equation admits a solution a, and as a
consequence the closed universe will recollapse.

For Q¢ > 0 the situation is more complicated. For 0 < ;0 < 1 the universe will always
expand whereas for ;0 > 1 the universe will always expand only if {24 is further bounded
from below as

- 1 1-0Q 4
QV() 2 QVQ = 4QMO COS3 b COS_1 oMo + —7T . (472)
3 Qo 3

This means in particular that the universe with sufficiently large €230 can recollapse for 0 <
Ovo < Qvo. Thus a sufficiently large £2), can halt the expansion before €2, becomes dominant.

Note also from the above solution that the universe will always recollapse for Qv < 0.
Indeed, the effect of Qyq < 0 is to cause deceleration and recollapse.

4.4 Redshift, Distances and Age

4.4.1 Redshift in a Flat Universe

Let us consider the metric

ds® = —c*dt* + a*(t)[da? + dy? + dz?). (4.73)
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Thus space at each fixed instant of time ¢ is the Euclidean 3—dimensional space R?. The universe
described by this metric is expanding in the sense that the volume of the 3—dimensional spatial
slice, which is given by the so-called scale factor a(t), is a function of time. The above metric
is also rewritten as

goo =—1, gij = az(t)éij » 9oi = 0. (4.74)

It is obvious that the relative distance between particles at fixed spatial coordinates grows with
time ¢ as a(t). These particles draw worldlines in spacetime which are said to be comoving.
Similarly a comoving volume is a region of space which expands along with its boundaries
defined by fixed spatial coordinates with the expansion of the universe.

We recall the formula of the Christoffel symbols

1
™, = §g)‘p(aug,,p + v Gup — Op Gy (4.75)
We compute
0 1 0 0 0 0 aa
r o = —§(ap9uo + aug,uO - 809;11/) =1V gp=1"u=1"4%=0,T ij — ?527‘- (4-76)
. 1 . . . a
I % ﬁ(a,ugui + augui - aig,uu) = 1" 00 = I jk = 0, r 0j — %&J (477)

The geodesic equation reads

>z datdx”
dartdat 1.
dr? "odr dr 0 (4.78)
In particular
4?2 da’ da? dt  aa (d7°
et =07t e (d)\) 0 (4.79)
For null geodesics (which are paths followed by massless particle such as photons) we have
ds? = —c2dt* +a?(t)d#* = 0. In other words we must have along a null geodesic with parameter
A the condition a?(t)dz?/d)\? = c*dt? /d\*. We get then the equation
Pt afdt\’
— 4+ (=) =o. 4.
e a(dA) 0 (480)

The solution is immediately given by (with wy a constant)

dt Wy
— = 4.81
d\  c*a (4.81)
The energy of the photon as measured by an observer whose velocity is U* is given by E =

—ptU,, where p# is the 4—vector energy-momentum of the photon. A comoving observer is an
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observer with fixed spatial coordinates and thus U* = (U°,0,0,0). Since g, U*U" = —c* we
must have U® = \/—c?/ggy = ¢. Furthermore we choose the parameter \ along the null geodesic
such that the 4—vector energy-momentum of the photon is p* = dz* /dX. We get then

E = _gquMUV

_ “ (4.82)

Thus if a photon is emitted with energy F; at a scale factor a; and then observed with energy
E5 at a scale factor as we must have

Ey a2

— = —. 4.83

B (4.83)
In terms of wavelengths this reads

)\2 ag

2 _ 2 4.84

N o (4.84)

This is the phenomena of cosmological redshift: In an expanding universe we have ay > a; and
as a consequence we must have Ay > )\, i.e. the wavelength of the photon grows with time.
The amount of redshift is

P St Y (4.85)
Ey aq
This effect allows us to measure the change in the scale factor between distant galaxies (where
the photons are emitted) and here (where the photons are observed). Also it can be used to
infer the distance between us and distant galaxies. Indeed a greater redshift means a greater
distance. For example z close to 0 means that there was not sufficient time for the universe to
expand because the emitter and observer are very close to each other.

The scale factor a(t) as a function of time might be of the form
a(t)=t1, 0<qg<1. (4.86)

In the limit ¢ — 0 we have a(t) — 0. In fact the time ¢t = 0 is a true singularity of this
geometry, which represents a big bang event, and hence it must be excluded. The physical
range of t is

0<t<oo. (4.87)

The light cones of this curved spacetime are defined by the null paths ds* = —c2dt? +a?*(t)d7? =
0. In 1 + 1 dimensions this reads

ds* = —c*dt* + a*(t)dz® = 0 = Z—f = et 7. (4.88)
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The solution is

1

tz(:l:l_q(x—:co))lq. (4.89)

c

These are the light cones of our expanding universe. Compare with the light cones of a flat
Minkowski universe obtained by setting ¢ = 0 in this formula. These light cones are tangent
to the singularity at ¢t = 0. As a consequence the light cones in this curved geometry of any
two points do not necessarily need to intersect in the past as opposed to the flat Minkowski
universe where the light cones of any two points intersect both in the past and in the future.

4.4.2 Cosmological Redshift

Recall that a Killing vector is any vector which satisfies the Killing equation V, K, +
V,K, = 0. This Killing vector generates an isometry of the metric which is associated with
the conservation of the momentum p,K* along the geodesic whose tangent vector is p*.

In an FLRW universe there could be no Killing vector along timelike geodesic and thus no
concept of conserved energy. However we can define Killing tensor along timelike geodesic. We
introduce the tensor

U,U,
L., (4.90)
C

Ky = a2(t)(9/w +
We have

V(UK;,LV) = VUKMI/ + V},LKO'V + VVKMJ
= 0,K,, +0,K;, +0,K,p —2I'" 5, K,, — 21" ,,K,, — 2"’ ,, K,,. (4.91)

Since U* is the 4—vector velocity of comoving observers in the FLRW universe we have U* =
(¢,0,0,0) and U, = (—c,0,0,0) and as a consequence K, = a*diag(0,1/(1—rp?), p?, p? sin® 0).
In other words K;; = azgij = a4%~j, Ky = Koo = 0. The first set of non trivial components of
V(oK) are

V(OKZ'j) = V(iKoj) = V(jKio) = VOf(ij

By using the result I'* o; = ad¥/ca we get
aa
v(OKij) = 8oKz'j - 4791’3’
d 4

= Ky — @a ij
= 0. (4.93)
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The other set of non trivial components of V(, K, are

= a*"(Vivie + Vivie + Vi)
_ (4.94)

In the last step we have used the fact that the 3—dimensional metric ;; is covariantly constant
which can be verified directly.

We conclude therefore that the tensor K, is a Killing tensor and hence K 2= K wVHEVY
where V# = dz# /dr is the 4—vector velocity of a particle is conserved along its geodesic. We
have two cases to consider:

e Massive Particles: In this case V*V, = —¢? and thus (V°)? = ¢ + g, ViVi = & + V2.
But since U,V* = —cV? we have

K? = K, V'V¥
(UV*)?
= a*(V'V, + “02 )

= a?V? (4.95)

We get then the result
K

Vi=—. (4.96)

In other worlds particles slow down with respect to comoving coordinates as the universe
expands. This is equivalent to the statement that the universe cools down as it expands.

e Massless Particles: In this case V#V,, = 0 and hence

K? = K,V'V"

U, Vr)?
=y, + O
a? )
= g(UuVu) . (4.97)
We get now the result
K
U, V| = % (4.98)

However recall that the energy E of the photon as measured with respect to the comoving
observer whose 4—vector velocity is U* is given by £/ = —p*U,,. But the 4—vector energy-
momentum of the photon is given by p#* = V#. Hence we obtain

K
E= % (4.99)
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An emitted photon with energy FE., will be observed with a lower energy FE,, as the

universe expands, viz

We define the redshift

This means that

Recall that a(t) = R(t)/Rp.
aon(t) = 1 or equivalently Rop(t)

Eem Aob

= > 1. 4.100
Eob Qem ( )

Eem - Eob
em 4.101
2 o (4.101)

Aob

em — . 4.102
a 1T (4.102)

Thus if we are observing the photon today we must have

= Ry. We get then

1
14 Zem

(4.103)

a'em -

The redshift is a direct measure of the scale factor at the time of emission.

4.4.3 Comoving and Instantaneous Physical Distances

Note that the above described redshift is due to the expansion of the universe and not

to the relative velocity between the observer and emitter and thus it is not the same as the
Doppler effect. However over distances which are much smaller than the Hubble radius 1/H,

and the radius of spatial curvature 1/4/k we can view the expansion of the universe as galaxies

moving apart and as a consequence the redshift can be thought of as a Doppler effect. The

redshift can therefore be thought of as a relative velocity. We stress that this picture is only
an approximation which is valid at sufficiently small distances.

The distance d from us to a given galaxy can be taken to be the instantaneous physical
distance d,. Recall the metric of the FLRW universe given by

ds® =

i
S &
[
U>><

—c2dt* + Raa*(t)(dx* + Si(x)dQ?). (4.104)

Sk(x) =siny , k= +1
, k

0
inhy , k=—1. (4.105)

Clearly the instantaneous physical distance d, from us at y = 0 to a galaxy which lies on a

sphere centered on us of radius y is

d, = Roa(t)x. (4.106)
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The radial coordinate x is constant since we are assuming that us and the galaxy are perfectly
comoving. The relative velocity (which we can define only within the approximation that the
redshift is a Doppler effect) is therefore

v =d, = Reay = gdp — Hd,. (4.107)
At present time this law reads
v = Hod,. (4.108)

This is the famous Lemaitre-Hubble law: Galaxies which are not very far from us move away
from us with a recess velocity which is linearly proportional to their distance.

The instantaneous physical distance d,, is obviously not a measurable quantity since mea-
surement relates to events on our past light cone whereas d,, relates events on our current spatial
hyper surface.

4.4.4 Luminosity Distance

The luminosity distance is the distance inferred from comparing the proper luminosity to the
observed brightness if we were in flat and non expanding universe. Recall that the luminosity
L of a source is the amount of energy emitted per unit time. This is the proper or intrinsic
luminosity of the source. We will assume that the source radiates equally in all directions. In
flat space the flux of the source as measured by an observer a distance d away is the amount
of energy per unit time per unit area given by F = L/4nd?. This is the apparent brightness at
the location of the observer. We write this result as

F 1

L~ dnd®
Now in the FLRW universe the flux will be diluted by two effects. First the energy of each
photon will be redshift by the factor 1/a = 1 4+ z due to the expansion of the universe. In
other words the luminosity L must be changed as L — (1 + z)L. In a comoving system light

(4.109)

will travel a distance |di| = cdt/(Roa) during a time dt. Hence two photons emitted a time
ot apart will be observed a time (1 + z)dt apart. The flux F' must therefore be changed as
F — F/(1+ 2). Hence in the FLRW universe we must have

F 1

-—= . 4.110

L (1+2)2A ( )
The area A of a sphere of radius y in the comoving system of coordinates is from the FLRW
metric

A =47 R3a*(t)SE(x) = 47 R3SE (x). (4.111)
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Again we used the fact that at the current epoch a(t) = 1. The luminosity distance dy, is the
analogue of d and thus it must be defined by

L
di = F dr, = (14 2)RoSk(x). (4.112)
Next on a null radial geodesic we have —c?dt* + a?(t) Radx* = 0 and thus we obtain (by using
dt = da/(aH) and remembering that at the emitter position Y’ = 0 and a = a(t) whereas at

our position x" = x and a = 1)

X c (B dt c (b dd
dy = = - - 4.113
/0 YT R ), alt) T R / a2 H(d) (4.113)
We convert to redshift by the formula a = 1/(1 + 2). We get
c [* df
= — —_—. 4.114
X Ro Jo () ( )
The Friedmann equation is
8tG
H?> = —— ;
3 i,C g
&G -
N 3 ,C he
87TG NS
= Hy ) Qo(l+2)"
= H2E*(Y). (4.115)
Thus
1
! ! ! i 2
Hence
c 7 ds
= —. 4.117

The luminosity distance becomes

dp = (1+ z)RoSk(ROCHO /0 Edé)) (4.118)
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Recall that the curvature density is Q. = —kc?/(H?a?) = —k*c?/(H?*R*(t)). Thus

kc? c | k c 1
Oy =—— =/ —-——=— . 4.11
@ H RS = fho Ho V' Qo Ho | Q0] (119)

The above formula works for £ = £1. This formula will also lead to the correct result for k =0

as we will now show. Thus for £k = £+1 we have

C
RoHy

= /|90 (4.120)

In other words

c 1 7 dy
= (1+2) msk(\/m;d / E(z,)). (4.121)
For k = 0, the curvature density ()., vanishes but it cancels exactly in this last formula for dp
and we get therefore the correct answer which can be checked by comparing with the original
formula (4.118).

The above formula allows us to compute the distance to any source at redshift z given Hy
and ;0 which are the Hubble parameter and the density parameters at our epoch. Conversely
given the distance d;, at various values of the redshift we can extract Hy and 2.

4.4.5 Other Distances

Proper Motion Distance: This is the distance inferred from the proper and observable
motion of the source. This is given by

I

7 (4.122)

The w is the proper transverse velocity whereas 6 is the observed angular velocity. We can
check that

I

s (4.123)

The Angular Diameter Distance: This is the distance inferred from the proper and ob-
served size of the source. This is given by

dy = (4.124)

S
7
The S is the proper size of the source and 6 is the observed angular diameter. We can check
that

dr

dy = .
AT (1 +2)2

(4.125)



GR, B.Ydri 117

4.4.6 Age of the Universe

Let ¢y be the age of the universe today and let ¢, be the age of the universe when the photon
was emitted. The difference ¢y — t, is called lookback time. This is given by

to
to—t, = / dt
[
B /1 da
~ Jo. aH(a)
- H, o (1+2)E()

For a flat (k = 0) matter-dominated (p ~ par = paroa™>) universe we have Q370 ~ 1 and hence
E(Z) = /Quo(1+2 )3+ ... = (1+2)%2 Thus

ty—t, = L/Z*idz
o Hy Jo (1+z')%

Al
3H0 (14—3*)%.

By allowing t, — 0 we get the actual age of the universe. This is equivalent to z, — oo since
a photon emitted at the time of the big bang will be infinitely redshifted , i.e. unobservable.
We get then

!

(4.126)

(4.127)

ty = —o. (4.128)



Chapter 5

Cosmology 1II: The Inflationary
Universe

5.1 Cosmological Puzzles

The isotropy and homogeneity of the universe and its spatial flatness are two properties
which are highly non generic and as such they can only arise from very special set of initial
conditions which is a very unsatisfactory state of affair. Inflation is a dynamical mechanism
which allows us to go around this problem by permitting the universe to evolve to the state of
isotropy /homogeneity and spatial flatness from a wide range of initial conditions.

Another problem solved by inflation is the relics problem. Relics refer to magnetic monopoles,
domain walls and supersymmetric particles which are assumed to be produced during the early
universe yet they are not seen in observations.

As it turns out inflation does also provide the mechanism for the formation of large scale
structure in the universe starting from minute quantum fluctuations in the early universe.

5.1.1 Homogeneity /Horizon Problem

The metric of the FLRW universe can be put in the form

ds® = —dt* + R*(t)(dx* + S (x)dQ?). (5.1)

0
Sk(x) =sinhyx , k= —1. (5.2)
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The FLRW metric becomes

ds*> = R*(7) [ —dr* +dx* + Si(x)sz]

= R%(r) [ —dr d;ﬂ . (5.4)

The motion of photons in the Friedmann-Lemaitre-Robertson-Walker universe is given by null
geodesics ds? = 0. In an isotropic universe it is sufficient to consider only radial motion. The
condition ds?> = 0 is then equivalent to dr = dy. The maximum comoving distance a photon
can travel since the initial singularity at t = ¢; (R(t;) = 0) is

Xhor(t> =TT, = /t; Rd(l;,ll) . (55)

The is called the particle horizon. Indeed, particles separated by distances larger than xyer

could have never been in causal contact. On the other hand, the comoving Hubble radius 1/aH
is such that particles separated by distances larger than 1/aH can not communicate to each
other now. The physical size of the particle horizon is

dhor = RXhor . (5 6)

The existence of particle horizons is at the heart of the so-called horizon problem, i.e. of the
problem of why the universe is isotropic and homogeneous.

The universe has a finite age and thus photons can only travel a finite distance since the
big bang singularity. This distance is precisely dy.(t) which can be rewritten as

dot) = alt) / %

a(t) 1
= a(t) /a(ti):O mdlna(tl). (5.7)

The number 1/aH is precisely the comoving Hubble radius. The distance dy;(tp) is effectively
the distance to the surface of last scattering which corresponds to the decoupling event.

The first Friedmann equation can be rewritten as H%a? = 87Gpoa~1*3%) /3 — k. For a flat
universe we have

1 1 (1+3w)
e (5.8)
aH HQ
It is then clear that the particle horizon is given by
2 1
= §(1+3w)' 5.9
Xhor Ho(l + 3w>a ( )

For a matter-dominated flat universe we have w = 0 and hence H = Hya /2

a = (t/t)?/3. In this case

or equivalently

(5.10)

2 1 J 2
or — @ or — Ty-
A 0 T e =
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For a radiation-dominated flat universe we have w = 1/3 and hence H = Hya~? or equivalently
a = (t/ty)"/?. In this case

Xbor = Hioa = dnor = % (5.11)
For a flat universe containing both matter and radiation we should get then
dhor ~ . (5.12)
H
In other words
por ~ dp. (5.13)

The so-called Hubble distance dy is defined simply as the inverse of the Hubble parameter H.
This is the source of the horizon problem. Inflation solves this problem by making dy.. >> dg.

Let us put this important point in different words. The cosmic microwave background
(CMB) radiation consists of photons from the epochs of recombination and photon decoupling.
The CMB radiation comes uniformly from every direction of the sky. The physical distance at
the time of emission t. of the source of the CMB radiation as measured from an observer on
Earth making an observation at time ¢ is given by

Ad(t) = alt,) / L

. al(ty)
3t2/3(14/* — ¢1/3) . MD. (5.14)

The physical distance between sources of CMB radiation coming from opposite directions of
the sky at the time of emission is therefore given by

2Ad(t.) = 6t23(t)* — ti*) + MD. (5.15)
At the time of emission ¢, the maximum distance a photon had traveled since the big bang is

fe dt
dhor(te) = a(t6>/ —L
0

a(t)
— 3t : MD. (5.16)

This is the particle horizon at the time of emission, i.e. the maximum distance that light can
travel at the time of emission.
We compute

2Ad(t,)
dhor (te)

By looking at CMB we are looking at the universe at a scale factor acup = a(t.) = 1/1200.
Thus

= 2(a(t.)"Y? = 1). (5.17)

2Ad(t,)
dhor (te)

~ 67.28. (5.18)
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In other words 2Ad(t.) > dpe(te). The two widely separated parts of the CMB considered above
have therefore non overlapping horizons and as such they have no causal contact at recombina-
tion (the time of emission t.), yet these two widely separated parts of the CMB have the same
temperature to an incredible degree of precision (this is the observed isotropy/homogeneity
property). See figure 1COS,1. How did they know how to do that?. This is precisely the
horizon problem.

5.1.2 Flatness Problem

The first Friedmann equation can be rewritten as

Q—-1= YiEh (5.19)
The density parameter is
Q= pﬁ. (5.20)
The critical density is
Pe = %H? (5.21)

We know that 1/(a?H?) = a'™*/H? and thus as the universe expands the quantity Q — 1
increases, i.e. {2 moves away from 1. The value 2 = 1 is therefore a repulsive (unstable) fixed
point since any deviation from this value will tend to increase with time. Indeed we compute

(with g =Q —1)

dg
— =(14+3 . 5.22
o2l = (1+30)g (522)
By assuming the strong energy condition we have p+ P > 0 and p+ 3P > 0, i.e. 14+ 3w > 0.
The value 2 = 1 is then clearly a repulsive fixed point since d€2/dIna > 0.
As a consequence the value 2 ~ 1 observed today can only be obtained if the value of ) in

the early universe is fine-tuned to be extremely close to 1. This is the flatness problem.

5.2 Elements of Inflation

5.2.1 Solving the Flatness and Horizon Problems

The second Friedmann equation can be put into the form

a 47 G
e P). 5.23
= T4 ap) (5.23)
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For matter satistying the strong energy condition, i.e. p+ 2P > 0 we have ¢ < 0. Inflation is
any epoch with ¢ > 0. We explain this further below.

We have shown that the first Friedmann equation can be put into the form [ — 1| =
rx/(a®>H?). The problem with the hot big bang model (big bang without inflation) is simply
that aH is always decreasing so that €2 is always flowing away from 1. Indeed, in a universe
filled with a fluid with an equation of state w = P/p with the strong energy condition 143w > 0
the comoving Hubble radius is given by

1 143w
— . 5.24
aH xas (5:24)

Thus d = d(aH)/dt is always negative. Inflation is the hypothesis that during the early universe

there was a period of accelerated expansion a@ > 0. We write this condition as

. d(aH) p
=—>0&P<—=. 5.2
a o > 0eP< 3 (5.25)

Thus the comoving Hubble length 1/(aH) is decreasing during inflation whereas in any other
epoch it will be increasing. This behavior holds in a vacuum-dominated flat universe (P = —p,
poxa®, a(t) oc exp(Ht)). However inflation can only be a phenomena of the early universe and
thus must terminate quickly in order for the hot big bang theory to proceed normally.

Inflation solves the flatness problem by construction since in the first Friedmann equation
| — 1] = k/(a>H?) the right hand side decreases rapidly during inflation and thus driving
towards 1 (towards flatness) quite fast. Another way of putting it using the first Friedmann
equation in the form H? = 87Gp/3 — k/a? is as follows. In a vacuum-dominated (for example)
universe the mass density p oc a” grows very fast with respect to the spatial curvature term
—k/a? and hence the universe becomes flatter very quickly.

The horizon problem is also solved by inflation. Recall that this problem arises from the fact
that the physical horizon length dy.,(t.) grows more rapidly with the scale factor (in a matter-
dominated or radiation-dominated universe) than the physical distance 2Ad(t.) between any
two comoving objects. We need therefore to reverse this situation so that

Ad(t,) << dyor(t.). (5.26)

e dt, /to dt,
>> . 5.27
/o aw) 7 ), am) (5.27)

This means in particular that we want a situation where photons can travel much further

Or equivalently

before recombination/decoupling than it can afterwards. Equivalently, if the Hubble radius is
decreasing then the strong energy condition is viloated and as a consequence the Big Bang
singularity is pushed to infinite negative conformal time since

dt 2 v
o / e (5.28)

at) T+ 3uw"
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In other words, there is much more conformal time between the initial Big Bang singularity
and decoupling with inflation.

In a universe with a period of inflation the comoving Hubble length 1/(aH) is decreasing
during inflation. Thus if we start with a large Hubble length then a sufficiently large and smooth
patch within the Hubble length can form by ordinary causal interactions. Inflation will cause
this Hubble length to shrink enormously to within the smooth patch and after inflation comes
to an end the Hubble length starts increasing again but remains within the smooth patch. See
figure 1COS, 2.

This can also be stated as follows. All comoving scales k= which are relevant today were
larger than the Hubble radius until @ = 107 (start of inflation). At earlier times these scales
were within the Hubble radius and thus were casually connected whereas at recent times these
scales re-entered again within the Hubble radius. See figure 1COS, 3.

The observable universe is therefore one causal patch of a much larger unobservable universe.
In other words there are parts of the universe which cannot communicate with us yet but they
will eventually come into view as the cosmological horizon moves out and which will appear to
us no different from any other region of space we have already seen since they are within the
smooth patch. This explains homogeneity or the horizon problem. However there are possibly
other parts of the universe outside the smooth patch which are different from the observable
universe.

5.2.2 Inflaton

Inflation can be driven by a field called inflaton. This is a scalar field coupled to gravity
with dynamics given by the usual action

Sy = /d4x\/ —detg [— %g’“’vuqﬁquﬁ —Vi(g)|. (5.29)

The equations of motion read

55, ) 5V
5o = V,(9"'V,.0) — 50

= ;8 (v/—detg 0"¢) — ov

v/ —detg " 0
1, oV
= 040" 0+ 59" 0ugas0" 6 — 5
= 0. (5.30)
For a homogeneous field ¢ = ¢(t, Z) = ¢(t) we obtain
1 %
000°6 + 59" 00gas0"6 — 55 =0 (5.31)



GR, B.Ydri 124

In the RW metric we obtain

. .8V
O+3HO+ 52 =0, (5.32)

The corresponding stress-energy-momentum tensor is calculated to be given by

1
T;E(Vb) = Vu¢vu¢ - §guugpavp¢va¢ - QWV(Cb) (533)

Explicit calculation shows that this stress-energy-momentum tensor is of the form of the stress-
energy-momentum tensor of a perfect fluid 7, ¥ = (—py, Py, Py, Py) with

1. 1.
p¢:§¢2+vvp¢:§¢2_‘/' (5.34)

The equation of state is therefore

_ Py _ 50—V

- . 2.35
Py 32 +V (5:35)

We

We can have accelerated expansion w, < —1/3 if the potential dominates over the kinetic
energy. In other words we will have inflation whenever the potential dominates. The first
Friedmann equation in this case reads (assuming also flatness)

8tG 1 .
H? = %(5& V). (5.36)
The second Friedmann equation reads
a 8nG -
- = —T(¢2 -V)
= H*(1—e¢). (5.37)
The so-called slow-roll parameter is given by
(2
€ = 47TG%
3
= 5(1 + wy). (5.38)
This can also be expressed as
H

Let us introduce N =1Ina, i.e. dN = Hdt. Then we can show that

dn H
= — ) 4
€ N (5.40)
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Inflation corresponds to € < 1. In the so-called de Sitter limit P, — —ps (wy — —1,
e — 0) we observe that the kinetic energy can be neglected compared to the potential energy,

i.e. 92 << V. We have then
e<<le@®<<V. (5.41)

This condition means that the scalar field is moving very slowly because for example the po-
tential is flat.

In order to maintain accelerated expansion for a sufficient long time we require also that
the second derivative of ¢ is small enough, viz |¢| << [3H@| and |¢| << [0V /d¢|. This second
condition means that the field keeps moving slowly over a wide range of its values and hence
the term slowly rolling. We compute

lde ¢ H iﬁ_gk&

See_o_H _ 2 4. 5.42
dedi 5 H 2%dN  Hp (5:42)
We introduce a second slow-roll parameter by
8
oH
1 de

It is clear that sustained acceleration is equivalent to the condition n << 1. In other words

. S SV
n<<le | << |3H9|, |p| << |% : (5.44)
The equations of motion in the slow-roll regime are
8rG . oV /og
H?>~—V = ———. 4

Since ¢ is almost constant during slow-roll we can assume that H? ~ constant in this regime
and hence a(t) ~ exp(Ht). This is de Sitter spacetime.

Instead of the Hubble slow-roll parameters € and n we can work with the potential slow-roll
parameters €y, and 7y, defined as follows. The first slow-roll parameter € is equivalent to

.~ 3
2V
o1 (0V/ée)
~ 6H: V
o1 (6V/dg)?
160G V?

>~ €ey. (546)
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We compute

1 / 2V 1 1 ; 2y 1
lde ¢ 5_V__(5_V)2 @_Eg ¢ 5V__(5_V)2 . (5.47)
2edt — SV/op\ dp? Vg 2¢dN ~— HOV/§p\ 6¢p> Vo
The second slow-roll parameter 7 is therefore equivalent to
_L &V/ie®
K 8rG V
~ ny —ey. (5.48)

The slow-roll conditions €, |n| << 1 are equivalent to
v, |77v| << 1. (549)

These are obviously conditions on the shape of the inflationary potential. The first (inflation)
states that the slope of the potential is small whereas the second (prolonged inflation) states
that the curvature of the potential is small. These are necessary conditions for the slow-roll
state but they are not sufficient. For example a potential could be very flat but the velocity of
the field is very large.

The amount of inflation is defined by the logarithm of the expansion or equivalently the
number of e—foldings N given by

te
N = 1y Wend) / Hdt
a(tinitial) t
#(te)
L,
$(t) @
¢(te) V
= 871G ———d¢
#(t:) (5‘//(5(;5
N / o. 5.50
o(t:) V2€V

In order to solve the horizon and the flatness problems we need a minimum amount of inflation
of at least 60 e—foldings which is equivalent to an expansion by a factor of 10%.

Inflation ends at the value of the field ¢..q where the kinetic energy becomes comparable
to the potential energy. This is the value where the slow-roll conditions breaks down, viz
€(Pend) = 1, €y (Pena) >~ 1. After inflation ends the scalar field starts oscillating around the
minimum of the potential and then decays into conventional matter. This is the process of
reheating which is followed by the usual hot big bang theory. See figure 1COS, 3.

The most simple and interesting models of inflation involve 1) a single rolling scalar field
and 2) a potential V' which satisfies the slow-roll conditions in some regions and possesses a
minimum with zero potential where inflation terminates. Some of these models are

V = \,¢" , chaotic inflation. 5.51
4
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V = Vu(1 + cos ?) , natural inflation. (5.52)

V = Vyexp(ag) , power — law inflation. (5.53)

5.2.3 Amount of Inflation

As pointed out above in order to solve the horizon and the flatness problems we need a
minimum amount of inflation of at least 60 e—foldings which is equivalent to an expansion by
a factor of 10", A clean argument is found in [41].

