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Abstract

A special emphasis is devoted to the concept of local quantum uncertainty as indicator of quan-

tum correlations. We study quantum discord for a class of two-qubit states parameterized by two

parameters. Quantum discord based on local quantum uncertainty, von Neumann entropy and trace

distance (Schatten 1-norm) are explicitly derived and compared. The behavior of the local quantum

uncertainty quantifier under decoherence effects is investigated .
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1 Introduction

Characterizing quantum correlations in multipartite quantum systems is one of the most challeng-

ing topics in quantum information theory. Various measures to quantify the degree of quantumness

in a multipartite quantum system were introduced in the literature. The most familiar ones the

concurrence, the entanglement of formation, the quantum discord and its various geometric versions

[1, 2, 3, 4, 5]. The interest in quantum correlations other than entanglement lies in the existence of

nonclassical correlations even in separable states [6, 7]. In fact, entanglement does not account for all

nonclassical aspects of correlations, especially in mixed states. This yielded many works dedicated to

introduce quantum correlation quantifiers beyond entanglement. As the total correlation is the sum

of two contributions: a classical part and quantum part, different concepts were considered to develop

the best way to distinguish between classical and quantum correlations. In this context, the entropy

based quantum discord [6, 7] is probably the quantifier which has been intensively investigated in the

literature for different purposes and from several perspectives (see for instance [5]). However, it must

be noticed that the analytical evaluation of quantum discord which is in general very challenging.

Only partial results were obtained for few two-qubit systems. To overcome such technical difficulties

and to find reliable and computable quantifiers, geometric variants of quantum discord were intro-

duced by considering different geometrical measures. Indeed, The 2-norm (Hilbert-Schmidt norm)

version of the quantum discord was introduced in [8]. This quantum correlation indicator is easily

computable [9, 10, 11, 12]. However, despite its computability for any bipartite quantum system,

the Hilbert-Schmidt based quantum discord can increase under local operations on the unmeasured

qubit. This drawback of quantum correlation quantifier based on Hilbert-Schmidt norm comes from

the non-contractibility of the 2-norm (Schatten 2-norm) [13]. Now, it is well known that the only

norm among the Schatten p-norm which is contractible is the Bures norm (trace norm with p = 1)

and which constitutes a suitable tool to quantify geometrically the quantum discord (see for instance

[14, 15]).

Quantifying quantum correlations in multipartite quantum systems continues to draw special at-

tention in quantum information science. Hence, another reliable geometric quantifier of discord-like

correlations was recently introduced by employing the so-called local quantum uncertainty. This

quantifier uses the notion skew information introduced in [16] to determine the uncertainty in the

measurement of an observable. The local quantum uncertainty is given by the minimum of the skew

information over all possible local observales. This measure offers an appropriate tool to evaluate the

analytical expressions of quantum correlations encompassed in any qubit-qudit bipartite system [17].

The local quantum uncertainty is related to the quantum Fisher information [18, 19, 20] which is a

key ingredient in quantum metrology protocols [21]. Also, it quantifies the speed of the local (unitary)

evolution of a bipartite quantum system [17].
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In this paper the analytical derivation of quantum discord is essentially approached in the context

of local quantum uncertainty formalism. We consider a particular family of rank-2 X states which

includes various types of two-qubit states of interest in different models of collective spin systems like

for instance Dicke model [22] and Lipkin-Meshkov-Glick model [23] where the quantum discord was

investigated in relation with their critical properties and quantum phase transitions (see for instance

[24, 25, 26, 27]). Remarkably, it has been shown that the quantum discord provides a suitable indicator

to understand the role of quantum correlations in characterizing quantum phase transitions [28](see

also [29]). We note also that the set of two-qubit under consideration are of special relevance in in-

vestigating quantum correlations in bipartite states extracted from multi-qubit Dicke states and their

superpositions(e.g., generalized GHZ states, even and odd spin coherent states) [30]. Thus, beside the

explicit derivation of local quantum uncertainty, we also the amount of quantum correlations in such

states when measured by von Neumann entropy or trace distance. Another facet of this work concerns

the dynamics of the local quantum uncertainty under decoherence effects induced by the unavoidable

interaction of a quantum system with environment. Four typical quantum decoherence channels are

considered. The explicit expressions of local quantum uncertainty are derived for each case. We will

show that in some cases the local quantum uncertainty is unaffected by the decoherence channel effects.

The paper is structured as follows. In section 2, we give the explicit expressions for local quantum

uncertainty, the von Neumann entropy based quantum discord and the trace norm quantum discord

for a class of two-qubit states which are, as we mentioned already, relevant in investigating bipartite

quantum correlations in various collective spin models. In section 3, under four quantum decoherence

channels (bit flip, phase flip, bit-phase flip and generalized amplitude damping), we give the ana-

lytic expressions of local quantum uncertainty. In particular, we show the freezing character of local

quantum uncertainty in some special cases. Concluding remarks close this paper.

