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Abstract

The aim of this article is to construct à la Barut–Girardello coherent states for su(n) algebra.

This construction uses the generalized Grassmann variables.



1 Introduction

It is well established that the formalism of coherent states is widely used in several areas of quan-

tum physics (see [2, 33, 35, 42, 51, 59]). There exist three definitions of coherent states for a given

Lie algebra (see for instance [62]): (i) The Klauder-Perelomov approach which defines the coherent

states by the action of an unitary displacement operator on a reference state [51, 50] , (ii) The Barut–

Girardello approach where the coherent states are defined as the eigenstates of the lowering generators

[10] and (iii) The uncertainty approach in which the coherent states are obtained by minimizing the

Robertson-Schrödinger uncertainty relations for Hermitian generators of a group [56, 57] (see also

[5, 6]). In general for a given algebra, the three approaches yields to different sets of coherent states

expect the Weyl-Heisenberg describing the harmonic oscillator.

It must noticed that contrarily to Klauder-Perelomov approach , the Barut–Girardello prescription

is limited to Lie algebras with infinite-dimensional representation space. For instance, this approach

does not apply for su(2) algebra for which the coherent states can be defined using the first and the

third approach.

In this paper, we shall be concerned with the construction of Barut–Girardello coherent states for

su(n) algebras in terms of generalized Grassmann variables.

2 Qudits and generalized Weyl-Heisenberg algebra

Dealing with bosonic and fermionic many particles states is simplified by considering the algebraic

structures of the corresponding raising and lowering operators. For bosons the creation and annihila-

tion operators satisfy the commutations relations

[b−i , b
+
j ] = δijI, [b−i , b

−
j ] = [b+i , b

+
j ] = 0. (1)

where the unit operator I commute with the creation and annihilation operators b+i and bii. On the

hand, fermions are specified by the following anti-commutation relations

{f−
i , f+

j } = δijI, {f+
i , f+

j } = {f
−
i , f−

j } = 0. (2)

The Fock spaces for bosons and fermions give the realizations of the associated commutation and

anti-commutation relations and subsequently the symmetric and antisymmetric waves functions. The

properties of Fock states follow from the commutation and anti-commutation relations which imposes

only be one particle in each state for fermions (two dimension) and multiple particles for bosons (in-

finite dimension). Following Wu and Vidal there is a crucial difference between fermions and qubits.

In fact, a qubit is a vector in a two dimensional Hilbert space like fermions and the Hilbert space

of a multi-qubit system has a tensor product structure like bosons. In this respect, the raising and

lowering operators commutation rules for qubits are neither specified by relations of bosonic type (1)

nor of fermionic type (2).
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2.1 Qubit algebra from generalized Weyl-Heisenberg algebra

The qubits appear like objects which exhibits both bosonic and fermionic properties so that they

cannot described by Fermi-like or Bose-like operators. An alterative way for the algebraic description

of qubits and qudits, is possible by resorting the formalism of generalized Weyl-Heisenberg algebras.

We by |0⟩ the ground state and |1⟩ the excited state of a two-level system and we define the lowering,

raising and number operators by

a− = |0⟩⟨1|, a+ = |1⟩⟨0|, N = |1⟩⟨1|. (3)

They satisfy the following commutation relations

[a−, a+] = I− 2N, [N, a+] = −a+, [N, a−] = +a−. (4)

where I is the unit operator. In this scheme, the qubit is described by a modified bosonic algebra and

the creation and the annihilation operators satisfy the nilpotency condition: (a+)2 = (a−)2 = 0 like

Fermi operators. This algebra turns out to be a particular case of the generalized Weyl-Heisenberg

algebra Aκ introduced in [?, ?] (κ ∈ R). The structure relations of the algebra Aκ are defined by

[a−, a+] = I+ 2κN, [N, a+] = −a+, [N, a−] = +a− (5)

where κ ∈ R. For κ < 0, the Hilbert space representations is finite dimensional. The algebra Aκ re-

duces to the algebra (4) for κ = −1 . It must be stressed that the commutation relations (4) coincide

with ones defining the algebra introduced in [?] to introduce an alternative algebraic description of

qubits instead of the parafermionic formulation considered in [?].

To describe a l-qubit system, we consider l copies of the algebra A−1 generated by the raising and

lowering operators a+i and a−i , the number operators Ni and the unit operator I such that they satisfy

the relations

[a−i , a
+
j ] = (I− 2Ni) δij , [Ni, a

+
j ] = −δija

+
j , [Ni, a

−
j ] = +δija

−
j [a−i , a

−
j ] = [a+i , a

+
j ] = 0.

(6)

where i = 1, 2, · · · , l. Let denote by Hi = {|ki⟩, ki = 0, 1} the Hilbert space for the qudit i. In

view of the relation [a−i , a
+
j ] = 0 for i ̸= j, the n-qubit Hilbert space has the following tensor product

structure

H(l) =
l⊗

i=1

Hi = {|n1, n2, · · · , nl⟩, ki = 0, 1}.

like bosons and {|n1, n2, · · · , nl⟩, ni = 0, 1 for i = 1, 2, · · · , l} is its orthonormal basis.