We imagine a universe in which inflation starts at ¢; with a scale factor a(t¢;) and ends at
t; with a scale factor a(ty). The current time is ¢y with a scale factor a(ty). During inflation
we can assume that H is constant (de Sitter spacetime) and as a consequence the (vacuum)
mass density py is constant. We assume for simplicity that between the end of inflation and
the current moment the universe is radiation-dominated with a density pr behaving as 1/a®.
We assume that at ¢ the vacuum density is fully converted into radiation, viz pgr(ty) = py.
We recall that the density parameter Q¢ associated with curvature is given by

pc K K
Qo =—=— = ——. 5.54
¢ Pe a’H? a? ( )

During inflation the expansion is accelerating, since gravity is acting as repulsive due to the
dominance of the vacuum energy, and thus a increases and hence ¢ decreases. Thus Q¢ << 1
today at ty can be easily explained with more inflation. On the other hand, if inflation is
preceded with a long phase of deceleration in which gravity acts in the usual way as attractive,
then @ at t; must be very small and hence 2 >> 1 at the beginning of inflation. This case
also would only require more inflation to explain. Thus it is sufficient to assume that Q¢ ~ 1
at tg and t;. This means that at ¢, and ¢; pc is equal to the critical density p.. In other words,
at ty and ¢; we have nothing but curvature, viz

pv(ti) = pc(ti) » pr(to) = pc(to). (5.55)

We compute now

= (<)~ (5.56)
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The solution is thus

4 _ [P _ % (5.57)
a; a; ayr ’ ’
In general we obtain
& 5 %o (5.58)
a; af
In terms of the e-fold number N = In a this reads
Ny — N; > Ny — Ny. (5.59)

The amount of inflation is precisely AN = Ny — N;. Thus we have more expansion during
inflation than since the end of inflation. Although there is no upper bound on the amount of
inflation, there is a lower bound given by

ANpin = No— Ny
al(to)
alty)
1
—1In prlay) .
4 pr(ao)

As we will show later the energy scale of inflation is pr(as) ~ 107*2p,). Also we have already

= In

(5.60)

seen that the energy density contained in radiation is praq = 1073%g/cm?® = 1077p,; where
ppt = 10%g/cm®. Hence the minimum amount of inflation is

1, 10712
ANmin = 1 In W ~

From this approach we can get another important estimation. We have

AN — 1 @) _ /Hdt

66. (5.61)

a(t;)
= H;(t;—t; 4 .62
(g~ 1)+ S (562
We must then have
|H| 1
—. .64
iE < (5.64)
However, from the Friedmann equations H? = 87Gp/3, H = —4nG(p + P) we have
o 3. P
— =—(14+—). .
e 2( + ﬁ) (5.65)
We get immediately the estimate
5, )
1+ @ < —~1072% (5.66)

Di 99
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5.2.4 End of Inflation: Reheating and Scalar-Matter-Dominated Epoch

We start by summarizing the main results of the previous section. The main equations are

the equation of motion of the inflaton scalar field and the Friedmann equation given respectively
by

ov
3H = 0. 5.67
0+3HO+ - 5 (5.67)
1
H? = 87;G( P+ V). (5.68)
The slow-roll approximation is given by the conditions
‘2 5V
e<<l,n<<le <<V, |o|<<|3H]|, |9 <<|% (5.69)
Equivalently
SV /6¢p)? 52V /6¢?
ev<<1,nv<<1@%<<l,#<<l. (5.70)

The equations of motion during slow-roll are

: 5.71
Vi (5.71)
These two equations can be combined to give the equation of motion

dlna Vv
= —81G+. (5.72)
a9 s

The solution is

o
a(¢) = a; exp ( — 81 %d(ﬁ).

(5.73)
i 9

For a power-law potential V' = A¢™/n the slow-roll conditions are equivalent to ¢ >> 1 and
the above solution is given by

o) =azexp (=T~ 1)), 6.7

Let us consider a quadratic potential V' = m?¢?/2 at the end of inflation. By combining the

Friedmann equation and the equation of motion of the scalar field we obtain a differential
equation for ¢ as a function of ¢ given by

do m2p + \/127TG(¢2 + m2¢?)
o= 3 : (5.75)
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In slow-roll we have dgb/ dop ~ 0, qu = constant and ¢ >> 1. A solution is given by

(ty —1). (5.76)

m ¢ _ m
V127G’ V12rG

Since |¢| >> 1 during inflation we must have mt >> 1. The pressure is given by

b=—

2

P=—ptd=—rtyga

(5.77)

When the scalar field drops to its Planck value ¢ ~ 1/4/127G we observe that the energy density
drops to m?/127G and hence the pressure vanishes. Inflation is then over. Thus inflation ends
when the scalar field becomes of order 1 in Planck units. The duration of inflation is

V12 -
At=t;—t;=— merM — Vi2r % (5.78)

By substituting the above solution into Friedmann equation we get

1 47 G

H= §m2(tf —t)=— quﬁ. (5.79)
alt) = alty)exp (~ (1 — ) (5.50)

We get immediately
= exp (21Go?). (5:81)

(3

Thus in order to get a 75 e-folds we must start with a value of the scalar field which is four
times the Planck value, viz ¢; ~ 4/v/G.
Alternatively, the Friedmann equation can be immediately solved by the ansatz

[ 3
meo = RHCOS@. (5.82)

b= %H sin 6. (5.83)

By taking the time derivative of the first equation and comparing with the second one we get
ﬁcosé’ — 6sinf = msin6. (5.84)

By taking the time derivative of the second equation and comparing with the value of $ obtained
from the equation of motion of the inflaton field we get

%sin9+90089 = —3H sinf — mcosb. (5.85)
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Solving the above two equations for H and 6 in terms of the original variables H and 6 we get
H = —3H?sin’0 , = —m — gH sin 26. (5.86)
In terms of a defined by # = —mt + « these read
H = —3H?sin*(mt —a) , &= gH sin 2(mt — a). (5.87)
For mt >> 1, i.e. towards the end of inflation, we can neglect a:
H = —3H?sin?(mt). (5.88)

The solution is

2 sin 2mt\ 2 sin 2mt
H=—(1- =—11 ). 5.89
3t ( 2mt ) 3t ( * 2mt i ) (5.89)

Now we can check directly that « corresponds to oscillations with decaying amplitude. We
can also show that the scalar field oscillates with a frequency w = m with slowly decaying
amplitude. On the other hand, the scale factor behaves as

1

W»' (5.90)

a=t"*(1+0(

We get therefore a graceful exit into a matter-dominated phase. In summary, if the mass is

sufficiently small compared to the Planck mass the inflationary phase will last sufficiently long

and is followed by a matter-dominated phase. Furthermore, a quadratic potential gives rise

naturally to a post-inflationary matter-dominated universe consisting of heavy scalar particles

which will eventually be converted into photons, baryons and leptons (reheating). The usual

radiation-dominated, matter-dominated and vacuum-dominated phases follow after reheating.

Other power-law potentials will also give oscillatory stages with scale factors behaving as

a ~ tP. For example, a quartic potential will give an oscillating scalar field with the scale factor
of a radiation-dominated universe, viz a ~ t'/2.

5.3 Perfect Fluid Revisited

Let p be the mass density of a perfect fluid, P its pressure, S its entropy per unit mass and
u its flow velocity vector, i.e. the velocity of an element of fluid at a point Z at a time ¢. The
equation of state of the perfect fluid allows us to determine the pressure in terms of the mass
density p and the entropy S, viz

P=Pp,S). (5.91)
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The state of the prefect fluid is therefore completely determined by the mass density p, the
entropy per unit mass S and the flow velocity vector @w. In the absence of dissipation the
entropy is conserved, i.e.

dsS oS g
% = E‘F(UV)S

= 0. (5.92)

The mass M contained in a volume V' is given by

M= /V vp. (5.93)

The rate of change of the mass contained in V' is obviously given by

dM dp

This rate of change is also obviously given by the mass flowing through the surface ¥ which

encloses the volume V. Since the amount of mass flowing per unit area per unit time is J = pu
the rate of change dM/dt can be rewritten as

M — —
daMr_ —]{da] _ —/ AV (o). (5.95)
dt > v

We get therefore the continuity equation

op =, o
e + V(pu) = 0. (5.96)

The Newtonian gravitational potential ® generated by the mass density p is given by the Poisson
equation

Vo = 47Gp. (5.97)

The force exerted by this potential ® on a mass AM is given by Newton’s law of gravitation,
viz

Fyp = —AMV®. (5.98)

The other force acting on AM is due to the pressure P of the perfect fluid and is given by

F, = — f Pd&
AY

- —f VPdV
AV
~ —VPAV. (5.99)
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Newton’s second law then reads

“AMV® — VPAV = AMg. (5.100)
However,
di ou -
_': _— = — T _'. 1 1
9= BT + (uV)u (5.101)

By identification we obtain Euler’s equation

%+(ﬁ*)ﬁ+¥+§<b:0. (5.102)
We have seven equations: equation of state (5.91), conservation of the entropy (5.92), conti-
nuity equation (5.96), Poisson’s equation (5.97) and three Euler’s equations (5.102) for seven
unknowns: p, P, S, 4 and .

Linearization of these equations around an expanding homogeneous and isotropic uni-
verse with mass density py = po(t) and flow velocity vector iy obeying the Hubble law, i.e.
g = H(t)Z, leads to a Newtonian theory of gravitational instabilities. This topic is discussed
at length in [2]. In the following we will concentrate instead on the corresponding general
relativistic theory following mostly [2].

5.4 Cosmological Perturbations

5.4.1 Metric Perturbations

The universe is isotropic and homogeneous and spatially flat with a gravitational field de-
scribed by the RobertsonWalker metric. This is the punch line so far. However, this is just an
approximation which neglects the most obvious fact we observe directly around us which is the
presence of structure: galaxies, stars and us. All departures from homogeneity and isotropy
will be assumed to be small given by weak first order fluctuations. The perturbed metric is

given by
uv = g,ul/ + 59;11/- (5103)
ds?* = gy datds” = —dt* + a*(t)dz'da’. (5.104)
The inverse is given by
g =g — 59" | 59" = §""8gap. (5.105)

The metric is a symmetric (0,2) tensor containing 10 degrees of freedom. The 00 component
is a scalar under spatial rotations, the 0i (or equivalently i0) components form a vector under
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spatial rotations and the ij components form a rank 2 tensor under spatial rotations. We
introduce two scalars ® and W, a vector B; and a traceless rank 2 tensor £;; under the action
of spatial rotations by the relations

6900 = —2(1)
0go;i = abB;
The metric takes the form
ds® = —(1 4 2®)dt* + 2aB;dtdz" + a®[2E;; + (1 — 2W)§;;]dz"dx’. (5.107)

Wo,; and E;; form together a rank 2 tensor under spatial rotations where W is precisely its trace.
We call ¥ the spatial curvature perturbation, E;; spatial shear tensor, B; the shift and ® the
lapse.

We can decompose any 3—vector such as B; into a divergenceless 3—vector S; satisfying
0'S; = 0, and a total derivative 9;B as follows

B; = —5; + 0;B. (5.108)

This is Helmholtz’s decomposition. Similarly, we can Hodge decompose any symmetric traceless
3—tensor such as F;; into a divergenceless symmetric traceless 3—tensor h;; satisfying 0'h;; = 0
and hi = 0, and a divergenceless 3—vector F} satisfying 0'F; = 0, and a scalar E as follows

1
Eij = 0,0;E + 0;F; + 0;F; + ihij- (5.109)

We get then the metric

ds* = —(1 4 2®)dt* + 2a(0;B — S;)dtdz’ + a®[hy; + 20;0;E + 20;F; + 20;F; 4+ (1 — 20)6;;] da’da’.
(5.110)

There are 4 scalar degrees of freedom ®, B, E and ¥, 4 vector degrees of freedom contained in
S; and F; which satisfy two constraints, and 2 tensor degrees of freedom contained in h;; which
satisfies 4 constraints. Thus the total number of degrees of freedom is 4 + 4 + 2 = 10 which is
precisely the correct number of degrees of freedom contained in the perturbed metric.

As we will see scalars lead to, or are induced by, density fluctuations, and since they can
suffer from gravitational instabilities they can also lead to structure formation. On the other
hand, tensors lead to gravitational waves and as such they are absent in the Newtonian theory.
Further, it can be shown that the vector perturbations S; and Fj;, which are related to the
rotational motions of the fluid, decay as 1/a* with the expansion of the universe, which holds
true already in Newtonian theory, and thus they do not play an important role in cosmology.
The scalar, vector and tensor perturbations evolve independently of each other at the linear
order and as such they can be treated separately.
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In the following we will mostly neglect vector perturbations for simplicity. The metric will
then read

ds® = —(1 + 2®)dt* + 2a0; Bdtdx' + a®[hij + 20,0, FE + (1 — 2W)6,;]dx'da’ . (5.111)

5.4.2 Gauge Transformations

We recall that coordinate transformations are given by

ot — P = ah (). (5.112)
N o0z 5113
() — G, (8") = G S gl (113
Explicitly we have
P Oe® 0P
_ a _ g _ =
guy(z ) - [5;1 axlu][éu azly]gaﬁ(x)
Oe® Oe”
= guu(z) - Wgﬂﬁ(x) - %9041/(1')
Oe® Oe®
= 0ul®) = 5 ual®) = e an(®). (5.114)

We will reinterpret these coordinate transformations as gauge transformations where all change
is encoded only in the field perturbations, viz

dgu () — 5g;w(:17) = 09 () + Adg (). (5.115)
Equivalently

Nogu () = g () = g (@)
09, () = 89, (). (5.116)

We compute

Abguw(z) = g;w(xl —€) = g (@)

/ ’ a
= gul/(m ) o E)\@QWJ(I) o gl“’(x)
O€? Oe” y 0
= ——3 ——q —€'——g . A1
axygﬂﬁ(x) azugaV(x) € al,)\g/ﬂ/(x) (5 7)
Explicitly we have
062' an

_a:lj'j — % + 2@@6052']-. (5118)
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de; 0 :
Adgi(z) = _8_i_8;2+2g€i’ (5.119)

Let us consider the metric (5.110) with the vector and tensor perturbations set to zero. We
have then

ds* = —(1 + 2®)dt* + 2a0; Bdtdx' + a*[20;0;E + (1 — 2W)6;5]dx'da’ . (5.121)

The coordinate transformations (5.112) are given explicitly by 2 — 20 = 2° + €, 2¥ —

. R . . :
v =212"+ €. We will write € = a. The vector €' can be decomposed as ¢; = a?0;3 + ¢} where
v

%/ = 0. As before we will neglect the vector contribution coming from €} since it will only
contribute to the gauge transformations of the vector perturbations which we have dropped.

By setting €/ = 0 the coordinate transformations (5.112) take now the form

t—t =t+a, s — a2’ =a"+0p. (5.122)
The corresponding gauge transformations are (with g;; = a®d;;, gio = 0, goo = —1 and H = a/a)
oo
AP = ——
ot
AB =a"ta — a%
ot
AE = —f3
AV = Ha. (5.123)

This depends only on two functions a and . Thus by choosing o and 3 appropriately we can
make any two of the four scalar perturbations E, B, & and ¥ vanish. In other words, the
space of the physical scalar perturbations is two dimensional. This space is spanned by the two
gauge-invariant linear combinations 5 and ¥z known as Bardeen potentials which are defined
by

d
@B = — E |:a(a,atE - B):|

Up=WV-+ d{a&gE — B] . (5.124)
Indeed, we compute

Adp = AD — % {a(aatAE — AB)} =0

AUp = AV +q {a&tAE - AB] = 0. (5.125)
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Let us now consider the metric (5.110) with the scalar and vector perturbations set to zero.
We obtain

d$2 = —dt2 —+ 0,2 [5U + h”]dl’ldl'] (5126)

It is obvious from the above discussion that the tensor h;; is invariant under gauge transforma-
tions, viz

Some of the used and most useful gauge choices are as follows:

e Longitudinal, Conformal-Newtonian Gauge: We can choose 3 so that £ = 0 and
then choose a so that B = 0. These are unique choices which fix the gauge uniquely.
This gauge is therefore given by

E=B=0. (5.128)
The metric becomes

ds® = —(1 4 2®)dt* + a*(1 — 2V)4;;dz" dx’ . (5.129)

e Synchronous Gauge: We can choose [ so that B = 0 and then choose a so that ® = 0.
This gauge is therefore given by

B=3®&=0. (5.130)
The metric becomes
ds® = —dt* + a*[20,0;E + (1 — 2W)6;;]dx"da’. (5.131)

The synchronous gauge does not fix the gauge completely. Indeed, we can check immedi-
ately that the choice B = ® = 0 remains intact under the gauge transformations

alt.a') = fula') | Blt,a") = fi(a) / % T haf). (5.132)

for any functions f;(z?).
5.4.3 Linearized Einstein Equations
We want to linearize the Einstein Equations

1
Gt = RE — §Rgu = 8rGTY, (5.133)

v
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around the perturbed metric (5.103). We have already computed the components of the un-
perturbed Ricci tensor. We recall (with the prime denoting differentiation with respect to the
conformal time, dn = adt and H = a'/a)

0 i H
R) = 3= =35 (5.134)
By 5;' . -2 5;' 2 2
R, = ?(aa%— 2a%) = ?(% + 2H?). (5.135)
Ry = 0. (5.136)

The background stress-energy-momentum must also be diagonal by the background Einstein
equations, viz

T #0, Tg=0, T 0. (5.137)
The linearized Einstein’s equations are of the form
0GE = 8nGOTYV. (5.138)

Both dG% and §T!" are not gauge invariant. Indeed, under the gauge transformations (5.112)
the tensors 0. X# = 0GY,0T# will transform as second rank tensors similarly to dg#, i.e. as
(5.115) with

AdXy,(z) = X, (v —€) — Xu(z)
e’ _ Oe 0 -
— —wxw(x) — %Xa,,(x) - EA%XMV({Z). (5.139)
More explicitly we have

Xk >
AXj(x) = _201'6]'5-7 — @ Xij. (5.140)

. Xk >
A(SX()Q([L’) = —28ta)_(00 — Oéatho. (5142)

We can construct gauge invariant quantities as follows. We observe that
Al = —a, I =a(adE — B) and AE = —0. (5.143)

Thus the following combinations are gauge invariant:

. . X _
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. . X _

AdXp =0, 6Xo9 = 06Xoo — 2X000I — 10, X0 (5.146)
We use now the result
ASXS = g™MASX,, — Adg*™*. X,
= g"AIX,, + (8“6a + 0%" + gapg“”eAaAgpo) X (5.147)

We get now the gauge invariant observables

ASXS =0, 6X) = 6X)— 10X, (5.148)

N N _ 1 -
ASX) =0, 6X) = 6X)—0I(X) — gX,’j). (5.149)
ASXI=0, 0X! = X -1, X, (5.150)

We can then write the linearized Einstein equations in a gauge invariant way as follows

SGH = ST GOT™. (5.151)
We start from
ds®> = —dt* + a25,-jdzida:j = a? [ —dn* + 5ijdxidxj}. (5.152)

From here on the subscript 0 indicates conformal time. We compute

_ a - a - a

Fgo = 7 F?j = 55@' , Toj = 55@'- (5.153)
— a _ a a? — 6 a a?
Roo = _380(5) , Rij = 80(5) + 2; 0ij , R = ?(ao(a) + ?) (5.154)

Now we have the perturbations

0Ru = o005, — 9,008, + 61 Iy + T 610, — 600, Ty — T4 600, (5.155)

urT o av= uB

And!

1 —po 1 —pQ =0 = — =
ore, = 59” (0409vo + 0,0Gus — 050Gu) — ig” g ﬁégag(ﬁugw + 0,Gus — O Gy )(5.156)

!The minus sign in the second term is due to our "bad” definition: —§g"* = gh* — ghv.
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1_ 3 a.  a?
5Guu = 6RNV — ig,w(;R — ?(80(5) + ?)59;“1 (5157)
We will work in the Conformal-Newtonian gauge £ = B = 0 in which the metric takes the
form
ds® = —(1+2®)dt* + a*(1 — 20)8;;dr'da? = a® | — (14 2®)dn* + (1 — 2V)6;;da’da? |.
(5.158)
We have
Sgoo = —2a°® | 8g;; = —2a> V6. (5.159)
59" = —ECD 59" = —3\115-» 5.160
g = a2 y 097 = a2 1] ( . )
We compute immediately
0 1 1 _ _ _
or, = —ﬁ(ﬁ;ﬁguo + 0,0Gu0 — 000Gpuw) — %5900(@91/0 + 0y Guo — QoGuv).  (5.161)

; 1 1 _ _ _
51—‘;”/ = 2—0,2(011591/1 + au(sgui - ai(sg;w) - 2—0,459219(0/191/19 + auguk - akg;w)~ (5162)

Step 1: We set a = 1. In this case we compute

oTgy = 0@, 0IG; = 0, , O = =y W6y, (5.163)
61—%0 == 8Z<I> 5 5F6J - _80\1151'3' 5 5F;l == 8i\115jl - 8]‘\1/512‘ - 81\115w (5164)
Thus
§Rog = 07® + 303 V. (5.165)
SRij = 6y ( — OV + 8,3\11) — 0,0;(® — ). (5.167)
And
Thus
1
6Go = 5((SROO + 0Ry;) = 207 V. (5.169)

1 1
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Step 2: The next step we perform the conformal transformation
Gy — G = Fgu . F=ad* (5.172)
Under this transformation we have

- 1
e, —TI0, =17, + 5(@ InF.gf +0,InF.g5 — 9 In F.g,,). (5.173)

Also (by using also the fact that the metric is covariantly constant)

_ 1 1 3
Ruw — By = Ry = 5V, VoF = 520, VaV*F + =V, FV, (5.174)
Thus
~ 1 3 u 3 L

N 1 1 3
Gy — Gy = G = ZVuViF + 0w VaVF + 5V, FV, F — Vo FV*F5.176)

3
e
For our case we need

5( - %V,N,,F) - 2%5%. (5.177)

1 o 1 «
5<fngav F) = 5<Fgu,,g ﬁvaéﬁF)
= 5( G 9” (0 OgF —T" 8F>
. .2 . .
= 2— — 2L )59W + (4% +4%0 4+ 229,0 + 6900\1/) G
a a a a
(5.178)

22 22

3 o a ar o _

_ . .. .2 .. ;2 . .
G = 0G + 22070+ [ =22 + 2 )65g + (420 — 220 + 22,0 + 620,V ) 7,
a * a a? a a? a a
(5.180)

Explicitly we have

5Goo = 6Gloo — 6%80\11. (5.181)
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5Coi = Gl + 2%0,@. (5.182)
. a a N N
0Gij = 0Gij + | 4= +2-00® + (45 — 2?)<I> + (4a — 2?)\11 dij- (5.183)

We rewrite these as
—a 5G0 = 5G00 —6—=® = 2@ v — 6—80\11 —6—. (5184)
a? a a?

—a20G0 = 6Go; = 20,(00T + ~B). (5.185)
a

C'L2

~ a

1 . . .. .2
= 26;(GV + 597(@ — 1)) — 0,0,(® — T) + (4280\11 + 2%0@ + (42 - 2a2)q>) 3y

a

= 25 ((‘93\11 + %af(cp — ) + 2%00\11 + %80<I> + (200(%) + Z—i)@) — 0,0;(® — ).
(5.186)
The linearized Einstein’s equations are therefore given by
0P — 3%80\11 - 33—2@ = —4nGa*dT}. (5.187)
9; (0o + gfb) = —4nGa’sT). (5.188)

1 a a a, @ 1 .
0ij (83\11 + 58?@ — W)+ 2-00W + 0P + (280(5) + ?)(D) —500;(2 —¥) = ArGa®ST}.

(5.189)

The gauge invariant objects are obtained by replacing ® and ¥ by the Bardeen potentials ®p
and Vg respectively.

5.4.4 Matter Perturbations

Now we discuss matter perturbations. The stress-energy-momentum tensor T of a perfect
fluid is given by

™ = (p+ P)U*U" + Pg" , guU'U" = —1. (5.190)
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Again we will work with the conformal time denoted by 0 for simplicity. The unperturbed veloc-
ity satisfies g, U*U" = —1 and thus U* = (1/a,0,0,0). We compute then from 2g,, U*0U" +
89, UPUY = 0 the result 6U° = 6Uy/a® = 0goo/2a® while 6U" is an independent dynamical
variable. We have then U° = (1—®)/a, Uy = —a—a® and U* = ¢*U, = 6U"* = 6U;/a*® — B;/a.
We will use the notation dU; = av; and thus §U* = (v; — B;)/a. The first order perturbation of
the stress-energy-momentum tensor is

6T, = (6p+6P)UU, + (p+ P)oU,U, + (p+ P)USU, + §PG + Pog.. (5.191)
Explicitly we have (using ég, ¥ = 0)

8To0 = a*(6p + 2®p) < 6T, ° = —dp. (5.192)
6T = —a*(p+ P)v; + a>PB; & 6T = (p+ P)v; , 610 = —(p+ P)(vi — By).  (5.193)

There is an extra contribution to the stress-energy-momentum tensor 7}, which is the anisotropic
stress tensor X, which vanishes in the unperturbed theory. This tensor is therefore a first order
perturbation which is constrained to satisfy ¥, U” = 0 and X, # = 0 and as a consequence
Yoo = Bio = 0 and ¥; © = 0. The anisotropic stress tensor is therefore a traceless symmetric
3—tensor ¥;;. In other words we need to change equation (5.194) as follows

0Tij = a*0;j0P + Pdgy; + Yij < 6T = 616P + %, 7. (5.195)

It is obvious that the tensor 67}, must transform under gauge transformations in the same
way as the tensor dg,,. These have been already computed in (5.148), (5.149) and (5.149). In
conformal time we need to make the replacements X — X X? — X?/a, X! — X! where
0 stands now for conformal time. The gauge invariant quantities are given by

ASX) =0, 6X) = 6XJ+ (B—-EH)XY). (5.196)
ASXY =0, 5X0 = 6X°+ 6B — E')(X0 %X,’j). (5.197)
ASXi=0, 6X! = 6Xi+(B—E)X). (5.198)

The gauge invariant linearized Einstein’s equations becomes given by

PVp — 3HT, — 3H?Dp = 4nGa?p. (5.199)
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0;(Vy + HOp) = —4rGa*(p + P) 5;] (5.200)
8 (xyg + %af(ch —Up) + 2HT, + HEp, + (2H + ?—[2)<I>B) - %aiaj(ch — Up) = 47Ga’6 Poy;.
(5.201)
6T = —6p=—6p—p(B—F). (5.202)
5T = (p+ P) (53 — (B - E’)) = (p+ P) 5?. (5.203)
01} = 6;(0P+ P(B—E')) = §;;6P. (5.204)

In the above second equation 6U; is the gauge invariant velocity perturbation. As before
only the parallel part of this velocity, which is of the form a?0;y for some scalar function 7,
will contribute to scalar perturbation. Remember that we are neglecting vector perturbations
throughout.

5.5 Matter-Radiation Equality

We recall the two Friedmann equations and the energy conservation law

2
_ 8”?”‘ p. M —H =dnGa*(p+ P). p' = —3H(p+ P). (5.205)

H2
By combining the two Friedmann equations as H? — (H? — H') we obtain

Z 47TGa3
-3

a (p—3P). (5.206)

We have already shown that the density of radiation falls off as 1/a* whereas the density of
matter falls off as 1/a® and thus in a universe filled with matter and radiation we have the
energy density

P = Pm Tt Pr
p q a3q a4q
= J(2 4 32, 5.207
2 ( 0,3 + 0,4 ) ( )

The peq is the energy density at the time of equality 7., at which matter and radiation densities
become equal and aeq = a(7eq) is the corresponding scale factor. We also recall that the pressure

of matter (dust) is 0 whereas the pressure of radiation is P, = p,/3 and thus

P = P,+P = %. (5.208)
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By using these last two equations in the Friedmann equation (5.206) we obtain

, 2nGad pe
o = %pq — 20, (5.209)
The solution is immediately given by
a= Con?+ Cin + Cy. (5.210)

We find Cy = 0 from the boundary condition a(0) = 0. By substituting this solution in the
Friedmann equation H? = 87Ga?p/3 or equivalently

y  ATG
a? = ”Tﬁeq(agqa +al), (5.211)

we obtain C) = y/4Cpaeq. The scale factor is therefore given by

2
@ = Qo=+ 21, (5.212)
77* 77*
The time 7, is related to the time of equality 7eq by Meq = (vV/2—1)n,. In the radiation dominated
universe corresponding to 1 << 7 we have a o< 7 whereas in the matter dominated universe
corresponding to 7 >> 1, We have a o« n?.

