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Abstract

We analyze the effects of quantum correlations, such as entanglement and discord, on the parameter pre-

cision in an interferometric configuration. We consider a parameterized family of two-qubit states possessing

exchange and parity symmetries for which the analytical expression of the quantum discord based on von Neu-

mann entropy is given. The local quantum Fisher information for the estimation of local unitary transformation

is derived. We also derive explicitly the interferometric quantum power of the probe states. Our study corrob-

orates the recent series of investigations focusing on the role of quantum correlations other than entanglement

on the efficiency of parameter estimation.
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1 Introduction

Quantum metrology is an emerging field in quantum information science [1, 2, 3, 4]. It exploits the quantum

mechanical laws to enhance the precision in estimating the values physical quantities such as phase, frequency, or

magnetic fields. During the last decade, different metrology protocols have been theoretically investigated and

experimentally implemented to gain precision in estimating various parameters [5]-[18] (see also the references

quoted in [4]). This special interest is mainly motivated by the fact that in quantum metrology the parameter

estimation goes beyond the classical limit and in some cases tends to the Heisenberg limit imposed by the laws

of quantum mechanics. The quantum metrology originates from the theory of quantum estimation [19, 20, 21].

The key ingredient in quantum metrology is the quantum Fisher information [22] and its inverse depicts the

lower bound in statistical estimation of an unknown parameter according to Cramér-Rao theorem [19, 20, 23].

The quantum metrology offers the possibility to surpass the restrictions imposed by classical laws of physics and

to enhance the sensitivity of parameter estimation. Indeed, the estimation of a parameter encoded in a unitary

transformation (e.g. a phase shift) of the probe states involving n non-entangled qubits, the precision scales as
1√
nν

where ν is the number of repeated measurements which ameliorates the classical scaling given by 1√
ν

. In

the presence of n entangled qubits the optimal scaling rewrites 1
n
√
ν

enhancing the standard scaling limit by a

factor of
√
n [2, 3, 4]. In this sense, it is natural to ask if the quantum correlation other than entanglement can

ameliorate the precision in metrology protocols. This issue was recently addressed in [24, 25, 26, 27]. In fact,

to understand the role of quantum correlation beyond entanglement in a black-box quantum metrology task,

a quantum correlation quantifier in term of quantum Fisher information was recently introduced [24] (see also

[26]). This quantifier is termed quantum interferometric power which is a discord-type measure of quantum

correlations and quantifies the precision in interferometric phase estimation. Non classical correlations that

include entanglement but quantify the quantum correlations of separable states have been the subject of numer-

ous studies. The most familiar one is the quantum discord introduced in 2001 [28, 29] to describe the quantum

correlations which are not limited to entanglement. Entanglement and quantum discord are equivalent for pure

states but they are fundamentally different for mixed states. The exact expression of quantum discord involves

an optimization procedure which is very challenging especially for two-qubit states with rank higher than two.

In a given estimation protocol, one should first prepare the input state (i.e. ρ) which has to be sensitive to

the parameter variations. The second step consists in encoding of the information about the unknown parameter

(i.e. θ). This encoding can be realized by be a unitary evolution (i.e. ρ −→ ρθ). The final part of this protocol

concerns the measurement of an appropriate observable ((i.e. H)) in the output state (i.e. ρθ). In this work,

we shall examine the role of quantum correlations in quantum phase estimation where the generic probe states

belong to the following class of two qubit density matrices whose entries are specified in terms of two real

parameters. They are defined as

ρ =


c1 0 0

√
c1c2

0 1
2 (1 − c1 − c2) 1

2 (1 − c1 − c2) 0

0 1
2 (1 − c1 − c2) 1

2 (1 − c1 − c2) 0
√
c1c2 0 0 c2

 (1)

in the computational basis B = {|00⟩, 01⟩, 10⟩, 11⟩}. The parameters c1 and c2 satisfy the conditions 0 ≤ c1 ≤ 1,

0 ≤ c2 ≤ 1 and 0 ≤ c1 + c2 ≤ 1. We have taken all entries positives. This class of states arise in various

collective spin models as well as bipartite quantum systems prepared in balanced superpositions of coherent

states. Indeed, the bipartite density matrix extracted from the states of a symmetric multi-qubit systems take

the form (1) as for instance the superpositions of Dicke states [30, 31] and even and odd spin coherent states

[32]. They also arise in investigating the pairwise quantum correlation in balanced superpositions of multipartite

Glauber coherent states which interpolates continuously between the generalized Greenberger-Horne-Zeilinger

and Werner states [33, 34, 35, 36]. We notice also that we deliberately chosen two-qubit rank-2 states to employ
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the method developed in [37] to get the exact expressions for the quantum discord based on the von Neumann

entropy.