2.2 Qudit algebra and Dicke states

For (d− 1)-qubits, the Hilbert space is given by

H(d− 1) =
d−1⊗
i=1

Hi = {|n1, n2, · · · , nd−1⟩, ki = 0, 1}.
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The corresponding creation and annihilation operators a±i (i = 1, 2, · · · , d − 1) satisfy the structure

relations (6). We define the collective lowering and raising operators in the Hilbert space H(d− 1) as

follows

A− =

d−1∑
i=1

a−i A+ =

d−1∑
i=1

a+i (7)

in terms of the creation and annihilation operators a+i and a−i . Here and in the following the index i

refers to the system the operator is acting on, e.g.

a±i ≡ I⊗ · · · I⊗ a±i ⊗ I⊗ · · · I.

It is simple to see that the state |0, 0, · · · , 0⟩ ≡ |d− 1, 0⟩ satisfies A−|d− 1, 0⟩ = 0. Furthermore, using

the commutation relations (6), one gets the following nilpotency conditions

(A−)d = 0 (A+)d = 0

which extends the Pauli exclusion principle for ordinary qubits (i.e., d = 2). The actions of the

operators A− and A+ on the Hilbert space H(d− 1) can be determined from the standard actions of

the fermionic operators a−i and a+i . Using a recursive procedure, one verifies that repeated applications

of the raising operator A+ on the vacuum |0, 0, · · · , 0⟩ gives

(A+)k|d− 1, 0⟩ =

√
k!(d− k)!

(d− 1− k)!
|d− 1, k⟩ (8)

where the vectors |d− 1, k⟩ are the symmetric Dicke states with k excitations (k = 0, 1, 2, · · · , d− 1).

They are defined by

|d− 1, k⟩ =

√
k!(d− 1− k)!

(d− 1)!

∑
σεSd−1

| 0, 0, · · · , 0︸ ︷︷ ︸
d−k−1

, 1, 1, · · · , 1, 1︸ ︷︷ ︸
k

⟩ (9)

where Sd−1 is the permutation group of (d − 1) objets. The Dicke states generate an orthonormal

basis of the symmetric Hilbert subspace Hs ⊂ H with dimHs = d. To write the explicit actions of the

ladder operators A±, we introduce the structure function defined by F (k) = k(d − k). The equation

(8) rewrites as

(A+)k|d− 1, 0⟩ =
√

F (k)! |d− 1, k⟩ (10)

where F (k)! = F (k)F (k − 1) · · ·F (1) and F (0) = 1. After some algebra, it is simple to verify that

A+|d− 1, k⟩ =
√

F (k + 1) |d− 1, k + 1⟩, A−|d− 1, k⟩ =
√
F (k) |d− 1, k − 1⟩ (11)

and the action of the creation and annihilation operators on the vectors |d − 1, 0⟩ and |d − 1, d − 1⟩
gives

A−|d− 1, 0⟩ = 0 A+|d− 1, d− 1⟩ = 0. (12)

The number operator A is defined as

A|d− 1, k⟩ = k |d− 1, k⟩. (13)
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The qudit operators A+, A− and A satisfy the commutation rules

[A+, A−] = (d− 1)I− 2A, [A+, A] = A+, [A−, A] = −A− (14)

Using the commutation relation
[
a+i , a

−
j

]
= 0 for i ̸= j, it is simple to verify that

[
A+, A−] = ∑

i,j

[
a+i , a

−
j

]
=

∑
i

[
a+i , a

−
i

]
and the operator A can be expressed as

A =

d−1∑
i=1

Ni

where Ni is the single qubit number operator (Ni|0⟩i = 0 and Ni|1⟩i = 1|1⟩i). It is remarkable that

the creation and annihilation operator A+ and A− close the following trilinear relation commutation

[A−, [A+, A−]] = 2A−, [A+, [A+, A−]] = −2A+

characterizing a parafermion. Note also that the definition (7) is similar to Green decomposition in

the construction of parafermions from ordinary fermions. Therefore, the operators A+, A− and A

satisfying the relations (14) provide a simple algebraic description of d-level quantum systems (qudit).

We notice also that by re-scaling the generators of the algebra (14)

A± −→ A±
√
d− 1

,

one recovers the algebra Aκ with κ = 1/(1 − d). This shows clearly that the generalized Weyl-

Heisenberg provides the appropriate tools to describe qudit systems. In particular, this realization

expresses the Hilbert states of a qudit system in terms of Dicke states of (d− 1) qubits. In this way,

the global properties of the qubit ensemble are encoded in the qudit system. To close this section

that the algebraic description of qudit systems provides us with the necessary ingredients to define

the phase operator for a qudit system and subsequently the phase states for a collection of identical

qudits. This constitutes the main issue of the next section.