5.6 Hydrodynamical Adiabatic Scalar Perturbations

The Einstein’s equation (5.201) for i # j gives 0,0;(®—W) = 0. The only solutions consistent
with ® and ¥ being perturbations are ® = W. The remaining Einstein’s equations simplify
therefore to

POz — 3HD, — 3H?Dp = 4nGa’dp. (5.213)
9;(a®p) = —4rGa®(p+ P)oU;. (5.214)
Oy + 3HD, + (2H + H?)Pp = 4nGa’SP. (5.215)

The first equation is the generalization of Poisson’s equation for the Newtonian gravitational
potential which is identified here with the Bardeen potential ®5. Recall that the sub-Hubble
or sub-horizon scales correspond to comoving Fourier scales k~! such that k > H = aH. The
second and third terms in (5.213) can be rewritten as —3H (a®p) /a, i.e. they are suppressed
by a factor 1/H on sub-Hubble scales and thus can be neglected compared to the first term.
Equation (5.213) reduces therefore to the usual Poisson’s equation for the Newtonian gravita-
tional potential in this limit. The combination (a®p) is precisely the velocity potential which
is given by equation (5.214).
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Now we will split the pressure perturbation into an adiabatic (curvature) piece and an
entropy (isocurvature) piece as follows

5P = 26p+708. (5.216)

The first component 6P = c2p is the adiabatic perturbation and it corresponds to fluctuations
in the energy density and thus induce inhomogeneities in the spatial curvature. The second
component 0P = 76 is the entropy perturbation and it corresponds to fluctuations in the form
of the local equation of state of the system, i.e. fluctuations in the relative number densities of
the different particle types present in the system. The two perturbations are orthogonal since
any other perturbation can be written as a linear combination of the two. The coefficients ¢
and 7 are given by

, ,OP Op

s = (a—p)s 7= (5g) (5.217)

In particular ¢? is the speed of sound as we now show. We combine the two Einstein’s equations
(5.213) and (5.215) as follows
2 (afch — 3HD, — 3H2®B) - (@; +3HP, + (2H + ’H2)<I>B) — 47Ga®(c20p — 6 P).
(5.218)

We get then the general relativistic Poisson’s equation for the Newtonian gravitational potential
given by

Oy + 3H(1 + )Py — 02Pp + (2H + H (1 +3¢2)) Py = 4nGa’74S. (5.219)
Adiabatic Perturbations: We will only concentrate here on adiabatic perturbations. The

case of entropy perturbations is treated in the excellent book [2].
In this case we set

08 = 0. (5.220)
Equivalently
5P oP
2 _ — -
Cs - 5)6 - (ap )S
_ mop,
~ “0p On s
= Jj . (5.221)
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The above general relativistic Poisson’s equation equation can be simplified by introducing the

u = exp <g /(1+c§)7{dn)<1>3

— /

1 P b
exp( 2/(+ﬁ,)ﬁ+Pn)B

variable u defined by

1
= —Pp. (5.222)
p+ P
We rewrite this as
1
v = Lod,, = —— (5.223)
VP ary/1+ %
We remark that
1
6= — (5.224)
oy/30- )

We compute immediately

4+ 3H(1+ By = exp (-2 [(1+c)Hdn) {u -3 At [ 2t c?)?-[}/u}

(5.225)
We observe that the friction term cancels exactly. Also
’ 2 2 3 2 3H? 2\7/2
(2H +H*(1+362))Pp = exp(— 3 (14 c)Hdn) | — g+ 3(1 4 HH? |u.
(5.226)
We use
H 3
~ 25 = 5o (5.227)
1 2 29
I+ =—+4+——. 22
+c; a292+3+3,}_[9 (5.228)
Thus

: 0
(2H +H*(1+3¢2))Pp = exp(— g/u + 2)Hdn) {2%2 + 2%5} u.

(5.229)
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After some calculation we get
i ! 3
(2% +H(143c) + (2H +H* (1 + 3c§)))<I>B = exp(— 5 /(1 + ¢2)Hdn)

! 2 1"
X {u,,%—( 3H —H + H? I —9—>u}

- 2a20?  4a't 6
(5.230)
After some inspection we get
! ! 3
(2% +H(1+3¢) + (2H +H (1 + 3c§)))<1>3 = exp(— 3 /(1 + ¢2)Hdn)
" 0”
X {u — —ul. (5.231)
0
Poisson’s equation reduces therefore to
" 2 2 0”
u —ci0iu— U= 0. (5.232)
We look for plane wave solutions of the form
u = ug(, ) = exp(ikZ)xz(n). (5.233)
We need to solve
" 2_’2 0”
Xi + (5F = 2 ) = 0. (5.234)
Let us first assume that 6" /6 is a constant, viz
9//
7= o?. (5.235)

The above differential equation becomes
X+ wixg =0, wy =/ k2 — o2, (5.236)
We define the so-called Jeans length by
A= k= 03 (5.237)
In other words,

wp = e\ K2 — k2. (5.238)
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The behavior of the perturbation depends therefore crucially on its spatial size given by the
Jeans length. Two interesting limiting cases emerge immediately:

e Large scales corresponding to long-wavelengths where gravity dominates given by k <<
ky, A >> Aj: In this case we get the solutions

Xz ~ exp(%|wg[n). (5.239)

The plus sign describes exponentially fast growth of inhomogeneities whereas the negative
sign describes a decaying solution. We have when k& — 0 the behavior

i 1
weln — eskon = =, g = —. (5.240)
or
From this we can deduce that gravity is very efficient in amplifying adiabatic perturba-
tions. As an example, if the initial adiabatic perturbation is extremely small of the order

of 1071 gravity will only need n = 2307, to amplify it to order 1.

We remark that this limit & << k; corresponds to c,kn << 1n/ng = A/A; where the Jeans
length \; = cstg, is the sound communication scale, i.e. the scale over which pressure can
react to changes in the energy density due to gravity. Thus this limit can be characterized
simply by cskn << 1.

e Small scales corresponding to short-wavelengths where gravity is negligible compared to
pressure given by k >> kj, A << A;: In this case we get the solutions

Xj ~ exp(Fiwgn). (5.241)

These are sound waves with phase velocity given by

- k‘2
Cphase — % = Cs 1— ]{?_sz — Cs. (5242)

We solve now the differential equation (5.234) more rigorously in these two limiting cases.

Large scales or long-wavelengths (c;kn << 1): In this case we can neglect the spatial
derivative in (5.234) and the equation reduces to

i

1" 9
Xg— g Xe = 0. (5.243)

The first solution is obviously xz = C16. The second linearly independent solution is

!

n dn
* mw 02(0)
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This can be checked using the Wronskian. The most general solution is a linear combination
which is also of the above form (5.244) with a different 7. It is straightforward to compute

/ﬁ" 95(:]7/’) - g(%z - / a2d’7)- (5.245)

The gravitational potential is therefore given by

dp VP

2 3 —nd (1
= 502\/%@{13(%‘%)%(5/“‘#)' (5.246)

Since we are interested in long-wavelengths, i.e. k& — 0, we can set the plane wave equal 1.

The result is then
d (1
by = A—| - dt . 5.247
b dt(a/a ) ( )

We assume now that the universe is a mixture of radiation and matter in the form of say cold
baryons. The scale factor is then given by (5.248), viz

2

a= aeq(% + 2%). (5.248)
We compute immediately (with & = n/n,)
A d( 1 (1, 4L\ A
v = grmielera(s e 3) Y e
AE+1) (3, 131 B(¢+1)
7(£+2)3 (gf +3§+§+§+1)+§3(£+2)3. (5.249)

The A term is the term corresponding to the growth of inhomogeneities whereas the B term is
the decaying mode which we can neglect.
By using the Friedmann equation H?> = 87Ga?p/3 and the Einstein equation (5.213) we
obtain an expression for the energy density perturbation given by
0p 2 2
— =20 — — Py + -0 Dp. 5.250
p B H B + 37_[2 i *B ( )
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We use the results

26+1)  dPp _ 4A(E+5)

T E(E+2) 7 dE T 15(E+ 2 (5.251)
Thus
00 _ _ 1AL(E+5)  EPnP(E+2)
R ) [ R Ea (5.252)

The last term is of course negligible for long-wavelengths k — 0. At early times compared to
TNeq ~ Nx We have & — 0 and &5 — 2A/3, 6p/p —> —4A/3, whereas at late times compared
t0 Neq ~ 1« we have £ — oo and &5 —> 3A/5, 6p/p — —6A/5. Thus @5 and dp/p are both
constants during radiation-dominated (early times) and matter-dominated (late times) epochs
with the amplitude decreasing by a factor of 9/10 at the time of radiation-matter equality.
In the matter dominated epoch the gravitational potential remains always a constant whereas
the energy density fluctuation starts to increase as n? at the time of horizon crossing around
n~ k7L

Small scales or short-wavelengths (cskn >> 1): In this case we can neglect the last term
(gravity effect) in (5.234) and the equation reduces to
Xz + 2k xg = 0. (5.253)

This is a wave equation for sound perturbations with time-dependent amplitude which can be
solved explicitly in the WKB approximation for slowly varying speed of sound.

5.7 Quantum Cosmological Scalar Perturbations

5.7.1 Slow-Roll Revisited

We consider a flat universe filled with a scalar field ¢ with an action

S = /\/—_gd4x73(X, ¢), X = —%QQBVQQSVBQS. (5.254)

A canonical scalar field is given by
P(X,0) =X —V(p). (5.255)

The energy-momentum tensor is defined by

2 48
V=g og

oP
- 2X8—Xu“u” + P » Uy =

Tw =

_V%V“‘b’ (5.256)
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We observe that g"”u,u, = —1. Since Ty = pa® we deduce
oP
= 2X— — 2
p X P. (5.257)
Thus
T = (p+Pluyu, +Pyu. (5.258)

In other words, P plays the role of pressure.
The unperturbed system consists of the usual scale factor a(n) and a homogeneous field
¢0(n). The equations of motion of the scale factor are the Friedmann equations

8rGa?
3

Also we note the continuity equation

H? = p, H? —H =4nGd*(p+ P). (5.259)

0
= —3H(p+P) = 5 ¢¢0 P X (5.260)
The equation of motion of a canonical scalar field ¢ is given by
08 1 JaP JaP
o= —gqB i
5 \/_(%(x/ 99" 55059) + 5 99
oV
— aB 9
T V) - 5
= 0. (5.261)
For the background ¢q this reads explicitly
" 8V 8V
We consider scalar perturbation of the form
O = o+ 0. (5.263)

The gauge transformation of the scalar perturbation is computed as follows
Adp = ¢z —e) = o(x)
= —EA%%
= —agy. (5.264)
Thus the gauge invariant scalar perturbation is given by

6 =8¢ — (E — B)oy' , Adg = 0. (5.265)
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The above scalar perturbation induces scalar metric perturbation of the form

ds? = d® < — (14 2®)dn® + 2a0;Bdndx’ + a*[20,0,F + (1 — 2\11)5ij]d:cidxj>. (5.266)

Again we will work in the longitudinal (conformal-Newtonian) gauge, viz
ds* = a®(— (14 2®)dn* + (1 — 2V)8;;da’da? ). (5.267)

To linear order the equation of motion of the scalar field perturbation d¢ reads

2
v
aa< — a*6g* O + a* (P — 3W)g*’ D¢ + a4ga5856¢>) —(® — 39)0a(a"g*’ D5 ¢0) — a%qﬁ% = 0.
(5.268)
Or equivalently
" ! ! ! ! V 2
0¢ +2Hép — (P + 3V ), + 2a2®g—¢ + a%qﬁ% — 9%6¢ = 0. (5.269)
The gauge invariant version of this equation is obtained by making the replacements 6¢p — 5qu5,
b — (I)B and ¥V — \IIB, viz
~ ~1 av 2 2
0p +2Hop — (CDB + 3\113)% +2a*®p— 8(;5 5¢W — 0 56 = 0. (5.270)

Small scales or short-wavelengths: This corresponds to wavelengths A << 1/H or equiv-
alently wavenumbers k& >> aH where gravity can be neglected. Remember that 1/H is the
Hubble distance and 1/aH is the Hubble length or radius. During inflation since a ~ exp(Ht)
we have aH = —1/n. Thus this limit corresponds to kn >> 1. The last term in the above
equation therefore dominates and we end up with a solution of the form 5$ ~ exp(=%ikn). By
using equations (5.257) and (5.306) (see below) we find that the gravitational potential solves
the equations

Uy + HOp = 4nGdydo. (5.271)
We must also have &5 = U (see below). The gravitational potential therefore oscillates as

Vg =dp ~ @gbgaqﬁ (5.272)

The third and fourth terms can therefore be neglected. The fifth term can also be neglected
since during inflation 9?V/9¢* << V ~ H?(ny << 1). The equation (5.270) reduces therefore
with 8¢ = exp(ikZ)ddy, to

5oy, + 2HOdy, + K20y = 0. (5.273)
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In terms of uy, = a5a§k this reads

1"

up + (K2 — %)uk — 0. (5.274)

Since kn >> 1 the solution is of the form
- C
O ~ zk exp(Likn). (5.275)

We fix the constant of integration C} by requiring that the initial scalar mode arises as vacuum
quantum fluctuation.

The minimal vacuum fluctuations must satisfy Heisenberg uncertainty principle AXAP ~ 1.
From (5.254) the action of the perturbation d¢ starts as

S = /dt/dv[%5¢2+...]. (5.276)

Obviously dV = a®d®z. Thus in a finite volume V = L? the canonical field is X = L%?§¢
while the conjugate field is P = L3/2§¢. For a massless field we have the estimate P = LY/2§¢
and as a consequence the Heisenberg uncertainty principle yields Ad¢p = 1/L. In other words,
minimal quantum fluctuations of the scalar perturbation are of the order of 1/L. However,
quantum fluctuations of the Fourier mode d¢,, are related to quantum fluctuations of the scalar
perturbations d¢ by (see below for a derivation)

8¢ ~ SppkS/2. (5.277)

Since k ~ a/L we conclude that d¢y ~ LY?/a*? or equivalently d¢y, ~ 1/avk. Hence

A 1
Oy ~ .
O Tia

In other words, Cy = 1/v/k. The evolution of the mode in this region is such that the vacuum

(5.278)

spectrum is preserved. We observe that the amplitude of fluctuation is such that
32 _ K
0p ~ 0k~ = o >> H. (5.279)

Thus every mode will eventually be stretched to very large scales while new modes will be
generated. The moment 7, ~ 1/k at which the mode k leaves the horizon is called horizon
crossing and is defined by

k
Sy ~ k% = — = Hirta. (5.280)
k

If this mode was classical it will be completely washed out, i.e. becomes very small, after it is
stretched out to galactic scales.
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Large scales or long-wavelengths: In the slow-roll approximation the equation of motion
(5.262) becomes

ov

3H =0. 5.281
G+ = 96 ( )
The equations of motion (5.270) and (5.271) in terms of the physical time read
o) L0V
5¢ + 3H5¢ 4D gy + 25— 96 5%752 — —825¢ =0. (5.282)
by + Hbp = 41Gdodo. (5.283)

For long-wavelengths k << aH we can drop the Laplacian term. As we will see the terms 5q3
and ®p are also negligible in this limit. The equations become

ov 0*V

H54 + 2@ —0. 284
3HSG + Ba¢+5¢a¢2 (5.284)
Hdp = 4nGoodo. (5.285)
We introduce the variable
5o 5o
y = % __ % (5.286)
6 3H g
Thus
Hdp = 4nGy(—3H$?2) = 4nGyV. (5.287)

Also (by neglecting ¢p and 92V /d¢? and H during inflation)
3Hy + 205 = 0. (5.288)

By using also 3H? = 87GV during inflation we have

d H
= ——(3Hy+2®d5) =0. 2
dt(yV) 7TG(3 y+2®5) =0 (5.289)
The solutions are immediately given by
10V
0 = 2
b = CkV@qb (5.290)
6. — WGGV
PTOTH VY
1 10V .2
= ——Cil==—)". 291
2Ck(v a¢) (5.291)
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We fix the constant of integration Cj by comparing with (5.280) at the instant of horizon

-1/2
Cy = —k (1) . (5.292)
k~Ha

ag

crossing. We obtain

o
0¢

The solutions (5.275) and (5.290) are sketched on figure 2COS, 1. After horizon crossing the
short-wavelengths modes are stretched to galactic scales in such a way that they do not lose
their amplitudes. Remember that inside the horizon gravity is negligible. Thus perturbations
which are initially inside the horizon, will eventually exit the horizon, and then start feeling
the curvature effects of gravity preserving therefore their amplitudes from decay. We say that
the perturbation is frozen after horizon crossing. This is how we get the required amplitude
® ~ 107° on large scales from initial quantum fluctuations.

At the end of inflation the slow-roll condition is violated since V/(0V /0¢) becomes of order
1 and the amplitude of fluctuations is

Os(k)e, ~ Cipk*?

e
~ (1)
0¢ / k~Ha

V3/2
¢ k~Ha

This depends only on quantities evaluated at the moment of horizon crossing. For a power-low
potential V' = \¢™/n we get

n+2

Og(K)ey  ~ Al/2<¢iwga)4- (5.294)

By using (5.74) we have

1
~ In———Hal(t
n(aH)k ka( f)

~ InApnHy. (5.295)

The physical wavelength is A, = a(tf)/k. Thus the amplitude of fluctuations at the end of
inflation is
n+2
4

Sp(k)e, ~ A1/2(1nAthk> . (5.296)

We can further make the approximation Hj ~ Hy since curvature scale does not change very
much during inflation which is essentially the defining property of inflation. We get finally the
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amplitude

n+2
4

Ss(k)e, ~ >\1/2<ln)\thf) : (5.297)

Inside the horizon A, < 1/Hj or equivalently & > Hyay the logarithm becomes negative
and thus we should instead make the replacment ¢?_,, = (ﬁ, i.e. the amplitude comes out
proportional to A2 in this regime. This is the flat space result since gravity is neglected inside
the horizon. This is sketched on figure 2COS, 2.

For a quadratic potential V' = m?¢?/2 we get the amplitude d, = m In A\, H;. Galactic scales
correspond to L = 10*cm or equivalently In Ay, Hy ~ 50 and thus in order to get an amplitude
of the gravitational potential around 10~° the mass of the inflaton scalar field should be around
1076 in Planck units, viz m = 1075.my = 1075v/hc/v/87G = 107610'GeV = 10'2GeV. At the
end of inflation the scalar field is around 1 in Planck units, viz ¢ = 1.1/l,; = v/¢3/v/hG. The
energy density at the end of inflation is therefore p ~ m?¢? ~ 1072.p,).

5.7.2 Mukhanov Action

The equation (5.270) contains three unknown variables ®5, Up and 5(2) which should also
satisfy Einstein’s equations. Thus we need to compute the energy-momentum tensor explicitly.
We will drop in the following the subscript B and the hat for ease of notation.

We compute (with |y, = —a, ui|g, = 0, Xo = (6,)?/2a2, etc)

Z. _ 1
0Ty = 2PVo; + EéTij
Thus from the Einstein’s equation with ¢ # j we conclude, as before, that &g = Wp. The other
two Einstein’s equations are therefore sufficient to determine ®5 and d¢. We compute then
0 1
a
= (p+P)u’|g0u; (5.299)

1
ST = 2p® — 5070
_ 9 _
= 2(p+P)0+ a(ﬁ + P)oug — dp
= —ip. (5.300)

In the above two equations we have used

a 0p
29,60+ (0 — 22
AL s

’

)T P (5.301)

ou, =
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Further we compute
—6TY) = dp

dp
e X —_
8X5 +8¢5¢

_ oo (29
0X

+
a? a?

0X

a? a? ¢0

0X

a? a?

— 2Xoap<—<1>+(5¢) ¢5¢) <—73H(2,+P)
0 0

_ “P( o+ (20 4 ¢05¢) ( SH(p+P)

X %

2
Cs

%o o

0X oy &
_ @(_@¢52+¢56¢’ XOM) (_W
0

495, (- Ko e sP

Jo
Jos

:@<_<b¢$+¢05¢ ¢05¢+¢0H5¢) < %(p+75>)5¢

%o

Jo
o

In the last equation we have introduced the speed of sound by the relation

2 OP 0X _pt+P PoX
ST O0X 0p  2X 0p’
Also
0 = Pt P50
%o
The relevant Einstein’s equations are now given explicitly by
1

L(-o+ (2

Cs 0

PV — 3H(V + HP) = 47Gad®(p + P) +

0¢
$o

By substituting this last equation into the previous one we obtain

(0" + HP) = 4nGa®(p + P)—

2
o = TG o By W - anGat( 4+ P)

Hc?
4Ga? 4] ¢)
%o

09
o

+H

= (P+P)(¥+H

Further

H

%

0) —

22y

0

_l_

fHZ

A

3H
%o

56| .

09

(5.302)

(5.303)

(5.304)

(5.305)

(5.306)

(5.307)

(5.308)
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We have then the two equations

2 !
PU = 4;25 (p+75)(\1/+7{(;?). (5.309)
s 0
4
(aQ%)’ = 47;%@(p+ P) (¥ + H%). (5.310)

We introduce the variables u and v and the parameters z and 6 by

T dp Po
u=— =1/ 2Lue + 20w, 5.311
wa, o | Vax 0t Y 31

,
Lo dveT \W’gz 1 :1/87TGE 1 _. (5.312)
csH CsZ 3 a 147
Fi

The Einstein’s equations in terms of these new variables take the simpler form

1 Yo
Ru = —2(U+H—
Cs ( ¢0)
1 vy
= —z(—). 31
csz(z) (5.313)
u,  4rGa* _ v N v
ArG—) = ———(p — —) = cCs—. 314
(nGy) = T+ P)e = (5) =cop (5.314)
By substituting one of the equations into the other one we find the second order differential
equation
" H”
u — c20u — S u=0 (5.315)

This is precisely the Poisson equation (5.232). In fact the definitions of u and 6 used here for
the scalar field are essentially those used in the hydrodynamical fluid. A similar equation for v
holds, viz

"
"

z

v — 0% — v =0. (5.316)
z

Since we are interested in quantizing the scalar metric perturbation we will have to quantize

the fields v and v. Thus one must start from an appropriate action which gives as equations of

motion of the fields u and v precisely the above Poisson equations. This is straightforward and

one finds for the field v the action

"

S = /dnd?’:ﬂ L= %/dnd?’z (0/2 + 2vdPv + Z—UQ). (5.317)
z

From this result we see that metric scalar perturbations are given by a massless scalar field
in a de Sitter spacetime (see the chapter on QFT on curved backgrounds). This is the most
fundamental result in our view and a direct derivation of this action using ADM formalism,
which is a very complex calculation, is included in the next section for completeness.
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Small scales or short-wavelengths: For a plane wave perturbation with a wavenumber &
such that ¢2k? >> |0 /0| we have the WKB (slowly varying speed of sound c¢,) solution

u =

¢ exp(:i:ik:/csdn). (5.318)

NG

The gravitational potential is immediately given

oP
P = 4rGC \/C—exp(:l:ik/csdn). (5.319)

On the other hand, we can determine the perturbation of the scalar field from (5.306). We get

1
/. OP
Cs'oz ox

The most important observation here is that both the gravitational potential and the scalar per-

op=C (iz‘cs§+H+...)exp(iz'k;/csdn). (5.320)

turbation oscillate in this regime. The amplitude of the gravitational potential is proportional
to ¢p and thus will grow at the end of inflation while the amplitude of the scalar perturbation
decays as 1/a.

Large scales or long-wavelengths: These are characterized by c2k*> << |0"/0|. The solu-
tion was found in previous sections and it is given by

b — Ajt(l/adt) A(1—§/adt). (5.321)

The perturbation of the scalar field from (5.306) is given by

4%Ga2(ﬁ+77)(;—f _ (a<I>)
— —AH / adt
= A47TG(ﬁ+77)/adt. (5.322)
Thus
op = Aéoé / adt. (5.323)

During slow-roll inflation we can make the approximation

E/dt_l___ H/dadldl))
o | T dtH Hdt\Hdt'H

12

(5.324)
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Our results reduce therefore during inflation to

A 10V

— T~ A2
O =——ml A(V(%) : (5.325)
_Ady 10V

These are precisely the equations (5.291) and (5.290) respectively. At the end of inflation
V/(0V /0¢p) becomes of order 1 and thus

O=A= (H§_¢) . (5.327)
¢0 csk~Ha

We evaluated the different quantities at the instant of horizon crossing.
After inflation the scale factor behaves as a o tP. In this case we get the results

A
O =—>. 5.328
p+1 ( )

Ady
0p = L. 5.329
¢ p+1 ( )

Hence the amplitude of the gravitational field freezes out after inflation. In the radiation-
dominated phase corresponding to p = 1/2 we get then

2A
3

2 5¢)
= - H— i 5.330
3 ( ¢0 csk~Ha ( )

Thus the amplitudes at the end of inflation and in the radiation-dominated phase differ only
by a numerical coefficient.

o =

5.7.3 Quantization and Inflationary Spectrum

The canonical momentum is defined by the usual formula

T=o7=U (5.331)

In the quantum theory we replace v and 7 with operators © and 7 satisfying the equal-time
commutation relations given by

[0(n, 2), 7 (n, 9)] = i6>(F - ). (5.332)
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[0(n, T), 0(n, ¥)] = [7(n, T), 7 (n, §)] = 0. (5.333)

We expand the field as
d3k S ik —ikz
o(n, ¥ \/’ (@) \ c(me™ +ag v (e ). (5.334)
Thus
dgk ~ ikZ —ik%
w(n, & \/’ (2m)3/2 aroy, (n)e™ + afvy(n)e : (5.335)

This field obeys the equation of motion

"
1"

o — 2% — o = 0. (5.336)
<

Equivalently

v+ Wi, =0, wi(n) = cgl? — % (5.337)

The creation and annihilation operators are expected to satisfy the commutation relations

[, @] = 0°(k — ). (5.338)
lag, ay) = [a;, a;] = 0. (5.339)
We compute then
~ s ~ —» 1 dgk iﬂ f—_' * ! */
[0(n, Z), 7(n,9)] = 5/ (2#)36 ME0) (v, — voy)). (5.340)

Thus we must have
Vi, — VUE = 2. (5.341)

This is the condition for v to be a positive norm solution (see later for more detail). The
negative norm solution is immediately given by v;. Alternatively, the above condition is the
Wronskian which expresses the linear independence of these two solutions.

The Hamiltonian is given by

H = /d3 (70 — L)

"

1 z

— 3 _ _ 2 p?
= 2/0[ z(72 — 00?0 Zv)

—~ / &Pk <Ek(aka; +atay) + Fraitat, + F,jdkd_k) , (5.342)
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where
1 1
By = (/P +elul?) | B= Z((0) + wd(we)?). (5.313)

The choice of the vacuum state is a very subtle issue in a curved spacetime (see the chapter
on QFT on curved backgrounds). Here, we will simply define the vacuum state as the state
annihilated by all the ay, viz

ax|0 >= 0. (5.344)
Then

<O0|H0> = /d%Ek

1
- 2 /d3k(|vk’|2 + w2luel?). (5.345)

We consider now the ansatz for v given by
v = rpexp(iay). (5.346)
The Wronskian condition becomes
rog, = 1. (5.347)

The energy of the vacuum in this vacuum becomes

N 1 y 1
<olHp> = | / PR+~ 4 wlr), (5.348)
Tk

This energy is minimized when 7,(n) = 0 and r,(n) = 1/\/wi(n). Thus at a given initial time
7o the energy in the vacuum |0 > is minimum iff

vk(10) = %exp(iak(m)) , i(10) = i/ wi(10) expliau(1p))- (5.349)

wk (Mo

The phases 7(1) can clearly be set to zero. These are the initial conditions for vy, and wv.
These considerations are well defined for modes with w? > 0 or equivalently c2k? > (2"/z),,.
This is the sub-horizon or sub-Hubble regime. By allowing ¢, to change only adiabatically the
modes c2k? > (2" /z),, remain not exited and the above minimal fluctuations are well defined.
In the case that wy is independent of time the vacuum state |0 > coincides precisely with the
Minkowski vacuum and minimal fluctuations are obviously well defined.

On the other hand, the super-horizon or super-Hubble modes ¢2k* < (2"/ Z)p, can not be
well determined in the same way but fortunately they will be stretched to extreme unobservable

distances subsequent to inflation.
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We compute now the 2—point function
< 0[®(n, B)2(n, N0 > = (AnG)*(p+P) < Ola(n, T)i(n, §)[0 > . (5.350)
The expansion of the field operator « is similarly given by
7 7 d3k Ak k@ —ikT
u(na ZE') \/* 27'(' (9-)3/2 akuk(n) + ak uk(n)e : (5351)

Thus

T N\ T — 1 — M d3p ~ * ipT d3k ~ —iﬂﬂ
< 0[@(n, D)@ (n,)|0 > = 5(47TG)2(p+77) < 0\/W<apup(n)ep )/ 2n)" <a,juk(n)e ky)|0 >

L[ &k
— 4G5+ P) / 3y () PR AR
kr k

|u ( )|2 ik(Z—7)

In this equation 7 = |Z—y]. This can be related to the variance o7 of the gravitational potential
® as follows. First we write the gravitational potential in the form

47TG\/pT (

b(0.7) = [ B 80 F) - L)+ ) ) (5359

Then we have
e & d*p R
< 0[®(n, Z)2(n,9)|0 > = /(%)3/2 / )i < 0l (1, k)®(n, p)[0 > e’

d3k d p ikZ 2
= /(%)3/2/(2 e o263 (k + p)e’* e

_ /l{;%ﬁsinkr%
N 272 kr k-

(5.354)

o? is precisely the variance of the gravitational potential ® given by
2 Q. 220~ | T 2
o =8m°G*(p+ P)|ur(n)|”. (5.355)

The dimensionless variance or power spectrum is defined by

3.2
k’oj
272

62(k) = (5.356)

Short-wavelengths: From the equations of motion c,0?u = z(v/z) and (u/0) = c,v/0 we
find

/

1 , Z 0 1 2z 2z 1 1 2z ,-1
Uy = ———=— (v — —v%) = ur(no) = — |1 — —|* 4+ — -
= T e = e e e

(5.352)
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/ / 1 / /

;o c, % / /G 1 2,-1 ¢ =z

All functions are of course evaluated at the initial time 1 = 7. In the relevant regime of
short-wavelengths where c?|k|? >> (2" /2),, or equivalently c2|k|> >> (0"/6),, we can neglect
the gravity terms in equations (5.315) and (5.316) and we obtain the initial conditions

?

(1) = ————— . 5.359
) Cs
ug,(m) = = (5.360)
|2
In this regime, the WKB solution of equation (5.315) is therefore given by
u()——#exp(z'k/nc(')d ) (5.361)
&\ \/€|E|% . s\17)an ). :

During inflation |H/H?| << 1 and thus in this regime @ behaves as 6 ~ 1/a while a behaves

as a ~ —1/nH. Thus |0"/0] ~ |H/n*H? << 1/n% The short-wavelengths regime is given by
Alk> >> (6" /0), or equivalently, with ¢, << 1 during inflation, by

1 [ H

>> —(\[|—=|. 5.362

l >> 74/ 1 (5.36)

Remember that at the end of inflation H /H? becomes of order 1. Equivalently short-wavelengths

regime is given by || >> 1/csk which is much larger than the previous estimate. On the

other hand, horizon crossing is given by c.k|n| ~ 1 and long-wavelengths regime is given by
In| << 1/cgk. Hence there is a short time interval outside the horizon given by

1 | H
> |n| > —

=1 (5.363)

1
csk
in which the solution (5.361) is still valid. Since the above time interval is very narrow the
solution (5.361) in this range is effectively a constant, i.e. the gravitational potential freezes at

horizon crossing.
In this case the power spectrum is given by

i , csk >> Ha. (5.364)
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Long-wavelengths: In this case the solution is given by (5.321), viz

Dy Apg ( H / )
U = — = —(1—— [ adt|. (5.365)
ArG\/p+P 4AnG\/p+P a
During inflation, and using H/47G = —(p + P), we have
oI
AnG\/p+Pdt H
A, Vp+P

H?