2 Local quantum uncertainty, entropic quantum discord and geo-

metric quantum for rank two X states

The two-qubit density matrices which display non zero entries only along the main- and anti-diagonals

are usually calledX-states. They generalize several two-qubit states as for instance Bell-diagonal states

(see [31]), Werner states [32], isotropic states [33]. Their particular relevance was first identified in

investigating the phenomenon of sudden death of entanglement [34]and since then extended to many

other context in connection of quantum information theory. A generic X-state is parameterized by

seven real parameters and the corresponding symmetry is fully characterized by the su(2)×su(2)×u(1)
subalgebra of the full su(4) algebra describing an arbitrary two-qubit system [35]. This symmetry re-

duction from su(4) to su(2)× su(2)× u(1) renders easy many analytical calculations of concurrence,

entanglement of formation, quantum discord and leads to interesting results in studying their proper-

ties and especially their evolution under dissipative processes were reported in the literature ( see for
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instance [36, 37]).

In this work we consider the set of two-qubit density matrices which have the following form

ρ =


c1 0 0

√
c1c2

0 1
2(1− c1 − c2)

1
2(1− c1 − c2) 0

0 1
2(1− c1 − c2)

1
2(1− c1 − c2) 0

√
c1c2 0 0 c2

 (1)

in the computational basis B = {|00⟩, |01⟩, |10⟩, |11⟩}. The parameters c1 and c2 satisfy the conditions

0 ≤ c1 ≤ 1 , 0 ≤ c2 ≤ 1 and 0 ≤ c1 + c2 ≤ 1. We assume that all entries of the matrix ρ are positives.

In fact, the local unitary transformation, acting on the qubit 1 and the qubit 2 forming the system,

|0⟩k → exp

(
i

2
(θ1 + (−)kθ2)

)
|0⟩k k = 1, 2

eliminates the phase factors of the off diagonal elements and the rank of the density matrix ρ remains

unchanged. In the Fano-Bloch representation, the density ρ writes

ρ =
1

4

∑
α,β

Rαβσα ⊗ σβ

where the correlation matrix Rαβ are given by Rαβ = Tr(
√
ρ σα ⊗ σβ) with α, β = 0, 1, 2, 3. The

non-vanishing correlation matrix elements are given by

R30 = R03 = c1 − c2 R33 = 2(c1 + c2)− 1, R11 = 1− (
√
c1 −

√
c2)

2 R22 = 1− (
√
c1 +

√
c2)

2. (2)

The density matrix (1) is invariant under parity symmetry and exchange transformation (ρ commutes

with σ3 ⊗ σ3 and the permutation operator which exchanges the qubit state |i, j⟩ to |j, i⟩ leaves ρ

unchanged). These symmetries simplify considerably the complexity of the analytical evaluations of

bipartite correlations. Indeed, from a practical viewpoint, our interest on this type of X states (1)

relies upon their simple analytical manipulation in contrast with an arbitrary two-qubit state for which

one is forced to resort heavy numerical approaches.

2.1 Local quantum uncertainty: Definition

The concept of local quantum uncertainty is now considered as a promising quantifier of quantum

correlation. This is essentially due to its easiness of computability and its reliability. It quantifies the

minimal quantum uncertainty in a quantum state due to a measurement of a local observable [17].

For a bipartite quantum state ρ12, the local quantum uncertainty is defined as

U(ρ12) ≡ min
K1

I(ρ,K1 ⊗ I2), (3)

where K1 is some local observable on the subsystem 1, I2 is the identity operator and

I(ρAB,K) = −1

2
Tr([

√
ρAB,K]2) (4)
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is the skew information [16, 18]. The skew information represents the non-commutativity between

the state and the observable K1. The analytical evaluation the local quantum uncertainty requirers a

minimization procedure over the set of all observales acting on the part 1. A closed form for qubit-

qudit systems was derived in [17]. In particular, for qubits (12 -spin particles), the expression of the

local quantum uncertainty is given by [17]

U(ρ) = 1− λmax{W}, (5)

where λmax denotes the maximum eigenvalue of the 3×3 matrixW whose matrix elements are defined

by

ωij ≡ Tr{√ρ(σi ⊗ I2)
√
ρ(σj ⊗ I2)}, (6)

with i, j = 1, 2, 3. The local quantum uncertainty provides an appropriate quantifier of the minimum

amount of uncertainty in a bipartite quantum state. For pure bipartite states, it reduces to linear

entropy of the reduced densities of the subsystems. Also, it vanishes for classically correlated states.