2.3 Genealized Grassmann varaibles for multilevel systems

We consider the algebra generated by the identity 1 and (k − 1) commuting Grassmann variables ηi

(i = 1, 2, · · · k − 1) obeying the usual nilpotency conditions. Namely

η2i = 0, [ηi, ηj ] = 0 (15)

We note that the Grassamnn variables are commuting. We denote by η̄i the complex conjugate of

the element ηi. The is spanned by 2k linearly independent elements of the form ηi1ηi2 · · · ηin with

i1 < i2 < · · · < in for n = 0, 1, · · · , k − 1. For n = 0, the corresponding element is the identity. The

η-derivative ∂i =
∂
∂ηi

satisfies

∂iηj = δij , ∂i1 = 0, ∂i∂j = ∂j∂i (16)
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We define the generalized Grassmann variables as follows

η =

k−1∑
i=1

ηi η̄ =

k−1∑
i=1

η̄i (17)

in terms of the nilpotent variables ηi and η̄i. We define the following symmetric η-polynomials

en(η⃗) =
∑

i1<i2<···<in

ηi1ηi2 · · · ηin , for n = 1, 2, · · · , k − 1 and e0(η⃗) = 1. (18)

where η⃗ = (η1, η2, · · · , ηn). Explicitly, we have

e1(η⃗) = η

e2(η⃗) =
∑
i<j

ηiηj

e3(η⃗) =
∑
i<j<l

ηiηjηl

· · ·

en(η⃗) = η1η2 · · · ηk

we note that

ηn = n!en(η⃗) for n = 1, 2, · · · , k − 1

and

ηk = 0

The η-derivative is defined by

∂

∂η
=

k−1∑
i=1

∂

∂ηi

∂

∂η̄
=

k−1∑
i=1

∂

∂η̄i
, (19)

Similarly, one shows that

∂n
η = n!gn for n = 1, 2, · · · , k − 1 and ∂k

η = 0

where

gn =
∑

i1<i2<···<in

∂ηi1∂ηi2 · · · ∂ηin , for n = 1, 2, · · · , k − 1 and g0 = 1. (20)

We define also the functions

Dn(η⃗) =

√
n!(k − 1− n)!

(k − 1)!
en(η⃗) (21)

It is interesting to notice that

ηn =

√
n!(k − 1)!

(k − 1− n)!
Dn(η⃗) = n!en(η⃗) (22)

Using the equation (22), one shows

ηDn(η⃗) =
√

(n+ 1)(k − n− 1) Dn+1(η⃗) (23)
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Using the definition of the η-derivative,

∂

∂η
=

k−1∑
i=1

∂

∂ηi

∂

∂η̄
=

k−1∑
i=1

∂

∂η̄i
, (24)

one shows that

∂en(η⃗)

∂η
= (k − n) en−1(η⃗) for n = 1, 2, · · · , k − 1 and

∂e0(η⃗)

∂η
= 0 (25)

from which one gets
∂Dn(η⃗)

∂η
=

√
n(k − n) Dn−1(η⃗) (26)

2.4 Generalized Grassmann Variables

Generalized Grassmann variables η and η̄ of order k satisfy

ηk = η̄k = 0 (27)

The sets {I, η, · · · , ηk−1} and {I, η̄, · · · , η̄k−1} span isomorphic Grassmann algebras. The derivatives

are formally defined by

∂ηη
n = n(k − n) ηn−1 ∂η̄η̄

n = n(k − n) η̄n−1 (28)

for n = 0, 1, · · · , k − 1. Hence, for functions f and g such that

f(η) =
k−1∑
n=0

anη
n g(η̄) =

k−1∑
n=0

bnη̄
n (29)

where the an and bn coefficients in the expansions are complex numbers, we easily show that

(∂η)
kf(η) = (∂η̄)

kg(η̄) = 0. (30)

As a consequence, we assume that the conditions

(∂η)
k = (∂η̄)

k = 0 (31)

hold in addition to (27).

The η-integral can be defined by using the Berezin integral of Grassmann variables given by∫
ηidηj = δij

∫
dηi = 0 (32)

This gives ∫
en(η⃗)dη = 0 (n = 0, 1, · · · , k − 2) and

∫
ek−1(η⃗)dη = 1

where dη = dη1dη2 · · · dηk−1. As result, one gets the following η-integral∫
ηn dη = 0 (n = 0, 1, · · · , k − 2) and

∫
ηk−1 dη = (k − 1)!

Clearly, the usual Berezin integration for ordinary Grassmann variables is recovered in the k = 2

particular case.

Similarly, for the conjugate generalized Grassamnn variables we have the following integration

rules ∫
η̄ndη̄ = 0 (n = 0, 1, · · · , k − 2),

∫
η̄k−1dη̄ = (k − 1)! (33)
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2.5 The spin coherent states à la Barut-Girardello

The various irreducible representation classes of the group SU(2) are characterized by a label j with

2j ∈ N. The standard irreducible matrix representation associated with j is spanned by the irreducible

tensorial set

B2j+1 = {|j,m⟩ : m = j, j − 1, . . . ,−j}, (34)

where the vector |j,m⟩ is a common eigenvector of the Casimir operator j2 and of the Cartan operator

jz of the Lie algebra su(2) of SU(2). More precisely, we have the relations

j2|j,m⟩ = j(j + 1)|j,m⟩, jz|j,m⟩ = m|j,m⟩, (35)

which are familiar in angular momentum theory. (We use lower case letters for operators and capital

letters for matrices so that j2 in (35) stands for the square of a generalized angular momentum.) The

raising and lowering operators are given by

j+ =

j∑
m=−j

√
(j +m+ 1)(j −m)|j,m+ 1⟩⟨j,m|, j− =

j∑
m=−j

√
(j +m)(j −m+ 1)|j,m− 1⟩⟨j,m|(36)

They satisfy the structure relations

[jz, j+] = +j+, [jz, j−] = −j−, [j+, j−] = 2jz. (37)

In what follows, we make the identifications

|j,m⟩ ←→ |n⟩ j +m←→ n,

so that the Hilbert space B2j+1 is given by

B2j+1 = {|n⟩ := 0, 1, . . . , 2j}.