U =

(5.366)

This is constant in the time interval (5.363). This should be compared with the solution (5.361)
which holds in the time interval (5.363). Since both 719 and 7y are in this short time interval
they can be taken both to be equal to the moment of horizon crossing. This allows us to fix Ay
as

. H2
Ap = —LS <7) ) (5.367)
k2 cs(p+P)/ coknta
In this case the power spectrum is given by

2o L H 1_£/adt2
23\ es(P+P) ) ot a

_ 2
= 02(k,t) = EG?(L) (1 _a /adt) , (Hajey); < k << Halcs.
9 Cs(l + ) csk~Ha a

bl|‘t}|

(5.368)

This formula gives the time evolution of long-wavelength perturbations even after inflation.
After inflation the universe is radiation-dominated (where CMB originated) and hence a ~ /2.
In this case we get the power spectrum

64 p
52 :—G2<7> ., (Ha/cy); < k < (Ha/cy). 5.369
a\ong %), s (Ha/cs) (Ha/cs)y (5.369)

This results applies for large scales which includes the whole universe. This depends on the
energy density p and the deviation of the equation of state from the vacuum given by Aw =
1+ P/p at the instant of horizon crossing. We know that dg ~ 10~° on galactic scales while
Aw is estimated as 1072 thus the energy density at horizon crossing must be of the order of
1072G72, i.e. 10712 of the Planck density. This is the same estimate obtained previously.

The above spectrum depends on the scale slightly. The requirement that inflation must
have a graceful exist means that the energy density decreases slowly while the deviation of the
equation of state from the vacuum increases slowly at the end of inflation, and as a consequence,
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the perturbations which cross the horizon earlier have larger amplitudes than those which cross
the horizon later. A flat (scale-invariant) spectrum is characterized by a spectral index ny = 1
where ng is defined through the power law

62 ~ k™t (5.370)
Obviously
dInd3
= 1= . 5.371
" dInk (5.371)
On the other hand,
1p 14 P
-1 = —=——=—(1 In(1+ —
s 7, mal et it 2)
H 14d P
P, 1d P
= -3(1+—=)— =—(lnc, +In(1 + —)). 372
3(+p) Hdt(nc+n(—|—ﬁ)) (5.372)
In the above equation we have used the approximation dlnk = dlna, = Hdt. Since all

correction terms are negative we have ng < 1 and thus the amplitude increases slightly for
small k corresponding to larger scales. We say that the spectrum is red-tilted. This tilt can be
traced to the requirement that inflation must have a graceful exit.

An estimation for ng can be given as follows. Galactic scales cross the horizon at 50 e-folds
before the end of inflation. At this time the deviation of the equation of state from the vacuum
is around 1072 and the second term in (5.372) is also around 1072 and hence ny = 0.96. This
should be compared with the 2013 Planck result ng = 0.9603 + 0.0073.

For inflation with a potential V' the above formula becomes

n.—1 — _L(la_vf_zi nla_v
: 8S7G\V s’  Hdt "V 9o
1 1oV 1 1OV 10V
- 5atva) tral(ver - Wa))
3 1oV 1 18V
= 56\ ThevoR
= —6ey + 2ny. (5.373)

5.8 Rederivation of the Mukhanov Action

5.8.1 Mukhanov Action from ADM

The action of interest here is of course
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1 v
S = 3 / d*z+/—detg [R — g"'V OV, — 2V (d)]. (5.374)
By going now through the steps of the famous ADM (Arnowitt, Deser and Misner) formalism
we can express this action in terms of 3—dimensional quantities which is very useful if one is
interested in canonical quantization. The ADM formalism starts with the metric put in the
form

ds® = —N2dt® + v;(da’ + N'dt)(da’ + N7dt). (5.375)

In other words we slice spacetime into 3—dimensional spatial hypersurfaces. Indeed -;; is the
metric on the spatial 3—dimensional slices of constant ¢. The function N and the vector N; are
called lapse function and shift vector. We have

goo = %’jNiNj — N?, Joj = %‘jNi y gio = %‘ij v Gig = Yij- (5.376)
A straightforward calculation shows that

\/—detg = N+/detr. (5.377)
1

1 1 T
00 = N, ¢%=—=N'", g7 =4 — —N'N’. (5.378)

05 __
A CRE A AR A e

The variables «;; , IV; and N contain the same information as the original spacetime metric g, .
As it turns out N and N; are only Lagrange multipliers.
We get after some calculation the action

S = % / d*z/detry {NR@) + NYE,E7 — E*) + N"Y8,¢ — N'0,¢)* — Ny98,00;¢6 — 2NV |.
(5.379)
The extrinsic curvature of the three-dimensional spatial slices is K;; = N ‘lEij where
Lij = %(at%j — ViN; = V;N;) , E=~"E;. (5.380)
Recall that
ViN; = O;N; —T* N, , ", = %W(amj + 051 — Orij)- (5.381)

By varying the above action with respect to N and N* we obtain the equations of motion

Ry — N *(EjjEY — E*) — N%(0,¢ — N'0;¢)* — 7" 9,00, — 2V = 0. (5.382)
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~N7'0,6(00 — N'9;¢) + V;(N"YE! —+/F)) = 0. (5.383)

These are constraints equations for the lapse function N and the shift vector Ni. In the
comoving gauge we will choose d¢ = 0 and hence ¢ = ¢ where the unperturbed configuration

¢ is uniform. Hence the above equations of motion reduce to

Ry — N (B ;EY — E*) — N%(0,9)> — 2V = 0. (5.384)

V,(N(B] -4]E)) =0. (5.385)
In the comoving gauge we also choose
Vi = a*(1 = 2R)0ij + hij , W'y = &'hy; = 0. (5.386)

In most of the following we will set h = 0. Then

4 -
R = ?v% (5.387)

We resolve the shift vector N; into the sum of a total derivative (irrotational scalar) and a
divergenceless vector (incompressible vector) as

N; =)+ N; , O'N; = 0. (5.388)
We also introduce the lapse perturbation a as
N =1+ . (5.389)

We expand ¢, N; and « in powers of R as follows

=11+ + ... (5.390)
a=a;+ag+ .. (5.391)
Ni=NY + N® 4+ (5.392)
We have
i = =0 i St (5.393)

Since we are only going to keep the first order in powers of R we can approximate E;; by

1
By = 50 — 0iN; — 9;N;)

R

1
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Thus we compute
E.EY = ;EE
4 i1 —-2R)2 Y
R, 2H
~ 3H?[1 —2—=] - =0;N;. .
3L - 2]~ 50N, (5.395)
R, 1 R, 6H
FE ~ 3H[l - —=]—-=0;N; = E? ~9H?[1 — 2—] — —0;N;. .
3H| H] a20, ;= 9H=| H] > O N; (5.396)
The constraints become (by using the first Friedmann equation in the form 6H? = (9,¢)% + 2V
and 87G = 1)
4 =, . 4H 9 —9
EV R —12HR — ?Q-Ni — 12aH* + 2a(0,0)” = 0. (5.397)
R 1 1
Equivalently (with V2 = ')
4 . S _
?v% — 12HR — 4HV*), — 404V = 0. (5.399)
. e
2HO; (o + E) —-v2NY = . (5.400)
H 2
From the second constraint we obtain
R -
=%, NY =0 (5.401)
The first constraint gives then
- VR .V
“ih = — - 402
Vo, a2H+R(H2 3) (5.402)
Recall that the slow-roll parameter € is given by
_ 9 _ .,V
€= oq = 3 7 (5.403)
Hence we obtain
Py = R (V) 'R (5.404)
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We compute

dety = a?/ detys)

= P1-BR4R 4] (5.405)
L = NRg + N 'E;E7 —E*)+ N (9,6 — N'9;¢)* — Nv70;¢0;¢p — 2NV
= Lo+ L1+ Ly~ ... (5406)
Lo = (0,0)? =2V + (E;EY — E*)©. (5.407)
Ly = Ra —a(09)? — 20,V + (B, EY — B*)Y — oy (E;E7 — B, (5.408)

£2 = 04172(3) + (—062 + a%)(@tqg)z — 20[2‘7 -+ (EwEw — E2>(2) — (EwEU — E2>(1)
+ (~ag +2)(E,EY — E%O. (5.409)

A more precise formula for F;;EY — E? is

g 2R R?2 4RR 4H R
% 2 2
E;E7 - E* = —6H [1——+—2——}+ [1— = +2R]V.N;

The last term is already of order 2 and thus we can set V;N; = 0;N;. By partial integration
we can see that this term actually cancels. Further we compute

By using the equation of motion (9;¢)% + 2V + (E;; EY — E?)®) = 0 we obtain
Ly = —4V. (5.412)

L, = R(g) + (EijEij — Ez)(l)

- %6273 +12HR — 4eHR. (5.413)
a

Ly = R + a%(é)@z + (E,;E7 — E*)® — oy (E,;E7 — E*)Y + o}(E;E7 — E*)©

. 12 - .
= ——RV2R + —(&gqﬁ) +24HRR + ?RWR — 12¢HRR. (5.414)
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The first term in £; is a boundary term by Stokes theorem and thus it will be neglected, viz
8 = .
/d%wde‘w ?V%R = S/dt a(t)/d% detys) 0"O/R

= S/dt a(t)/d%w/de‘w@) n'oR
0.

= (5.415)

The quadratic contribution coming from L is

3 _

(5722)50 = —6R*V. (5.416)

The quadratic contribution coming from £, is
(=3R)L;, = —36HRR + 12¢HRR. (5.417)

Thus
3.9 4 . R2 12 =, -
(57?, Lo+ (=3R)L1+ Ly = ——HRV R+ —(@gb) —12HRR + -RV"R — 6R°V.
a

(5.418)

This must be multiplied by a®. Integration by parts gives

3 12~
(§R2)£0 + (=3R)L1+ Ly = ——RV R+ —(8@) + ERVZR

<at¢> - ; 14,
7 722—?87382-73 +¥RV2R. (5.419)

Since we are only keeping quadratic terms in the curvature perturbation R the last term in the
above equation vanishes by (5.415). Indeed we have

14/dt a(t)/dga?R§2R o~ 134 dt ()/dgx detys) 0'OR
— 0 (5.420)

We obtain the final action

S = % / d*ra <8g§2> ( (9ZR(9 R) (5.421)

There is also a linear term in R which we must discuss. This is given by

(—3R)Co + (10 = V(R 4 3HR). (5.422)

H
Again this must be multiplied by a®. After integration by parts we obtain

5V

(=3R) Lo+ (1)L1 = —4eR(V + 2H— 5

). (5.423)
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This can be neglected in the slow-roll limit ¢ — 0.
The conformal time is defined by dt = adn. We introduce also Mukhanov variables

;0
= = ) 424
v=zR,z=a T (5.424)
Now a really straightforward calculation gives the action
1 3 N2 2 2 i

5.8.2 Power Spectra and Tensor Perturbations

The equation of motion derived from the above action reads

"

V' — 90— v =0. (5.426)

z

A solution is given by u; = exp(ikZ)x), (with k% = kiz;) provided
7 2 Z”
Xi + (% — ;)xk = 0. (5.427)
These solutions are positive norm solutions, viz (u, u;) = dx; if and only if
iV (XpXk — XeXz) = 1. (5.428)
The negative norm solutions are uj. As before we will choose x; = v}/ V2. The field v can
then be expanded as
Pk 1 i -;;~]
v= | ——=——=|avi(n)e"™ + ajvi(n)e . 5.429
[ s 5 oine™ + aintn (5.420)

In the quantum theory a;, and a; become operators a; and a; satisfying [ax, a;'] = V. The
field operator is

. Pk ikZ | o~ —ik#
0= /Wﬁ {akvk(n)e + a; vk (n)e } : (5.430)
We are interested in the 2—point function
. . 2
< R([L’l)R(ZL'Q) > = a2(atq§)2 < ﬁ(tl)’f}(tg) >
H? d3k
= = (t ta). 5.431
sy | i) o4
We define the Fourier transform of R(z) by
5 Pk ik
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We define the power spectrum Pg (k) of the curvature perturbation R by

< R (1) Ry (t2) > = (2m)20% (k1 + ko) Pr(k1). (5.433)
We compute then
S 5 _ 4’k ik (F1—T2)
< R(l’l)R(LL’Q) > = (27T)3PR(]€1)6 . (5434)

Let us now consider the de Sitter limit ¢ — 0 in which H can be treated as a constant and

a ~ eff' or equivalently a ~ —1/(Hn). We compute
= e+ a2t (5.435)
z z z

In the de Sitter limit case we can make the approximations

SN ) (5.437)
H z a zZ a
Thus
Z// N a//
z  a
2
~ ek (5.438)
The equation of motion becomes
" 2
X + (K* — ?)X}g = 0. (5.439)

In the limit » — —oo the frequency approaches the flat space result and hence we can choose
the vacuum state to be given by the Minkowski vacuum. This is the Bunch-Davies vacuum
given by equation (6.128). We have then

T 5.440
( +k—n)- (5.440)

Vk

We can then compute in the de Sitter limit the real space variance

V = —

A

< R(2)R(z) >= /0 i kAZ (k). (5.441)

The dimensionless power spectrum A% (k) is given by

AZ (k) = (;)257)2(1 + 22, (5.442)
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For super-horizon scales (|kn| << 1 or equivalently k¥ << aH) this dimensionless power spec-
trum becomes constant. This is precisely the statement that R remains constant outside the
horizon. We may then restrict the calculation to the instant of horizon crossing given by

kn. =1 k = a(t.)H(t.). (5.443)

The dimensionless power spectrum A% (k) and the power spectrum Pr(k) at horizon crossing
are given respectively by 2

H? H?

A% (k) = 27:2 GE (5.444)
2%
Pr(k) = S50%(k)
H? H?
= B Or (5.445)

In summary the primordial power spectrum of comoving curvature perturbation R at horizon
crossing is found to be given by

H; H; o HE H
Prb) = Egap @ AR = 3555 (5.446)

This is the scalar power spectrum, viz

2

P.) = Prlh)  A3(8) = 83(6) = i loean (5.447)
As seen from the gauge fixing condition (5.386) there is extra degrees of freedom (2 polar-
izations) encoded in the symmetric traceless and divergenceless tensor h;; which we have not
considered at all until now. These degrees of freedom correspond to gravitational waves. In or-
der to determine the primordial power spectrum A?(k) of the tensor perturbation A at horizon
crossing k = aH we go back to (5.386) and set R = 0 and then go through some very similar
calculations to those which led to A%(k). We find at the end the result

Azk—2A2k—2H2 5.448
i (k) =2A5(k) = PM—&M:CLH- (5.448)
The scalar-to-tensor ratio is defined by
_ Ak
NI
= 8e,. (5.449)

2These two formulas differ by a factor of 1/2 compared with reference [8].
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The scale-dependence of the power spectrum AZ2(k) can be given by the so-called spectral index
ns defined by

dln A?
ne =1 Tk (5.450)
Obviously scale invariance corresponds to ny = 1. We may approximate A%(k) by a power law
as follows
A2(k‘) — A (k’ )(E)ns(k*)—l—i-%oes(k*)ln% o (k’) _ dns (5 451)
s R, T dlnk’ '

Similarly we define

dIn A?

= (5.452)
In terms of the Hubble slow-roll parameters € and 7 the indices n, and n; are given by
ns = 1+ 2n, — 4e,. (5.453)
ny = —2€,. (5.454)
In the slow-roll limit with m?2¢? potential we obtain the predictions
ns =0.96 , r = 0.05. (5.455)

Let us summarize our results so far. During inflation the comoving horizon 1/(aH) decreases
while after inflation it increases. In this inflationary universe fluctuation are created quantum
mechanically on all scales with a spectrum of wave numbers k. The comoving scales k~! are
constant during and after inflation. The physically relevant fluctuations are created at sub-
horizon scales k& > aH. Any given fluctuation with a wave number k starts thus inside the
horizon and at some point it will exit the horizon (during inflation) and then it will re-enter
again the horizon at a later time (after inflation during the hot big bang). All fluctuations after
they exit the horizon (corresponding to super-horizon scales k < aH) are frozen until they re-
enter the horizon in the sense that they are not affected by and they can not affect the physics
inside the horizon. This is the statement that the curvature perturbation R is constant outside
the horizon which allows us to concentrate on the value of R at the time of exit (crossing) since
that value will not change until re-entry. See figure 3COS.

5.8.3 CMB Temperature Anisotropies

The remaining question we would like to discuss is how to relate the power spectrum P;
to CMB temperature anisotropies. The CMB temperature fluctuations AT'(n) relative to the
background temperature 7' = 2.7K is given by



GR, B.Ydri 177

= > 1 Yim (). (5.456)

AT (7
- / dQY;: (i) T(”) (5.457)
The two-point correlator < ay,m, @1,m, > must behave (by rotational invariance) as
< a;<1m1al2m2 >: CITT5l1l26m1m2’ (5458)
The rotationally invariant angular power spectrum C}7 is given by
1 *
CIT = T > <, iy > - (5.459)

For values of the tensor-to-scalar ratio r < 0.3 the CMB temperature fluctuations are dominated
by the scalar curvature perturbation R. We have already computed the curvature perturbation
at horizon crossing (exit) which then remains constant (freeze at a constant value) until the
time of re-entry. From the time of re-entry until the time of CMB recombination the curvature
perturbation will evolve in time causing a temperature fluctuation. The temperature fluctuation
we observe today as a remnant of last scattering (CMB recombination) is encoded in the
multipole moments a;,,, and is related to the scalar curvature perturbation Rj at the time of
horizon crossing k = a(t,)H (t.) through a transfer function Ar(k) as follows 3

Al = 47T(—i)l/%ATl(k)RkY2m(E). (5.460)

In the quantum theory R; become operators and hence a;,, become operators. We compute
immediately (with Ry = R_x)

at g — T 2 &’k x (T _/
> <im> = (% [ Gt v [ s ant

= o [ %A%%)PR(@ZW;@mmﬁ

i

VWin(E) < RiRy >

= [ A Pa(t) A

2
= %(2l+1)/k2dkA2Tl(k:)PR(k). (5.461)
Hence

T % / K2ARAZ, (k) Pr(F). (5.462)

3Exercise: Derive this equation. Very difficult. A considerable amount of reading is required.
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The term AZ2,(k) is the anisotropies term.

For large scales, i.e. large k~! we can safely assume that the modes were still outside the
horizon at the time of recombination. As a consequence the large scale CMB spectrum is only
affected by the geometric projection from recombination to our current epoch and is not affected
by sub-horizon evolution. This is the so-called Sachs-Wolf regime in which the transfer function

is a Bessel function, viz *

1

Aqy(k) = ik = Mrec)) + - (5.463)

This term is the monopole contribution to the transfer function. We have neglected a dipole
term and the so-called integrated Sachs-Wolfe (ISW) terms.

The Bessel function essentially projects the linear scales with wavenumber &k onto angular
scales with angular wavenumber [. The angular power spectrum C/7T on large scale (corre-
sponding to small [ or large angles) is therefore

2 .
crt = o [ Ktk — ) PV

= [ SRk — ) A28, (5.464)

The Bessel function for large [ acts effectively as a delta function since it is peaked around

I = k(1o — Nrec)- (5.465)

We approximate the dimensionless power spectrum AZ(k) by the following power law (where
ns is the spectral index evaluated at some reference point k., )

A2(k) = Akt (5.466)
We obtain then
47 dk .
N = (U )
9 k2—ns
4m 1-n, dr 4
= ?As(no — Trec) /sz (x)
4An? D(l+%—3) T(3—n,)
= 2T ——A (0 — Thee) " 22 . 5.467
For a scale-invariant spectrum we have ny = 1. In this case
l(l+1
Cl = ( 5 )CITT
T
As
= 3 (5.468)

4Exercise: Derive this equation. This is related to the previous question.
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The modified power spectrum C; is therefore independent of [ for small values of [ corresponding
to the largest scales (largest angles). This is what is observed in the real world. See figure 8.12
of [12]. Thus we conclude that n, must be indeed very close to 1.

The situation is more involved for intermediate scales where acoustic peaks dominate and for
small scales where damping dominates which is an effect due to photon diffusion. The acoustic
peaks arise because the early universe was a plasma of photons and baryons forming a single
fluid which can oscillate due to the competing forces of radiation pressure and gravitational
compression. This struggle between gravity and radiation pressure is what sets up longitudinal
acoustic oscillations in the photon-baryon fluid. At recombination the pattern of acoustic
oscillations became frozen into the CMB which is what we see today as peaks and troughs in
the power spectrum of temperature fluctuations. A proper study of the acoustic peaks seen at
intermediate scales and also of the damping seen at small scales is beyond our means at this
point.

In conclusion the predictions of cosmological scalar perturbation theory for the angular
power spectrum of CMB temperature anisotropies agrees very well with observations. See for
example figure 10 of [21].



Chapter 6

QFT on Curved Backgrounds and
Vacuum Energy

6.1 Dark Energy

It is generally accepted now that there is a positive dark energy in the universe which affects
in measurable ways the physics of the expansion. The characteristic feature of dark energy is
that it has a negative pressure (tension) smoothly distributed in spacetime so it was proposed
that a name like ”smooth tension” is more appropriate to describe it (see reference [11]). The
most dramatic consequence of a non zero value of €25 is the observation that the universe
appears to be accelerating.

From an observational point of view astronomical evidence for dark energy comes from
various measurements. Here we concentrate, and only briefly, on the the two measurements of
CMB anisotropies and type Ia supernovae.

e CMB Anisotropies: This point will be discussed in more detail later from a theoretical
point of view. The main point is as follows. The temperature anisotropies are given
by the power spectrum Cj. At intermediate scales (angular scales subtended by Hal\l/[B
where Hcovp is the Hubble radius at the time of the formation of the cosmic microwave
background (decoupling, recombination, last scattering)) we observe peaks in C; due to
acoustic oscillations in the early universe. The first peak is tied directly to the geometry
of the universe. In a negatively curved universe photon paths diverge leading to a larger
apparent angular size compared to flat space whereas in a positively curved universe
photon paths converge leading to a smaller apparent angular size compared to flat space.
The spatial curvature as measured by ) is related to the first peak in the CMB power
spectrum by

220
[peak ~ 7o

The observation indicates that the first peak occurs around l,eax ~ 200 which means

(6.1)

that the universe is spatially flat. The Boomerang experiment gives (at the 68 per cent
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confidence level) the measurement
0.85 < <1.25. (6.2)

Since 0 = Qj; + Q4 this is a constraint on the sum of €, and 5. The constraints from
the CMB in the ), — Q4 plane using models with different values of €2, and €2, is shown
on figure 3 of reference [26]. The best fit is a marginally closed model with

Qcpw = 0.26 , Qp = 0.05, Q) = 0.75. (6.3)

e Type Ia Supernovae: This relies on the measurement of the distance modulus m — M
of type Ia supernovae where m is the apparent magnitude of the source and M is the
absolute magnitude defined by

m — M = 5logyo[(1 + 2)da (Mpc)| + 25. (6.4)

The dj; is the proper distance which is given between any two sources at redshifts z; and
25 by the formula

l/(1+22
i o [
Hy/ |Qko| 1/(42) @*H(a)

Type la supernovae are rare events which thought of as standard candles. They are very

dM(Zl,ZQ) (65)

bright events with almost uniform intrinsic luminosity with absolute brightness compa-
rable to the host galaxies. They result from exploding white dwarfs when they cross the
Chandrasekhar limit.

Constraints from type la supernovae in the 2, — 25 plane are consistent with the results
obtained from the CMB measurements although the data used is completely independent.
In particular these observations strongly favors a positive cosmological constant.

6.2 The Cosmological Constant

The cosmological constant was introduce by Einstein in 1917 in order to produce a static
universe. To see this explicitly let us rewrite the Friedmann equations (??) and (?7?) as

8tGp kK
H? = TRt (6.6)
a 4G

The first equation is consistent with a static universe (a = 0) if k > 0 and p = 3x/(87Ga?)
whereas the second equation can not be consistent with a static universe (@ = 0) containing
only ordinary matter and energy which have non negative pressure.
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Einstein solved this problem by modifying his equations as follows
1
R, — ig“,,R + Ag, = 81GT,. (6.8)

The new free parameter A is precisely the cosmological constant. This new equations of motion
will entail a modification of the Friedmann equations. To find the modified Friedmann equations
we rewrite the modified Einstein’s equations as

1
R, — 5gWR = 87G (T + T). (6.9)
A
A
— DA s PA = ———. 1
T,uu PAYGL PA Ry (6 0)

The modified Friedmann equations are then given by (with the substitution p — p + pa,
P — P — py in the original Friedmann equations)

8nG(p+pr) Kk 8rGp Kk A

2 _ v A i A1
H 3 a? 3 a> 3 (6.11)
7 ArG ArG A
g:—%(p—QpA+3P):—WT(P‘I'?)P)—Fg- (6.12)

The Einstein static universe corresponds to x > 0 (a 3—sphere S3) and A > 0 (in the range
k/a? < A < 3k/a*) with positive mass density and pressure given by

3k _ A S0 P A K -
- 87Ga? 871G T 817G 81Ga?

p 0. (6.13)

The universe is in fact expanding and thus this solution is of no physical interest. The cosmo-
logical constant is however of fundamental importance to cosmology as it might be relevant to
dark energy.

It is not difficult to verify that the modified Einstein’s equations (6.8) can be derived from
the action

1

S = T6nC /d4x\/—detg (R—2A) + [ d*z\/—detg L. (6.14)
7T

Thus the cosmological constant A is just a constant term in the Lagrangian density. We call

A the bare cosmological constant. The effective cosmological constant A will in general be
different from A due to possible contribution from matter. Consider for example a scalar field
with Lagrangian density

Loy =~ 30"V,09,0 ~ V(6). (6.15)
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The stress-energy-momentum tensor is calculated to be given by

1
T/u/ = vu¢vu¢ - §guugpavp¢va¢ - g;wV(QS) (616)

The configuration ¢y with lowest energy density (the vacuum) is the contribution which mini-
mizes separately the kinetic and potential terms and as a consequence 9,¢y = 0 and V’(QSO) =0.
The corresponding stress-energy-momentum tensor is therefore Tﬁf) = —guV (¢o). In other
words the stress-energy-momentum tensor of the vacuum acts precisely like the stress-energy-

momentum tensor of a cosmological constant. We write (with T,Ef‘)) =T3¢ Vido) = pac)

T = —PpyacGpuw- (6.17)
The vacuum ¢q is therefore a perfect fluid with pressure given by
Pvac = —Pvac- (618)

Thus the vacuum energy acts like a cosmological constant Ay given by

Ay = 871G pyac. (6.19)

In other words the cosmological constant and the vacuum energy are completely equivalent.
We will use the two terms ”cosmological constant” and ”vacuum energy” interchangeably.
The effective cosmological constant A.g is therefore given by

Aeg = A+ Ay (6.20)
In other words
Aeg = A+ 871Gpyac. (6.21)

This calculation is purely classical.

Quantum mechanics will naturally modify this result. We follow a semi-classical approach in
which the gravitational field is treated classically and the scalar field (matter fields in general)
are treated quantum mechanically. Thus we need to quantize the scalar field in a background
metric g, which is here the Robertson-Walker metric. In the quantum vacuum state of the
scalar field (assuming that it exists) the expectation value of the stress-energy-momentum tensor
T,,, must be, by Lorentz invariance, of the form

<T,, >wac=— <P >vac Juv- (6.22)

The Einstein’s equations in the vacuum state of the scalar field are

1
R, — §gu,,R + Agu =87G < T, >yac - (6.23)
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The effective cosmological constant A.s must therefore be given by
Aeg = A+ 871G < p >ac - (6.24)

The energy density of empty space < p >... is the sum of zero-point energies associated with
vacuum fluctuations together with other contributions resulting from virtual particles (higher
order vacuum fluctuations) and vacuum condensates.

We will assume from simplicity that the bare cosmological constant A is zero. Thus the
effective cosmological constant is entirely given by vacuum energy, viz

At = 8TG < p >ac - (6.25)

We drop now the subscript ”eff” without fear of confusion. The relation between the density
pa of the cosmological constant and the density < p >, of the vacuum is then simply

PA =< P >vac - (6.26)

From the concordance model we know that the favorite estimate for the value of the density
parameter of dark energy at this epoch is 2, = 0.7. We recall G = 6.67 x 107 'm3kg~—1s72 and
Hy =70 kms™*Mpc™! with Mpc = 3.09 x 10**cm. We compute then the density

3H?