This paper is organized as follows. In Section 2, quantum Fisher information is derived for the two-qubit

states (1) when the dynamics of the first qubit is governed by a local Hamiltonian. We determine the minimum

of the quantum Fisher information for some particular form of the local Hamiltonian. This analysis is helpful in

deriving the quantum interferometric power in Section 3. Indeed, the quantum interferometric power is defined

by minimizing the quantum Fisher information over all local Hamiltonians. We give the explicit form of this

discord-like quantifier and we show the role of quantum correlations in enhancing the precision. In other words,

less amount of quantum Fisher information implies more quantum correlations and vice-versa. This indicates

that one gain better sensitivity by employing probe states with significant amount of quantum correlations.

Also, we compare the quantum interferometric parameter with the entropy based quantum discord. In section

4, tighter bounds on the phase precision in the presence of quantum correlation are investigated in the spirit of

the recent results obtained in [24, 26]. Concluding remarks close this paper.

2 Local quantum Fisher information

As mentioned in the introduction, the process of estimating the value of an unknown parameter consists in

three different steps: (i) the preparation of the probe state (input-state), (ii) the interaction of the initialized

state with the system (target) encoding the physical quantity to be estimated and finally (iii) the measure

of the state (output-state) resulting from the interaction of the input-state and the system. In the situations

where the Hamiltonian governing the dynamics of the probe state is known one can determine the value of

the unknown parameter. In quantum metrology, the interferometric configuration constitutes one of the most

interesting scenarios which are widely used in phase estimation (see for instance [4] and [38]) . We consider the

two-qubit states of (1) as probe states and we assume that the dynamics of the first qubit is governed by the

local phase shift transformation e−iθH ≡ e−iθ H1⊗I where H1 is a local Hamiltonian acting on the qubit 1 and

I is the 2 × 2 identity matrix. Thus, the output states write

ρθ = e−iθHρe+iθH .

From the measurement of the observable H in the output states, the parameter θ can be estimated through an

(unbiased) estimator θ̂. The quantum mechanics imposes the fundamental limit of the variance of the estimator

θ̂. This is given by the quantum Cramér-Rao bound:

var θ̂ ≥ 1

νF (ρ,H)

where ν is the number of times the estimation protocol is repeated and F (ρ,H) is the quantum Fisher infor-

mation, a measure which is widely utilized in different fields of quantum physics. For the parameter dependent

states ρθ , the quantum Fisher information is defined by

F (ρθ) ≡ F (ρ,H) = Tr(ρθL
2
θ) (2)

where L is the symmetric logarithmic derivative determined by the equation

∂θρ =
1

2
(ρθLθ + Lθρθ). (3)

It is clear that the spectral decomposition of the density matrix and its derivative with respect to the parameter

θ provides us with the expression of the quantum Fisher information. The eigenvalues of the density matrices

ρ (1) write

λ1 = c1 + c2, λ2 = 1 − (c1 + c2), λ3 = 0 , λ4 = 0, (4)
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and the corresponding eigenstates are respectively given by

|ψ1⟩ =
√

c1
c1+c2

(1, 0, 0,
√

c2
c1

), |ψ2⟩ =
√
2
2 (0, 1, 1, 0), |ψ3⟩ =

√
2
2 (0, 1,−1, 0), |ψ4⟩ = −

√
c2

c1+c2
(1, 0, 0,

√
c1
c2

).

(5)

The explicit expression of quantum Fisher information was derived in [?] for density matrices with arbitrary

ranks. For the states under consideration, it is simple to check that the quantum Fisher information takes the

form

F (ρ,H) =
2∑
i=1

λiF (|ψ⟩i,H) − 8
2∑
i ̸=j

λiλj
λi + λj

|⟨ψi|H|ψj⟩|2 (6)

and the quantity F (|ψ⟩i,H) is simply given in term of the variance of the operator H on the state |ψ⟩i as

F (|ψ⟩i, H) = 4(∆H)2|ψ⟩i , (7)

where the variance of the Hamiltonian H is given by (∆H)2|ψ⟩i = ⟨ψi|H2|ψi⟩ − |⟨ψi|H|ψi⟩|2. It is clear that the

quantum Fisher information involves only the nonzero eigenvalues of the density matrix ρ and the corresponding

eigenstates. We assumed that the dynamics of the probe state is governed by the local unitary transformation

acting on the first qubit while leaving the second qubit unchanged. The general form of the local Hamiltonian

acting on the first sub-system is given by

H1 = r⃗.σ⃗ := r1σ1 + r2σ2 + r3σ3 (8)

where r⃗ = (sinα cosβ, sinα sinβ, cosα) and σ⃗ are the components of σ⃗ are the the usual Pauli matrices

(σ1 = |0⟩⟨1| + |1⟩⟨0|, σ2 = i(|1⟩⟨0| − |0⟩⟨1|), σ3 = |0⟩⟨0| − |1⟩⟨1|). We note that the traceless Hamiltonian H

with non degenerate spectrum is the maximal informative observable. From (6), one verifies that the quantum

Fisher information takes the form

F (ρ,H) = 4 − 4 cos2 α
(c1 − c2)2

c1 + c2
− 8 sin2 α

(
1 − (c1 + c2)

)(
(c1 + c2) + 2

√
c1c2 cos 2β

)
(9)

In the following, we shall discuss the cases of three particular forms of the local Hamiltonian (8) governing the

dynamics of the first qubit: (i) H1 = σ1, H1 = σ2 and H3 = σ3 and we then derive the bounds to precision in

each scenario to determine the probe state in the family (1) which guarantees a minimum estimation efficiency.

