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1 Introduction

Entanglement [2], Bell’s non-locality [3] and quantum discord [4, 5] are three kinds of quantum cor-

relations which have been extensively discussed in the literature. They coincide for pure states but

are generally of difficult characterization in mixed states. In the mixed case an hierarchical structure

emerges where the quantum steering arises as an intermediate form of quantum correlations between

entanglement and Bell non-locality. The concept of quantum steering or Einstein-Podolsky-Rosen

(EPR) steering [1] was introduced by Schrödinger [7] in generalizing the EPR paradox [6]. In sim-

ple words, this phenomenon dictates that, in a bipartite quantum system, measurement made by one

party (Alice) can remotely alter (i.e. steer) the second party (Bob) at different location. The quantum

steering defines the Alice’s ability to change non locally the Bob’s system state. Now, it is commonly

accepted that the quantum steering can be interpreted as the entanglement certification when the

measurements are performed by an un-trusted party [8]. This operational interpretation motivated

several theoretical [14] and experimental [15] studies. One may quote for instance, the exploitation of

quantum steering as an essential resource in quantum key distribution [16], secure quantum teleporta-

tion [17] and randomness generation [18]. For continuous-variables systems, an experimental criteria

to detect quantum steering was proposed by Reid in [10] and the first experimental observation was

reported in [11]. Recently, substantial experimental progress in detecting this kind of quantum corre-

lations was accomplished for discrete as well as continuous variables [6, 12]. The issue concerning the

detection of quantum steering under Gaussian measurements was investigated in [8]. More precisely,

It has been proved that the violation of Reid criterion [10] constitutes a genuine indicator of quan-

tum steering. This important result confirms the fact that quantum steering, which include the EPR

paradox, characterizes the quantum correlations in two-mode Gaussian states more efficiently than

the concept of non-separability. Another important point, discussed in [8], concerns the asymmetry

of quantum steering and the existence of entangled states which are one way steerable (states that

are steerable by Alice but not by Bob). This directional asymmetry was examined theoretically and

experimentally in some recent works [13] showing the possible steerability only in one direction.

Motivated by the above mentioned achievements, especially quantum steering in two-mode Gaus-

sian states, we examine Gaussian one-way steering in an optomechanical system fed by squeezed light.

Specifically, we consider two spatially separated optomechanical Fabry-Perot cavities fed by broadband



squeezed light. By adopting the resolved sideband regime approximation and the adiabatic elimination

of the optical modes, we investigate the Gaussian steering and its asymmetry for two mixed mechanical

modes. A special emphasis is also dedicated to mechanical modes exhibiting the steerability only in one

direction. To characterize the quantum steering in the optomechanical system under consideration,

we shall employ the formulation of the concept of steering in bipartite Gaussian states developed in [9].

Our interest in optomechanical systems is essentially motivated by the tremendous experimental

and theoretical progress in this field of research in connection with quantum information physics. In

fact, many significant achievements were realized such as for instance the test of quantum effects at

macroscopic scales [19], the production of entangled states [20], ground state optical feedback cooling

of the fundamental vibrational mode [21], the observation of quantum state transfer [22] and massive

quantum superpositions or so-called Schrödinger cat states [23]. The main objective of these efforts is

to pave the way for controlling optical-mechanical interactions at the quantum level to realize hybrid

structures to encode the information. From this perspective, we think that the optomechanical system

under consideration can be useful for experimental demonstration of quantum steering between two

mechanical modes. We note that the first experimental achievement in this sense was realized for

two Gaussian entangled optical fields (Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng Phys.

Rev. Lett. 68, 3663 Published 22 June 1992). On the other hand, it offers the experimental setup to

demonstrate the one way steerability of two mechanical modes which, to the best of our knowledge,

has not been considered before.

The remainder of this paper is organized as follows. In Sec. 2, we present a detailed description of of

the optomechanical system under investigation. We give the quantum Langevin equations governing

the dynamics of the mechanical and optical modes. The required approximations to derive closed

analytical expressions for the time-dependent covariance matrix of the mechanical fluctuations are

also discussed. In Sec. 3, using the quantum steering formulation proposed in [9], we study the

dynamics of Gaussian steering and its asymmetry for the two mechanical modes of the system taking

into account the thermal and the squeezing light effects. The entanglement is quantified in terms of

Rényi-2 entropy. In particular, to show that this quantifier can not detect the asymmetry of quantum

correlations, we evaluated numerically the amount of entanglement and Gaussian steering. Finally,

we close the paper with concluding remarks in in Sec. 4.