Another interesting property of local quantum uncertainty is its invariance under local unitary opera-

tions. This quantum correlations indicator enjoys all required properties of being a reliable quantifier

[17]. Hence, in what follows, we shall employ the local quantum uncertainty to study the pairwise

quantum correlation in a family of two-qubit states. We shall compare the discord-like local quan-

tum uncertainty with the geometric quantum discord based on the trace distance [13, 14, 15] and the

entropy based quantum discord originally defined in [?, 5]. To get the explicit form of the matrix

elements (6), one needs the squared matrix
√
ρ that is given

√
ρ =


c1√
c1+c2

0 0
√
c1c2√
c1+c2

0 1
2

√
1− c1 − c2

1
2

√
1− c1 − c2 0

0 1
2

√
1− c1 − c2

1
2

√
1− c1 − c2 0

√
c1c2√
c1+c2

0 0 c2√
c1+c2

 (7)

in the computational basis. In Fano-Bloch representation, it rewrites as

√
ρ =

1

4

∑
α,β

Rαβσα ⊗ σβ

with Rαβ = Tr(
√
ρ σα ⊗ σβ). The non vanishing matrix correlation elements Rαβ are explicitly given

by

R00 =
√
c1 + c2 −

√
1− c1 − c2, R03 = R30 = c1 − c2

R11 =
√
1− c1 − c2+2

√
c1c2√
c1 + c2

, R22 =
√
1− c1 − c2−2

√
c1c2√
c1 + c2

, R33 =
√
c1 + c2−

√
1− c1 − c2.

Reporting the matrix (7) in the equation (6), it is simple to check that only the off-diagonal elements

of the matrix W are zero and the diagonal ones are given by and the

ω11 =

√
1− (c1 + c2)

c1 + c2
(
√
c1 +

√
c2)

2, ω22 =

√
1− (c1 + c2)

c1 + c2
(
√
c1 −

√
c2)

2, ω33 =
(c1 − c2)

2

c1 + c2
. (8)
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We note that the eigenvalue ω11 is always larger than ω11 so that that ωmax = max(ω11, ω33). To

determine the states for which ω11 ≤ ω33 or ω33 ≤ ω11, one study the sign of the quantity ω11 − ω33.

In this respect, one verifies the following identity

sign (ω11 − ω33) = sign

(√
(c1 + c2)(1− (c1 + c2))− (

√
c1 −

√
c2)

2

)
. (9)

The set of states of type (1) can be partitioned as

{ρ ≡ ρc1,c2 , 0 ≤ c1 + c2 ≤ 1} =
∪

α∈[0,1]

{ρα ≡ ρc1,α−c1 , 0 ≤ c1 ≤ α}

with c1 + c2 = α. Therefore, for a fixed value of α, we have

sign

(√
(c1 + c2)(1− (c1 + c2))− (

√
c1 −

√
c2)

2

)
= sign

(
2
√
c1

√
α− c1 +

√
α (

√
1− α−

√
α)

)
(10)

The function sign (ω11 − ω33) is positive for α ≤ 1
2 . This gives ωmax = ω11. Conversely, for α ≥ 1

2 ,

one verifies that the function (10) is positive for α− ≤ c1 ≤ α+ and negative for 0 ≤ c1 ≤ α− or

α+ ≤ c1 ≤ α where the quantities α− and α+ are given by

α± =
α

2
± 1

2

√
α
√
1− α

(
2
√
α−

√
1− α

)
. (11)

Accordingly, the maximum eigenvalue of the matrix W (6) for the states ρ (1) with α ≥ 1
2 writes as

ωmax =


ω33 for 0 ≤ c1 ≤ α−

ω11 for α− ≤ c1 ≤ α+

ω33 for α+ ≤ c1 ≤ α

(12)

To write the analytical expression of the local quantum uncertainty measure given by U(ρ) = 1−ωmax,

the situations where the parameter α is greater or less than 1
2 are treated separately.

For α ≤ 1
2 , we have

U(ρ) = 1− ω11 = 1−
√

1− α

α
(
√
c1 +

√
α− c1)

2 with 0 ≤ c1 ≤ α. (13)

For α ≥ 1
2 , on gets

U(ρ) = 1− ω11 = 1−
√

1− α

α
(
√
c1 +

√
α− c1)

2 for α− ≤ c1 ≤ α+, (14)

and

U(ρ) = 1− ω33 = 1− (2c1 − α)2

α
for 0 ≤ c1 ≤ α− and α+ ≤ c1 ≤ α. (15)

The quantum discord quantified by local quantum uncertainty in the states ρ (1) is depicted in the

figure 1 for different values of α. We notice that the local quantum uncertainty is non zero except

for c1 = c2 = 1
4 with α = 1

2 . The discord-like local quantum uncertainty goes beyond entanglement.

Indeed, for the states ρ (1), the Wootters concurrence writes [38]

C12(ρ) = |(
√
c1 +

√
c2)

2 − 1| (16)
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with α = c1 + c2. It is simply verified that for α < 1
2 , the states are entangled. For α ≥ 1

2 , the

states ρ with (c1, c2) = 1
2

(
α +

√
2α− 1, α −

√
2α− 1

)
and (c1, c2) = 1

2

(
α −

√
2α− 1, α +

√
2α− 1

)
are separable. For this special set of separable states, the local quantum uncertainty is non zero as it

can verified from the equations (14) and (15). The figure 1 shows that for α ≤ 1
2 the local quantum

uncertainty is minimal in the states with c1 = c2 =
α
2 which are explicitly given by

ρ
(
c1 =

α

2
, c2 =

α

2

)
= (1− α)|ψ1⟩⟨ψ1|+ α|ψ2⟩⟨ψ2| (17)

with

|ψ1⟩ = 1√
2
(|01⟩+ |10⟩) , |ψ2⟩ = 1√

2
(|00⟩+ |11⟩). (18)