In order to construct the su(2) coherent states à la Barut-Girardello, we consider the following eigen-

value equation

j−|η⟩ = η|η⟩ |η⟩ =
2j∑
n=0

Cnη
n|n⟩. (38)

Using the action of the lowering operator j−, one gets the following recurrence relations

Cn+1

√
(n+ 1)(2j − n) = Cn, for n = 0, 1, · · · , 2j − 1 (39)

with the condition

C2j η2j+1 = 0. (40)

From the equations (39) and (41), it is clear that the eigenvalue equation is solvable if the variable η

is a Grassmann variable of order (2j + 1):

η2j+1 = 0. (41)
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In this case the coefficients in the expansion of the states |η⟩ writes

Cn =

√
(2j − n)!

n!(2j)!
C0 (42)

where C0 can be fixed from the normalization condition of the states |η⟩. As result one obtains

|η⟩BG = NBG

2j∑
n=0

√
(2j − n)!

n!(2j)!
ηn|n⟩. (43)

where the normalization factor is given by

|NBG|−2 =

2j∑
n=0

(2j − n)!

n!(2j)!
η̄nηn

In view of η2j+1 = 0, the |η, φ⟩ states can be called (2j + 1)-fermionic coherent states [18]. They

satisfy

j−|η, φ⟩ = η|η, φ⟩ (44)

and are thus coherent states in the Barut–Girardello sense. In addition, they constitute an over-

complete set with ∫
|η, φ⟩dµ(η, η̄)⟨η, φ| =

2j∑
n=0

|n⟩⟨n| (45)

for the dµ measure satisfying the following integral formula

1

F (n)!

∫
ηn dµ(η, η̄) |NBG|2 η̄m = δn,m. (46)

Setting dµ(η, η̄)|NBG|2 = σ(η, η̄)dηdη̄, the equation (46) becomes

1

F (n)!

∫
σ(η, η̄) ηnη̄m dηdη̄ = δn,m. (47)

Expanding the function σ(η, η̄) as

σ(η, η̄) =

k−1∑
n=0

anη
k−1−nη̄k−1−n, k = 2j + 1

it is simple to verify that the function σ(η, η̄) verifies the integral equation (47) for an = F (n)!. It

follows that the measure takes the following form

dµ(η, η̄) = |NBG|−2
k−1∑
n=0

F (n)! ηk−1−n η̄k−1−n dη dη̄ (48)
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3 The SU(3) coherent states à la Barut-Girardello

3.1 The analytical representation of the generalized algebra Aκ(2)

3.1.1 The algebra and the Hilbert representation

We first recall the definition of the Aκ(2) algebra. Here, we shall consider κ = − 1
k with k ∈ N∗. This

algebra is spanned by two pairs of creation and annihilation operators a−i , a
+
i with i = 1, 2 and two

number operators Ni. They satisfy the following structures relations

[a−i , a
+
i ] = kI − (N1 +N2 +Ni), [Ni, a

±
j ] = ±δi,ja

±
i , i, j = 1, 2 (49)

and

[a±i , a
±
j ] = 0, i ̸= j, (50)

complemented by the Serre like relations

[a±i , [a
±
i , a

∓
j ]] = 0, i ̸= j. (51)

The identity operator is denoted by I. The Hilbertian representation of this algebra on a Hilbert-Fock

space Fk is finite dimensional. The Fock space Fk is given by the orthonormal set of vectors

{|n1, n2⟩ : n1 ∈ N, n2 ∈ N;n1 + n2 ≤ k}.

The dimension of the Fock space Fk is

d =
1

2
(k + 1)(k + 2), k ∈ N∗. (52)

The basis of Fock space are defined as the eigenstates of the number operators N1 and N2 , i.e.,

Ni|n1, n2⟩ = ni|n1, n2⟩, i = 1, 2. (53)

The raising and lowering operators a±1 and a±2 act sa

a+1 |n1, n2⟩ =
√

(n1 + 1)(k − n1 − n2)|n1 + 1, n2⟩, a−1 |n1, n2⟩ =
√

n1(k + 1− n1 − n2)|n1 − 1, n2⟩(54)

and

a+2 |n1, n2⟩ =
√

(n2 + 1)(k − n1 − n2)|n1, n2 + 1⟩, a−2 |n1, n2⟩ =
√

n1(k + 1− n1 − n2)|n1, n2 − 1⟩.(55)

Using the actions (54) and (55), one verifies that the creation and annihilation operators satisfy the

conditions

(a+1 )
k+1 = (a−1 )

k+1 = 0 (a+2 )
k+1 = (a−2 )

k+1 = 0 (56)

implemented by the hybrid nilpotency conditions

(a+1 )
k+1−l(a+2 )

l = 0 (a−1 )
k+1−l(a−2 )

l = 0 (57)

for l = 1, 2, · · · , k.
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3.1.2 Analytical representation and generalized Grassmann like variables