2 System and Hamiltonian

2.1 The model

The optomechanical system depicted in Fig.1 comprises two Fabry-Perot cavities where each cavity

is composed by two mirrors. The first mirror is fixed and partially transmitting, while the second

is movable and perfectly reflecting. The jth cavity is pumped by coherent laser field with an input
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power ℘j , a phase φj and a frequency ωLj . In addition, the two cavities are also pumped by two-mode

squeezed light which can be for instance produced by spontaneous parametric down-conversion source

(SPDC) [?]. The first (respectively, the second) squeezed mode is sent towards the first (respectively,

second) cavity. The mirrors are represented by harmonic oscillators [?] with an effective mass mµj ,

a mechanical damping rate γj and a frequency ωµj . The starting point of all subsequent discussions

will be the Hamiltonian governing the dynamics of optical and mechanical modes of the system. This

Hamiltonian reads, in the rotating frame at the lasers frequencies, as [?]

H =

2∑
j=1

[(
ωcj − ωLj

)
a†jaj + ωµjb

†
jbj + gja

†
jaj(b

†
j + bj) + εj(e

iφja†j + e−iφjaj)
]
. (1)

where bj , b
†
j are the annihilation and creation operators associated with the mechanical mode describing

the mirror j (for j = 1, 2). They satisfy the usual commutation relations [bj , b
†
k] = δjk. As we shall

mainly concerned in Sec. 3 with the quantum correlations between the mechanical modes, we will

refer to the mode 1 as Alice and to the mode 2 as Bob. In equation (1), the objects aj and a†j (for

j = 1, 2) denote the annihilation and creation operators of the optical modes. They satisfy also the

commutation rules [aj , a
†
k] = δjk. The quantity gj in the equation (1) is the optomechanical single-

photon coupling rate between the jth mechanical mode and the jth optical mode. It is given by

gj =
(
ωcj/lj

)√
~/mµjωµj where lj is the jth cavity length. The coupling strength between the jth

external laser and its corresponding cavity field is defined by εj =
√

2κj℘j/~ωLj ; κj being the energy

decay rate of the jth cavity.

2.2 Quantum Langevin equation

In the Heisenberg picture, the nonlinear quantum Langevin equations for optical and mechanical

modes are given by

∂tbj = −
(
γj/2 + iωµj

)
bj − igja

†
jaj +

√
γjb

in
j , (2)

∂taj = − (κj/2− i∆j) aj − igjaj(b
†
j + bj)− iεje

iφj +
√
κja

in
j , (3)

where ∆j = ωLj − ωcj for ) is the jth laser detuning [?] with j = 1, 2. In equation (3) binj is the jth

random Brownian operator with zero mean value (⟨binj ⟩ = 0) which describes the noise induced by the

vacuum fluctuations of the continuum of modes outside the cavity. We assume that the mechanical

baths are Markovian so that the noise operators binj have the following nonzero time-domain correlation

functions [?, ?]

⟨bin†j (t)binj (t′)⟩ = nth,jδ(t− t′), (4)

⟨binj (t)bin†j (t′)⟩ = (nth,j + 1)δ(t− t′), (5)

where nth,j =
[
exp(~ωµj/kBTj)− 1

]−1
is the mean thermal photons number, Tj is the temperature

of the jth mirror environment and kB is the Boltzmann constant. Another kind of noise affecting the
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system is the jth input squeezed vacuum noise operator ainj with zero mean value. They have the

following non zero correlation properties [?]

⟨ain†
j (t)ainj (t′)⟩ = Nδ(t− t′) for j = 1, 2, (6)

⟨ainj (t)ain
†

j (t′)⟩ = (N + 1)δ(t− t′) for j = 1, 2, (7)

⟨ainj (t)aink (t′)⟩ = Me−iωµ(t+t′)δ(t− t′) for j ̸= k = 1, 2, (8)

⟨ain†
j (t)ain

†
k (t′)⟩ = Meiωµ(t+t′)δ(t− t′) for j ̸= k = 1, 2, (9)

where N = sinh2r, M = sinhrcoshr; r being the squeezing parameter (we have assumed that ωµ1 =

ωµ2 = ωµ).