Clearly, in this figure we assume the prior knowledge of the Hamiltonian H.

For a unitary evolution along the x-direction (i.e. H1 = σ1) in (8) ), the expression (9) becomes

F (ρ, σ1) = 4 − 8[1 − (c1 + c2)][
√
c2 +

√
c1]2 (10)

Figure 1. The quantum Fisher information F (ρ, σ1) along the x-direction versus c1 for α ≤ 1
2 and α ≥ 1

2 .

Changer la notation pour les axes par F (ρ, σ1)
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The behavior of the quantum Fisher information along the x-direction F (ρ, σ1), as function of the parameters

c1, is represented in the figure 1 for α ≤ 1
2 and α ≥ 1

2 where α = c1 + c2 takes the special values α = 0.1, ..., 0.9.

As it can be inferred from this figure, the quantum Fisher information F (ρ, σ1) in state (1) reaches its minimal

value for states with c1 = c2 = α
2 . They are given by

ρ
(
c1 =

α

2
, c2 =

α

2

)
= αρ′ + (1 − α)ρ (11)

where the states ρ and ρ′ are respectively given by

ρ = |ψ⟩⟨ψ|, ρ′ = |ψ′⟩⟨ψ′|, (12)

with

|ψ⟩ = 1√
2
(|01⟩ + |10⟩) , |ψ′⟩ = 1√

2
(|00⟩ + |11⟩), (13)

In the other hand, the maximal value of F (ρ, σ1) is obtained in the states with (c1 = 0, c2 = α) or (c1 = α, c2 =

0). This value maximal is obtained in the states

ρ(c1 = 0, c2 = α) = α|11⟩⟨11| + (1 − α)|ψ⟩⟨ψ|, (14)

and

ρ(c1 = α, c2 = 0) = α|00⟩⟨00| + (1 − α)|ψ⟩⟨ψ|, (15)

It is clear that for α ≤ 1
2 , the states encompassing high amount of quantum Fisher information are those with

small values of the α. This situation is completely different for α ≥ 1
2 . In fact, the quantum Fisher information

increases as the parameter α increases. For instance, for c1 = 0.45, more precision is guaranteed in the states

with α = 0.9. For the subset of states of type (1) characterized by a fixed value of α (α ≥ 1
2 ), the quantum

Fisher information F (ρ, σ1) is maximal for (c1 = 0, c2 = α) or (c1 = α, c2 = 0) and the minimal value is reached

for c1 = c2 = α
2 . We notice that the quantum Fisher plotted in the figure 1 as well as the figures below are

normalized by the multiplicative factor 1
4 .

Now we consider the situation when the input state undergoes along the y-direction (i.e, H1 = σ2), the

quantum Fisher information (9) reads as

F (ρ, σ2) = 4 − 8[1 − (c1 + c2)][
√
c2 −

√
c1]2 (16)

Figure 2. The quantum Fisher information F (ρ, σ2) along the y-direction versus c1 for α ≤ 1
2 and α ≥ 1

2 .

Changer la notation pour les axes par F (ρ, σ2)

The figure 2 gives the quantum Fisher information F (ρ, σ2) along the y-direction as function of the pa-

rameter c1 and c2 for different values of α = c1 + c2. For both cases α ≤ 1
2 and α ≥ 1

2 , the quantum Fisher

information F (ρ, σ2) is maximal for the states satisfying c1 = c2 = α
2 given by (11) and minimal for the states
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which correspond to the subset of states with (c1 = 0, c2 = α) given by (14) or the states with (c1 = α, c2 = 0)

given by (15). It follows that probe states are governed by the local Hamiltonian σ2, the best estimation is

provided by the states given by the equation (11). Remark that for the local Hamiltonian σ1, the best estimation

is guaranteed by the probe states with (c1 = 0, c2 = α) and (c1 = α, c2 = 0) given respectively by (14) and (15).

For the dynamics in the the z-direction, the equation (9) reduces to

F (ρ, σ3) = 4 − 4
(c1 − c2)2

c1 + c2
(17)

Figure 3. The quantum Fisher information F (ρ, σ3) along the z-direction versus c1 for α ≤ 1
2 and α ≥ 1

2 .

Changer la notation pour les axes par F (ρ, σ3)

By comparing the results depicted in the figures 2 and 3, it is easily seen that the quantum Fisher information

F (ρ, σ3) behaves like the quantum Fisher information F (ρ, σ2). Also, the expression F (ρ, σ3) is maximal for the

states for the probe states with c1 = c2 = α
2 (see equation (11)). It is simple to see from the equation (17) that

the maximal value of the quantum Fisher information for any value of α is always equal to 4 (1 in the figure

3 because in the plot we divided F (ρ, σ3) by the factor 4). This indicates that, when the local Hamiltonian σ3

governs the dynamics of the first qubit, the suitable probe states are given by (11) which are of Bell type.