0
= —0
PA Ry A

= 9.19 x 107 2"Qkg/m?. (6.27)

We convert to natural units (1GeV = 1.8 x 107%7kg, 1GeV ™! = 0.197 x 107%m, 1GeV ! =
6.58 x 1072°s) to obtain

pr = 390, (107 12GeV): (6.28)

To get a theoretical order-of-magnitude estimate of < p >, we use the flat space Hamilto-
nian operator of a free scalar field given by

>

/ (d3) @)[ ()" alp) + 5 (2@353(0)} (6.29)

The vacuum state is defined in this case unambiguously by a(p)|0 >= 0. We get then in the
vacuum state the energy F.,. =< 0|H|0 > where

Pac = 520%5%0) [ (i), (6.30)

If we use box normalization then (27)36%(p— ) will be replaced with V§;z where V' is spacetime
volume. The vacuum energy density is therefore given by (using also w(p) = 1/p? + m?)
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1 d3p
vac — & 52 2, 6.31
<p> 2/(2%)3\/’0 +m (6.31)

This is clearly divergent. We introduce a cutoff A and compute

1 A
<P Swe = — | dpp*\/p*+m?

2
472 ),

1L [/1., m? > > m A A2
— (e P m (21 S 32
47?2{(4)\ * 8)\) A g mjL +m2 (6:32)

In the massless limit (the mass is in any case much smaller than the cutoff ) we obtain the
estimate
)\4

< P >vac .
p 1672

(6.33)

By assuming that quantum field theory calculations are valid up to the Planck scale M, =
1/V/87G = 2.42 x 10'"¥GeV then we can take A = My, and get the estimate

<P > = 0.22(108GeV)* (6.34)

By taking the ratio of the value (6.28) obtained from cosmological observations and the theo-
retical value (6.34) we get

(— 22y = 365 x QY x 102, (6.35)
< P >vac
For the observed value 2y = 0.7 we see that there is a discrepancy of 30 orders of magnitude
between the theoretical and observational mass scales of the vacuum energy which is the famous
cosmological constant problem.

Let us note that in flat spacetime we can make the vacuum energy vanishes by the usual
normal ordering procedure which reflects the fact that only differences in energy have experi-
mental consequences in this case. In curved spacetime this is not however possible since general
relativity is sensitive to the absolute value of the vacuum energy. In other words the gravita-
tional effect of vacuum energy will curve spacetime and the above problem of the cosmological
constant is certainly genuine.

6.3 Calculation of Vacuum Energy in Curved Backgrounds

6.3.1 Elements of Quantum Field Theory in Curved Spacetime

Let us start by writing Friedmann equations with a cosmological constant A which are given
by (with H = a/a)
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8tGp Kk A
H? = ——+—. .
3 o + (6.36)
a A G A
-—= - 3P)+ —. 6.37
b T rap) s s (6.37)

We will assume that p and P are those of a real scalar field coupled to the metric minimally
with action given by

Sy = / d*z\/—detg ( - %nguwm - V(¢)). (6.38)

If we are interested in an action which is at most quadratic in the scalar field then we
must choose V(¢) = m?¢?/2. In curved spacetime there is another term we can add which is
quadratic in ¢ namely R¢? where R is the Ricci scalar. The full action should then read (in
arbitrary dimension n)

Sy = [ d"z\/—detg < — %gﬂ"vmvm — %m%ﬁ — %5&;&2). (6.39)

The choice € = (n —2)/(4(n — 1)) is called conformal coupling. At this value the action with
m? = 0 is invariant under conformal transformations defined by !

G — G = Q1) g (7). 6 — 6= Q2 (2)¢(2). (6.40)

The equation of motion derived from this action are (we will keep in the following the metric
arbitrary as long as possible)

(V. V¥ —m? = £R)¢ = 0. (6.41)

Let ¢ and ¢, be two solutions of this equation of motion. We define their inner product by

(%@%vfé@@@—%@@ﬂ&w (6.42)

dY is the volume element in the space like hypersurface ¥ and n* is the time like unit vector
which is normal to this hypersurface. This inner product is independent of the hypersurface
Y. Indeed let ¥; and Y5 be two non intersecting hypersurfaces and let V' be the four-volume
bounded by ¥, 35 and (if necessary) time like boundaries on which ¢; = ¢o = 0. We have
from one hand

i/v%@m@—@m¢er:if(@m@—@m¢wm“
Vv oV
= (¢1,02)s, — (¢1,02)%,- (6.43)

Exercise: Show this result.
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From the other hand

i /V VH (18,05 — Our.3)dV = s (61V 0,05 — VH,b1.05)dV
=i (61(m* + ER)P, — (m® + ER)$1.05)dV
= 0. (6.44)
Hence
(91, 92)s, — (¢1, P2)x, = 0. (6.45)

There is always a complete set of solutions u; and u} of the equation of motion (6.41) which
are orthonormal in the inner product (6.42), i.e. satisfying

) = 0. (6.46)

(ui,uj) = 52‘]‘ s (U U ) 5ij ) (uiauj

i ]

We can then expand the field as

o= Z (a;u; + afu}) (6.47)

We now canonically quantize this system. We choose a foliation of spacetime into space like
hypersurfaces. Let X be a particular hypersurface with unit normal vector n* corresponding to
a fixed value of the time coordinate z° = ¢ and with induced metric hi;. We write the action as
Sy = [ dx®Ly where Ly = [ d"x+/—detg Ly The canonical momentum 7 is defined by 2

= —V—deth n"0,¢. (6.48)

We promote ¢ and 7 to hermitian operators (ZS and 7 and then impose the equal time canonical
commutation relations

(D2, 2"), 7 (2%, )] = i6" ! (@ — ). (6.49)

The delta function satisfies the property
/5"_1(xi —yYd"ty = 1. (6.50)

The coefficients a; and a become annihilation and creation operators G; and a; satisfying the

commutation relations 3

2Exercise: Show the second line of this equation.
3Exercise: Show this explicitly.
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The vacuum state is given by a state |0 >, defined by
a:]0, >= 0. (6.52)

The entire Fock basis of the Hilbert space can be constructed from the vacuum state by repeated
application of the creation operators a;

R
The solutions u;, u! are not unique and as a consequence the vacuum state |0 >, is not

? 1
unique. Let us consider another complete set of solutions v; and v} of the equation of motion

(6.41) which are orthonormal in the inner product (6.42). We can then expand the field as
¢ =Y (bw; + bjv}). (6.53)

After canonical quantization the coefficients b; and b become annihilation and creation oper-
ators b; and b satisfying the standard commutation relations with a vacuum state given by
|0 >, defined by

b;|0, >= 0. (6.54)

We introduce the so-called Bogolubov transformation as the transformation from the set {u;, u}}
(which are the set of modes seen by some observer) to the set {v;, v} (which are the set of
modes seen by another observer) as

J
By using orthonormality conditions we find that

aij = (vi,u5) 5 Bij = — (v, uj). (6.56)
We can also write
w =Y (@G + Bjiv}). (6.57)
J
The Bogolubov coefficients a and [ satisfy the normalization conditions
Z(Oéikajk - 5ik5jk) = dij , Z(aikﬁ;k - @ka;k) = 0. (6.58)
k k

The Bogolubov coefficients a and § transform also between the creation and annihilation op-
erators a, a™ and b, b*. We find

g =Y (i + B3bF) b =D (o + Bria)). (6.59)

i i
Let N, be the number operator with respect to the u-observer, viz N, = >_, a; ay. Clearly

< 04N, |0, >=0. (6.60)
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We compute

< Oulag a0y >= ) B (6.61)

(2

Thus
< 0y| N, [0, >= trppt. (6.62)

In other words with respect to the v-observer the vacuum state |0, > is not empty but filled
with particles. This opens the door to the possibility of particle creation by a gravitational
field.

6.3.2 Quantization in FLRW Universes

We go back to the equation of motion (6.41), viz
(V. V¥ —m? = £R)¢ = 0. (6.63)
The flat FLRW universes are given by
ds® = —dt* + a*(t)(dp? + p*dQ?). (6.64)

The conformal time is denoted here by

todty
- / it (6.65)

In terms of  the FLRW universes are manifestly conformally flat, viz
ds® = a*(n)(—dn* + dp® + p*dQ?). (6.66)

The d’Alembertian in FLRW universes is

1
V. Vip = —detga”(\/ —detgd" o)
1
= 0,0'p+ §ga68uga58“¢
| 5
= —h+ =0 — 3=, (6.67)
a a

The Klein-Gordon equation of motion becomes
; 1.1
¢+3g¢— 076+ (m* + ER)Y = 0. (6.68)

In terms of the conformal time this reads (where d/dn is denoted by primes)

¢+ z%qs’ — R+ a¥(m®+ER)G = 0. (6.69)
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The positive norm solutions are given by

—

6ikm

). (670

Indeed we check that ¢ = uy(n, 2*) is a solution of the Klein-Gordon equation of motion provided
that y; is a solution of the equation of motion (using also R = 6(i/a + a*/a?) = 64" /a®)

X + wi(m)xk = 0. (6.71)

1"

wi(n) = k* + m?a® — (1 — 65)%. (6.72)

In the case of conformal coupling m = 0 and £ = 1/6 this reduces to a time independent
harmonic oscillator. This is similar to flat spacetime and all effects of the curvature are included
in the factor a(n) in equation (6.70). Thus calculation in a conformally invariant world is very
easy.

The condition (ug,u;) = 6 becomes (with n# = (1,0,0,0), dX = /—deth d*z and using
box normalization (27)383(k — p) —» Véy 5 the Wronskian condition

iV (XX, — Xk xk) = 1. (6.73)

The negative norm solutions correspond obviously to ;. Indeed we can check that (uj,w;) =
—0 and (uy, ;) = 0.

The modes u; and uy provide a Fock space representation for field operators. The quantum
field operator (ZS can be expanded in terms of creation and annhiliation operators as

o= (aguy, + agup). (6.74)

K
Alternatively the mode functions satisfy the differential equations (with x; = vj/v2V)
v, + w2(n)ve =0 (6.75)

They must satisfy the normalization condition

1
27

!

(v 0f — vpvy ) = 1. (6.76)

The scalar field operator is given by ¢ = ¢/a(n) where (with [ay, d;] = V6, etc)

1 1 e e
X = v Z 7 (akv,’;elkx + d;vke_’kx) . (6.77)
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The stress-energy-momentum tensor in minimal coupling £ = 0 is given by

1
ww = ViudVid = 59uwg”Vpd0V o0 = 9V (9). (6.78)

We compute immediately in the conformal metric ds? = a?(—dn? + dz'dx’) the component

Ty = (anﬁb) (0 ¢)? + a *m?p?
- L [x? - 2—,xx' + a—Qx ]+ (3 X)% + Lt (6.79)
2 a a? 2a2 2 ' '

N | —

[\
s

The conjugate momentum (6.48) in our case is 7 = a*9,¢. The Hamiltonian is therefore
H = /d"_lx T — Ly
- / "~ \/E Too
= —/dn—lx\/Tetg T °. (6.80)

In the quantum theory the stress-energy-momentum tensor in minimal coupling & = 0 is given
by
a/ ’ ’ 2 1 1

T — _— [v2 - Z(yy ol L (99)2 4 Zm292 81
00 (X a(xx+xx)+azx]+2a2(3x)+2mx (6.81)

@

We assume the existence of a vacuum state |0 > with the properties a|0 >= 0, < 0la™ = 0 and
< 0]0 >= 1. We compute

<xX?> = 2V2 Zka v, ! ikE T 0laxa, 0 >

= Z o[- (6.82)

<x*> = QVQZkaUe em<0|aka+|0>

= Wz v, |2 (6.83)
k

< (Ox)? > = 2V2 Zkav (kips)eFEe =% < Olaxa, |0 >

- WszWHQ- (6.84)
k
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We get then
< Too > = L E \v,’f — a—/(v,:v,; + v;:vk) + —al2 lve|? + K2 |oe|* + a®m?|ug|?
2a2 2V a a?
L] o |* + - —+ 2V |wkl* = 9y( l\ DIk (6.85)
= —— a’m — )
12V Vg, Vg Uk

=

The mass density is therefore given by

1 . 1 A3k ,
= — T — 7 2 ]{72
P a2 < lgp > 4&4 / (277')3 |i‘vk| + (

// l

+am)|vk|2 ( x| )]. (6.86)

6.3.3 Instantaneous Vacuum

Let us do the calculation in a slightly different way. The comoving scalar field x = a¢
satisfies the equation of motion

"

a

X +miex —Px =0, m¥ =d*m? — —. (6.87)
a
This can be derived from the action
1 /
S = 3 /dndgx[x 2 (i) — mzﬂxﬂ. (6.88)
We quantize this system now. The conjugate momentum is 7 = x'. The Hamiltonian is
1 /
H = / P [x?+ (0x)” + mZx’].- (6.89)
This is different from the Hamiltonian written down in the previous section. The rest is now
the same. For example the field operator can be expanded as (with [ag, @ a 1] = V., etc and
v UE — vl = 20)
Y= 1 ! (a vieFE C_L+Uk€_“;f). (6.90)
vV - \/5 k k
We compute the Hamiltonian operator (assuming isotropic mode functions,viz vy, = v_y,)
T 1 *o o o =+ S =+ ) ot
H = v Z Flaa_y, + Fpajfa®, + Ey(ara; + a;ag) |- (6.91)
k

Let |0, > be the vacuum state corresponding to the mode functions v. Then

. 1
< 0,|H|0, > = Z;Ek

V A3k /
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The vacuum energy density is

1 A3k /
p = 1 [ |l | (6.94)

This clearly depends on the conformal time 7. The instantaneous vacuum at a conformal time
n = 1o is the state |0,,, > which is the lowest energy eigenstate of the instantaneous Hamiltonian
H(no). Equivalently the instantaneous vacuum at a conformal time 7 = 1), is the state in which
the vacuum expectation value < 0,|H ()]0, > is minimized with respect to all possible choices
of vy = vg(no). The minimization of the energy density p corresponds to the minimization of
each mode v, separately. For a given value of k we choose vg(n) by imposing at n = ng the
initial conditions

ve(mo) = q 5 v(no) = p. (6.95)
The normalization condition v, v; — vyv; = 2i reads therefore
q'p—pq=2i. (6.96)

The corresponding energy is Ep = |p|®> + wi(no)|q|>. By using the symmetry ¢ — e**q and
p — €?p we can choose ¢ real. If we write p = p; + ip, then the above condition gives
immediately ¢ = 1/ps. The energy becomes

(A}27]
Bu(mo) = b+ 9 + é”- (6.97)
2

The minimum of this energy with respect to p; is p; = 0 whereas its minimum with respect to
P2 is po = \/wi(no). The initial conditions become

1 / .
k(o) = ——==, v.(n0) = 1wk (100) vk (10)- (6.98)
wi(10)
In Minkowski spacetime we have a = 1 and thus w, = Vk? + m?. We obtain (with ny = 0) the

usual result vi(n) = ™/, /wy.
The energy in this minimum reads

Ex(no) = 2wk (o). (6.99)
The vacuum energy density is therefore

1 >k

p:=§/@5wmm. (6.100)

This is the usual formula which is clearly divergent so we may proceed in the usual way to
perform regularization and renormalization. The problem (which is actually quite severe) is
that this energy density is time dependent.
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6.3.4 Quantization in de Sitter Spacetime and Bunch-Davies Vac-
uum

During inflation and also in the limit a — oo (the future) it is believed that vacuum
dominates and thus spacetime is approximately de Sitter spacetime.

An interesting solution of the Friedmann equations (6.36) and (6.37) is precisley the max-
imally symmetric de Sitter space with positive curvature x > 0 and positive cosmological
constant A > 0 and no matter content p = P = 0 given by the scale factor

o t
= — cosh —. 101
(t) R cosh — (6.101)

3 1
=4/ Ry = —. 102
“ AT Uk (6.102)

At large times the Hubble parameter becomes a constant

IS

1 A
H~—=4/—. 6.103
o 3 (6.103)
The behavior of the scale factor at large times becomes thus
Ht o
CL(t) >~ ape (o) (6104)

:T%'

Thus the scale factor on de Sitter space can be given by a(t) ~ agexp(Ht). In this case the
curvature is computed to be zero and thus the coordinates ¢, x, y and z are incomplete in the
past. The metric is given explicitly by

ds® = —dt* + ale*'da'dx’. (6.105)

In this flat patch (upper half of) de Sitter space is asymptotically static with respect to confor-
mal time 7 in the past. This can be seen as follows. First we can compute in closed form that
n=—eH/(apH) and a(t) = a(n) = —1/(Hn) and thus 7 is in the interval | — oo, 0] (and hence
the coordinates ¢, x, y and 2 are incomplete). We then observe that H, = a' /a = —1/n — 0
when n — —oo which means that de Sitter is asymptotically static.

de Sitter space is characterized by the existence of horizons. As usual null radial geodesics
are characterized by a?(t)7* = 1. The solution is explicitly given by

1

%—H(e—m@ — e HY). (6.106)

r(t) —r(to) =
Thus photons emitted at the origin r(ty) = 0 at time ¢, will reach the sphere r, = e~ /(agH)
at time ¢ — oo (asymptotically). This sphere is precisely the horizon for the observer at the
origin in the sense that signal emitted at the origin can not reach any point beyond the horizon
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and similarly any signal emitted at time ¢y at a point » > 7, can not reach the observer at the
origin.

The horizon scale at time t; is defined as the proper distance of the horizon from the observer
at the origin, viz a*(to)r, = 1/H. This is clearly the same at all times.

The effective frequencies of oscillation in de Sitter space are

"

W) = K+ mPa - (1-60)=
= K+ [m—2 —2(1 - 6¢)] % (6.107)

These may become imaginary. For example w2(n) < 0 if m? < 2(1 — 6£)H?. We will take £ =0
and assume that m << H.
From the previous section we know that the mode functions must satisfy the differential

equations (with x; = v}/vV2V)

" m? 1
v, + <k2 + [ﬁ — 2] ?)uk =0 (6.108)
The solution of this equation is given in terms of Bessel functions J,, and Y, by *
9 m?
ok = VATl | AT (k) + BY, (k| =[5 — o (6.109)
The normalization condition (6.76) becomes (with s = k|n]|)
d d
ks(A*B — AB*)(%JN(S).YH(S) — £Yn(s).Jn(s)) = 2i. (6.110)
We use the result °
A (9).Yals) — Ly(s) () = —= (6.111)
ds ™" ds ™M s '
We obtain the constraint
AB* — A'B = % (6.112)

We consider now two limits of interest.

The early time regime n — —oco: This corresponds to w? — k? or equivalently

m2. 1

k2 >> (2 — ﬁ)?. (6.113)
This is a high energy (short distance) limit. The effect of gravity on the modes vy is therefore
negligible and we obtain the Minkowski solutions

1 .
v = —=€* | kln| >> 1. (6.114)

Vk

The normalization is chosen in accordance with (6.76).

4Exercise: Verify this result. See for example [15].
®Exercise: Show this result.
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The late time regime n — 0: In this limit w? — (m?/H? — 2)1/5? < 0 or equivalently

m? 1
k<< (2— ﬁ)?‘ (6.115)
The differential equation becomes
" m2 1

The solution is immediately given by v, = A|n|™ + B|n|™* with nyo = £n + 1/2. In the limit
n — 0 the dominant solution is obviously associated with the exponent —n + 1/2. We have
then

n

o~ 27" k| << 1. (6.117)

Any mode with momentum k is a wave with a comoving wave length L ~ 1/k and a physical
wave length L, = a(n)L and hence

H—l
= . 11
kol = - (6.118)

Thus modes with k|n| >> 1 corresponds to modes with L, << H~'. These are the sub-
horizon modes with physical wave lengths much shorter than the horizon scale and which are
unaffected by gravity. Similarly the modes with k|n| << 1 or equivalently L, >> H~! are the
super-horizon modes with physical wave lengths much larger than the horizon scale. These are
the modes which are affected by gravity.

A mode with momentum £ which is sub-horizon at early times will become super-horizon
at a later time 7, defined by the requirement that L, = H~' or equivalently k|n;| = 1. The
time 7 is called the time of horizon crossing of the mode with momentum k.

The behavior a(n) — 0 when n — —oo allows us to pick a particular vacuum state
known as the Bunch-Davies or the Euclidean vacuum. The Bunch-Davies vacuum is a de Sitter
invariant state and is the initial state used in cosmology.

In the limit 7 — —oo the frequency approaches the flat space result, i.e. wi(n) — k and
hence we can choose the vacuum state to be given by the Minkowski vacuum. More precisely
the frequency wy(n) is a slowly-varying function for some range of the conformal time 7 in the
limit » — —oo. This is called the adiabatic regime of wy(n) where it is also assumed that
wi(n) > 0. By applying the Minkowski vacuum prescription in the limit  — —oo we must
have

Vg = ek — —oo0. (6.119)

N
VEk
From the other hand by using J,(s) = /2/(ws)cos A, Y, (s) = \/2/(7s)sin A with A = s —
nm/2 — w/4 we can compute the asymptotic behavior

2
v = \/i[AcosA + Bsin\| , n — —o0. (6.120)
m
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By choosing B = —iA and employing the normalization condition (6.112) we obtain
B=—iA, A= \/E (6.121)
2k
Thus we have the solution
v = ie"(k"Jr%Jr%) , 1 — —00. (6.122)

Vk

The Bunch-Davies vacuum corresponds to the choice N = exp(i% + 7). The full solution
using this choice becomes

op = \/@{Jn(mm) _ iYn(k:|n|)] n— 1/% _ %Z (6.123)

The mass density in FLRW spacetime was already computed in equation (6.86). We have

" i

1 d3k ’ a a
— [|vk|2 + (K* + o + a*m?)|vg|* — 877(;|Uk|2):| ) (6.124)

P~ dat | @n)p

For de Sitter space we have a = —1/(nH) and thus

4774 3 2
For m = 0 we have the solutions
T )
o= 7R gy bt = vk (6.126)

We use the results (z = k|n|)

2 (sinx 2 CcoS ¥ .
Jso(x) = E( . —cosx) , Yao(x) = E<_ . —smx). (6.127)
We obtain then
ioetkn 1
= —— — —e", 6.128
ST TS (6.128)
In other words
11 1 / 11 11
2 2 _

We obtain then (using also a hard cutoff A)

4174 3
A
po= 4 /(2%)3 [2]{;4_;{;772}

47174 2
_ 1 (A4+A—2
0

i ). (6.130)
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This goes to zero in the limit n — 0. However if we take A = Aga where Aj is a proper
momentum cutoff then the energy density becomes independent of time and we are back to the
same problem. We get

1

po= Teaho+ HAY. (6.131)
We observe that
oA
PdeSitter PMinkowski — A(2) 167T2
H2
- FpMinkowski- (6132)
0

We take the value of the Hubble parameter at the current epoch as the value of the Hubble
parameter of de Sitter space, viz

 7x6.58

H = Ho 3.09

1078GeV. (6.133)

We get then

PdeSitter — PMinkowski — 038(10_30)4022(1018G6V)4
= 0.084(10"2GeV)™. (6.134)

6.3.5 QFT on Curved Background with a Cutoff

In [30] a proposal for quantum field theories on curved backgrounds with a plausible cutoff
is put forward.

6.3.6 The Conformal Limit { — 1/6

The mode functions y satisfy

1"

Xo 4 w2(n)xe =0, w? =k +m2a® — (1 — 65)%. (6.135)

V(XeXs — Xpxg) = i- (6.136)

We will consider in this section m? = 0. We assume now that the universe is Minkowski in the
past n — —oo. In other words in the limit 7 — —oo the frequency wy tends to w, = V k2.
The corresponding mode function is therefore

n 1 — i@
X = X" = e, (6.137)
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We will also assume that the universe is Minkowski in the future n — +o00. The frequency in
the limit n — 400 is again given by w, = v k2. The corresponding mode function is therefore

Y 0 B S S S ) (6.138)

We determine a4, and fj, from solving the equation of motion (6.135) with the initial condition
(6.137). We remark that

7 = g 4 g lim (6.139)
We imagine that the out state is the limit  — +o00 of some v mode function while the in
state is the limit 7 — —o0 of some u mode function. More precisely we are assuming that

v — XZ(OUt)

, N — —O0
, 1) —> +00. (6.140)

The relation between the u and the v mode functions is given in terms of Bogolubov coefficients
by equation (6.55). By comparing with the above relation (6.139) we deduce that

Qi = Oéi5z'j ) 5ij = ﬁi%’- (6-141)

Let N, = >, af aj be the number operator corresponding to the u modes. If |0, > is the
vacuum state corresponding to the u modes then < 0,|N,|0, >= 0. The number of particles
created by the gravitational field in the limit 7 — 400 is precisely < 0,|N,|0, > where |0, >
is the vacuum state corresponding to the v modes. The number density of created particles is
then given by

< 0y|NJ0, > [ PR )
N = # —/( ) ‘ﬁk| (6'142)
The corresponding energy density is
d3k
= . 14
o= [ Gl (6.143)

The initial differential equation (6.135) can be rewritten as

"o ‘ . a
Xi @ik = k() 5 k() = (1= 6€)—x. (6.144)
We can write down immediately the solution as

(in) ’

Xk = Xp +—/ dn’ sinw(n —n')jk(n

O 5/

)

smwk(n n )Xk(n/). (6.145)
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To lowest order in 1 — 6& this solution becomes

in) 1 - 65 N im) .
v = A / smwk(n I ). (6.146)
From this formula we obtain 1mmed1ately
ou (in) ]- - 65 +oo N l in /
X = b ) sin or(n— 1)\ (). (6.147)

By comparing with (6.139) and using (6.137) we get after few more lines (with a?R = 6a" /a)

) 1 +OO ! i ! 7; 1 +OO ! i ! — /
=1 Y S 2 Y S 2 —2ioEm ]
=14 oe (=) [ @R == -0 [ dna)ROr)e
(6.148)
The number density is given by
+o0 +o0 d?’]{i 1 i
N = —\= —f / d?’]l/ d?]ga, (7’]1)R(771) (772)R(1’]2) / W 726_ ik (m—mn2)
1 1 Foo Foo 1
= Z 6 / d771/ dnaa® () R(m)a’ (12) R(n2) % _Zk(m )
1 1 +°° Foo 1
= Z 6 / / dnza® () R(my)a® (n2) R(12) yp / e Hm =)
1 2
= (-8 / e )R ). (6.149)
The energy density is given by (with the assumption that a?(n)R(n) — 0 when 7 — £00)
+°° +oo Pk 1 .
p o= 7 ——5 / / dnza® () R(m)a (772)3(772)/(%) e~ 2wl e)
1 1 +OO oo 1 —ik(n—n2)
= Z 6 dnaa®(m) R(m)a (772)3(772)8 " ke
L1 oo oo e dk _,
= —(— ot (771_772)
G- / an / e () RO () ROm) g o | e
1 1 oo too d dk 1 ..
= e - -1 (771_772)
G- [ dn [ dn @R @R [ 5 e,
(6.150)

The last factor is precisley one half the Feynamn propagator in 1 4 1 dimension for r = 0 (see
equation (4) of [24]). We have then
O [ am [ @ ) ROW) S @) R 5 =
= —_ - — B — — 1N —_
P Ui T2—>— Ui iy a-\12) L1172 o Ar m =12

- —m% ot [ an [ : dnzd—m<a2<m>R<m>>d%<a2<n2>R<n2>>ln\m .

(6.151)
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At the end of inflation the universe transits from a de Sitter spacetime (which is asymptoti-
cally static in the infinite past) to a radiation dominated Robertson-Walker universe (which is
asymptotically flat in the infinite future) in a very short time interval. Let us assume that the
transition occurs abruptly at a time 7y < 0. In de Sitter space (n < 1) we have a = —1/(nH)
and R = 12H?. In the radiation dominated phase (1 > 1y) we may assume that R = 0. We get
immediately

N = m%(é—ﬁf/_zdna“(n)ﬁ’z(n)
e )] (6.152)

This is the number density of created particles (via gravitational interaction) just after the
transition, i.e. during reheating.

To compute the energy density we will assume that the transition from de sitter spacetime
to radiation dominated spacetime is smother given by the scale factor

a*(n) = f(nH). (6.153)
1
= —H!
f SEyTER <
ap + a1 Hn + ayH*n* + asH*n® , —H ™' < n < (x9 —1)H ™
= b()(H?] + b1)2 , N> (ZL’Q — 1)H_1. (6154)

In this model the time n = —H ! corresponding to ¢ = 0 marks the end of the inflationary (de
Sitter) phase and the transition to radiation dominated phase occurs on a time scale given by
An = H 'z,. By requiring that f, f and f" are continuous at n = —H ' and n = (zo—1)H !
we can determine the coefficients a; and b; uniquely. We compute immediately

a?R=3H*V ,V = 2 [f”f — %(f’)2]. (6.155)

We can then compute in a straightforward manner °

4
V:—2,LE’<—1
X

4
~ ——  —l<zrx<zy—1, 19<<1
Zo

= 0, z>z— L. (6.156)

SExercise: Show this result explicitly.
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The energy density is then given by 7

H4 zo—1 zo—1 ’ ’ xr1 — X
p = —1287T2(1—6§)2/_00 dxlf_oo dzy V' (21)V (@)m%

H* 9

H* 9

In the above model we have chosen the transition time toben = —H ' and thusa = —1/(nH) =
+1 and as a consequence An = —HnAt = At. From the other hand the transition from de
Sitter spacetime to radiation dominated phase occurs on a time scale given by An = H~lz.
From these two facts we obtain xqg = HAt and hence the energy density becomes

4

p = i(1—65)21MHA15. (6.158)

82

This is the energy density of the created particles after the end of inflation. The factor 1 —6¢ is
small whereas the factor In HAt is large and it is not obvious how they should balance without
an extra input.