2.3 Linearization of quantum Langevin equations

Due to the nonlinear nature of the radiation pressure, the exact solution coupled nonlinear quantum

Langevin equations (2)-(3) is in general very challenging. To overcome this difficulty, we adopt the

linearization scheme discussed in [?, ?]. In this scheme, the optical and mechanical operators aj and

bj are decomposed as the sum of their mean value of the steady state plus fluctuation with zero mean

value so that Oj = ⟨Oj⟩ + δOj = Ojs + δOj where Oj ≡ aj , bj . The mean values bjs and ajs are

obtained by solving the equations (2) and (3) in the steady state

⟨aj⟩ = ajs =
−iεje

iφj

κj/2− i∆′
j

and ⟨bj⟩ = bjs =
−igj |ajs|2

γj/2 + iωµj

(10)

where ∆′
j = ∆j −gj(b

∗
js + bjs) is the jth effective cavity detuning including the radiation pressure

effects [?, ?]. To simplify further our purpose, we assume that the double-cavity system is intensely

driven (|ajs| ≫ 1, for j = 1, 2). This assumption can be realized considering lasers with a large input

power ℘j [?]. Therefore, the contributions arising from the nonlinear terms δa†jδaj , δajδbj and δajδb
†
j

can be ignored. As result, one gets the following linearized Langevin equations

δḃj = −
(
γj/2 + iωµj

)
δbj +Gj

(
δaj − δa†j

)
+

√
γjb

in
j , (11)

δȧj = −
(
κj/2− i∆′

j

)
δaj −Gj

(
δb†j + δbj

)
+

√
κja

in
i , (12)

where the parameter Gj , defined by Gj = gj |ajs| = gj
√

n̄j
cav, is the jth light-enhanced optomechanical

coupling for the linearized regime [?]. The quantity n̄j
cav is the number of photons circulating inside

the jth cavity [?]. We notice that the Eqs. (11) and (12) have been obtained by setting ajs = −i |ajs|
or equivalently by taking the phase φj of the jth input laser field equal to φj = − arctan(2∆′

j/κj).

Introducing the operators δb̃j and δãj defined respectively by δbj = δb̃je
−iωµt and δaj = δãje

i∆′
jt, the

equations (11) and (12) rewrite

δ
˙̃
bj = −γj

2
δb̃j +Gj

(
δãje

i(∆′
j+ωµ)t − δã†je

−i(∆′
j−ωµ)t

)
+

√
γj b̃

in
j , (13)

δ ˙̃aj = −κj
2
δãj −Gj

(
δb̃je

−i(∆′
j+ωµ)t + δb̃†je

−i(∆′
j−ωµ)t

)
+

√
κj ã

in
i . (14)
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Next, we assume that the two cavities are driven at the red sideband (∆′
j = −ωµ for j = 1, 2) which

corresponds to quantum states transfer regime [?, ?]. We note also that, in the resolved-sideband

regime where the mechanical frequency ωµ of the movable mirror is larger than the jth cavity decay

rate κj (ωµ ≫ κ1, κ2), one can use the rotating wave approximation (RWA) [?, ?]. Therefore in a

frame rotating with frequency ±2ωµ , the equations (13) and (14) give

δ
˙̃
bj = −γj

2
δb̃j +Gjδãj +

√
γj b̃

in
j , (15)

δ ˙̃aj = −κj
2
δãj −Gjδb̃j +

√
κj ã

in
j , (16)

when the the fast oscillating terms are neglected.

2.4 The adiabatic elimination of the optical modes

Being interested only in the quantum correlations between mechanical modes, the ideal configuration

is the adiabatic regime which corresponds to the situation where the mirrors have a large mechanical

quality factor and weak effective optomechanical coupling (κj ≫ Gj , γj) [?]. In this limiting configu-

ration, by inserting the steady state solution of (16) into (15), one shows that the jth mirror dynamics

reduces to

δ
˙̃
bj = −Γj

2
δb̃j +

√
γj b̃

in
j +

√
Γaj ã

in
j = −Γj

2
δb̃j + F̃ in

j , (17)

where Γaj = 4G2
j/κj is the effective relaxation rate induced by radiation pressure [?], Γj = Γaj + γj

and F̃ in
j =

√
γj b̃

in
j +

√
Γaj ã

in
j . In terms of the quadratures

δq̃j = (δb̃†j + δb̃j)/
√
2, δp̃j = i(δb̃†j − δb̃j)/

√
2, (18)