We shall discuss the analytical realization of the Ak of in which creation operator a+i acts as multi-

plications by the variables ηi with i = 1, 2. For this end, we realize the Fock space basis as

|n1, n2⟩ −→ fn1,n2(η1, η2) = cn1,n2η1
n1η2

n2 a+i −→ ηi. (58)

Using the relations (56) and (57), the variables η1 and η2 satisfy

(η1)
k+1 = 0 (η2)

k+1 = 0 (59)

(η1)
k+1−l(η2)

l = 0 (η1)
k+1−l(η2)

l = 0 (60)

for l = 1, 2, · · · , k. From the correspondence (61), one can write

|0, 0⟩ −→ 1 (61)

where we set C0,0 = 1. Using the actions of the creation and annihilation operators (54) and (55), one

verifies

|n1, n2⟩ =

√
(k − n1 − n2)!

k!n1!n2!
a+1

n1a+2
n2 |n1, n2⟩ n1 + n2 ≤ k, (62)

from which one writes

fn1,n2(η1, η2) =

√
(k − n1 − n2)!

k!n1!n2!
η1

n1η2
n2 (63)

The derivative with respect to the variables η1 and η2 can be easily computed. Indeed, one gets

∂

∂η1
fn1,n2(η1, η2) =

√
n1(k + 1− (n1 + n2))fn1−1,n2(η1, η2)

∂

∂η2
fn1,n2(η1, η2) =

√
n2(k + 1− (n1 + n2))fn1,n2−1(η1, η2).

(64)

It follows that the derivatives satisfy the conditions(
∂

∂η1

)k+1−l( ∂

∂η2

)l

= 0; l = 0, 1, 2, · · · , k + 1. (65)

3.2 The su(3) algebra

To fix the notations, we first introduce the su(3) algebra algebra. We denote the generators of this

algebra by j−i , j
+
i and hi with i = 1, 2. They satisfy the following commutation relations

[j+i , j
−
i ] = 2hi, [hi, j

±
j ] = ±δi,jj

±
i , i, j = 1, 2 (66)

and

[j±1 , j
±
2 ] = 0, (67)

complemented by the triple relations

[j±1 , [j
±
1 , j

∓
2 ]] = 0, [j±2 , [j

±
2 , j

∓
1 ]] = 0. (68)
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Here the su(3) algebra is described by two pairs of raising and lowering operators satisfying usual

commutation relations (66) and (67) and triple commutation relations (68). This description is the

Jacobson approach according to which the An Lie algebra can be defined by means of 2n, rather than

n(n + 2), generators satisfying commutation relations and triple commutation relations. These 2n

Jacobson generators correspond to n pairs of creation and annihilation operators. Indeed, we note

that from the triple relation give the structure relations satisfied by the operators defined

j+3 = [j+2 , j
−
1 ], j−3 = [j+1 , j

−
2 ]. (69)

in terms of the j−i , j
+
i ()i = 1, 2.

The dimension d(λ, µ) of the irreducible representation (λ, µ) of SU3 is given by

d(λ, µ) =
1

2
(λ+ 1)(µ+ 1)(λ+ µ+ 2), λ ∈ N, µ ∈ N.

For the irreducible representation (0, k) or its adjoint (k, 0) of SU3, the dimension of representation

space is given by

d =
1

2
(k + 1)(k + 2), k ∈ N∗. (70)

The associated Hilbert-Fock space Bk is

{|n1, n2⟩ : n1, n2 = 0, 1, 2, . . . ;n1 + n2 = 0, 1, . . . , k, }

where the vectors generating the orthonormal basis of Fk are the eigenstates of the the number

operators N1 and N2:

Ni|n1, n2⟩ = ni|n1, n2⟩, i = 1, 2 (71)

The action of the raising and lowering operators j±1 and j±2 is given by

j+1 |n1, n2⟩ =
√
F1(n1 + 1, n2)|n1 + 1, n2⟩, j−1 |n1, n2⟩ =

√
F1(n1, n2)|n1 − 1, n2⟩, (72)

and

j+2 |n1, n2⟩ =
√
F2(n1, n2 + 1)|n1, n2 + 1⟩, j−2 |n1, n2⟩ =

√
F2(n1, n2)|n1, n2 − 1⟩, (73)

where the structure functions are given by

Fi(n1, n2) = ni[k + 1− (n1 + n2)], i = 1, 2. (74)

The actions of the Cartan generators is given by

h1|n1, n2⟩ = n1 +
1

2
(n2 − k)|n1, n2⟩, h2|n1, n2⟩ = n2 +

1

2
(n1 − k)|n1, n2⟩, (75)

The actions of the operators (j+3 , j
−
3 ) defined by (????) in terms of the pairs (j+1 , j

−
1 ) and (j+2 , j

−
2 ) can

be determined from (72)-(73). It is easy to check

j+3 |n1, n2⟩ =
√
n1(n2 + 1)|n1 − 1, n2 + 1⟩, j−3 |n1, n2⟩ =

√
(n1 + 1)n2|n1 + 1, n2 − 1⟩. (76)
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3.3 Partitions of the Hilbert space

3.3.1 Partition 1

The basis of the representation space Fk is generated by the set {|n1, n2⟩ : n1, n2 ranging | n1+n2 ≤ k}.
To find the eigenstates of the operator j−1 , it is appropriate to decompose this space as

Fk =

k⊕
l=0

Ak,l =

k⊕
l=0

{|n, l⟩ : n = 0, 1, . . . , k − l}.