To close this section, it is interesting to study the situation where the estimation protocol is blind in the

sense that the one prepares the probe state without any prior knowledge of the Hamiltonian governing the

dynamics of first subsystem. This issue is examined in what follows.

3 Nonclassical correlations and quantum interferometric power

To investigate the role of non classical correlation in improving the precision in quantum metrology protocols

when the probe states are of type (1), we shall employ the discord-like measure introduced recently in [24]

and termed as quantum interferometric power. We also compare this quantum correlations quantifier with the

quantum discord based on von Neumann entropy derived in [28, 29].. The quantum interferometric power is a

bona fide measure of discord-like correlations. It is defined by the minimum of the quantum Fischer information

over all the possible spectrum local Hamiltonians [24]

P(ρ) =
1

4
min
H1

F (ρ,H1), (18)

where the minimization is performed over all Hamiltonians {H1} acting on the qubit 1. The quantum interfer-

ometric power is defined in term of quantum Fisher information and quantifies naturally the degree of precision

that a bipartite state ρ provides to ensure the success of the estimation protocol regardless of the phase di-

rection [24]. Obviously, the properties of quantum Fisher information [22] confers to quantum interferometric

power many interesting properties: (i) non negative, (ii) invariant under local unitary transformations (iii) non
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increasing under local operations on the second qubit and (iv) asymmetric with respect to the two subsystems

(except for symmetric quantum states). A closed analytical expression of the quantum interferometric power

for an arbitrary bipartite quantum system was derived in [24]. Explicitly, it writes as

P(ρ) = min(λ1, λ2, λ3), (19)

where λ1, λ2 and λ3 are the eigenvalues of the 3 × 3 matrix M whose elements are defined by

Mij =
1

2

∑
k,l:λk+λl ̸=0

(λk − λl)
2

λk + λl
⟨ψk|σi ⊗ I|ψl⟩⟨ψl|σj ⊗ I|ψk⟩ (20)

with λi and|ψi⟩ being respectively the eigenvalues and the eigenvectors of density matrix ρ. When the probe

states are of the form (1), the eigenvalues are given by (4) and their corresponding eigenstates are given by

(5). Reporting (4) and (5) in the expression (20), it is simple to check that the matrix M is diagonal and the

diagonal elements write

M11 = 1−2
[
1−c1−c2

][√
c2+

√
c1
]2
, M22 = 1−2

[
1−c1−c2

][√
c2−

√
c1
]2
, M33 = 4

c1c2
c1 + c2

+
[
1−c1−c2

]
. (21)

Comparing the elements of the correlation matrix M and the quantum Fisher information given by the equations

(10), (16) and (17), one has

Mii =
1

4
F (ρ, σi), for i = 1, 2, 3

and the quantum interferometric power (18) is the minimal amount of quantum information in the three spatial

directions x, y and z, discussed in the previous section. It follows that the quantum interferometric power writes

P(ρ) =
1

4
min(F (ρ, σ1), F (ρ, σ2), F (ρ, σ3)). (22)

Using the expressions (21), one verifies that M22 is always greater than M11. It follows that the smallest

eigenvalues of the matrix M is either M11 or M33. The difference M11 −M33 is positive when the parameters

c1 and c2 satisfy the condition

2(c1 + c2)2 − (
√
c1 +

√
c2)2 ≥ 0. (23)

Therefore for states with α ≤ 1
2 (α = c1 + c2), the quantity M11 − M33 is non positive and the quantum

interferometric power (22) writes as

P(ρ) = 1 − 2[1 − (c1 + c2)][
√
c2 +

√
c1]2. (24)

For states with α ≥ 1
2 , the condition(23) is satisfied for

0 ≤ c1 ≤ α− or α+ ≤ c1 ≤ α (25)

where the quantities α± are defined by

α± =
1

2
α±

√
α3 − α4. (26)

In this case, the quantum interferometric power is given by

P(ρ) = 1 − (c1 − c2)2

c1 + c2
, (27)

Conversely for α− ≤ c1 ≤ α+ the diffrence M11 −M33 is negative and the quantum interferometric power reads

as

P(ρ) = 1 − 2
[
1 − (c1 + c2)

][√
c2 +

√
c1
]2
, (28)

The behavior of quantum interferometric power versus c1 is presented in the figure 4 for different values of

α = c1 + c2.
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Figure 4. The quantum interferometric power P(ρ) as function of the parameter c1 for α ≤ 1
2 and α ≥ 1

2 .

Changer la notation pour les axes par P(ρ)

The quantum interferometric power is depicted in figure 4. Note that for α ≤ 1
2 , the quantum interferometric

power coincides (up to the scale factor 1
4 ) with the local quantum Fisher information F (ρ, σ1) when the dynamics

of the first qubit is governed by the local Hamiltonian σ1. This can be also seen from the numerical results

reported in the figures 3 and 4 for α ≤ 1
2 . According to the analysis presented in the previous section, it is

clear that the quantum correlations enhance the degree of precision in the estimation of the phase parameter

θ. Therefore, for a fixed value of the parameter α, the states (14) and (15) contain the maximal amount of

quantum correlations and they offer the best estimation efficiency.