On the other hand, the maximal amount of quantum correlations in the states with α ≤ 1
2 is reached

when (c1 = 0, c2 = α) or (c1 = α, c2 = 0). The maximally discord states in this case are given by

ρ(c1 = 0, c2 = α) = α|11⟩⟨11|+(1−α)|ψ1⟩⟨ψ1| or ρ(c1 = α, c2 = 0) = α|00⟩⟨00|+(1−α)|ψ1⟩⟨ψ1|. (19)

It is also important to stress that states with values of α approaching zero contain more quantum

correlations. This situation is completely different for α ≥ 1
2 . In fact, as depicted in the figure 1,

the local quantum uncertainty increases as the parameter α increases. Also, comparing the particular

values α = 0.6 and α = 0.9, the figure 1 reveals that the minimal value of quantum correlations is

obtained for α = 0.6 when (c1 =
α
2 , c2 =

α
2

)
and for α = 0.9 when (c1 = 0, c2 = α) or (c1 = α, c2 = 0).

Similarly, the maximal amount of quantum correlations is no longer obtained for states with (c1 =

0, c2 = α) or (c1 = α, c2 = 0) as for values of α ≤ 1
2 but the states encompassing the maximal values

of local quantum uncertainty are those with (c1 = α+, c2 = α−) or (c1 = α−, c2 = α+) where the

quantities α+ and α− are given by (11). It is remarkable that for these two special states, the local

quantum uncertainty presents a double sudden change indicating a discontinuity in the derivative of

the local quantum uncertainty with respect the parameter c1 reflecting the jump from ω11 to ω33.

This intriguing sudden change has no analogue for von Neumann based quantum discord as we shall

discuss in what follows.
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Figure 1. The Local quantum uncertainty U versus the parameter c1 for different values of α.

Refaire ces deux courbes: adopter le meme format et le meme style. les parametres alpha sont

dans un cadre sur la premiere figure et ne le sont pas sur la seconde
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2.2 Entropy based quantum discord

The quantum discord in two-qubit states is defined as the difference between the mutual information

and the classical correlations in a bipartite quantum system [6, 7]

D(ρ) = I(ρ)− C(ρ) (20)

The total correlation is usually quantified by the mutual information I given by

I(ρ) = S(ρ1) + S(ρ2)− S(ρ), (21)

where ρ is the state of a bipartite quantum system comprising two qubits labeled as 1 and 2, the

operator ρ1(2) = Tr1(2)(ρ) is the reduced state of 1(2) and S(ρ) is the von Neumann entropy of a

quantum state ρ. The non vanishing eigenvalues of the density matrix ρ (1) are λ1 = c1 + c2 and

λ2 = 1− (c1 + c2), so that the joint entropy writes as

S(ρ) = H(c1 + c2) (22)

where H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function. The eigenvalues of the

reduced density matrices ρ1 and ρ2 are identical. They are given by 1
2(1 + c1 − c2) and

1
2(1− c1 + c2)

so that the marginal entropy for ρ1 and ρ2 are given by

S(ρ1) = S(ρ2) = H

(
1 + c1 − c2

2

)
. (23)

It follows that in the states (1), the mutual information (21) writes as

I(ρ) = 2H

(
1 + c1 − c2

2

)
−H(c1 + c2). (24)

To compute the classical correlations occurring in (20), one follows the method developed in [39] for

rank-2 two-qubit states. Indeed, this method simplifies considerably the analytical derivation of the

entropic quantum discord. It consists in purifying the two-qubit system by a third qubit describing

the environment and making use of the KoashiWinter theorem [40]. This theorem constitutes the key

ingredient in determining the quantum discord in two-qubit systems described by density matrices of

rank 2. Moreover, it establishes a nice connection between the quantum discord and the entanglement

of formation (for more details see the references [41, 42, 43]). In this approach, the classical correlation

C(ρ) is expressed in term of the entanglement of formation between the second qubit and the third

qubit representing the environment. To apply this approach for the class of states of interest in this

work and to employ the Koashi-Winter theorem, we first consider the purification of the states of type

(1) re-expressed as follows

ρ = λ1|Φ1⟩⟨Φ1|+ λ2|Φ2⟩⟨Φ2|

where λ1 and λ2 are the eigenvalues of ρ and |Φ1⟩ and |Φ2⟩ are the corresponding eigenstates

|Φ1⟩ =
√
c1√

c1 + c2
|0, 0⟩+

√
c2√

c1 + c2
|1, 1⟩, |Φ2⟩ =

1√
2
|0, 1⟩+ 1√

2
|.1, 0⟩ (25)
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Attaching a qubit 3 to the two-qubit system 1− 2, we write the purification of ρ as

|Φ⟩123 =
√
λ1|Φ1⟩ ⊗ |0⟩3 +

√
λ2|Φ2⟩ ⊗ |1⟩3 (26)

such that the whole system 123 is described by the pure state ρ123 = |Φ⟩123⟨Φ| from which one

extracts the density matrix ρ23 = Tr1ρ
123 associated to the subsystem 2 − 3. Suppose now that

a von Neumann measurement {M0,M1} is performed on the qubit 1 (here also we need positive

operator valued measurement of rank one that is proportional the one dimensional projector). From

the viewpoint of the whole system in the pure state |Φ⟩123, the measurement gives rise to an ensemble

of states for the system composed by the qubits 2 and 3. The Koashi-Winter theorem states the

classical correlation is given by

C(ρ) = S(ρ2)− E(ρ23). (27)

where S(ρ2) is given by (23) and the entanglement of formation E(ρ23) is defined by