The dimension dk,l of each subspace Ak,l is k − l + 1. Using the equation (???), one verifies that

j+1 |k − l, l⟩ = 0,

We decompose the ladder operators j+1 and j−1 as

j±1 =
k∑

l=0

j±1 (l).

The actions of the components of j+1 and j−1 on the subspace Ak,l

j+1 (l)|n, l
′⟩ = δl,l′

√
F1(n+ 1, l)|n+ 1, l⟩, j−1 (l)|n, l

′⟩ = δl,l′
√

F1(n, l)|n− 1, l⟩,

In this partition, the action of the components of j+1 and j−1 on the subspace labeled by the quantum

number l leave Ak,l invariant.

3.3.2 Partition 2

The second partition related to the second mode of the states |n1, n2⟩ writes as

Fk =
k⊕

l=0

Bk,l =
k⊕

l=0

{|l, n⟩ : n = 0, 1, . . . , k − l}.

The operators j−2 and j+2 can be also decomposed as

j±2 =

k∑
l=0

j±2 (l).

The dimension of the subspace Bk,l is k− l+1. The operators j±2 (l) leaves invariant the subspace Bk,l.
Indeed, the actions of the generators j±2 (l) write

j+2 (l)|l
′, n⟩ = δl,l′

√
F2(l, n+ 1)|l, n+ 1⟩, j−2 (l)|l

′, n⟩ = δl,l′
√

F2(l, n)|l, n− 1⟩,

3.3.3 Partition 3

The third possible partition which is related to the invariance of the actions of the operators j±3 is

then given by

Fk =

k⊕
l=0

Ck,l =
k⊕

l=0

{|l − n, n⟩ : n = 0, 1, . . . , l} (77)

12



Here the subspaces Ck,l are of dimension l + 1. The appropriate decomposition of the generators j±3
in this partition is given by

j±3 =

k∑
l=0

j±3 (l),

where the components j±3 (l) act on the subspace Ck,l as

j+3 (l)|l
′ − n, n⟩ = δl,l′

√
(l − n)(n+ 1)|l − n− 1, n+ 1⟩, j−3 (l)|l

′ − n, n⟩ = δl,l′
√

(l − n+ 1)n|l − n+ 1, n− 1⟩,

which reflects the invariance of the subspace Ck,l under the actions of the operators j+3 (l) and j−3 (l).

3.4 The eigenstates of the lowering operators j−i (l) (i = 1, 2, 3)

3.4.1 Eigenstates for j−1 (l)

The eigenstates of j−1 (l) satisfy the eigenvalue equation

j−1 (l)|ul⟩ = ul|ul⟩, |ul⟩ =
k−l∑
n=0

anu
n
l |n, l⟩. (78)

Using the results obtained for su(2) algebra, one shows that the eigenstates of j−1 (l) are

|ul⟩ = N (ul, ūl)

k−l∑
n=0

√
(k − l − n)!

n!(k − l)!
unl |n, l⟩ (79)

where the variable ul satisfies

uk−l+1
l = 0

and the normalization factor is given by

|N (ul, ūl)|−2 =

k−l∑
n=0

(k − l − n)!

n!(k − l)!
ūl

nunl

3.4.2 Eigenstates for j−2 (l)

The eigenstates of j−2 (l) satisfy the eigenvalue equation

j−2 (l)|vl⟩ = θl|vl⟩, |vl⟩ =
k−l∑
n=0

bnv
n
l |l, n⟩. (80)

In this case also, the eigenstates can be derived as in the su(2) case. As result, one obatains

|vl⟩ = N (vl, v̄l)

k−l∑
n=0

√
(k − l − n)!

n!(k − l)!
vnl |l, n⟩. (81)

The variable vl is a generalized Grassmann variable satisfying the nilpotence condition

vk−l+1
l = 0

and the factor N (vl, v̄l) takes the form

|N (vl, v̄l)|−2 =

k−l∑
n=0

(k − l − n)!

n!(k − l)!
v̄l

nvnl

13



3.4.3 Eigenstates for j−3 (l)

The eigenstates of the E3d(l) operator are given by

j−3 (l)|wl⟩ = wl|wl⟩, |wl⟩ =
l∑

n=0

cnw
n
l |l − n, n⟩.