For states with α ≥ 1
2 , the situation becomes significantly different. First, we note the quantum interfero-

metric power exhibits a sudden double change when c1 = α− and c1 = α+ (α− (α± are given by (26)). This

behavior is similar to the sudden change of geometric quantum discord based on Schatten p-norms ( trace norm

(p = 1)and Hilbert-Schmidt norm (p = 2)) Hilbert-Schmidt or trace norm which were widely investigated in

the literature, especially in connection with quantum phase transitions [45, 42, 43, 44]. Three different phases

characterize the behavior of quantum interferometric power: (i) 0 ≤ c1 ≤ α− where P(ρ) = 1
4F (ρ, σ3) (ii)

α− ≤ c1 ≤ α+ where P(ρ) = 1
4F (ρ, σ1) and (iii) α+ ≤ c1 ≤ α where P(ρ) = 1

4F (ρ, σ3). The minimal value

of the quantum interferometric power P is obtained in the intermediate zone (α− ≤ c1 ≤ α+) for the states

with (c1 = c2 = α
2 ) (11). It is also remarkable that this double sudden change in the behavior of the quantum

interferometric power occurs when the states (1) contain the maximal amount of quantum correlation.

4 von Neumann entropy based quantum discord

In this section we compare the discord-like quantum interferometric power with the entropic quantum discord

originally introduced in the information-theoretic context [28, 29]. It coincides with entanglement for pure

states and goes beyond entanglement for mixed ones. Quantum discord is defined as the difference between

total correlation and classical correlation in a bipartite state . The evaluation of quantum discord involves an

optimization procedure for the conditional entropy over all local generalized measurement. This optimization is

in general very challenging and this is the reason why the explicit analytical expressions of quantum discord is

known only for a restricted class of two-qubit quantum states [39, 40] and including two-qubit rank-2 states [37].

For two-qubit density matrices of rank two, the connection between the quantum discord and the entanglement

of formation, which is described by the KoashiWinter theorem [41], provides the algorithm to derive explicitly

the quantum discord. The entropic quantum discord writes [28, 29]

D(ρ12) = S(ρ1) + S̃min − S(ρ12). (29)

where S(ρ) = −Trρ log ρ is the von-Neumann entropy, ρ1 is the reduced density matrix of the first qubit and

S̃min is the minimum of the conditional entropy over all positive operator-valued measures. For two-qubit rank-2
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states, this entropy can be analytically derived by employing the the KoashiWinter theorem. In this sense, the

lines of reasoning developed in [37] (see also [32] where similar notations are adopted) one first purifies the the

states (1) as follows

ρ12 = λ1|ψ1⟩⟨ψ1| + λ2|ψ2⟩⟨|ψ2|, (30)

where the eigenvalues and the corresponding eigenvectors are given by (4) and (5) respectively, by attaching a

third a third qubit {|0⟩3, |1⟩3} to obtain the following pure three-qubit state

|ψ⟩123 =
√
λ1|ψ⟩1 ⊗ |0⟩3 +

√
λ2|ψ⟩2 ⊗ |1⟩3.

When a positive operator valued measure (POVM) measurement is performed on the qubit 1 , the Koashi-

Winter theorem establishes a relationship between between the minimum of the conditional entropy S̃min and

the entanglement of formation E(ρ23) of the system described by ρ23 = Tr1ρ123. This result reads as

S̃min = E(ρ23) = H

(
1

2
+

1

2

√
1 − |C(ρ23)|2

)
(31)

whereH(x) = −x log2 x−(1−x) log2(1−x) is the binary entropy function and C(ρ23) is the Wootters concurrence

[46] which writes for the density matrix ρ23 as

|C(ρ23)|2 = 2[1 − c1 − c2](
√
c1 −

√
c2)2. (32)

Setting c1 + c2 = α and reporting (32) in the equation (31), the explicit expression of quantum discord for the

density ρ ≡ ρ12 express as

D(ρ) = H

(
c1 +

1 − α

2

)
+H

(
1

2
+

1

2

√
1 − 2(1 − α)(α− 2

√
c1(α− c1))

)
−H(α) (33)

in terms of the parameters α and c1.

0.1 0.2 0.3 0.4 0.5
c1

0.0

0.2

0.4

0.6

0.8
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Α = 0.7
Α = 0.8
Α = 0.9

0.2 0.4 0.6 0.8
c1

0.2

0.4

0.6

0.8

DAB

Figure 5. Quantum discord D(ρ) as function of the parameter c1 for α ≤ 1
2 and α ≥ 1

2 .