E(ρ23) = H(
1

2
+

1

2

√
1− |C23|2). (28)

Using the Wootters formula [38], the concurrence C23 for the bipartite state ρ23 writes

|C23|2 = 2(1− c1 − c2)(
√
c1 −

√
c2)

2. (29)

Reporting the Koashi-Winter relation (27) in the definition (20) and using the equation (21), the

quantum discord in the states ρ takes the simple form

D(ρ) = S(ρ1) + E(ρ23)− S(ρ), (30)

which can be rewritten, using the expressions (22), (23) and (28), as

D(ρ) = H

(
1 + c1 − c2

2

)
+H(

1

2
+

1

2

√
1− 2(1− c1 − c2)(

√
c1 −

√
c2)2)−H(c1 + c2), (31)

in terms of the parameters c1 and c2. Setting α = c1 + c2, the quantum discord in the states ρα, with

a fixed value of α, is given by

D(ρα) = H

(
1− α

2
+ c1

)
+H

(
1

2
+

1

2

√
1− 2(1− α)(α− 2

√
c1
√
α− c1)

)
−H(α). (32)

The figure 2 shows that the quantum discord D(ρα) exhibits similar behavior as the quantum discord

based on von Neumann entropy for α ≤ 1
2 . The minimal amount of quantum correlations is obtained

in the states ρα with (c1 = c2 = α
2 ) (17) and the maximally correlated states are the states with

(c1 = 0, c2 = α) and (c1 = α, c2 = 0) given by (19). However, for the density matrices ρα with α ≥ 1
2 ,

we observe that the entropic quantum discord D(ρα) and discord-like local quantum uncertainty U(ρα)
have very different behavior. Indeed, for α = 0.6 or α = 0.7 the maximal amount of entropic quantum

discord in the states ρα is reached for (c1 = 0, c2 = α) and (c1 = α, c2 = 0). This is the case with the

local quantum uncertainty for which the maximally correlated states are given by (c1 = α+, c2 = α−)

9



or (c1 = α−, c2 = α+) where α+ and α− are given by (11). Also, the states ρα with α = 0.8 or

α = 0.9, the maximum of entropic quantum discord is reached in the states (c1 = c2 = α
2 ) (17) but

the figure 1 shows that the maximal amount of the quantum correlations U(ρα) is obtained when

(c1 = α+, c2 = α−) or (c1 = α−, c2 = α+). Furthermore, from figure 2, it can be inferred that the

minimal value of the quantum discord D(ρα) for α = 0.8 or α = 0.9 is not obtained in the states with

(c1 = 0, c2 = α) and (c1 = α, c2 = 0) as it is the case with local quantum uncertainty (see figure 1).

Figure 2. The quantum discord D(ρα) versus the parameter c1 for different values of α.

Refaire ces deux courbes: adopter le meme format et le meme style. Enlever Discord axe des y et

rempalcer par D italique

Il faut verifier que la premiere courbe est bonne. La seconde courbe est fausse: pour deux raisons:

la premiere c’est que c1 doit varier entre 0 et alpha pour chaque valeur fixe de alpha. La seconde, la

finction discorde est symetrique par rapport a l’axe alpha/2

2.3 Geometric quantum discord

The optimization that involves quantum discord based on von Neumann entropy is very challenging

for a generic bipartite system. Hence, despite the great deal of efforts, analytical expressions of this

quantifier are available for only few two-qubit states as for instance X states of rank 2. To define

reliable and computable quantifiers, several geometric approaches were considered in the literature.

The first geometric variant of quantum discord was introduced by Dakić, Vedral and Brukner [8].

This geometric quantifier of quantum correlation in bipartite systems is based on the Hilbert-Schmidt

distance which is defined in terms of Schatten 2-norm. Unfortunately, the Hilbert-Schmidt quantum

discord is not a bona fide measure of bipartite quantum correlations [13]. This drawback is essentially

due to the lack of contractivity of the HilbertSchmidt norm under trace-preserving quantum channels

[44]. Indeed, it has been shown that among all Schatten p-norms only the Schatten 1-norm is con-

tractive under trace-preserving quantum channels [14]. The trace distance quantum discord has been

explicitly derived for general Bell-diagonal states [14, 45] and has been also extended for arbitrary X

states [46]. By adopting Schatten 1-norm, the trace distance quantum discord for a bipartite state ρ

is defined by

Dg(ρ) =
1

2
min
χ∈Ω

||ρ− χ||1, (33)