F̃ in
qj = (F̃ in,†

j + F̃ in
j )/

√
2, F̃ in

pj = i(F̃ in,†
j − F̃ in

j )/
√
2, (19)

the linear quantum Langevin equations (17) can be cast in matricial form [?]

u̇(t) = Su(t) + n(t), (20)

where S = diag(−Γ1
2 ,−Γ1

2 ,−Γ2
2 ,−Γ2

2 ), u(t)T = (δq̃1, δp̃1, δq̃2, δp̃2) and n(t)T = (F̃ in
q1 , F̃

in
p1 , F̃

in
q2 , F̃

in
p2 ).

Needless to say, the form of the matrix S guarantees the full stability of the system and in this case

the use of the Routh-Hurwitz criterion [?] is not necessary. Thus, we end up with linear evolution

equations for the mechanical modes with zero-mean Gaussian noises. We notice that the mechanical

fluctuations in the stable regime will also evolve to an asymptotic zero-mean Gaussian state. It follows

that the state of the system is completely described by the correlation matrix V (t) whose elements

are given by

Vii′(t) =
1

2
(⟨ui(t)ui′(t) + ui′(t)ui(t)⟩). (21)

Using Eqs. (20) and (21), it is simple to check that the matrix V (t) satisfies the following evolution

equation [?]
d

dt
V (t) = SV (t) + V (t)ST +D, (22)
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where D is the noise correlation matrix defined by Dkk′δ(t − t′) = (⟨nk(t)nk′(t
′) + nk′(t

′)nk(t)⟩)/2.
Using the correlation properties of the noise operators given by the set of equations (4)-(9), one shows

that the matrix D takes the form

D =


D11 0 D13 0

0 D22 0 D24

D13 0 D33 0

0 D24 0 D44

 , (23)

where D11 = D22 = Γa1 (N + 1/2) + γ1 (nth,1 + 1/2), D33 = D44 = Γa2 (N + 1/2) + γ2 (nth,2 + 1/2)

and D13 = −D24 = M
√

Γa1Γa2 . The equation (22) is easily solvable and the solution writes as

V (t) =


v11(t) 0 v13(t) 0

0 v22(t) 0 v24(t)

v13(t) 0 v33(t) 0

0 v24(t) 0 v44(t)

 ≡

(
V1(t) V3(t)

V T
3 (t) V2(t)

)
, (24)

with V1(t) = diag(v11(t), v22(t)), V2(t) = diag(v33(t), v44(t)) and V3(t) = diag(v13(t), v24(t)). Notice

that V (t) is a real, symmetric and positive definite matrix. The 2×2 matrices V1(t) and V2(t) represent

the first and second mechanical modes respectively, while the information about the correlations

between them is encoded in the sub-matrix V3(t). Considering identical damping rates (γ1 = γ2 = γ),

the explicit expressions of the covariance matrix elements are given by

v11(t) = v22(t) =
(2N + 1)C1 + 2nth,1 + 1

2(C1 + 1)
+

(−2N + 1)C1 − 2nth,1 + 1

2(C1 + 1)
e−γ(C1+1)t, (25)

v33(t) = v44(t) =
(2N + 1)C2 + 2nth,2 + 1

2(C2 + 1)
+

(−2N + 1)C2 − 2nth,2 + 1

2(C2 + 1)
e−γ(C2+1)t, (26)

v13(t) = −v24(t) =
2M

√
C1C2

C1 + C2 + 2

(
1− e−

γ
2
(C1+C2+2)t

)
, (27)

in terms of the jth optomechanical cooperativity Cj defined by [?]

Cj = Γaj/γ = 4G2
j/γκj =

8ω2
cj

γmµjωµωLj l
2
j

℘j[(κj

2

)2
+ ω2

µ

] . (28)

Remak that when r = 0, the equations (??) and (27) give det V3(t) = 0. Accordingly, without

squeezed light, the two mechanical modes are separable and they are not steerable in any direction

[?]. Hence, to detect the steerability in such configuration, the squeezing parameter must take non

vanishing values. In fact, if r ̸= 0, we have detV3(t) < 0 which is a necessary condition for two-mode

Gaussian state to be entangled [?]. This reflects the crucial role of the squeezed light in the transfer

quantum correlations from light to mechanical modes.
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