Changer la notation pour les axes par D(ρ)

The comparison of the numerical calculations depicted in figures 4 and 5 show that quantum interferometric

power and the entropic quantum discord present almost similar behavior except the double sudden change

exhibited by the quantum correlations in figure 4 for α ≥ 1
2 . This confirms that the quantum interferometric

power constitutes an appropriate to the tackle the issue of quantifying the quantum correlation. Also, in view of

the technical difficulties arising in the analytical evaluation of quantum discord based on entropy, the discord-

like quantum interferometric power provides a powerful way to quantify the quantum correlations in generic

two-qubit states and more generally in bipartite systems of higher dimensional Hilbert spaces. Furthermore, the

quantum interferometric power goes beyond entanglement. Indeed, for the states under consideration ρ ≡ ρ12

(1), the Wootters concurrence is given by

C12(ρ) = |(
√
c1 +

√
c2)2 − 1| (34)
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With α = c1 + c2 and for α ≤ 1
2 it rewrites

C12(ρ) = 1 − α+ 2
√
c1(α− c1) with 0 ≤ c1 ≤ α, (35)

and when α ≥ 1
2 , the concurrence is given by

C12(ρ) = (
√
c1 +

√
α− c2)2 − 1 (36)

for

0 ≤ c1 ≤ c−, c+ ≤ c1 ≤ α (37)

with c± = α±
√
2α−1
2 and the system is entangled. However, for c− ≤ c1 ≤ c+, the concurrence is zero and the

bipartite system is separable.

revoir expression de C12 en fonction de c1: il y a des fautes.

0.2 0.4 0.6 0.8
c1

0.2

0.4

0.6

0.8

1.0

C12HΡL

Figure 5. The concurrence C12(ρ) as function of the parameter c1 for α ≥ 1
2 .

It is important to stress that the quantum interferometric power P is nonzero except in the particular case

c− = c+ = 0.25 or equivalently α = 0.5 and c1 = c2 = 0.5 (see the equations (27) and (28) ). This reflects that

the quantum interferometric power is also a quantifier which characterizes the quantum correlations existing

in separable states and in this respect goes beyond the notion of concurrence introduced by Wootters. On

the other hand quantum interferometric power is directly related to quantum Fisher information and as by

product this quantifier constitute an adequate tool to understand the role of quantum information in enhancing

the parameter precision in quantum metrology protocols. Indeed, from the figure 4 for α ≤ 1
2 ), the quantum

interferometric power measured by reach the maximal values is for the states (14) and (15) respectively. Also,

among the family of density matrices (1), the probe states which offer the efficient sensitivity are those with

lower values of the parameter α (α = 0.1 for instance). For two-qubit states with α ≥ 1
2 , the suitable probe

states to ensure the best precision are those with c1 = α− or c1 = α+ (α− ( α± are given by (26) ) and enhance

more the precision estimation one should consider states with higher values of α. It is remarkable that the probe

states ensuring the maximum precision to the estimation are exactly those encompassing the maximum amount

of quantum correlations, i.e. with c1 = α− or c1 = α+ where the sudden change of quantum interferometric

power occurs.

5 Bounds of local local Fisher information

It is clear that even in the absence of entanglement, quantum correlations constitute a resource to enhance the

parameter precision in the bipartite states ρ (1) for unitary parametrization process. Recently, bounds on the
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metrology precision in the presence of quantum correlation were derived in [26] by evaluating the upper and

the lower bound of the local quantum Fisher information. In this sense, we denote by

Fmin(ρ) =
1

4
min
{H1}

F(ρ,H1) Fmax(ρ) =
1

4
max
{H1}

F(ρ,HA). (38)

the minimal and the maximal amount of local quantum Fisher information over all local observables acting

on the qubit 1. We notice that Fmin(ρ) is exactly the definition of quantum interferometric power defined by

(18). To write down the expression of the upper and lower bounds, we optimize first the local quantum Fisher

information (9) over the variables α and β parameterizing the orientation of the unit vector −→r (see equation

(8)). By setting the derivatives to zero, one finds the solutions −→r = (1, 0, 0), −→r = (0, 1, 0) and −→r = (0, 0, 1) for

which one obtains the quantum Fisher F (ρ, σ1), F (ρ, σ2) and F (ρ, σ3) given by the expressions (10), (16) and

(17) respectively. Therefore, one gets

Fmin(ρ) =
1

4
min(F (ρ, σ1), F (ρ, σ2), F (ρ, σ3)) Fmax(ρ) =

1

4
max(F (ρ, σ1), F (ρ, σ2), F (ρ, σ3)). (39)

This result can be alternatively derived using the method reported in [26]. Indeed, by optimizing over all local

traceless Hamiltonians acting on the first qubit, the bounds of the local quantum Fisher information write

Fmin(ρ) = 1 − λmax
w , Fmax(ρ) = 1 − λmin

w , (40)

where λmax
w and λmin

w denote respectively the largest and the smallest values of the following quantities

Wii =
∑
m ̸=n

2λmλn
λm + λn

⟨m|σi ⊗ I|n⟩⟨n|σi ⊗ I|n⟩, i = 1, 2, 3, (41)

which can be written also as

Wii = 1 −Mii = 1 − 1

4
F (ρ, σi). (42)

In this respect, using the relation (42) and the results (21), it is simple to see that, for the two-qubit states

under consideration, the matrix W is diagonal and one gets

W11 = 2
[
1 − (c1 + c2)

][√
c1 +

√
c2
]2
, W22 = 2

[
1 − (c1 + c2)

][√
c1 −

√
c2
]2
, W33 = (c1−c2)2

c1+c2
. (43)

Since W11 is always greater than W22, one obtains

λmax
w = max(W11,W33) λmin

w = min(W22,W33).