The solution of this eigenvalue equation is

|wl⟩ = N (wl, w̄l)
l∑

n=0

√
(l − n)!

n!l!
wn
l |l − n, n⟩. (82)

where wl is a generalized Grassmann variable of order l + 1:

wl+1
l = 0,

and

N (wl, w̄l) =
l∑

n=0

(l − n)!

n!l!
w̄l

nwn
l

4 SU(3) Barut-Girardello like coherent states

The su(3) lowering operators j−1 and j−2 commute and admit a common set of eigenstates satisfying

the following eigenvalue equations

j−1 |θ1, θ2⟩ = θ1||θ1, θ2⟩⟩, j−2 |θ1, θ2⟩ = θ2||θ1, θ2⟩⟩ (83)

where the state |θ1, θ2⟩ is

|θ1, θ2⟩ =
k∑

l=0

k−l∑
n=0

Cn,lθ
n
1 θ

l
2|n, l⟩. (84)

Using (72), the eigenvalue equation of the first mode gives the following recurrence relations

Cn+1,l

√
F1(n+ 1, l) = Cn,l, n = 0, 1, 2, · · · k − l − 1 (85)

and the conditions

θk−l+1
1 θl2 = 0 (86)

for l = 0, 1, . . . , k − 1. Similarly, using Using (72), the second eigenvalue equation in (83) leads to the

following recurrence relations

Cn,l+1

√
F2(n, l + 1) = Cn,l n = 0, 1, 2, · · · k − l − 1 (87)

together with the conditions (86) for l = 0, 1, . . . , k− 1. From the recurrence relations (87), one shows

Cn,l

√
F1(n, l)F1(n− 1, l) · · ·F1(1, l) = C0,l. (88)
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On the other hand, using the set of recurrence relation (87), it is simple to verify that

C0,l

√
F2(0, l)F2(0, l − 1) · · ·F2(0, 1) = C0,0. (89)

It follows that the expansion coefficients Cn,l are given by

Cn,l =
C0,0√

F1(n, l)F1(n− 1, l) · · ·F1(1, l)
√

F2(0, l)F2(0, l − 1) · · ·F2(0, 1)
, (90)

and using the expressions of the structure function F1 and F2, one shows that

Cn,l = C0,0

√
(k − n− l)!

k! n! l!
. (91)

Finally the eigenstates |θ1, θ2⟩ write

|θ1, θ2⟩ = C0,0

k∑
l=0

k−l∑
n=0

√
(k − n− l)!

k! n! l!
θn1 θ

l
2|n, l⟩. (92)

where the coefficient C0,0 can be fixed from the normalization condition of the states |θ1, θ2⟩. Indeed,
one gets

|C0,0|−2 =

k∑
l=0

k−l∑
n=0

√
(k − n− l)!

k! n! l!
θn1 θ̄

n
1 θ

l
2θ̄

l
2

4.1 SU(3) Vector coherent states

Following the vector coherent states formalism discussed in Ref. [?], we shall give a similar construction

for SU(3) coherent states in terms of generalized Grassmann variables.

4.1.1 Vector coherent states for j−1

To construct SU(3) vector coherent states, we define the (k + 1)× (k + 1)-matrix

U = diag(u0, u1, . . . , uk),

and the (k + 1)× 1-vector

[n, l] =



0
...

|n, l⟩
...

0


,

where the |n, l⟩ entry appears on the l-th line (with l = 0, 1, . . . , k). Let us define the (k+1)×1-vector

[ul] = N (ul, ūl)

k−l∑
n=0

√
(k − l − n)!

n!(k − l)!
unl [n, l]. (93)
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or equivalently

[ul] =



0
...

|ul⟩
...

0


, (94)

The states (100) are refereed as vector coherent states. In this matrix presentation, the operator

j−1 can be represented as

j−1 = diag
(
j−1 (0), j

−
1 (1), ..., j

−
1 (k)

)
.

It is simple to verify that j−1 satisfies

j−1 [ul] = ul[ul].

from which one obtains the following matrix eigenvalue equation

j−1


|u0⟩
|u1⟩
...

|uk⟩

 = U


|u0⟩
|u1⟩
...

|uk⟩

 (95)

????????????????????????????????????????????????????? ?????????????????????????????????????????????????????

Other properties of vector phase states [l,m, φ] can be deduced from those of phase states |l,m, φ⟩.
For instance, we obtain

• The temporal stability condition

e−iHt[l,m, φ] = [l,m, φ+ t]

for t real.

• The closure relation

k⊕
l=0

k−l∑
m=0

[l,m, φ][l,m, φ]† = Id,

where Id is the unit matrix of dimension d× d with d given by (70).

Similar vector phase states can be obtained for E2d by permuting the n and l quantum numbers

occurring in the derivation of the vector phase states for E1d.
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4.1.2 Vector coherent states for j−2

A similar construction of SU(3) vector coherent states can be obtained for j−2 by adopting the second

partition of the representation space od su(3) algebra. In this case, we define the (k+1)×(k+1)-matrix

V = diag(v0, v1, . . . , vk),

and we define the (k + 1)× 1-vector

[vl] = N (vl, v̄l)

k−l∑
n=0

√
(k − l − n)!

n!(k − l)!
vnl [n, l]. (96)

or equivalently

[vl] =



0
...

|vl⟩
...

0


, (97)

The states (100) are refereed as vector coherent states. In this matrix presentation, the lowering

operator j−2 can be represented as

j−2 = diag
(
j−2 (0), j

−
2 (1), ..., j

−
2 (k)

)
.