10



where the trace distance is defined by ||ρ − χ||1 = Tr
√

(ρ− χ)†(ρ− χ). It measures the distance

between the state ρ and the classical-quantum state χ belonging to the set Ω of classical-quantum

states. A generic state χ ∈ Ω is of the form χ =
∑

k pk Πk,1 ⊗ ρk,2 where {pk} is a probability

distribution, Πk,1 are the orthogonal projector associated with the qubit 1 and ρk,2 is density matrix

associated with the second qubit. The minimization in (33) was analytically worked out in [46] for a

generic X state. Therefore according to the result reported in [46], the 1-norm geometric discord in

the states ρ (1) is expressed as

Dg(ρ) =
1

2

√
R2

11max{R2
33, R

2
22 +R2

03} −R2
22min{R2

11, R
2
33}

max{R2
33, R

2
22 +R2

03} −min{R2
11, R

2
33}+R2

11 −R2
22

, (34)

where the correlation matrix elements are given by (2). We notice that for the states under con-

sideration quantities R2
11 − R2

33 + R2
03 and R2

22 − R2
33 + R2

03 are non negatives. Indeed, one has

R2
11 −R2

33 +R2
03 = 2(1− (c1 + c2))(

√
c1 +

√
c2)

2 and R2
22 −R2

33 +R2
03 = 2(1− (c1 + c2))(

√
c1 −

√
c2)

2.

It follows that one can further simplify the expression (34) and the quantum discord (34) rewrites

Dg(ρ) =
1

2

[
Θ(|R33| − |R11|) |R11|+Θ(|R11| − |R33|)

√
R2

11(R
2
22 +R2

03)−R2
22R

2
33

R2
11 −R2

33 +R2
03

]
(35)

where Θ(.) is the usual Heaviside function. It turns out that one should treat the two distinct cases

|R33| ≤ |R11| and |R11| ≤ |R33|. In this respect, we set c1 + c2 = α. It is simple to verify that for

0 ≤ α ≤ 2
3 , |R11| is always larger than |R33|. For the two-qubit states ρ ≡ ρα with 2

3 ≤ α ≤ 1, one

verifies that |R33| ≤ |R11| when c1 ∈ [c−, c+] and |R11| ≤ |R33| when c1 ∈ [0, c−] ∪ [c+, α] where

c± =
α

2
±

√
(1− α)(2α− 1). (36)

are the solutions of the equation |R11| = |R33|. As by product, the expression (35) becomes

Dg(ρα) =
1

2

√(
1− (

√
c1 +

√
α− c1)2

)2

+ 4
√
c1(α− c1)(

√
c1 −

√
α− c1)2 (37)

for 0 ≤ α ≤ 2
3 . For the states ρα with 2

3 ≤ α ≤ 1, one gets

Dg(ρα) =



1
2

(
1− (

√
c1 −

√
α− c1)

2

)
for 0 ≤ c1 ≤ c−

1
2

√(
1− (

√
c1 +

√
α− c1)2

)2

+ 4
√
c1(α− c1)(

√
c1 −

√
α− c1)2 for c− ≤ c1 ≤ c+

1
2

(
1− (

√
c1 −

√
α− c1)

2

)
for c+ ≤ c1 ≤ α

(38)

In figure 3, the 1-norm geometric quantum discord shows a quasi similar behavior as the quantum

correlations measured by local quantum uncertainty in figure 1. In fact, for α < 1
2 with the trace

distance, the quantum correlations are maximal in the states ρα with (c1 = 0, c2 = α) and (c1 =

α, c2 = 0) given by (19). Also, the amount of quantum correlations is minimal in the state with

(c1 = c2 =
α
2 ) given by (17). This agrees with the measure of quantum correlations through the local

11



quantum uncertainty. This similarity between the two quantifiers becomes to be slightly different

starting from α = α
2 . Indeed, the geometric discord is quasi linear with respect to the parameter c1.

It vanishes in the states (c1 = c2 = 1
4). This state is the only separable state in the set of two-qubit

states (1). It is remarkable that for α > 1
2 , the geometric discord exhibits also a double sudden change

when (c1 = c+, c2 = c−) and (c1 = c−, c2 = c+) (c± are given by (36)) to be compared with the points

(c1 = α+, c2 = α−) and (c1 = α−, c2 = α+) given by (11) where the sudden change occurs for the local

quantum uncertainty. Clearly, the states ρα at which the geometric discord presents a double sudden

change are different from those obtained for local quantum uncertainty. This dissimilarity poses

a serious challenge and especially when when one needs to employ the sudden change of quantum

correlations in a multipartite system to understand the quantum phase transitions. In this sense, a

future issue would to investigate which quantifier, trace distance or local quantum unerctainty, is then

suitable as indicator of quantum phase transitions.
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Α = 0.3

Α = 0.4
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Α = 0.6
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Figure 3. The geometric quantum discord Dg(ρα) versus the parameter c1 for α ≤ 2
3 and α ≥ 2

3 .

