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1 Gaussian quantum steering in two mechanical mode states

1.1 Gaussian steering measure

A rigorous formulation of a reliable and computable quantifier of steering for continuous variable

systems was developed in [?]. For the two-mechanical state with the covariance matrix V (t) (??), the

Gaussian steerability GA→B (by Gaussian measurement on Alice’s side) is quantified by

GA→B = max
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0,

1

2
ln

detV1(t)

4 detV (t)

]
= max
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0, − ln 2

(
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(v13(t))
2

v11(t)

)]
, (1)

where v11(t), v33(t) and v13(t) are given by Eqs. [(??)-(??)]. This quantity vanishes for non-steerable

states by Gaussian measurements [?]. By exchanging the roles of Alice and Bob (or the two mechanical

modes), the the Gaussian steerability GB→A writes

GB→A = max
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1

2
ln
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4 detV (t)

]
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0, − ln 2

(
v11(t)−

(v13(t))
2
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)]
, (2)

It is clear that the analytical expressions of GA→B and GB→A, in terms of the parameters of the

optomechanical system, are too cumbersome and will not be reported here. In general, the quantum

steerability is asymmetric (i.e. GA→B ̸= GB→A). This asymmetry can be characterized by the Gaussian

steering difference G∆
AB defined by [?]

G∆
AB =

∣∣GA→B − GB→A
∣∣ . (3)

In view of the inherent asymmetry of Gaussian steering measure, the steerability between Alice and

Bob can be classified as follows: (i) GA→B = GB→A = 0 refereed as no-way steering, (ii) GA→B > 0

and GB→A = 0 or GA→B = 0 and GB→A > 0 refereed as one-way steering (a quantum state may be

steerable from A to B but not from B to A) and finally (iii) GA→B > 0 and GB→A > 0 refereed as two-

way steering. On the other hand, it has been been proven that the Gaussian steering is always upper

bounded by the Gaussian Rényi-2 entanglement [?]. For the two mechanical mode states, specified by

the covariance matrix V (t) (??), the Gaussian Rényi-2 entanglement measure E2 is given by [?] (see

also [?])

E2 =
1

2
ln [h(s, d, g)] , (4)

with

h(s, d, g) =


1 iff 4g > 4s− 1,[

(4g+1)s−
√

[(4g−1)2−16d2][s2−d2−g]

4(d2+g)

]2
iff 4|d|+ 1 ≤ 4g < 4s− 1,

(5)



Figure 1: Plot of the Gaussian steering GA→B (green solid line), GB→A (red solid line), the steering

asymmetry G∆
AB (blue dashed line) and entanglement E2 (yellow solid line) between the two mechanical

modes A and B as a function of the scaled time γt for C1 = 15, C2 = 35 and r = 1. The mean thermal

photons numbers nth,1 and nth,2 are fixed as: panel (a) nth,1 = 0.5 and nth,2 = 1, panel (b) nth,1 = 1

and nth,2 = 0.5, panel (c) nth,1 = 1 and nth,2 = 1.2 and finally panel (d) nth,1 = 1 and nth,2 = 1.5.

This figure confirms the Gaussian steering is upper bounded by the Gaussian Rényi-2 entanglement

and as expected the steerable states are always entangled but the reverse is not necessarily true.

where s = 1
2(v11(t) + v33(t)), d = 1

2(v11(t)− v33(t)) and g =
(
v11(t)v33(t)− v213(t)

)
.

The expressions of GA→B, GB→A, G∆
AB and E2 involve the covariance matrix elements which are

expressed in terms of the squeezing parameter r, the jth optomechanical cooperativity Cj and the

jth mean thermal photons number nth,j (??). We shall consider the case where nth,1 ̸= nth,2 and

C1 ̸= C2 so that the system is not symmetric by swapping the first and the second mode. This

condition is crucial to ensure the Gaussian steering asymmetry. An extensive numerical analysis of

the parameters characterizing the optomechanical system reveals that the set of parameters which give

significant results of Gaussian steering are very close to that used in the optomechanical experiments

reported in [?]. Namely, the mass of the movable mirrors is µ1,2 = 145 ng and oscillate at frequency

ωµ1,2 = 2π× 947× 103 Hz with a mechanical damping rate γ1,2 = 2π× 140 Hz. The two cavities have

length L1,2 = 25 mm, wave length λ1,2 = 1064 nm, decay rate κ1,2 = 2π × 215 × 103 Hz, frequency

ωc1,2 = 2π × 5.26 × 1014 Hz and pumped by laser fields of frequency ωL1,2 = 2π × 2.82 × 1014 Hz.