It is simple to verify that j−2 satisfies

j−2 [vl] = vl[vl].

from which one obtains the following matrix eigenvalue equation

j−2


|v0⟩
|v1⟩
...

|vk⟩

 = V


|v0⟩
|v1⟩
...

|vk⟩

 (98)

4.1.3 Vector coherent states for j−3

We define the (k + 1)× (k + 1) diagonal matrix

W = diag(w0, w1, . . . , wk),

and the column vector of dimension (k + 1)× 1

[[n− l, n]] =



0
...

|l − n, n⟩
...

0


,
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where the |l−n, n⟩ state occurs on the l-th line (with l = 0, 1, . . . , k). We introduce the vector coherent

state as

[wl] = N (wl, w̄l)
l∑

n=0

√
(l − n)!

n!l!
wn
l [n, l]. (99)

which can be rewritten also as

[wl] =



0
...

|wl⟩
...

0


, (100)

The matrix representation of lowering operator j−3 is given by

j−3 = diag
(
j−3 (0), j

−
3 (1), ..., j

−
3 (k)

)
.

It is simple to verify that j−3 satisfies

j−3 [wl] = wl[wl].

from which one obtains the following matrix eigenvalue equation

j−3


|w0⟩
|w1⟩
...

|wk⟩

 = W


|w0⟩
|w1⟩
...

|wk⟩

 (101)

5 The su(r + 1) algebra

We introduce the Jacobson operators generating the su(r + 1) algebra viewed as Lie triple system.

We review the construction of the corresponding Fock space.

5.1 Jacobson generators

First, let us introduce the notion of Lie triple system. Let V a vector space over a field F which is

assumed to be either real or complex. The vector space V equipped vector with a trilinear mapping

[x, y, z] : V ⊗ V ⊗ V −→ V

is called Lie triple system if the following identities are satisfied:

[x, x, x] = 0,

[x, y, z] + [y, z, x] + [z, x, y] = 0,

[x, y, [u, v, w]] = [[x, y, u], v, w] + [u, [x, y, v], w] + [u, v, [x, y, w]].
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According this definition, we will introduce the generalized Ar statistics as Lie triple system. In this

respect, the algebra G defined by the generators a+i and a−i (i = 1, 2, ..., r) mutually commuting

([a−i , a
−
j ] = [a+i , a

+
j ] = 0)

and satisfying the triple relation

[[a+i , a
−
j ], x

+
k ] = +δjka

+
i + δija

+
k (102)

[[a+i , a
−
j ], a

−
k ] = −δika

−
j − δija

−
k , (103)

is closed under the ternary operation

[x, y, z] = [[x, y], z]

and define a Lie triple system. The elements a±i are termed Jacobson generators.

5.2 Fock representations

An Hilbertian representation is simply derived using the relations structures (102) and (103) defining

su(r + 1) algebra. Since, the algebra is spanned by r pairs of Jacobson generators, it is natural to

assume that the Fock space F is given by

F =

∞⊕
n=0

Hn, (104)

where

Hn ≡ {|n1, n2, · · · , nr⟩ , ni ∈ N,

r∑
i=1

ni = n > 0}

and H0 ≡ C. The action of a±i , on F , are defined by

a±i |n1, · · · , ni, · · · , nr⟩ =
√

Fi(n1, · · · , ni ± 1, · · · , nr)|n1, · · · , ni ± 1, · · · , nr⟩ (105)

where the functions Fi are called the structure functions. Using the triple structure relations of Ar

statistics, one obtains (Donner reference) the following expressions

Fi(n1, · · · , ni, · · · , nr) = ni(k − (n1 + n2 + · · ·+ nr)), (106)

in terms of the quantum numbers n1, n2, · · · , nr. The dimension of the irreducible representation space

F is determined by the condition:

k − (n1 + n2 + · · ·+ nr) > 0. (107)

It is clear that there exists a finite number of basis states satisfying the condition n1+n2+ · · ·+nr ≤
k−1. The dimension is given, in this case, by (k−1+r)!

(k−1)!r! . This is exactly the dimension of the symmetric

representation of su(r) algebras. A quantum cannot not contain more than (k − 1) particles. This

condition restricting the number of particles that can be accommodated in a given state can be

interpreted as a generalization of the usual exclusion Pauli. For k = 2, one has a collection of r

independent fermions and for for large k, we have

[a−i , a
+
j ] ≈ kδij (108)

which is equivalent to a collection of independent bosons.
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6 Closing remarks

Blablabla??????????????????????
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[3] Ali S T, Englǐs M and Gazeau J-P 2004 J. Phys. A: Math. Gen. 37 6067

[4] Antoine J-P, Gazeau J-P, Monceau P, Klauder J R and Penson K 2001 J. Math. Phys. 42 2349

[5] Aragone C, Chalbaud E and Salamo S 1976 J. Math. Phys. 17 1963

[6] Aragone C, Guerri G, Salamo S and Tani J L 1974 J. Phys. A: Math. Gen. 7 L149

[7] Arik M and Coon D D 1976 J. Math. Phys. 17 524

[8] Atakishiyev N M Kibler M R and Wolf K B 2010 Symmetry 2 1461

[9] Bargmann V 1961 Commun. Pure. Appl. Math. 14 187

[10] Barut A O and Girardello L 1971 Commun. Math. Phys. 21 41

[11] Bateman H 1954 Table of integral transforms Vol 1 Ed A Erdélyi (New York: McGraw Hill)
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