3 Local quantum uncertainty under decoherence

Because of the unavoidable interaction of a bipartite quantum system with the environment, the dy-

namics of quantum correlations under constitutes an important issue which has received a great deal of

attention [48]-[55]. Different decoherence scenarios (Markovian or non-Markovian) were investigated

for different quantifiers of quantum correlations. In particular, it has been shown that entanglement

suffers from sudden death [56]-[61] and the entropic quantum discord is more robust than entanglement

[62]. In fact, when an two-qubit state is under the influence of a local noisy environment, the entangle-

ment can suddenly disappear hile the quantum discord shows more resilience against the decoherence

effects. Dynamics of geometric discord based on 1-Schatten norm was also studied for some two-qubit

states. In particular, it has been shown that this quantum indicator exhibits in Bell diagonal states

the so-called freezing phenomenon, the quantum correlations remain constant during the evolution of

the system [63]. In this section, we investigate the dynamics of quantum discord quantified by local

quantum uncertainty. In order to simplify our purpose, we restrict our focus to two-qubit density

12



matrices (1) with c1 = c2 = c which take the form of Bell-diagonal states . They are given by

ρ(c1 = c2 = c) =
1

4

(
σ0 ⊗ σ0 + σ1 ⊗ σ1 + (1− 4c)σ2 ⊗ σ2 − σ3 ⊗ σ3

)
(39)

where 0 ≤ c ≤ 1
2 . For open quantum system, the Markovian dynamics can be entirely specified by a

quantum channel E : ρ −→ E(ρ) whose action on the state can be completely characterized as follows

E(ρ) =
∑
ij

(Ei ⊗ Ej)ρ(Ei ⊗ Ej)
†

where Ei denotes the Kraus operators describing the decohering process of a single qubit. The Kraus

operators satisfy the trace-preserving condition
∑

i(Ei)
†Ei = I. For several decoherence scenarios,

the action of the decoherence channel is in general parameterized by a time dependent decoherence

probability p . In what follows, we will consider the dynamic behavior of local quantum uncertainty

in the states (39) for certain noise channels (i.e., phase flip, bit flip, and bit-phase flip and generalized

amplitude damping)

3.1 The depolarizing quantum channel

The depolarizing channel is a decohering process used to modeling three different types of errors: (i)

bit flip error, (ii) phase flip error or (iii) both [1].

(i) Bit flip error: For bit flip quantum channel, the Kraus operators are

E0 =
√

1− p/2 σ0 E1 =
√
p/2 σ1 (40)

Under the local action of the bit flip channel, the density matrix (39) writes in the Fano-Bloch

representation as

ρBF =
1

4

(
σ0 ⊗ σ0 +

3∑
i=1

RBF
ii σi ⊗ σi

)
(41)

where

RBF
11 = 1, RBF

22 = (1− 4c)(1− p)2, RBF
33 = (4c− 1)(1− p)2.

Obtaining the local quantum uncertainty in the states (41) requires the expressions of the square

root of the density matrix and the closed form of the matrix elements ωij given by (6). Lengthy but

straightforward calculation gives

ωBF
11 =

√
1− (1− p)4(1− 4c)2 ωBF

22 = 0 ωBF
33 = 0 (42)

and the local quantum uncertainty is simply given by

U(ρBF) = 1−
√

1− (1− p)4(1− 4c)2. (43)
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(ii) Phase flip error : The phase flip channel describes the quantum noise process with loss of

quantum information without loss of energy. In the operator-sum representation formalism, the Kraus

operators for single qubit phase flip write

E0 =
√

1− p/2σ0 E1 =
√
p/2σ3 (44)

Under phase flip channel, the evolved quantum state writes as

ρPF =
1

4

(
σ0 ⊗ σ0 +

3∑
i=1

RPF
ii σi ⊗ σi

)
(45)

where the correlation elements are given by

RPF
11 = (1− p)2 RPF

22 = (1− 4c)(1− p)2 RPF
33 = (4c− 1).

In this decohering scenario, the matrix elements (6) take the form

ωPF
11 = 2

√
2
√
c(1− 2c) ωPF

22 = 2
√
2
√
c(1− 2c)

√
1− (1− p)4 ωPF

33 =
√

1− (1− p)4. (46)

We notice that ωPF
22 ≤ ωPF

11 and ωPF
22 ≤ ωPF

33 . This implies that ωPF
max is given by (ωPF

11 or ωPF
33 ).

For a given value of c, the condition ωPF
11 ≥ ωPF

33 is satisfied when the probability p is such that

0 ≤ p ≤ 1−
√

|4c− 1|. It is remarkable that in this case, the local quantum uncertainty,

U(ρPF) = 1− 2
√
2
√
c(1− 2c), (47)

remains constant (i.e, time independent). In this interval the local quantum uncertainty exhibits a

freezing behavior. This reflects that the local quantum uncertainty is robust against the phase flip

errors. This frozeen behavior is followed by a sudden change at the critical point pc = 1−
√

|4c− 1|.
Hence for 1−

√
|4c− 1| ≤ p ≤ 1, the local quantum uncertainty is given by

U(ρPF) = 1−
√

1− (1− p)4, (48)

and decays monotonically to disappear complectly when p −→ 1.