6.4 Is Vacuum Energy Real?

6.4.1 The Casimir Force

We consider two large and perfectly conducting plates of surface area A at a distance L
apart with v/A >> L so that we can ignore edge contributions. The plates are in the zy plane
at x = 0 and x = L. In the volume AL the electromagnetic standing waves take the form

Un(t, x,y, 2) = e~ “nteihertikuy gin o 2. (6.159)

They satisfy the Dirichlet boundary conditions

¢n|z:0 = ¢n|z:L = 0. (6160)
Thus we must have
ki = % =12 .. (6.161)
n2m2
Wy, = \/k% + kf/ + 77 (6.162)

"Exercise: Derive the second line.
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These modes are transverse and thus each value of n is associated with two degrees of freedom.
There is also the possibility of

ki = 0. (6.163)

In this case there is a corresponding single degree of freedom.
The zero point energy of the electromagnetic field between the plates is

E = %an

1 d*k 9 n7r /2
— 2A/ [k:+22 (k* + ] (6.164)

The zero point energy of the electromagnetic field in the same volume in the absence of the
plates is

Ey = %an

_ %A/ (;l:;? [2L/d2]; (k:2+k2)1/2} (6.165)

After the change of variable k = n7w/L we obtain

E, = %A/(g:; [Q/Owd (k* + L;)W]. (6.166)

We have then

= = - a4 . .1
£=22 /(%) [k;+§:k L2) [+ ") (6107

This is obvioulsy a UV divergent quantity. We regularize this energy density by introducing a
cutoff function fy(k) which is equal to 1 for k¥ << A and 0 for & >> A. We have then (with
the change of variables k = mx/L and 2% = t)

2 e s
= 17 dt[l t1/2+ZfA (t+n)1/2—/0 dan(Z\/t+n2)(t+n2)1/2](6.168)

This is an absolutely convergent quantity and thus we can exchange the sums and the integrals.
We obtain
T

£y — T;BF(OHFQHF@)....—/Owan(n)}. (6.169)
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The function F'(n) is defined by
Fn) = / At FaCEVET ) (14 0?) 7 (6.170)
0
Since f(k) — 0 when k& — oo we have F'(n) — 0 when n — oc.
We use the Euler-MacLaurin formula
]_ © ]_ ! 1 1"
SF(O)+ F(1) + F(2)... —/ AnF(n) = 5 BaF (0) = 1B (O) 4 . (6.171)
0 . .
The Bernoulli numbers B; are defined by
y Y
= B;=. 172
ev —1 ZZ:; ‘il (6.172)
For example
B 1 B _ 1 etc (6.173)
0= 5 ba 30 7 ¢ :
Thus
7r2 1 ! 1 "
= — | ——=F —F e |- 174
En 4L3[ D (O)+720 (0) + (6.174)
We can write
F(n) = / dth(%ﬁ)(t)l/Q. (6.175)
n2
We assume that f(0) = 1 while all its derivatives are zero at n = 0. Thus
, n242nén T T ,
Fn) = —/ atfa (VD0 = 20 fo(Tm) = F(0) =0, (6.176)
n2
" m 2T 5 T "
F (n)= —4an(Zn) - an A(Zn) = F (0)=0. (6.177)
% T 8w T 2m? 5 T %
We can check that all higher derivatives of I are actually 0%. Hence
2 4 72
& AL { 720} 720L3 (6.179)

This is the Casimir energy. It corresponds to an attractive force which is the famous Casimir

force.

8Exercise: Convince yourself of this fact.
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6.4.2 The Dirichlet Propagator
We define the propagator by
Dp(z,2") =< 0|Té(z)d(2)|0 > . (6.180)
It satisfies the inhomogeneous Klein-Gordon equation
(82 — 0)Dp(z,2) = id*(x — o). (6.181)
We introduce Fourier transform in the time direction by
Dp(w, 7,7 ) = /dte_iw(t_t,)DF(x,a?l) , Dp(z,2) = / ;Z—:ei“(t_t/)D (w,Z,7)
(6.182)
We have
(2 +w)Dp(w, 7,7 ) = —id*(& — ) (6.183)
We expand the reduced Green’s function Dp(w,#,Z) as
Dp(w,#,&)=—i) %. (6.184)
The eigenfunctions ¢, (Z) satisfy
0} du(T) = —ky ()
BT —T) =) da(@)en(T). (6.185)
In infinite space we have
$i(T) — Gp(@) = Y — / &k (6.186)
: 2y
Thus
Dilw,7,7) =i / (;l:;g e};;k(m;) (6.187)
We can compute the closed form ?
, i ewlE=T
Dp(w,2,7) = W=7 (6.188)

9Exercise: derive this result.
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Equivalently we have

, . dAk e—ik(w—m/)
Dp(x,x) = 2/(27r)4 ER (6.189)

Let us remind ourselves with few more results. We have (with wy, = |k|)

/ dgk 1 i ZC_Z'I
Dp(z,z) = /(%)32—%@ Ma=e) (6.190)

—

Recall that k(z —2') = —k%(2° — 2%) 4+ k(¥ — &). After Wick rotation in which 2° — —iz,
and k° — —ik, we obtain k(z — 2') = ky(x4 — 2,) + k(Z — Z'). The above integral becomes
then 1°

!

3 R
Dp(z,z) = k1 —i(kaea—a)~F@-7)))

—E€

(27)3 2wy,

1
= ——. 191
472 (x — )2 (6.191)

H\

We consider now the case of parallel plates separated by a distance L. The plates are in the
xy plane. We impose now different boundary conditions on the field by assuming that qg is
confined in the z direction between the two plates at z = 0 and z = L. Thus the field must
vanishes at these two plates, viz

Hlco = 0|1 = 0. (6.192)

As a consequence the plane wave e*3* will be replaced with the standing wave sin k3z where
the momentum in the z direction is quantized as

ks = % ,nezt. (6.193)
Thus the frequency wy becomes
W = \//c% TR+ (%)2. (6.194)

We will think of the propagator (6.191) as the electrostatic potential (in 4 dimensions) generated
at point y from a unit charge at point z, viz

1 1

42 (x — 2')2

V = Dp(z,z) (6.195)

We will find the propagator between parallel plates starting from this potential using the method
of images. It is obvious that this propagator must satisfy

Dp(z,2)=0, 2=0,L and z =0, L. (6.196)

0Fxercise: derive the second line of this equation.
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Instead of the two plates at z = 0 and = = L we consider image charges (always with respect
to the two plates) placed such that the two plates remain grounded. First we place an image
charge —1 at (z,y, —z) which makes the potential at the plate z = 0 zero. The image of the
charge at (z,y, —z) with respect to the plane at z = L is a charge +1 at (z,y,z + 2L). This
last charge has an image with respect to z = 0 equal —1 at (z,y, —z — 2L) which in turn has
an image with respect to z = L equal +1 at (z,y,z + 4L). This process is to be continued
indefinitely. We have then added the following image charges

g=+1, (z,y,2z+2nL), n=0,1,2, ... (6.197)

g=-1, (r,y,—2z—2nL) , n=0,1,2,... (6.198)

The way we did this we are guaranteed that the total potential at z = 0 is 0. The contribution
of the added image charges to the plate z = L is also zero but this plate is still not balanced
properly precisely because of the original charge at (x,y, z).

The image charge of the original charge with respect to the plate at z = L is a charge —1
at (z,y,2L — z) which has an image with respect to z = 0 equal +1 at (z,y, —2L + z). This
last image has an image with respect to z = L equal —1 at (x,y,4L — z). This process is to be
continued indefinitely with added charges given by

g=+1, (z,y,2+2nL) , n=—-1,-2, ... (6.199)

g=-1, (z,y,—2z—2nL) , n=—-1,-2,... (6.200)

By the superposition principle the total potential is the sum of the individual potentials. We
get immediately

V= DF(,’L’,ZZ}'/) = m

n=—oo

1 X1 1 1
(x —a' —2nLe3)? (x—2a —2(nL+ 2)e3)?|

(6.201)

This satisfies the boundary conditions (6.196). By the uniqueness theorem this solution must
therefore be the desired propagator. At this point we can undo the Wick rotation and return
to Minkowski spacetime.

6.4.3 Another Derivation Using The Energy-Momentum Tensor

The stress-energy-momentum tensor in flat space with minimal coupling £ = 0 and m = 0
is given by

1
T/u/ = u¢au¢ - in,uuaa(b&a(b- (6202)
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The stress-energy-momentum tensor in flat space with conformal coupling £ = 1/6 and m = 0
is given by !

2 1 1
Ty = 300000 + S0 0a00% 6 + 260,0,0. (6.:203)

This tensor is traceless, i.e T, # = 0 which reflects the fact that the theory is conformal. This
tensor is known as the new improved stress-energy-momentum tensor.

In theAquantum theory T, become§ an operator TAW and we are interested in the expectation
value of T}, in the vacuum state < 0|7,,|0 >. We are of course interested in the energy density
which is equal to < 0]7{,,|0 > in flat spacetime. We compute (using the Klein-Gordon equation
0,0t =0)

O[T l0> = §<om@%@0>—é<m&@m@0>+%<o@@@@0>
:g<m%&wm>—é<mwm&m»%<mﬁwm>
= 2 <0l > — < 01600 > + < 0[N0 >
::g<m%&wm>+%<mmw@0>. (6.204)

We regularize this object by putting the two fields at different points x and y as follows

< 0Tyl0 > = %<m%&@%&ww>+é<m@&@@&MM>
{WW+6WW < 0]g(x)d(y)]0 > . (6.205)

Similarly we obtain with minimal coupling the result

<0|Tpel0 > = [WW+2WW < 0[g(z)p(y)|0 > . (6.206)
In infinite space the scalar field operator has the expansion (with wy, = [k, [ax, @] = V3, /,

etc)

. A3k 1 it iR R =t dwnt—ikE
¢:/(27T)3w/2wk (ake  raen ) (0207

In the space between parallel plates the field can then be expanded as

dzl{i . e . o
\/7 Z / 2wn sin TZTZ (akme_wnt-mkx + C_L;:newnt_lkx) ) (6208)

HExercise: derive this result.
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The creation and annihilation operators satisfy the commutation relations [k, @] = Onm (27)?6% (k—

p), ete.
We use the result

Dp(x —y) <0|T<5( )y )\0>

1
47r2 Z [ (x —y— 2nL63) C (z—y—2(nL+ 23)e3)? |

(6.209)

We introduce (with a = —nL, —(nL + 2?))
Dy = (¢ —y+2ae3)> = —(2° — ") + (2! —¢")? + (2° —¢*)* + (2° — y* + 20)%. (6.210)

We then compute

T 1 2 0 0y2 1
80831)—& = —,D—g — 8(5(3 — Y ) ,D—g. (6211)
ooy — 2 8(z' — yi)zi i=1,2 (6.212)
iYip, D2 D3’ o '
0504 L2 8(z® — y® + 2nL)? (6.213)
’ D—"L D%nL DinL '
0504 ! ___ + 8(z® + y* + 2nL)? (6.214)
D_ (nL+a3) Dz(nL—l—wS) Di(nL—l—wS)
We can immediately compute
. .1 2 1 I
<OTl0>gy = 15 n_z_:w R (2 — y* + 2nL)? I 4(2° +y* + 2nL) GO
1 X1 1 X 1
- - S 6.215
T T 3one n:z_oo (nL)t 1672 n:z_oo (nL + 2%) (6:215)

This is still divergent. The divergence comes from the original charge corresponding to n = 0
in the first two terms in the limit x — y. All other terms coming from image charges are
finite.

The same quantity evaluated in infinite space is

~ 00 d ]{7 wk i
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This is divergent and the divergence must be the same divergence as in the case of parallel
plates in the limit L — oo, viz

11
ln—o. (6.217)

< 0|Tl0 >¢2y = —WW n=0

Hence the normal ordered vacuum expectation value of the energy-momentum-tensor is given
by

. . 1 1 1 1

L 00 _ -

< O[Tol0 >¢zg = < 0/Tpol0 >y = —55 > LT Tom Sy i +x3)4-(6-218)
n#0 n=—oo

This is still divergent at the boundaries 2 — 0, L.
In the conformal case we compute in a similar way the vacuum expectation value of the
energy-momentum-tensor

R 4
<0|T,,J0>L, = [ — 4(2® — y* +2nL)?
‘ 00‘ 5_% 127T2 e —oo Dan D2 —(nL+z3) ( Y ) DinL
— 4(:):3 + y3 +2nlL) 37}
D (nL+x3)
(6.219)
The normal ordered expression is
. . 1 1
L o] _
1 &1
- 16m2 L4 ; nt
1
The zeta function is given by
=1 i
4) = — = 221
Thus
A I A 7'(‘2

This is precisely the vacuum energy density of the conformal scalar field. The electromagnetic
field is also a conformal field with two degrees of freedom and thus the corresponding vacuum
energy density is
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This corresponds to the attractive Casimir force. The energy between the two plates (where A
is the surface area of the plates) is

7T2

The force is defined by
dEem
Fom = -
dL
2
T
= —A. 22
24014 (6:225)
The Casimir force is the force per unit area given by
Fow ™ (6.226)
A 240L% ‘

6.4.4 From Renormalizable Field Theory

We consider the Lagrangian density (recall the metric is taken to be of signature —+++...+
and we will consider mostly 1 + 2 dimensions)

1)@520. (6.227)

1 1
_ = w242

The static background field o for parallel plates separated by a distance 2L will be chosen to
be given by

o= %(e(m —L+%)—«9(\z| —L—%)). (6.228)

A is the width of the plates and thus we are naturally interested in the sharp limit A — 0.
Obviously we have the normalization

A / dzo(z) = 2 / OL+A/2dz9(z) 9 / OL )
— 2_A__ o (6.229)

We compute the Fourier transform

i) = [ derole)

L+A/2 1 [L+as2 4
= — / dze'® + — / dze'??
L—A/2 A L—A/2

A
= q—A cos L sin % (6.230)
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In the limit A — 0 we obtain
(q) = 2cosqL — o(z)=0(z—L)+d(z+L). (6.231)

The boundary condition limit ¢(+L) = 0 is obtained by letting A — oo. This is the Dirichlet
limit.
Before we continue let us give the Casimir force for parallel plates (¢ = 6(z —a)+ (2 +a))
in the case of 1 4+ 1 dimensions. This is given by
)\2 o] tht 6—4Lt

F(L,\ = —— . 232
(LoAm) === | af — In + (1 — e 1) -

It vanishes quadratically in A when A — 0 as it should be since it is a force induced by the

coupling of the scalar field ¢ to the background o. In the boundary condition limit A — oo
we obtain

L[>~ tdt e
F(L,00,m) = —— e e (6.233)

This is independent of the material. Furthermore it reduces in the massless limit to the usual
result, viz (with a = 2L)

T
24a2

F(L,00,0) = (6.234)

The vacuum polarization energy of the field ¢ in the background o is the Casimir energy.

More precisely the Casimir energy is the vacuum energy in the presence of the boundary minus
the vacuum energy without the boundary, viz

Blo] = 5 Y wlo] — 5 S walo = 0] (6.235)

The path integral is given by

Z = / Det [ 47#L, (6.236)
The vacuum energy is given formally by
1
W[U] = - InZz
7
= %TT In [8u8” —m? — )\O’] + constant. (6.237)
Thus
i 1
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The diagrammatic expansion of this term is given by the sum of all one-loop Feynman diagrams
shown in figure 1 of reference [31]. The two-point function is obtained from W by differentiating
with respect to an appropriate source twice, viz

8?Wlo, J)
0.J(x)0J (y)

The two-point function is then what controls the Casimir energy. From the previous section we

G(z,y) = (6.239)

have for a massless theory the result
E[O’] = /d?’l’ < TOO >¢=0

= 1 / (8080 ﬁi)DFcr(xvy)‘w:y

d
= / d 2/al?’:L’DFC,(u) ¥, ¥) + constant. (6.240)
In other words
Elo] — Elc =0] = /;Z—ww2/d3x {ng(w,f, %) — Dpo(w, T, f)] (6.241)
T
As it turns the density of states created by the background is precisely 2
dN w - .
w - = {Dpo(w,x, Z) — Dpo(w, T, x)} . (6.242)

Using this last equation in the previous one gives precisely (6.235).
Alternatively we can rewrite the Casimir energy as

Blo = Bl =0 = [ #0(020) ~ )| Drali.) - Druto) |l

L s 040 g2y L 1
_ Q/dx(ﬁxﬁy Vg auauA”aauMa aﬂ)«r%— ey

1 1
= 2/0[ [8 50 )\U+0M8 Ao 7, 8ﬂ)\0+ ]|x:y. (6.243)

This term is again given by the sum of all one-loop Feynman diagrams shown in figure 1 of

reference [31]. We observe that

Elo] — Elo =0] = —Z)\a—ﬁ)\ {W[a] —Wio = 0]] (6.244)
Both the one-point function (tadpole) and the two-point function (the self-energy) of the sigma
field are superficially divergent for D < 3 and thus require renormalization. We introduce a

counterterm given by

L =c10+ 0. (6.245)

12Exercise: Construct an explicit argument.
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The coefficients ¢; and ¢y are determined from the renormalization conditions

<o >=0. (6.246)

< o0 > ‘p2=—u2 =0. (6.247)

The < ¢ > and < oo > stand for proper vertices and not Green’s functions of the field o.

The total Casimir energy for a smooth background is finite. It can become divergent when
the background becomes sharp (A — 0) and strong (A — o). The tadpole is always 0 by
the renormalization condition. The two-point function of the sigma field diverges as we remove
A and as a consequence the renormalized Casimir energy diverges in the Dirichlet limit. The
three-point function also diverges (logarithmically) in the sharp limit whereas all higher orders
in A are finite.

Any further study of these issues and a detailed study of the competing perspective of
Milton [22,32,33] is beyond the scope of these lectures.

6.4.5 1Is Vacuum Energy Really Real?

The main point of [29] is that experimental confirmation of the Casimir effect does not really
establish the reality of zero point fluctuations in quantum field theory. We leave the reader to
go through the very sensible argumentation presented in that article.



Chapter 7

Horava-Lifshitz Gravity

7.1 The ADM Formulation

In this section we follow [1,45].

We consider a fixed spacetime manifold M of dimension D + 1. Let g, be the four-
dimensional metric of the spacetime manifold M. We consider a codimension-one foliation of
the spacetime manifold M given by the spatial hypersurface (Cauchy surfaces) ¥; of constant
time t. Let n® be the unit normal vector field to the hypersurfaces ¥;. This induces a three-
dimensional metric h,, on each ¥; given by the formula

hay = Gab + NaMp. (71)

The time flow in this spacetime will be given by a time flow vector field t* which satisfies t*V,t =
1. We decompose t* into its normal and tangential parts with respect to the hypersurface ;.
The normal and tangential parts are given by the so-called lapse function N and shift vector
N*“ respectively defined by

N = —gupt™n?. (7.2)

N = b t". (7.3)

Let us make all this more explicit. Let ¢ = ¢(z*) be a scalar function on the four-dimensional
spacetime manifold M defined such that constant ¢ gives a family of non-intersecting spacelike
hypersurfaces ;. Let 3° be the coordinates on the hypersurfaces ¥;. We introduce a congruence
of curves parameterized by ¢ which connect the hypersurfaces >; in such a way that points on
each of the hypersurfaces intersected by the same curve are given the same spatial coordinates
y*. We have then

ot — Yyt = (t,y"). (7.4)
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The tangent vectors to the hypersurface ¥; are

Ox
w7 7.5
= 5 (75)
The tangent vectors to the congruence of curves is
oxt
th = —. 7.6
g (7.6)

The vector t# satisfies trivially #V ¢ = 1, i.e. t* gives the direction of flow of time. The normal
vector to the hypersurface ¥; is defined by

ot
The normalization N is the lapse function. It is given precisely by (7.2), viz N = —n,t*. Clearly
then N is the normal part of the vector t* with respect to the hypersurface ;. Obviously we

have n, el = 0 and from the normalization n,n* = —1 we must also have
ot Ox
2 p -1
——=-1, N=(n"V, ). 7.8
8,’,@“’ 8t (n 14 ) ( )

We can decompose t# as
th = Nn* + N'el. (7.9)

The three functions N? define the components of the shift (spatial) vector. We compute imme-
diately that

ox+ ozt

peo— 22
dx T dt + Oy
thdt + el dy’'

= (Ndt)n" + (dy' + N'dt)e!. (7.10)

dy’

Also
ds® = g,,da"da”
= G | N?dt*n"n” + (dy' + N'dt)(dy’ + N’dt)el'e’
= —N2dt* + hy(dy' + N'dt)(dy’ + N7dt). (7.11)

The three-dimensional metric h;; is the induced metric on the hypersurface ¥;. It is given
explicitly by

hij = gueje;. (7.12)
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From the other hand in the coordinate system y* we have
ds® = ryudy'dy’
= yoodt? + 2yo;dtdy’ + yidy'dy’. (7.13)
By comparing (7.11) and (7.13) we obtain
Yoo Y0; —N2 +hZ]NZN] hZ]NZ —N2 +NZNZ Nj
Vv = = ; = . (7.14)
Vio Yij hij N’ Iy N; hij
The condition 7,,7"* = 52 reads explicitly
(=N? 4+ N'N;)Y® + Ny =1
NA® + by =0
N + hygy™ = oF. (7.15)
We define h¥” in the usual way, viz h;jh/* = 6¥. We get immediately the solution
00 .05 __1 LN
o — ( T ) - ( AR ) (7.16)
Y Y J mN h J— mN N
We also compute (we work in 1 + 2 for simplicity)
—~N?24+ N'N; N; N,
det”)/ = det Nl hll hlg
Ny ho1  hag
= (=N?+ N'N;)deth — Ny (Nyhgy — Nohys) 4 Na(Nihgy — Nohay). (7.17)
By using N; = h;; N7 we find
dety = —NZdeth (7.18)
We have then the result
V—=gd'z = /=yd'y = NV hd'y. (7.19)

We conclude that all information about the original four-dimensional metric g, is contained

in the lapse function N, the shift vector N* and the three-dimensional metric h;;.

The three-dimensional metric h;; can also be understood in terms of projectors as follows.

The projector normal to the hypersurface ¥; is defined by

N _
P, =—nun,.

(7.20)
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This satisfies (PY)? = PN and PVn = n as it should. The normal component of any vector V*
with respect to the hypersurface ¥, is given by V*#n,. The projector P}% can also be understood
as the metric along the normal direction. Indeed we have

PYdxtdz” = —n,n,datds” = —N*dt’. (7.21)
The tangent projector is then obviously given by

T N
P;w = guV_P;w

= G +1un,. (722)
This should be understood as the metric along the tangent directions since
Pldztdz” = ds®+ N?dt* = hij(dy' + N'dt)(dy’ + N7dt). (7.23)

The three-dimensional metric is therefore given by

huw = P, = gu + nym,. (7.24)
Indeed we have
H v ) ) . .
h,wﬁiaidyadyﬁ = h;;(dy' + N'dt)(dy’ + N’dt). (7.25)
oy* OyP
Or equivalently
huuﬁ’?ﬁ’? = h'ij <~ guueye;j’ = hij
N; = hu,,t“e;' & N, = hiij
N;N" = h,t"t". (7.26)
We compute also
hit” = g"ho,t” = N'el = N*. (7.27)

This should be compared with (7.3).
It is a theorem that the three-dimensional metric h,, will uniquely determine a covariant
derivative operator on ¥;. This will be denoted D,, and defined in an obvious way by

D, X, = hh)V o Xp. (7.28)

In other words D, is the projection of the four-dimensional covariant derivative V, onto ;.
A central object in the discussion of how the hypersurfaces ¥; are embedded in the four-
dimensional spacetime manifold M is the extrinsic curvature K,,. This is given essentially by
1) comparing the normal vector n, at a point p and the parallel transport of the normal vector
n, at a nearby point g along a geodesic connecting ¢ to p on the hypersurface 3; and then 2)
projecting the result onto the hypersurface ¥;. The first part is clearly given by the covariant
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derivative whereas the projection is done through the three-dimensional metric tensor. Hence
the extrinsic curvature must be defined by

Ku = —hehiVang
AN (7.29)

In the second line of the above equation we have used nﬁvanﬁ = 0 and V,g,, = 0. We can

check that K, is symmetric and tangent, viz !

Ky =Ky, hyKa, = K. (7.30)
We recall the definition of the curvature tensor in four dimensions which is given by
(VoVg = VVa)w, = Ragy "Wy (7.31)
By analogy the curvature tensor of 3; can be defined by
(DaDj — DsDy)w, =) Rup, "w,. (7.32)
We compute
DoDpw, = Do(hh)V w,)
W hGH N s(RGRAN )
= hihghzvgva,, — hy Kapn®V w, — higKoun”V w,. (7.33)
In the last line of the above equation we have used the result
hOhGV shly = —Kapn’. (7.34)
We also compute
hgn”vay = thp(n”w,,) + Kjw,
= D,(n"w,) + Kjw,
= Kjw,. (7.35)
Thus
DoDgw, = hhGhEN sV pw, — hii Kagn’Vw, — Ko Kjw, . (7.36)
Similar calculation gives
DgDow, = h)RGhN Vsw, — hl Kagn®V w, — Kg, Kw,. (7.37)

Exercise: Verify these results.
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Hence we obtain the first Gauss-Codacci relation given by
O Ropy "wy = hORGH Rsp "wy — Koy Kjw, + KguKiw,. (7.38)
In other words
O Ropu = hWGhS Rspg "hi — Koy Kf + K, K. (7.39)

The first term represents the intrinsic part of the three-dimensional curvature obtained by
simply projecting out the four-dimensional curvature onto the hypersurface >; whereas the
second term represents the extrinsic part of the three-dimensional curvature which arises from
the embedding of ¥, into the spacetime manifold.

The second Gauss-Codacci relation is given by

D,Ky — D,K}; = —h;Ru.n". (7.40)
The proof goes as follows. We use h:jhf,‘ = hﬁ and K 3 = ¢VK w = —hﬁvanA to find

D,K!' — D,K! = hohih)V,KS — hohthyV ,KS

= WW)V, K] — heh)ViK?
= —hORV (hSVan”) + hohpVA(hSVan?)

= —hPh) (vphg.vano + BV, Van” — V ho . Von® — h‘;‘VAVan”).

(7.41)
The first and third terms are zero. Explicitly we have (using V,g,, = 0 and nthy, = 0)
—h2h) (vphg.vanf’ — vkhg.vam) = h)K,\n"Van® — h2K,,n*V.n°
= 0. (7.42)

We have then

DKl — D,K! = —hfhy(h§V,Van® — hoVaVan?)
= —hoh$(V,Va — VaV,)n’
—hP S R paorn”
W7 R Rpao”
9% hyy Rpapon”™

« K
hy Rpar 10
« K
—hy Rape P10

= —h%R,.n". (7.43)
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The goal now is to compute in terms of three-dimensional quantities the scalar curvature R.

We start from

R = —Rgu,n'n”
= —2(R, — G, )nfn”
= 2R, n"n" + Ruash"h".

We compute

Ruvaph" R’ = hg,Re "h**h"P
= 979" (WS MRy PhO) Iy
= 79 (VR ¥ + KooK — K, KOV
= (VR ' + Ko K — K, K?)
= OR4+ K*— K, K".

Next we compute

R,nt'n” = R, “ntn”
ap, v o
—g“"n" Ry papm

v wo_ v o
n"V, V" —n"V,V,n

= V,(n"V,n") =V, (n"V,n") =V, n".V,n'+V,n".V, n

(7.44)

(7.45)

(7.46)

The rate of change of the normal vector along the normal direction is expressed by the quantity

a' = n"V, nt.
We have

K=K = —h,Van*
= —=V,n".
By using now K, = —hfjvan,, = —h;Vn, and h”ﬁKW = Kﬁ we can show that
K, K" = —K,h"Vsn"
—ngmlu
= WV SV gn*
= V,.n’.Vgnt.
We obtain then the result

Runtn” = V,(Kn"+ad")— K, K" + K.

(7.47)

(7.48)

(7.49)

(7.50)
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The end result is given by

R = Lapm — 2V, (Knt 4 a"). (7.51)
The so-called ADM (Arnowitt, Deser and Misner) Lagrangian is given by
Lapv =% R — K? + K, K" (7.52)
In other words
V=9Lapm = VAN(® R — K2 + K, K"). (7.53)

The extrinsic curvature K, is the covariant analogue of the time derivative of the metric as we
will now show. First we recall the definition of the Lie derivative of a tensor 71" along a vector V.
For a function we have obviously Ly f = V(f) = V*0, f whereas for a vector the Lie derivative
is defined by L£,U* = [V, U]*. This is essentially the commutator which is the reason why the
commutator is called sometimes the Lie bracket. The Lie derivative of an arbitrary tensor is
given by

Ly T = VOV Tk — VT2 — 4V, VAT (7.54)

Vi...1] Vi...1p Ava...vp

A very important example is the Lie derivative of the metric given by
Lyvguw =V, V, +V,V,. (7.55)
Let us now go back to the extrinsic curvature K. We have (using n°hqy, = 0, t© = Nn® + N°)

Kab = —hgvanb
1 (6%
= _iha th(VQng + Vgna)

1 «
= —5hahy Luhas

1
- —ihg‘hf (n°Vehag + Van©heg + Van©hoe)

1
= e (Voo + VN s+ TV e

1
= —ﬁhg‘hf (Lihag — Lnhag).- (7.56)

However we have (using N¢ = h§t?)

hehy Lyhag = hohY (Nchhag+VaNc.hCB+V5NC.hca)

= t"Dyhay + DuNy + DyN,
= D,Ny+ DyN,. (7.57)
The time derivative of the metric is defined by
hap = h2hy Lihggs. (7.58)
Hence
K, = L (hay — DNy — DyN,). (7.59)

2N
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7.2 Introducing Horava-Lifshitz Gravity

In this section we follow [46-48] but also [49-52].

We will consider a fixed spacetime manifold M of dimension D + 1 with an extra structure
given by a codimension-one foliation F. Each leaf of the foliation is a spatial hypersurface
¥, of constant time t with local coordinates given by z‘. Obviously general diffeomorphisms,
including Lorentz transformations, do not respect the foliation F. Instead we have invariance
under the foliation preserving diffeomorphism group Diff (M) consisting of space-independent
time reparametrizations and time-dependent spatial diffeomorphisms given by

t—st(t), T — T (t, ). (7.60)
The infinitesimal generators are clearly given by
5t = f(t), 62" = E'(t, 7). (7.61)

The time-dependent spatial diffeomorphisms allow us arbitrary changes of the spatial coor-
dinates ¢ on each constant time hypersurfaces ¥;. The fact that time reparametrization is
space-independent means that the foliation of the spacetime manifold M by the constant time
hypersurfaces »; is not a choice of coordinate, as in general relativity, but it is a physical
property of spacetime itself.