As the inverse of quantum Fisher provides the lower bound on the error in statistical estimation of unknown

parameter and since the local quantum Fisher information is bounded by below by Fmin(ρ) and above by

Fmax(ρ), we introduce the following quantity

δθ = 1
Fmin(ρ)

− 1
Fmax(ρ)

. (44)

to examine the range of the possible variations of the inverse of local quantum information and the role of

quantum correlations present in the probe states to decrease the difference between the upper and the lower

values and how this affects the enhancement of the parameter estimation. We note that Fmin(ρ) and the

quantum interferometric power are proportional. Therefore, for α ≤ 1
2 , one obtains

Fmin = 1 − 2(1 − α)(
√
c1 +

√
α− c1)2 (45)

For α ≥ 1
2 , when the parameter c1 satisfies α− ≤ c1 ≤ α+, Fmin reads as (45); the quantities α− and α+ are

defined by (26). Conversely, for 0 ≤ c1 ≤ α− and α+ ≤ c1 ≤ α, one gets

Fmin = 1 − (2c1 − α)2

α
(46)
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Similarly, to write the expression of the upper bound of local quantum fisher information Fmax, one compares

W22 and W33. The inequality W22 ≥W33 holds when the parameter c1 satisfies the following condition

(
√
c1 −

√
c2)2 − 2(c1 + c2)2 ≥ 0. (47)

To examine this two parameters condition, we fix α = c1 + c2 and we consider separately the situations where

α ≤ 1
2 and α ≥ 1

2 . From (47), it is simply verified, for α ≥ 1
2 , that λminw = W33 and one has

Fmax = 1 − 2(1 − α)(
√
c1 −

√
α− c1)2. (48)

For the situation where α ≤ 1
2 , one has λminw = W22 for

α− ≤ c1 ≤ α+

where α+ and α− are given by (26). It follows that

Fmax = 1 − 2(1 − α)(
√
c1 −

√
α− c1)2, (49)

for α− ≤ c1 ≤ α+ and

Fmax = 1 − (2c1 − α)2

α
(50)

for 0 ≤ c1 ≤ α− and α+ ≤ c1 ≤ α. Combining the results (45), (46), (48), (49), (50) and (50), one gets the

explicit form of the difference δθ. Indeed, for α ≤ 1
2 , one obtains

δθ = 4
F (ρ, σ3) − F (ρ, σ1)

F (ρ, σ1)F (ρ, σ3)
(51)

when c1 ∈ [0, α−] ∪ [α+, α] and

δθ = 4
F (ρ, σ2) − F (ρ, σ1)

F (ρ, σ1)F (ρ, σ2)
(52)

for c1 ∈ [α−, α+] where F (ρ, σ1), F (ρ, σ2) and F (ρ, σ3) are given by (10), (16) and (17), respectively. It is

remarkable that the difference δ involves only the local quantum Fisher information obtained for the local

observables σ1, σ2 and σ3. Similarly, for α ≥ 1
2 , one finds

δθ = 4
F (ρ, σ2) − F (ρ, σ3)

F (ρ, σ2)F (ρ, σ3)
(53)

when c1 ∈ [0, α−] ∪ [α+, α] and

δθ = 4
F (ρ, σ2) − F (ρ, σ1)

F (ρ, σ1)F (ρ, σ2)
(54)

for c1 ∈ [α−, α+]. The figure 6 gives for different values of α = c1 + c2, the behavior of the difference δθ versus

the versus the parameter c1 labeling the probe states (1). For α ≤ 1
2 , the figure 6 shows that δθ is minimal for

the states with (c1 = 0, c2 = α) and (c1 = α, c2 = 0). Conversely, it is maximal for states with (c1 = c2 = α
2 ).

The two qubit states with (c1 = 0, c2 = α) and (c1 = α, c2 = 0) , respectively given by (14) and (15), are

those presenting the maximal amount of quantum correlations as quantified by quantum interferometric power

(see figure 4). This results elucidates the role of quantum correlation in enhancing the precision in quantum

estimation protocols. Furthermore, the quantum interferometric power for the states with (c1 = c2 = α
2 )

given by (11), is minimal (see figure 4). Thus the fact that the quantity δθ is maximal corroborate the crucial

importance of the role of quantum correlations in improving the estimation of the parameter θ.