(iii) Bit-phase flip error: The corresponding Kraus operators are given by

E0 =
√

1− p/2 σ0 E1 =
√
p/2 σ2, (49)

and their action on a state of type (39) leads to

ρBPF =
1

4

(
σ0 ⊗ σ0 +

3∑
i=1

RBPF
ii σi ⊗ σi

)
(50)

where the Fano-Bloch components writes now as

RBPF
11 = (1− p)2 RBPF

22 = (1− 4c) RBPF
33 = (4c− 1)(1− p)2.
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Reporting the square root of the state ρBPF in the expressions of the matrix elements (6), one obtains

ωBPF
11 = 2

√
2
√
c(1− 2c) ωBPF

22 =
√

1− (1− p)4 ωBPF
33 = 2

√
2
√
c(1− 2c)

√
1− (1− p)4 (51)

The local quantum uncertainty can be derived similarly to the phase flip process by replacing ωPF
22 by

ωBPF
33 and ωPF

33 by ωBPF
22 . This gives

U(ρBPF) = 1− 2
√
2
√
c(1− 2c) for 0 ≤ p ≤ pc (52)

with pc = 1−
√

|4c− 1| and

U(ρBPF) = 1−
√

1− (1− p)4 for pc ≤ p ≤ 1. (53)

It is interesting to note that, similarly to the phase flip channel, the local quantum uncertainty exhibits

a freezing behavior in the interval [0, pc]. Clearly, this behavior is essentially due to the phase flip errors

since when only the bit flip error acts on the system the local quantum uncertainty is monotonically

decreasing. Furthermore, it is remarkable that for both phase flip and Bit-phase flip, the freezing

phenomenon occurs in the same interval. To investigate the width of this interval to guarantee the

freezing of the quantum discord for long periods, we consider separately the situations where 0 ≤ c ≤ 1
4

and 1
4 ≤ c ≤ 1

2 . For 0 ≤ c ≤ 1
4 , the critical point pc increases as the parameter c increases. As it can

verified from the equations (47) and (52), increasing the parameter c, to get a large freezing interval,

is accompanied by a diminution of the amount of quantum correlations in the system. Similarly, for

the states with 1
4 ≤ c ≤ 1

2 , one concludes that larger freezing intervals are also obtained for states

with less quantum correlations and the price to pay is the missing of quantum correlations.

3.2 Generalized amplitude damping

Now we consider the dynamics of the states (39) under the effect of a amplitude-damping channel

which describes the dissipative interaction between the system and the environment. This process

may be modeled by treating the environment as a large collection of independent harmonic oscillators

interacting weakly with the system. In the operator-sum representation formalism, the evolution of

the system is described by the following four Kraus operators

E0 =

√
p

2

[
(1 +

√
1− γ)σ0 + (1−

√
1− γ)σ3

]
, E1 =

√
pγ σ+,

E2 =

√
1− p

2

[
(
√

1− γ + 1)σ0 + (
√

1− γ − 1)σ3
]
, E3 =

√
(1− p)γ σ− (54)

where σ± = (σ1 ± iσ2)/2, p and γ are the decoherence probabilities [1]. To simplify the calculation

of the local quantum uncertainty, we fix p = 1
2 . In this situation, under the generalized amplitude

damping, the states (39) evolve as

ρGAD =
1

4

(
σ0 ⊗ σ0 +

3∑
i=1

RGAD
ii σi ⊗ σi

)
(55)
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where

RGAD
11 = (1− γ), RGAD

22 = (1− 4c)(1− γ), RGAD
33 = (4c− 1)(1− γ)2.

After some lengthy but feasible algebraic manipulations of the matrix elements (6), needed to derive

the quantum correlations in the state (55), one gets

ωGAD
11 =

√
1− (1− γ)2(1− 4c)2, ωGAD

22 =
√
γ(2− γ), ωGAD

33 =
√
γ(2− γ)

√
1− (1− γ)2(1− 4c)2.

(56)

It is simple to verify that ωGAD
33 ≤ ωGAD

22 ≤ ωGAD
11 and the local quantum uncertainty is given by

U(ρGAD) = 1−
√

1− (1− γ)2(1− 4c)2. (57)

4 Concluding remarks

Quantum correlations in a composite system can be measured by employing the local quantum un-

certainty.

We show that the quantum correlations quantified by local quantum uncertainty remain constant

during the evolution of a class of two qubits under specific decoherence channels. This remarkable

result is known in the literature as quantum correlation freezing. This result can bring a tool in

understanding the inevitable decoherence due to the interaction with the environment and possibly

open new ways to exploit quantum correlations from a practical point of view.
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[4] O. Gühne and G. Tóth, Phys. Rep. 474 (2009) 1.

[5] K. Modi, A. Brodutch, H. Cable, T. Paterek and V. Vedral, Rev. Mod. Phys. 84 (2012) 1655.

[6] H. Ollivier and W. H. Zurek, prl 88, 017901 (2001).

[7] L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001).
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