This property of spacetime is implemented explicitly by positing that spacetime is anisotropic
in the sense that time and space do not scale in the same way, viz

ot — ba' |t — b7t (7.62)

The exponent z is called the dynamical critical exponent and it measures the degree of anisotropy
postulated to exist between space and time. This exponent is a dynamical quantity in the theory
which is not determined by the gauge transformations corresponding to the foliation preserving
diffeomorphisms. The above scaling rules (7.62) are not invariant under foliation preserving
diffeomorphisms and they should only be understood as the scaling properties of the theory at
the UV free field fixed point.

7.2.1 Lifshitz Scalar Field Theory

We start by explaining the above point a little further in terms of so-called Lifshitz field
theory. Lifshitz scalar field theory describes a tricritical triple point at which three different
phases (disorder, uniform (homogeneous) and non-uniform (spatially modulated)) meet. A
Lifshitz scalar field is given by the action

S = % / dt / dPz(? — i(ACDY). (7.63)
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This action defines a Gaussian (free) RG fixed point with anisotropic scaling rules (7.62) with
z = 2. The two terms in the above action must have the same mass dimension and as a
consequence we obtain [f] = [z]?. By choosing i = 1 the mass dimension of x is P~! where P
is some typical momentum and hence the mass dimension of ¢ is P~2. We have then

[z] =P, [t]= P2 (7.64)
The mass dimension of the scalar field is therefore given by
(@] = P72 . (7.65)

The values z = 2 and (D — 2)/2 should be compared with the relativistic values z = 1 and
(D —1)/2. The lower critical dimension of the Lifshitz scalar at which the two-point function
becomes logarithmically divergent is 2 + 1 instead of the usual 1 + 1 of the relativistic scalar
field.

We can add at the UV free fixed point a relevant perturbation given by

2
W= —% / dt / 4P 20,58, P. (7.66)

By using the various mass dimensions at the UV free fixed point the coupling constant ¢ has
mass dimension P. The theory will flow in the infrared to the value z = 1 since this perturbation
dominates the second term of (7.63) at low energies. In other words at large distances Lorentz
symmetry emerges accidentally.

This crucial result is also equivalent to the statement that the ground state wave function
of the system (7.63) is given essentially by the above relevant perturbation. This can be shown
as follows. The Hamiltonian derived from (7.63) is trivially given by

H= % / dPz(P? + i(Acbf). (7.67)

The term (A®)? appears therefore as the potential. The momentum P can be realized as

4]

P=—i—. 7.68
5% (7.68)
The Hamiltonian can then be rewritten as
1 1
H= §/deQ+Q ., Q=iP— §A<I>. (7.69)

The ground state wave function is a functional of the scalar field ® which satisfies HWy[®] = 0
or equivalently
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A simple solution is given by
1

The theory given by the action (7.63) satisfy the so-called detailed balance condition in the
sense that the potential part can be derived from a variational principle given precisely by the
action (7.66), viz

W,

7.2.2 Foliation Preserving Diffeomorphisms and Kinetic Action

We will assume for simplicity that the global topology of spacetime is given by
M=R x 3. (7.73)

Y} is a compact D—dimensional space with trivial tangent bundle. This is equivalent to the
statement that all global topological effects will be ignored and all total derivative and boundary
terms are dropped in the action.

The Riemannian structure on the foliation F is given by the three dimensional metric g;;,
the shift vector IV; and the lapse function N as in the ADM decomposition of general relativity.
The lapse function can be either projectable or non-projectable depending on whether or not
it depends on time only and thus it is constant on the spatial leafs or it depends on spacetime.
As it turns out projectable Horava-Lifshitz gravity contains an extra degree of freedom known
as the scalar graviton.

We want here to demonstrate some of the above results. We first write down the metric in
the ADM decomposition as

ds® = —N?cdt* + gi;(da’ + N'dt)(dz’ + N’dt)
= (=N?+ g;N'N? /) (dz°)? + (gi;; N7 Je)dx'dz® + (gi;N' Je)dx? dx® + gijda’da?.
(7.74)
Now we consider the general diffeomorphism transformation
/ , 1
20 =2"+cf(t,2") + O(-)
c
/- . . . 1
' =z +&(ta")+ O( (7.75)

)
This is an expansion in powers of 1/c. For simplicity we will also assume that the generators f
and & are small. We compute immediately
ax,“ 8,’13'/'/ ’
S R

l ! af /
= 9digu+ 9t 527 I T i 9+ 550 Gho + C@gfgko--- (7.76)
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In the limit ¢ — oo the last two terms diverge and thus one must choose the generator of time
reparametrization f such that f = f(¢). In this case the above diffeomorphism (7.75) becomes
precisely a foliation preserving diffeomorphism. We obtain in this case

' L O&! )%
9i; = 9ij —Gi aigz—gﬂ ;Zg (7.77)

Equivalently the gauge transformation of the three dimensional metric corresponding to a foli-
ation preserving diffeomorphism is

i

0gij = géj(ff ) — gij(x)

! a 1 a 1
— g;(2) —gi(@) + f 9]+5 gf
¢! ok 0g; 82
8£]gzl aglgk]_‘_f gJ é-k g] (778)

Similarly we compute the gauge transformation of the shift vector corresponding to a foliation
preserving diffeomorphism as follows. We have

o ox'rox'
gzO - 8:1/’7‘ 8:170 g;u/
o af 0§k ocr
= Gjo Tt Egio + - at kT o ngo (7.79)

Equivalently we have

‘9fN_3_5k o
ot ot I* T ou

g;jN’j = gi; N7 — - Ny (7.80)

We rewrite this as

af  ock !

(NI = NIy = —ZLN, — 2= g, 4+ ——gu N, 7.81
9 )= o N 9T 9 (7.81)
We have then
ONi = gy(x)N(a) — gi(x) N ()
of ON; Ok w ON; 05’“
_ 9y _% 7.82
ot o ot TS o0 T o (7.82)
A similar calculation for the lapse function goes as follows. We have
B ox'* oz,
J00 = 550 G0 I
of . 20¢,
= g0+ 2%, ot oo + < o Jior (7.83)
Explicitly we find from this equation after some calculation (recalling that g;; NV = N;)
) 0
N (z) — N(x) = f (7.84)

8t
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Thus

6N = N'(z')— N(x)
ON  LON Of

- E‘Fg @—EN (785)

We can use the above gauge transformations to make the choice
N=1, N;=0. (7.86)

These are called the Gaussian coordinates.
Now we want to write an action principle for this theory. It will be given by the difference
of a kinetic term and a potential term as follows

S = Sk — Sy. (7.87)

The kinetic term is formed from the most general scalar term compatible with foliation preserv-
ing diffeomorphisms which must be quadratic in the time derivative of the three dimensional
metric in order to maintain unitarity. It must be of the canonical form [ dtd?z®?. Explicitly
we may write

09w

dtd"zN /g g” Gt

Sk = (7.88)

K2
The time derivative of the three dimensional metric in the above action (7.88) must in fact
be replaced by K;; while the metric G’* on the space of metrics can be determined from the
requirement of invariance under foliation preserving diffeomorphisms as we will show in the
following.

We know from our study of the ADM decomposition of general relativity that the covariant
time derivative of the three dimensional metric is given by the extrinsic curvature, viz

Kij VZN] — V]NZ) s gU = g?g;‘)'ctgab- (789)

1
~o @i —

In this section we have decided to denote the three dimensional covariant derivative by V;
in the same way that we have decided to denote the three dimensional metric by g;;. We
may choose the local coordinates such that the vector field t* has components (c,0, ...,0) and
as a consequence the diffeomorphism corresponding to time evolution is precisely given by
(2% 2t .. 2P) — (2% + 620, 21, ..., 2P) and hence §;; = dg;;/Ot.

From the ADM decomposition (7.53) we see that the combination K;;K“ — K? where
K = ¢g" Kj; is the only combination which is invariant under four dimensional diffeomorphisms.
Under the three dimensional (foliation preserving) diffeomorphisms it is obvious that both terms
K;; K and K? are, by construction, separately invariant. We are led therefore to consider the
kinetic action

Sk = 2%2 / dtd”xN/g(K; K7 — AK?). (7.90)
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Let us determine the mass dimension of the different objects. Let us set A = 1. From the
Heisenberg uncertainty principle we know that the mass dimension of x is precisely P~! where
P is some typical momentum. In order to reflect the properties of the fixed point we will set a
scale Z of dimension [Z] = [z]?/[t] to be dimensionless, i.e. [c] = P>~!. This choice is consistent
with the scaling rules (7.62). The mass dimension of ¢ is therefore given by P~*. The volume
element is hence of mass dimension

[dtdPx) = P~*7P. (7.91)

Now from the line element (7.74) we see that dx’ and N'dt have the same mass dimension and
hence the mass dimension of N¢ is P#~!. The mass dimension of the line element ds* must
be the same as the mass dimension of da?, i.e. [ds] = P~! and as a consequence [g;;] = P°.
Similarly we can conclude that the mass dimension of N is P°. In summary we have

9] = [N] = P", [N'] = P*. (7.92)

From the above results we conclude that the mass dimension of the extrinsic curvature is given
by

[Kij] = P~ (7.93)

We can now derive the mass dimension of the coupling constant k. We have

1 .
[Sk] = P° = — P PP* = [s] = P77

[]?

(7.94)

Thus in D = 3 spatial dimensions we must have z = 3 in order for x to be dimensionless and
hence the theory power-counting renormalizable.

The second coupling constant A is also dimensionless. It only appears because the two
terms K;; K and K? are separately invariant under the three dimensional (foliation preserving)
diffeomorphisms.

The kinetic action (7.90) can be rewritten in a trivial way as

1 y
Sk =55 / dtd®x N /gK;;G* K}, (7.95)

The metric on the space of metrics G¥* is a generalized version of the so-called Wheeler-DeWitt
metric given explicitly by

Gzykl — §(gzkgﬂ + gzlg]k) o )\gmgkl‘ (796)
This is the only form consistent with three dimensional (foliation preserving) diffeomorphisms.

Full spacetime diffeomorphism invariance corresponding to general relativity fixes the value of
A as A = 1. The inverse of GG is defined by

1
GijmnG™"™ = 2 (995 + 9197)- (7.97)
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We find explicitly

1 A
Gkl = §(gikgjl = Gagjr) — D — 1 Y9kt (7.98)
We will always assume for D = 3 that A # 1/3 for obvious reasons. The precise role of A is still
not very clear and we will try to study it more carefully in the following.

7.2.3 Potential Action and Detail Balance

The total action of Horava-Lifshitz gravity is a difference between the kinetic action con-
structed above and a potential action, viz

S = Sk — Sy. (7.99)

The potential term, in the spirit of effective field theory, must contain all terms consistent with
the foliation preserving diffeomorphisms which are of mass dimension less or equal than the
kinetic action. These potential terms will contain in general spatial derivatives but not time
derivatives which are already taken into account in the kinetic action. These potential terms
must be obviously scalars under foliation preserving diffeomorphisms.

The mass dimension of the kinetic term is [K;; K;;] = P** = PS. Thus the potential action
must contain all covariant scalars which are of mass dimensions less or equal than 6. These terms
are built from g¢;; and IV and their spatial derivatives. Because g;; and /N are both dimensionless
the scalar term of mass dimension n must contain n spatial derivatives since [z;] = P~!. For
projectable Horava-Lifshitz gravity the lapse function does not depend on space and hence all
terms can only depend on the metric g;; and its spatial derivatives. Obviously terms with odd
number of spatial derivatives are not covariant. There remains terms with mass dimensions 0,
2, 4 and 6.

The term of mass dimension 0 is precisely the cosmological constant while the term of mass
dimension 2 is the Ricci scalar, viz.

mass dimension = 0, R°
mass dimension = 2, R. (7.100)

The terms of mass dimensions 4 and 6 are given by the lists

mass dimension =4, R? Rinij
mass dimension = 6, R, RR{R;, R;Rin, RV?R, VR V' RI*, (7.101)
The operators of mass dimensions 0, 2 and 4 are relevant (super renormalizable) while the

operators of dimension 6 are marginal (renormalizable). The quadratic terms modify the prop-
agator and add interactions while cubic terms in the curvature provide only interaction terms.



GR, B.Ydri 230

The term V;R;, VIR is not included in the list because it is given by a linear combination of
the above terms up to a total derivative. The potential action of projectable Horava-Lifshitz
gravity is then given by

Sy = / dtd®z/gNV [gi;). (7.102)

V[gij] = Jo + glR + 92R2 + ggRinij + g4R3 + g5RRinij + gﬁRfRf 2 + g7RV2R + ggviRjkViRjk.
(7.103)

The lowest order potential coincides with general relativity. In general relativity the projectabil-
ity condition can always be chosen at least locally as a gauge choice which is not the case for
Horava-Lifshitz gravity.

A remark now on non-projectable Horava-Lifshitz gravity is in order. In this case the
lapse function depend on time and space which matches the spacetime-dependence of the lapse
function in general relativity. Furthermore it can be shown that a; = 0;In N transforms as a
vector under the diffeomorphism group Diff /(M) and as a consequence more terms such as
a;a’, V;a' must be included in the potential action. The lowest order potential in this case is
found to be given by

Vl0gijl = go + g1 R + aaia’ + fVia'. (7.104)

It is very hard to see whether or not the RG flow of the coupling constants a and 3 goes to zero
in the infrared in order to recover general relativity. In [53] it was shown that the non-vanishing
of a and f in the IR leads to the existence of a scalar mode.

Alternatively we can rewrite the total action as follows. The first part is the Hilbert-Einstein
action given by

1 .
Sgn = 52 /dt/dDa:N\/E [Kin” — K? - 25%g1R — 2%290}. (7.105)

Recall that [t] = P73 and [z] = P~'. We scale time as t = (*t where ( is of mass dimension
P. Tt is clear that [t] = P~' = [z] and thus in the new system of coordinates (¢, ") we can
choose as usual ¢ = 1. We have then

Sen = ﬁ / dt’ / d”’xN./g [KZ-]-K“ — K? —2(k()*q1R — 2(%)290} . (7.106)

The coupling constant g; is of mass dimension P*. Thus we may choose g; or equivalently ¢
such that

—2(kC)?g, = 1. (7.107)
We can now make the identification
1 1 1
= Mk = 200 = A. 1
2(’£C>2 2 Planck 167TGNth0n ) (’KLC) 90 (7 08)
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Thus the Hilbert-Einstein action is given by
1 , g
Sy = 3 M2, / dt / deN\/ﬁ[Kin” — K?*+ R —2A]. (7.109)

To obtain the Horava-Lifshitz action we need to add 8 Lorentz-violating terms given by (with
E=1-Xand g» = 322, g3 = g3¢? since g, and g3 are of mass dimensions P?)

Sry = 2%2 / dt / dPxN /g K* + / dt / d%N@[— 32C°R?* — 33C°Ry;RY — g4R® — gsRR;; RV
— geRIRER;, — g;RV’R — ggv,-RjkviRﬂ“} . (7.110)

Equivalently

Sy = @ / dt / deN\/ng@ —202(KC)*R? — 293(k¢)* Ry RV — 294x* R® — 2g5k>RR; RY
— 2g6k*RIRER;, — 2975 RVPR — 298/€2ViRjkViRjk} . (7.111)

We may set k = 1 for simplicity. These Lorentz-violating terms lead to a scalar mode for the
graviton with mass of order O(¢). Furthermore these terms are not small since they become
comparable to the Einstein-Hilbert action for momenta of the order M; = Mp/g;°?, i = 2,3
and M; = Mp/g;°%, i =4,5,6,7. The Planck scale Mp, is independent of the various Lorentz-
violating scales M; which can be driven arbitrarily high by fine tuning of the dimensionless
coupling constants g;.

We will now impose the condition of detailed balance on the potential action. Thus we
require that the potential action is of the special form

2
Sy = % / dtd? s /gNET G EM. (7.112)
The tensor F is derived from some Euclidean D—dimensional action W as follows
0w
VB = . (7.113)
59ij

It is clearly that with the detailed balance condition the potential is a perfect square. As
it turns out detailed balance lead to a cosmological constant of the wrong sign and parity
violation. However it remains true that renormalization with detailed balance condition of the
(D + 1)—dimensional theory is equivalent to the renormalization of the D—dimensional action
W together with the renormalization of the relative couplings between kinetic and scalar terms
which is clearly much simpler than renormalization of a generic theory in (D + 1)—dimensions.

For theories which are spatially isotropic we can choose the action W to be precisely the
Hilbert-Einstein action in D dimensions. This is a relativistic theory with Euclidean signature
given by the action

% /dex/ﬁ(R — 2Aw). (7.114)

Ry

W:
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A standard calculation gives

1 p 1
w
Equivalently
ow 1 1
Thus
1 1
Eij = 5 (RZJ — —gin + gZ]Aw) (7117)
Kiy 2

The potential action becomes therefore

/€2

P y 1
SV /dthZE'\/EN(RU — §gZ]R + gZ]Aw)Gijkl (Rkl - §gklR + gklAw) (7118)

8Ky
For very short distances (UV) the curvature is clearly the dominant term in W and thus the
potential action Sy is dominated by terms quadratic in the curvature. In this case the mass
dimension of the potential action P*~*~P[k])?/[rkw]|* must be equal to the mass dimension of
the kinetic action P*~P/[k]%. This leads to the results

[

[kw]

[W]? = P*7, =P (7.119)

2
We have then anisotropic scaling with z = 2 and power counting renormalizability in 1 + 2
dimensions. In a spacetime with 1+ 3 dimensions we have [k]> = P>~ and [ky]? = P~!. The
fact that the coupling constant xy is dimensionfull means the above theory in 1+ 3 dimensions
can only work as an effective field theory valid which is up to energies set by the energy scale
1/[kw]?.

At large distances (IR) the dominant term in W is the cosmological constant Ay, and thus
the potential action is dominated by linear and quadratic terms in Ay,. This is essentially
equivalent to the Einstein-Hilbert gravity theory given by the combination R — 2A and thus
effectively the anisotropic scaling becomes the usual value z = 1. In other words in 1 + 3
dimensions, the above Horava-Lifshitz gravity has a z = 2 fixed point in the UV and flows to
a z = 1 fixed point in the IR.

However we really need to construct a Horava-Lifshitz gravity with a z = 3 fixed point in
the UV and flows to a z = 1 fixed point in the IR. As explained before the z = 3 anisotropic
scaling in 1+ 3 dimensions is exactly what is needed for power counting renormalizability. The
theory must satisfy detailed balance and thus one must look for a tensor E;; which is such that
it gives a 2 = 3 scaling. It is easy to convince ourselves that F;; must be third order in spatial
derivatives so that the dominant term in the potential action Sy, contains six spatial derivatives
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and hence will balance the two time derivatives in the kinetic action. With such an E;; we will
have

[

[kw]

[K]? = P*7, =P, (7.120)

2
There is a unique candidate for £;; which is known as the Cotton tensor. This is a tensor which
is third order in spatial derivatives given explicitly by

O = ¢V (R] — %Rg{). (7.121)
We now state some results concerning the Cotton tensor without any proof. This is a symmetric
tensor C = (7', traceless ¢;;C” = 0, conserved V;C% = ( which transforms under Weyl
transformations of the metric g;; — exp(2Q)g;; as C¥ — exp(—5Q)CY i.e. it is conformal
with weight —5/2.
In dimensions D > 3 conformal flatness of a Riemannian metric is equivalent to the vanishing
of the Weyl tensor defined by

1
(D—1)(D -2

1
Cijmt = Rijut — =——— (9 Ry — 9uRjr — gjnRa + gRix) +

D_9 )(gikgjl — gagjr)R.

(7.122)

We can verify that the Weyl tensor is the completely traceless part of the Riemann tensor. In
D = 3 the Weyl tensor vanishes identically and conformal flatness becomes equivalent to the
vanishing of the Cotton tensor.

The Cotton tensor can be derived from an action principle given precisely by the Chern-
Simon gravitational action defined by

W= %/sz),(l“). (7.123)

2
w3(l) = Tr(DAdl+ gPAPAF)

’ 2
= RO, + ST, ) de (7.124)



Chapter 8

Note on References

The personal choice of references, used in these notes, includes: 1) Wald (general relativity
and differential geometry), 2) Hartle (elementary exposition of cosmology and observational
cosmology), 3) Carroll (black holes and advanced cosmology), 4) Mukhanov (inflationary cos-
mology: maybe the best book on cosmology especially for a theoretical physicist), 5) Birrell
and Davies (QFT on curved backgrounds: one of the best QFT books I have ever seen). For a
successful treatment of the problem of quantizing gravity we think that Horava-Lifshitz gravity
is the only serious candidate which adhere to the tradition of QFT. The references on this
topic are the original papers by Horava. These are the primary references followed here but
more references can be found in the listing at the end of these lecture notes. However, we
stress that the list of references included in these lectures only reflect the choice, preference and
prejudice of the author and is not intended to be complete, exhaustive and thorough in any
sense whatsoever.



Appendix A

Differential Geometry Primer

A.1 Manifolds

A.1.1 Maps, Open Set and Charts

Definition 1: A map ¢ between two sets M and N, viz ¢ : M — N is a rule which takes
every element of M to exactly one element of N, i.e it takes M into V.

This is a generalization of the notion of a function. The set M is the domain of M while
the subset of N that M gets mapped into the image of . We have the following properties:

e An injective (one-to-one) map is a map in which every element of N has at most one
element of M mapped into it. Example: f = e” is injective.

A surjective (onto) map is a map in which every element of N has at least one element
of M mapped into it. Example: f = 2% — z is surjective.

A bijective (and therefore invertible) map is a map which is both injective and surjective.

A map from R™ to R™ is a collection of n functions ¢* of m variables x* given by

o'zt a™) =y, i=1,..,n. (A.1)

The map ¢ : R™ — R" is a C? map if every component ¢’ is at least a CP function, i.e.
if the pth derivative exists and is continuous. A C*° map is called a smooth map.

e A diffeomorphism is a bijective map ¢ : M — N which is smooth and with an inverse
¢! N — M which is also smooth. The two sets M and N are said to be diffeomorphic
which means essentially that they are identical.

Definition 2: An open ball centered around a point y € R" is the set of all points z € R"
such that |z —y| < r for some r € R where |z —y|?> = Y. (z; — y;)®. This is clearly the inside
of a sphere S"~1 in R™ of radius r centered around the point y.
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Definition 3: An open set V' C R" is a set in which every point y € V is the center of an
open ball which is inside V. Clearly an open set is a union of open balls. Also it is obvious
that an open set is the inside of a (n — 1)—dimensional surface in R".

Definition 4: A chart (coordinate system) is a subset U of a set M together with a one-to-one
map ¢ : U — R" such that the image V' = ¢(U) is an open set in R". We say that U is an
open set in M. The map ¢ : U — ¢(U) is clearly invertible. See figure 1.a.

Definition 5: A C atals is a collection of charts {(Us,, ¢o)} which must satisfy the 2 condi-
tions:

e The union is M, viz U, U, = M.

o If two charts U, and Up intersects then we can consider the maps ¢, o gbgl and ¢g o ¢ !
defined as

$a 0 P51 dp(Ua NUs) — ¢a(Ua NUp) , dpo ¢y ¢a(Ua NUs) — ¢5(Us N Up).
(A2)

Clearly ¢,(U, NUp) C R" and ¢3(U, NUz) C R™. See figure 1.b. These two maps are
required to be C'*°, i.e. smooth.

It is clear that definition 4 provides a precise formulation of the notion that a manifold ”will
locally look like R"” whereas definition 5 provides a precise formulation of the statement that
a manifold "will be constructed from pieces of R" (in fact the open sets U,) which are sewn
together smoothly”.

A.1.2 Manifold: Definition and Examples

Definition 6: A C*° n—dimensional manifold M is a set M together with a maximal atlas,
i.e. an atlas which contains every chart that is compatible with the conditions of definition
5. This requirement means in particular that two identical manifolds defined by two different
atlases will not be counted as different manifolds.

Example 1: The Euclidean spaces R", the spheres S™ and the tori 7™ are manifolds.
Example 2: Riemann surfaces are two-dimensional manifolds. A Riemann surface of genus
g is a kind of two-dimensional torus with a g holes. The two-dimensional torus has genus g = 1

whereas the sphere is a two-dimensional torus with genus g = 0.

Example 3: Every compact orientable two-dimensional surface without boundary is a Rie-
mann surface and thus is a manifold.
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Example 4: The group of rotations in R" (which is denoted by SO(n)) is a manifold. Any
Lie group is a manifold.

Example 5: The product of two manifolds M and M  of dimensions n and n’ respectively is
a manifold M x M’ of dimension n + n'.

Example 6: We display on figure 2 few spaces which are not manifolds. The spaces displayed
on figure 3 are manifolds but they are either "not differentiable” (the cone) or ”with boundary”
(the line segment).

Example 7: Let us consider the circle S'. Let us try to cover the circle with a single chart
(S, 0) where 6 : S — R. The image 6(S') is not open in R if we include both § = 0 and
0 = 27 since clearly 6(0) = 6(27) (the map is not bijective). If we do not include both points
then the chart does not cover the whole space. The solution is to use (at least) two charts as
shown on figure 4.

Example 8: We consider a sphere S? in R? defined by the equation 22 + y? + 22 = 1. First
let us recall the stereographic projection from the north pole onto the plane z = —1. For any
point P on the sphere (excluding the north pole) there is a unique line through the north pole
N = (0,0,1) and P = (x,y, z) which intersects the z = —1 plane at the point p' = (X,Y).
From the cross sections shown on figure 5 we have immediately

2x 2y

X = Y = i A.
1—2" 11—z (A.3)
The first chart will be therefore given by the subset U; = S? — { N} and the map
2z 2
Bix.y.2) = (X,Y) = ( ~). (A4)

1—2"1—2z
The stereographic projection from the south pole onto the plane z = 1. Again for any point
P on the sphere (excluding the south pole) there is a unique line through the south pole
N' =(0,0,-1) and P = (z,y, z) which intersects the z = 1 plane at the point p' = (X, Y").
Now we have

/ 2z / 2y

= Y = . A.
1427 1+ 2 (A-5)

The second chart will be therefore given by the subset U, = S? — {N'} and the map

2x 2y
1+2"1+2

da(,y,2) = (X, Y) = ( )- (A.6)

The two charts (Uy, ¢1) and (Us, ¢2) cover the whole sphere. They overlap in the region —1 <
z < +1. In this overlap region we have the map

(X, Y') = ¢a0 7 (X,Y). (A.7)
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We compute first the inverse map ¢; " as

4 4 4—X?2-Y?

o 44+ X24+Y? 4 44+ X24+Y2 2 44+ X24+Y2 (A-8)

Next by substituting in the formulas of X' and Y’ we obtain

: 4X : 4y
= = —.
X24+Yy2’ X2 4+Y?

This is simply a change of coordinates.

A.1.3 Vectors and Directional Derivative

In special relativity Minkowski spacetime is also a vector space. In general relativity space-
time is a curved manifold and is not necessarily a vector space. For example the sphere is not a
vector space because we do not know how to add two points on the sphere to get another point
on the sphere. The sphere which is naturally embedded in R® admits at each point P a tangent
plane. The notion of a "tangent vector space” can be constructed for any manifold which is
embedded in R™. As it turns out manifolds are generally defined in intrinsic terms and not as
surfaces embedded in R" (although they can: Whitney’s embedding theorem) and as such the
notion of a "tangent vector space” should also be defined in intrinsic terms,i.e. with reference
only to the manifold in question.

Directional Derivative: There is a one-to-one correspondence between vectors and direc-
tional derivatives in R". Indeed the vector v = (v',...,v™) in R" defines the directional derivative
> " v*0, which acts on functions on R". These derivatives are clearly linear and satisfy the
Leibniz rule. We will therefore define tangent vectors on a general manifold as directional
derivatives which satisfy linearity and the Leibniz rule. Remark that the directional derivative
>, V"0, is a map from the set of all smooth functions into R.

Definition 7: Let now F be the set of all smooth functions f on a manifold M, viz f: M —
R. We define a tangent vector v at the point p € M as the map v : F — R which is required
to satisfy linearity and the Leibniz rule, viz

v(af +bg) = av(f) +bv(g) , v(fg) = f(p)v(g) +9P)v(f), a,bE R, f,ge F. (A.10)

We have the following results:

e For a constant function (h(p) = ¢) we have from linearity v(c?) = cv(c) whereas the
Leibniz rule gives v(c?) = 2cv(c) and thus v(c) = 0.

e The set V, of all tangents vectors v at p form a vector space since (v +v9)(f) = v1(f) +
vo(f) and (av)(f) = av(f) where a € R.
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e The dimension of V,, is precisely the dimension n of the manifold M. The proof goes as
follows. Let ¢ : O C M — U C R"™ be a chart which includes the point p. Clearly for
any f € F themap fo¢~!:U — R is smooth since both f and ¢ are smooth maps.
We define the maps X, : F — R, p=1,...,n by

0
Xu(f) = @(f °© ¢_1)|¢>(p)’ (A.11)

Given a smooth function ' : R® — R and a point a = (a', ...,a™) € R™ then there exists
smooth functions H,, such that for any = = (z',...,2") € R™ we have the result

F() = Fla) + Z@: @) @) = D0 (A12)
We choose F = fog! z € U:nd o = &(p) € U we have
fos () = fog(a) + Z( ) (o). (A13)
Clearly ¢~} (2) = ¢ € O and thus -
F(@) = F) + S0 — ) H(0(a)). (A14)

p=1

We think of each coordinate z* as a smooth function from U into R, viz z* : U — R.
Thus the map 2# o ¢ : O — R is such that 2#(¢(q)) = 2 and x#(¢p(p)) = a*. In other

words

Fl@) = f(p)+>_ (" 0 d(q) — 2% 0 (p)) Hu(b(q))- (A.15)

Let now v be an arbitrary tangent vector in V,. We have immediately

v(f)

But

Thus

v(f(p) + Z v(z o ¢ —at o d(p))Hy o ¢(q)]g=p + Z(xu o ¢(q) — 2" 0 ¢(p))|g=pv(Hy 0 9)

v(at o §)H, 0 ¢(p). (A.16)
Hy 0 0(p) = Hyla) = 5 (70 6 ema = X, (1) (A17)
o(f) = v(z" 0 9) X,(f) #v:Zv”Xu , vt =v(a! o ¢) (A.18)
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This shows explicitly that the X, satisfy linearity and the Leibniz rule and thus they are

indeed tangent vectors to the manifold M at p. The fact that an arbitrary tangent vector

v can be expressed as a linear combination of the n vectors X, shows that the vectors X,

are linearly independent, span the vector space V,, and that the dimension of V,, is exactly

n.