In the particular case α = 1
2 , the expressions of Fmin and Fmin reduce to

Fmin = 1 − 1

2
(
√

2c1 +
√

1 − 2c1)2, Fmax = 1 − 1

2
(
√

2c1 −
√

1 − 2c1)2. (55)
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Thus, when c1 = c2 = 1
4 , the quantum interferometric power P ∼ Fmin vanishes (see also the figure 4) and

Fmax = 1. This explains the infinite behavior of δθ for c1 = c2 = 1
4 (see figure 6). It is interesting the note

that in this case the state ρ (1) is separable. Indeed, using the equation (34), one verifies that the concurrence

is zero. This result shows that the separable states are not suitable for parameter estimation. The limiting

case α = α = 1
2 is very illustrative. In fact, the upper and lower local Fisher information satisfy the additivity

relation Fmin + Fmax = 1 which implies Fmin increases as Fmax decreases and vice-versa. It follows that when

the values of Fmin and Fmax approach each other, the difference δ decreases and in this case the probe states ρ

exhibit increasing amount of quantum correlations. Similar results are obtained for other values of the parameter

α. They are reported in the figure 6. The comparison of these results and ones depicted in figure 4, show that

the quantity δθ varies inversely with the amount of quantum correlations encompassed in the probe states. In

this respect, it can be used to decide about their suitability in enhancing the estimation of the parameter θ.

Finally, we note that the sudden change of quantum interferometric power P occurring when α ≥ 1
2 ( figure 4)

is responsible of the sudden change in the behavior of the quantity δθ.

0.1 0.2 0.3 0.4 0.5
C1

1

2

3

4

5

6

DΘmax-DΘmin

0.2 0.4 0.6 0.8
C1

1

2

3

4

5

6

DΘmax-DΘmin

Figure 6 . δθ versus the parameter c1 for different values of α = c1 + c2.

Changer la notation pour les axes par δθ

Using the bounds of local quantum Fisher information, we investigate the relation between the difference

defined

δF = Fmax − Fmin (56)

and the quantum correlations existing in the generic class of states ρ (1). In this respect, combining the results

(45), (46), (48), (49), (50) and (50), one gets the explicit form of the difference δF . Indeed, for α ≤ 1
2 , one

obtains

δF =
1

α

[(
2
√
c1(α− c1) + α(1 − α)

)2 − α4

]
(57)

when c1 ∈ [0, α−] ∪ [α+, α] and

δF = 8 (1 − α)
√
c1(α− c1) (58)

for c1 ∈ [α−, α+]. Similarly, for α ≥ 1
2 , one finds

δF =
1

α

[
α4 −

(
2
√
c1(α− c1) − α(1 − α)

)2]
(59)

when c1 ∈ [0, α−] ∪ [α+, α] and

δF = 8 (1 − α)
√
c1(α− c1) (60)

for c1 ∈ [α−, α+].

Tracer δF en fonction de c1.
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6 Concluding remarks

To summarize, we first derived the analytical expressions of local quantum Fisher information for some par-

ticular unitary parametrization processes which gives significant advantages in examining the role of quantum

correlations in determining high-precision of the estimated parameter. We also investigated the amount of

quantum correlations in a generic class of two-qubit states by using the concept of quantum interferometric

power which a discord-like quantifier. The characterization of the quantum correlations in term of this new

quantifier provides the the appropriate tool to examine the role of quantum correlations in quantum metrology.

In this paper, we deliberately considered density matrices of rank two to give a comparison between the quantum

interferometric power and and the quantum discord based on von Neumann entropy which can be easily derived

for this kind of states using the Koashi-winter theorem. Indeed, the amount of quantum correlations depicted

in figures 4 and 5 show clearly that the quantum interferometric power can be used as a good measure to reveal

the quantum correlations in bipartite quantum states especially ones of higher rank. It must be noticed that the

quantum interferometric power can be derived explicitly for quantum systems with higher dimensional Hilbert

spaces [24, 26]. Based on this comparison, it becomes clear that the quantum interferometric power provides

a nice geometrical tool in identifying , quantifying and characterizing quantum correlations for bipartite qu-

dit systems and offers the way to overcome the mathematical difficulties encountered in deriving the explicit

expressions of entropic quantum discord. The second important aspect investigated in this paper deals with

the role of quantum correlations in quantum metrology. We explicitly derived the tight bounds of the error

on the estimated parameter. The difference between the higher and the lower bounds is investigated in detail

and in particular we find that this difference is smaller for two qubit states encompassing a large amount of

quantum correlations and becomes larger for states presenting less quantum correlations. This indicates that

the quantum correlations are efficient in boosting the the performance of information processing protocols.

References

[1] V. Giovannetti, S. Lloyd and L. Maccone, Science 306 (2004) 1330.

[2] V. Giovannetti, S. Lloyd and L. Maccone, Phys. Rev. Lett.96 (2006) 010401.

[3] S. Lloyd, Science 321 (2008) 1463.

[4] V. Giovannetti, S. Lloyd and L. Maccone, Nature Photo. 5 (2011) 222.

[5] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio and J. I. Cirac, Phys. Rev. Lett.

79 (1997) 3865 .

[6] B. M. Escher, R. L. de Matos Fillo and L. Davidovich, Nat. Phys. 7 (2011) 406.
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