Coordinate Basis: The basis {X,} is called a coordinate basis. We may pretend that

0

Do’

X, =

Indeed if we work in a different chart ¢ we will have

, d /
X,(f) = %(f °¢ _1>|m’:¢'(p)’

We compute

Xuf) = aW(f 5™ mstr
= f 0¢ (¢ 0 )|acs
&B

= Ot azy(f ¢_1( ))‘x/:¢’(p)

v=1

sy

oxt
v=1

The tangent vector v can be rewritten as

n n
. u . ‘wy!
V= E WX, = g v Xu'
/.121 /J,:l

We conclude immediately that

This is the vector transformation law under the coordinate transformation z# — z'#.

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

Vectors as Directional Derivatives: A smooth curve on a manifold M is a smooth map

from R into M, viz v : R — M. A tangent vector at a point p can be thought of as a
directional derivative operator along a curve which goes through p. Indeed a tangent vector T’

at p=y(t) € M can be defined by

(A.24)
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The function f is € F and thus fovy: R — R. Given a chart ¢ the point p will be given by
p = ¢ Y(z) where z = (2!, ...,2") € R". Hence

() = ¢~ (). (A.25)

In other words the map v is mapped into a curve x(t) in R". We have immediately

n

Foo Nl =Y p(fos )l = Y XN, (A20)

()= TS

The components T# of the vector T" are therefore given by

dxz*

TM — %Lﬁ

(A.27)

A.1.4 Dual Vectors and Tensors

Definition 8: Let V}, be the tangent vector space at a point p of a manifold M. Let VJ be
the space of all linear maps w* from Vj, into R, viz w* : Vj, — R. The space V" is the so-called
dual vector space to V,, where addition and multiplication by scalars are defined in an obvious
way. The elements of V* are called dual vectors.

The dual vector space V' is also called the cotangent dual vector space at p (also the vector
space of one-forms at p). The elements of V" are then called cotangent dual vectors. Another
nomenclature is to refer to the elements of V1 as covariant vectors whereas the elements of V},
are referred to as contravariant vectors.

Dual Basis: Let X, u = 1,...,n be a basis of V. The basis elements of V* are given by
vectors X** pu =1,...,n which are defined by

XM (X,) = 6" (A.28)

v

The Kronecker delta is defined in the usual way. The proof that {X**} is a basis is straight-
forward. The basis {X**} of V' is called the dual basis to the basis {X,} of V,. The basis
elements X, may be thought of as the partial derivative operators 9/dz* since they transform
under a change of coordinate systems (corresponding to a change of charts ¢ — ¢') as

n II/
xXr
Xy = )
oxt
v=1

We immediately deduce that we must have the transformation law

X (A.29)

"ot
X — a;C,VX”*. (A.30)

v=1

Indeed we have in the transformed basis

XH(X)) = o1 (A.31)
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From this result we can think of the basis elements X** as the gradients dx*, viz
X = dzxt, (A.32)

Let v = Zu v*X, be an arbitrary tangent vector in V), then the action of the dual basis
elements X** on v is given by

X" (v) = v (A.33)

The action of a general element w* = > L wpXPT ot Vi on v is given by
w*(v) = Zwuv”. (A.34)
o

Recall the transformation law

’ - 8$IV
vo_ p
v = 2 G vk (A.35)
Again we conclude the transformation law
/ "L Ozt
w, = aTI,un. (A.36)
v=1

Indeed we confirm that

w(v) = Zw;v/“. (A.37)

Double Dual Vector Space: Let now V* be the space of all linear maps v** from V" into
R, viz v** : V¥ — R. The vector space V™ is naturally isomorphic (an isomorphism is one-
to-one and onto map) to the vector space V,, since to each vector v € V,, we can associate the
vector v™* € V** by the rule

v (W) =wt(v) , Wt eV (A.38)

If we choose w* = X* and v = X, we get v**(X**) = §#. We should think of v** in this case

as v =X,.

Definition 9: A tensor T of type (k,[) over the tangent vector space V}, is a multilinear map
form (Vy x V¥ x .. x V) x (V, x V}, x ... x V) (with k cotangent dual vector space V" and
tangent vector space V,) into R, viz

T:VyxVyix. . xVixV,xV,x..xV,— R (A.39)

The vectors v € V, are therefore tensors of type (1,0) whereas the cotangent dual vectors

v € V) are tensors of type (0,1). The space T (k,[) of all tensors of type (k,[) is a vector space

(obviously) of dimension n*.n' since dimV,, = dimV," = n.
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Contraction: The contraction of a tensor T" with respect to its ith cotangent dual vector and
jth tangent vector positions is a map C': T (k,l) — T (k — 1,1 — 1) defined by

CT =) T(.. X", o Xy ) (A.40)

The basis vector X** of the cotangent dual vector space V,* is inserted into the ith position
whereas the basis vector X, of the tangent vector space V,, is inserted into the jth position.

A tensor of type (1,1) can be viewed as a linear map from V,, into V), since for a fixed v € V,
the map T'(.,v) is an element of V* which is the same as V,, i.e. T(.,v) is a map from V,, into
V,. From this result it is obvious that the contraction of a tensor of the type (1, 1) is essentially
the trace and as such it must be independent of the basis { X, } and its dual {X**}. Contraction
is therefore a well defined operation on tensors.

Outer Product: Let T be a tensor of type (k,[) and ”components” T(X*, ..., X*; Y}, ..., Y))
and T be a tensor of type (k',I') and components T'(Xk“*,...,X’”kl*;YlH,...,YIHI). The
outer product of these two tensors which we denote T ® T" is a tensor of type (k + k. 1+ l/)
defined by the ”components” T(X*, ..., X¥ Yy, . YT (XFH L XHE5 YY),

Simple Tensors: Simple tensors are tensors obtained by taking the outer product of cotan-
gent dual vectors and tangent vectors. The n*.n' simple tensors X, ®...0 X, @ X"* ®...0 X"'*
form a basis of the vector space T (k,[). In other words any tensor 1" of type (k,l) can be ex-
panded as

T=>3"T"", X, ®. 90X, X" .. X" (A.41)
Hi v

By using X**(X,) = " and X,(X"*) = 6" we calculate
THL b view = T(Xul* Q... R X" Xy ®..Q XVz)‘ (A42>

These are the components of the tensor 7" in the basis {X,}. The contraction of the tensor 7'
is now explicitly given by

(CT)-t=r = ZT#I---M---Mk—l s (A.43)

p=1

The outer product of two tensors can also be given now explicitly in the basis {X,} in a quite
obvious way.

We conclude by writing down the transformation law of a tensor under a change of coordinate
systems. The transformation law of X, ® ... ® X, ® X"* ® ... ® X" is obviously given by
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Oz'M  Ox'Mk 9zt P ’ ’
X, ®..0X, X" Q.0 X" = ZZ : e Xy ®.. B X, @ X @ ® X

Oxtr " Qe or’ vy ox'vi

Thus we must have

T=) > T, X, ®.0X, 8 X"®.0X"" (A.45)
Hi v
The transformed components T'H1---bik .., are defined by
or'M  Ox'Mk Oxr dan
T Ha 1/1...11[/ - ZZ = oo & bk vi...ypt (A46)

al’ﬂl agjﬂk 8x"’1 ax’ul/

Hi Vg

A.1.5 Metric Tensor

A metric g is a tensor of type (0, 2), i.e. a linear map from V, x V, into R with the following

properties:

e The map ¢ : V, x V,, — R is symmetric in the sense that g(v,ve) = g(ve,vy) for any

vy, V2 € V).

e The map ¢ is nondegenerate in the sense that if g(v,v;) = 0 for all v € V], then one must

have v; = 0.

e In a coordinate basis where the components of the metric are denoted by g,, we can

expand the metric as

9= gudr" ®dz". (A.47)
oV
This can also be rewritten symbolically as
ds® = Zgwdx”dz”. (A.48)

2214

The map g provides an inner product on the tangent space V,, which is not necessarily
positive definite. Indeed given two vectors v and w of V,,, their inner product is given by

w) = Zgu,,v“w”. (A.49)
[787

By choosing v = w = dxr = xy — z; we see that g(dx,dx) is an infinitesimal squared
distance between the points f and 7. Hence the use of the name "metric” for the tensor g.
In fact g(dx,dx) is the generalization of the interval (also called line element) of special
relativity ds* = 1, dz"dz” and the components g,, are the generalization of 1), .

(A4
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e There exists a (non-unique) orthonormal basis {X,} of V}, in which
9(X,, X)) =0, if p#vand g(X,,X,)==%1, if p=v. (A.50)

The number of plus and minus signs is called the signature of the metric and is independent
of choice of basis. In fact the number of plus signs and the number of minus signs are
separately independent of choice of basis.

A manifold with a metric which is positive definite is called Euclidean or Riemannian
whereas a manifold with a metric which is indefinite is called Lorentzian or Pseudo-
Riemannian. Spacetime in special and general relativity is a Lorentzian manifold.

e The map g(.,v) can be thought of as an element of V*. Thus the metric can be thought
of as a map from V}, into V* given by v — g(.,v). Because of the nondegeneracy of g,
the map v — ¢(.,v) is one-to-one and onto and as a consequence it is invertible. The
metric provides thus an isomorphism between V, and V.

e The nondegeneracy of g can also be expressed by the statement that the determinant
g = det(g,,) # 0. The components of the inverse metric will be denoted by ¢g" = g"*
and thus

9" Gpr = 04 5 Gupg” = 0 (A.51)

The metric g, and its inverse g"” can be used to raise and lower indices on tensors as in
special relativity.

A.2 Curvature

A.2.1 Covariant Derivative

Definition 10: A covariant derivative operator V on a manifold M is a map which takes a
differentiable tensor of type (k,[) to a differentiable tensor of type (k, [+ 1) which satisfies the
following properties:

e Linearity:

V(aT + 8S) =aVT +8VS , a,B € R, T,S € T(k,1). (A.52)

e Leibniz rule:

VIT®S)=VT@S+TaVs, TeT(kl),SeT(k,l). (A.53)

e Commutativity with contraction: In the so-called index notation a tensor 7' € T (k,l)
will be denoted by 7% , ., while the tensor VI' € T (k,l + 1) will be denoted by
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VI 3, The almost obvious requirement of commutativity with contraction means
that for all T € T (k, 1) we must have

Vd(Talmcmak b1-..c...bl) = VT bi...c..by- (A54)
e The covariant derivative acting on scalars must be consistent with tangent vectors being
directional derivatives. Indeed for all f € F and t* € V,, we must have

1"V f = t(f). (A.55)

e Torsion free: For all f € F we have

VoViof = ViV f. (A.56)

Ordinary Derivative: Let {0/0z"} and {dx"} be the coordinate bases of the tangent vector
space and the cotangent vector space respectively in some coordinate system ). An ordinary
derivative operator 0 can be defined in the region covered by the coordinate system ) as follows.
If 7ri-t% -, are the components of the tensor 7% , , in the coordinate system 1, then
O T #% , ,, are the components of the tensor 9,7 % ;, 5 in the coordinate system . The
ordinary derivative operator 0 satisfies all the above five requirements as a consequence of the
properties of partial derivatives. However it is quite clear that the ordinary derivative operator
0 is coordinate dependent.

Action of Covariant Derivative on Tensors: Let V and V be two covariant derivative
operators. By condition 4 of definition 10 their action on scalar functions must coincide, viz

1V of = t°Vaof = t(f). (A.57)

We compute now the difference V,(fws) — Vq(fws) where w is some cotangent dual vector. We
have

@a(fwb) — Va(fwb) = @af.wb -+ f@awb — Vaf.wb — fVawb

= f(Vawp — Vawy). (A.58)

The difference V,wy, — Vaw, depends only on the value of wy, at the point p although both V,ws
and V,w;, depend on how wj, changes as we go away from the point p since they are derivatives.
The proof goes as follows. Let w, be the value of the cotangent dual vector wj at a nearby point
p, ie. w, —w, is zero at p. Thus by equation (A.12) there must exist smooth functions fla)
which vanish at the point p and cotangent dual vectors ,ul()a) such that

wy—wy = fayi. (A.59)
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We compute immediately
V(wy —wp) = V(wy — @) = > fioy(Varty” = Vapy). (A.60)

This is 0 since by assumption f(,) vanishes at p. Hence we get the desired result
§awg, — Vawl; = @awb - Vawb. (A61)

In other words Vaw, — Vawp, depends only on the value of wy, at the point p. Putting this
differently we say that the operator V, — V, is a map which takes cotangent dual vectors at a
point p into tensors of type (0,2) at p (not tensor fields defined in a neighborhood of p) which
is clearly a linear map by condition 1 of definition 10. We write

Vawp = Vawy — C° gpwe. (A.62)
The tensor C’i o stands for the map V, — V, and it is clearly a tensor of type (1,2). By setting
we = Vof = V,.f we get
VoVif = VaVy — C¢ V. f. (A.63)
By employing now condition 5 of definition 10 we get immediately
C® b =C° pa (A.64)

Let us consider now the difference @a(wbtb) — Va(wyt?) where t is a tangent vector. Since wyt®
is a function we have

Va(wpt®) — Va(wpt®) = 0. (A.65)
From the other hand we compute
Va(wpt?) = Va(wpt?) = wy(Vat? — Vot® 4+ C ot9). (A.66)
Hence we must have
Vat? = Vtb + C° ,.t°. (A.67)

For a general tensor T% % . . of type (k,l) the action of the covariant derivative operator
will be given by the expression

by...b v by...b E b; by...d...by E d by...by
vaT Lok cy...cp — vaT Lok c1...cp + C ‘ adT ! k cr...c; C acJ-T LTk ci...d...c;+
i J

(A.68)

The most important case corresponds to the choice @a = 0,. In this case C° 4 is denoted
' & and is called Christoffel symbol. This is a tensor associated with the covariant derivative
operator V, and the coordinate system ¢ in which the ordinary partial derivative 0, is defined.
By passing to a different coordinate system 1 the ordinary partial derivative changes from 9,
to 8; and hence the Christoffel symbol changes from I'¢ 4, to I'¢ . The components of I'¢
in the coordinate system ¢ will not be related to the components of I'¢ 4, in the coordinate
system )" by the tensor transformation law since both the coordinate system and the tensor
have changed.
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A.2.2 Parallel Transport

Definition 11: Let C' be a curve with a tangent vector t*. Let v® be some tangent vector
defined at each point on the curve. The vector v is parallelly transported along the curve C' if
and only if

t"V 0’ curve = 0. (A.69)
We have the following consequences and remarks:
e We know that
Va0l = 0,0° + TP 0. (A.70)
Thus
(90 + TP %) = 0. (A.71)

Let t be the parameter along the curve C'. The components of the vector t* in a coordinate
basis are given by

dz
th = %. (A.72)
In other words
d 14
% F TV athe? =0, (A.73)

From the properties of ordinary differential equations we know that this last equation has
a unique solution. In other words we can map tangent vector spaces V, and V, at points
p and ¢ of the manifold if we are given a curve C' connecting p and ¢ and a derivative
operator. The corresponding mathematical structure is called connection. In some usage
the derivative operator itself is called a connection.

e By demanding that the inner product of two vectors v® and w? is invariant under parallel
transport we obtain the condition

1V o (gret®w®) = 0 = t*V 1 gpe- 0w + Goew®.t*V g0° + g’ 12V qw® = 0. (A.74)

By using the fact that v and w® are parallelly transported along the curve C' we obtain
the condition

1V 4 gpe- "W = 0. (A.75)
This condition holds for all curves and all vectors and thus we get
vagbc =0. (A76)

Thus given a metric g4, on a manifold M the most natural covariant derivative operator
is the one under which the metric is covariantly constant.
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e [t is a theorem that given a metric g,, on a manifold M, there exists a unique covariant
derivative operator V, which satisfies V,g,. = 0. The proof goes as follows. We know
that Vg is given by

Vagbc = @agbc - Cd ab¥de — Cd ac9bd- (A77)

By imposing Vg = 0 we get

6agbc = Cd abddc + Cd acqbvd- (A78>
Equivalently

@bgac = Cd ab¥dc + Cd beYad- (A79)

Vegab = C% aegar + C* beGaa- (A.80)

Immediately we conclude that

6agbc + ﬁbgac - ﬁcgab = QCd ab¥dc- (A81)
In other words
1 ~ ~ -
Cd ab — §gdc(vagbc + ngac - chab)- (A82)

This choice of C? 4, which solves V,g5. = 0 is unique. In other words the corresponding
covariant derivative operator is unique.

e Generally a tensor Tt . . is parallelly transported along the curve C if and only if

taVaTblinbk c1...cl|curve = 0. (A83)

A.2.3 The Riemann Curvature

Riemann Curvature Tensor: The so-called Riemann curvature tensor can be defined in
terms of the failure of successive operations of differentiation to commute. Let us start with an
arbitrary tangent dual vector w, and an arbitrary function f. We want to calculate (V,V, —
VyV4)we. First we have

VoVi(fwe) = Vo Vifwe + Vi fVawe + Vo fViwe + fV, Viw,. (A.84)
Similarly

ViiVa(fwe) = ViV fwe + VafViwe + Vi fVowe + fVVwe. (A.85)
Thus

(V,Nb - vaa)(fwc) = f(VaVb - vaa)wc. (A.86)
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We can follow the same set of arguments which led from (A.58) to (A.62) to conclude that
the tensor (V,V, — V,V,)w, depends only on the value of w, at the point p. In other words
V.V, — V,V, is a linear map which takes tangent dual vectors into tensors of type (0,3).
Equivalently we can say that the action of V,V, — V,V, on tangent dual vectors is equivalent
to the action of a tensor of type (1,3). Thus we can write

(Vavb - vaa)wc = Rabc dwd~ (A87)

The tensor R, ¢ is precisely the Riemann curvature tensor.

Action on Tangent Vectors: Let now t* be an arbitrary tangent vector. The scalar product
t%w, is a function on the manifold and thus

(VoVy — Vi V) (t°w,) = 0. (A.88)
But
(VoVy — Vi Vo) (twe) = (VoVy — Vi Vo) tC.we + t°.(V,Vy — ViV, w. (A.89)
In other words
(VoVy — ViVt = — Ry ¢ (A.90)

Generalization of this result and the previous one to higher tensors is given by

k l
dy...d 2 didy...e...d § erdy...d
(vavb — vaa)T ek cr..c; — — Rabe e k c1...cp + Rabci etk ci...e...cy-
i=1 i=1

(A.91)

Properties of the Curvature Tensor: We state without proof the following properties of

the curvature tensor !

e Anti-symmetry in the first two indices:

Rabc ¢ = _Rbac d- (A92)
e Anti-symmetrization of the first three indices yields 0:
1
R[abc] ¢ = 0 ) R[abc} 4= g(Rabc d + Rcab d + Rbca d)- (A93)

e Anti-symmetry in the last two indices:

Rabcd - _Rabdc 5 Rabcd - Rabc eged- (A94)

!Exercise: Verify these properties explicitly.
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e Symmetry if the pair consisting of the first two indices is exchanged with the pair con-
sisting of the last two indices:

Rabcd = Rcdab- (A95>
e Bianchi identity:
1
V[aRbc}d =0 s v[aRbc}d ‘= g(vaRde c + VcRabd c + vacad e). (A96)

Ricci and Einstein Tensors: The Ricci tensor is defined by
Rac = Rabc b- (A97)

It is not difficult to show that R,. = R.,. This is the trace part of the Riemann curvature
tensor. The so-called scalar curvature is defined by

R=R,"“. (A.98)
By contracting the Bianchi identity and using V,g,. = 0 we get
Ge “(VaRbed ©+ VeRapa ¢ + VyReaa ©) = 0= VRpg + VeRopa © — ViRaq = 0. (A.99)
By contracting now the two indices b and d we get
3" (VaRpg + VeRapg © — ViRea) = 0= VR —2V,R, " = 0. (A.100)
This can be put in the form
VG = 0. (A.101)

The tensor G, is called Einstein tensor and is given by

Gab = Rab — %gabR. (A.lOQ)
Geometrical Meaning of the Curvature: The parallel transport of a vector from point
p to point ¢ is actually path-dependent. This path-dependence is directly measured by the
curvature tensor as we will now show.

We consider a tangent vector v* and a tangent dual vector w, at a point p of a manifold M.
We also consider a curve C' consisting of a small closed loop on a two-dimensional surface S
parameterized by two real numbers s and ¢ with the point p at the origin, viz (¢, s)|, = (0,0).
The first leg of this closed loop extends from p to the point (At,0), the second leg extends from
(At,0) to (At, As), the third leg extends from (At, As) to (0, As) and the last leg from (0, As)
to the point p. We parallel transport the vector v* but not the tangent dual vector w, around
this loop.
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We form the scalar product w,v* and compute how it changes under the above parallel
transport. Along the first stretch between p = (0,0) and (At,0) we have the change

0
(51 = Ata(vawa”(At/Q’O). (A103)

This is obviously accurate upto correction of the order At3. Let T be the tangent vector to
the line segment connecting p = (0,0) and (At,0). It is clear that T* is also the tangent vector
to all the curves of constant s. The above change can then be rewritten as

0 = Athvb(’ana)kAt/gp). (A.104)

Since v® is parallelly transported we have T7°V,v* = 0. We have then

&1 = At TV ywa (at/2,0)- (A.105)
The variation d3 corresponding to the third line segment between (At, As) and (0, As) must be
given by
b3 = — At T"Viwal(at/2.05)- (A.106)
We have then
81 + 03 = At{ v T Viywa|(ar/2.0) — VT Viwa (at/2,0) | - (A.107)

This is clearly 0 when As — 0 and as a consequence parallel transport is path-independent at
first order. The vector v® at (At/2, As) can be thought of as the parallel transport of the vector
v® at (At/2,0) along the curve connecting these two points, i.e. the line segment connecting
(At/2,0) and (At/2,As). By the previous remark parallel transport is path-independent at
first order which means that v® at (At/2, As) is equal to v* at (At/2,0) upto corrections of the
order of As?, At? and AsAt. Thus

01 + 03 = Atv® Tbvbwa|(m/270) — Tbewa|(At/2,As) . (A.108)

Similarly T°Vyw, at (At/2, As) is the parallel transport of T°Vyw, at (At/2,0) and hence upto
first order we must have

T"Viwal(at/20) — T"Viwa| (at/2.a5 = —A8SV o (T"Viw,). (A.109)

The vector S* is the tangent vector to the line segment connecting (At/2,0) and (At/2, As)
which is the same as the tangent vector to all the curves of constant ¢. Hence

61 4 05 = —AtAsv* SV (TVyw,). (A.110)
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The final result is therefore

0(vi'wy) = 01+ 03+ o+ Iy
AtAsv [TV (S*Vywa) — SV (T Viw,)]
= AtAsv*[(T°V,.S" — SV T Vyw, + TS (V. V) — VuVe)wa)
= AtAsv TSRy, Ywq. (A.111)

In the third line we have used the fact that S* and 7T commute. Indeed the commutator of
the vectors T and S“ is given by the vector [T, S]|* where [T, S]* = T°V.S* — S°V.T*. This
must vanish since 7% and S are tangent vectors to linearly independent curves. Since w, is
not parallelly transported we have §(v%w,) = dv®.w, and thus one can finally conclude that

Svt = AtAsv*TS’Raa . (A.112)

The Riemann curvature tensor measures therefore the path-dependence of parallelly transported
vectors.

Components of the Curvature Tensor: We know that
(VaVy — ViVo)we = Rape “wq. (A.113)
We know also
V wp = 0wy — I e (A.114)
We compute then

Vavbwc - va(abwc - Fd bcwd)
= aa(abwc - Fd bcwd> —re ab(aewc - Fd ecwd> —re ac(ﬁbwe - Fd bewd)
- aaabwc - aal—‘d be-Wd — Fd bcaawd —Ie abaewc + re abrd ecWd — re acabwe + re acrd beWd-

(A.115)

And
(vavb - vbva)wc - (abrd ac aard be + re acrd be — r« bcrd ae) wq- (A116)

We get then the components

Rabc d = abrd ac — aard be re acrd be — re bcrd ae- (A117)
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A.2.4 Geodesics

Parallel Transport of a Curve along Itself:  Geodesics are the straightest possible lines
on a curved manifold. Let us recall that a tangent vector v® is parallelly transported along a
curve C' with a tangent vector 7% if and only if T*V,0® = 0. A geodesics is a curve whose
tangent vector T'* is parallelly transported along itself, viz

T°V,T" = 0. (A.118)

This reads in a coordinate basis as

arv
dt

+ T 2THT = 0. (A.119)

In a given chart ¢ the curve C' is mapped into a curve z(t) in R". The components T# are
given in terms of z#(t) by

dzt
T = —. A.120
o ( )
Hence
d?av dzt da?
—— +TI" y,——=0. A.121
az U g =Y ( )

This is a set of n coupled second order ordinary differential equations with n unknown z#(t).
Given appropriate initial conditions z*(t9) and da*/dt|—,, we know that there must exist a
unique solution. Conversely given a tangent vector 7}, at a point p of a manifold M there exists
a unique geodesics which goes through p and is tangent to 7.

Length of a Curve: The length [ of a smooth curve C' with tangent 7% on a manifold M
with Riemannian metric g, is obviously given by

- / dt\/gu TP, (A.122)

The length is parametrization independent. Indeed we can show that 2

| = /dt\/gabTaTb - /ds\/gabS“Sb . So = T“%. (A.123)

In a Lorentzian manifold, the length of a spacelike curve is also given by this expression. For
a timelike curve for which ¢, 7%T° < 0 the length is replaced with the proper time 7 which is
given by cr = [ dt\/—gupT*T". For a lightlike (or null) curve for which g,,7T° = 0 the length
is always 0. Geodesics in a Lorentzian manifold can not change from timelike to spacelike or
null and vice versa since the norm is conserved in a parallel transport. The length of a curve
which changes from spacelike to timelike or vice versa is not defined.

2Exercise: Verify this equation explicitly.
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Geodesics extremize the length as we will now show. We consider the length of a curve
C' connecting two points p = C(tg) and ¢ = C(¢1). In a coordinate basis the length is given

f dzr dzv
l:/ At | Gy ——— A124
" odt dt ( )

The variation in [ under an arbitrary smooth deformation of the curve C' which keeps the two

explicitly by

=

points p and ¢ fixed is given by
1 [ dx* dx” 1 dz* dx” dx* dox”
ol = - dt(gp———)"2( =09, ——— —
/ (9 ) <2 I g e I A )

1 [h dz* dx”—1 (1 0g dx* dx” dz* dox”
= = dt(gw————) % | = =62 ——
/to 93 <2 000 " T @t T dt)
1M dz* dx” -1 (109, . ,dztdz” d dz* d dz*
/ (90 zt dx ) 2(_8% spo 42" de x x 5:)3")).
to

@t — L0 Vo + S (g
2 dt dt R T T AU L T U

(A.125)

We can assume without any loss of generality that the parametrization of the curve C' satisfies
G (dxt/dt)(dz” /dt) = 1. In other words choose dt* to be precisely the line element (interval)
and thus T" = dz* /dt is the 4—velocity. The last term in the above equation becomes obviously
a total derivative which vanishes by the fact that the considered deformation keeps the two end
points p and ¢ fixed. We get then

1 /M 10g9,, dx* dx¥  d dz*
ol = = dtéx’ | =22~ — —(gyy——
J, @ )

2 2 0z° dt dt
t1 n v v n 2
_ 1/ dtéx"(lag‘w do* dz”  0g, dz” dx d*z )
to

2 20 dt dt  ox dt dt e

1 [ ol 1,00  0Gu  Oguyy dx* dx” Azt
B 5/15 diox (5(8z0 I ax“) at dat M ae

1M 1 dg dg 0gue dz* dzv  d*aP
= I s, (L gpe(Q9ur _ O9ue _ O9ve _
2 /to z”(zg Cowr ~ 0w o) ar @ ap

1 [ da* da?  dPxP
= = dté -Ire,, — . A12
2 /to x”( waE dt dt2) (A.126)

The curve C' extremizes the length between the two points p and a if and only if 6l = 0. This

leads immediately to the equation

da* dx¥  dzP
I = 0. A127
odt dt + dt? ( )

In other words the curve C' must be a geodesic. Since the length between any two points on

a Riemannian manifold (and between any two points which can be connected by a spacelike
curve on a Lorentzian manifold) can be arbitrarily long we conclude that the shortest curve
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connecting the two points must be a geodesic as it is an extremum of length. Hence the shortest
curve is the straightest possible curve. The converse is not true. A geodesic connecting two
points is not necessarily the shortest path.

The proper time between any two points which can be connected by a timelike curve on a
Lorentzian manifold can be arbitrarily small and thus the curve with greatest proper time (if
it exists) must be a timelike geodesic as it is an extremum of proper time. However, a timelike
geodesic connecting two points is not necessarily the path with maximum proper time.

Lagrangian: It is not difficult to convince ourselves that the geodesic equation can also be
derived as the Euler-Lagrange equation of motion corresponding to the Lagrangian

1 dxt dx¥

=2 e

: (A.128)

In fact given the metric tensor g,, we can write explicitly the above Lagrangian and from
the corresponding Euler-Lagrange equation of motion we can read off directly the Christoffel
symbols I'” .
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