For the powers of the coherent laser sources, we take ℘1 = 5 mW and ℘2 = 11 mW [?]. Using the

expression of the dimensionless optomechanical cooperativity Cj given by (??), one gets C1 ≃ 35 and

C2 ≃ 15.
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1.2 Dynamics of Gaussian steering asymmetry

1.2.1 Thermal effects

Using the steering quantifier presented in the previous section, we shall first consider the steerability

of the two-mechanical mode states when the squeezing parameter is r = 1. We note that two-

mode squeezed states with a squeezing parameter ranging from r = 0 to r = 2 can be produced

experimentally [?]. The time evolution of Gaussian steering in both ways, their difference and the

Rényi-2 entanglement are depicted in Fig. ??. For the mean thermal photons numbers nth,1 and nth,2

we considered the following values: nth,1 = 0.5, nth,2 = 1 (panel (a)), nth,1 = 1, nth,2 = 0.5 (panel

(b)), nth,1 = 1, nth,2 = 1.2 (panel (c)) and nth,1 = 1, nth,2 = 1.5 (panel (d)), which are almost of the

same order of magnitude as those used in [?]. Initially, the two mechanical modes are un-entangled.

The entanglement is induced by the transfer from the optical modes to the mechanical motion. This

interesting aspect of quantum correlations transfer can, in principle, be extended lo to the situations

where the mirrors are separated by long distances and might be of interest from applicative point of

view. First, we remark that Fig. ?? shows that a minimal amount of entanglement is required for the

apparition of Gaussian quantum steering. The results depicted in Fig. ?? show that the evolution

of quantum steering can be classified in three different steering regimes: (i) no-way/one-way/two-way

(panels (a) and (b)), (ii) no-way/one-way/two-way/one-way and (panel (c))(iii) no-way/one-way/two-

way/one-way/no-way (panel (d)). We begin our analysis of these different regimes by noticing that

the steering from B → A appears before the creation of the Gaussian steering in the opposite way

(B → A). For the regime (i), the behavior of quantum steering presented in the panel (a) and (b)

shows that the steerability asymmetry is non zero over a long period of time when nth,1 = 0.5, nth,2 = 1

in contract with the situation where nth,1 = 1, nth,2 = 0.5 (panel (b)) for which the mechanical modes

are steerable symmetrically in both states. The presence of important thermal effects leads to regime

of type (ii). In fact, for nth,1 = 1, nth,2 = 1.2 (panel (c)), one observes that that the steering from

A → B tends to disappear before one from B → A leading to a revival of the one-way steering

phenomenon (see Fig. ?? (panel (c))). This behavior indicates the the robustness of the quantum

steering from B to A and the resilience of the steering from B → A against thermal effects. The

duration of the robustness of the one-way steering in the direction B → A is limited by the amount of

the thermal fluctuations inside the cavities. Indeed, the panel (d) of Fig. ?? reveals the death of the

one-way steering in the system for relatively high temperatures (or alternatively sensibly high thermal

photons numbers) and the quantum steering disappears in both sides. The regime (iii) corresponds

to a cyclic evolution of the quantum steering. Furthermore, we stress that the Gaussian steerability

is strongly sensitive to the thermal effects in comparison with entanglement.

1.2.2 The squeezing effect on the Gaussian steering

Next, we fix the mean thermal photons number in each cavity as nth,1 = nth,2 = 1 to discuss the

Gaussian steering and the entanglement dynamics by varying the squeezing parameter r. Fig. ??
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displays the corresponding dynamics for r = 0.1 ( panel (a)), r = 0.5 (panel (b)), r = 1 (panel (c)), r =

1.1 (panel (d)) and r = 1.7 (in the inset). We first observe that the duration of entanglement generation

decreases as the degree of squeezing increases. We recall that in the squeezed light is indispensable

to generate entanglement. As can be inferred from Fig. ??, the entanglement tends asymptotically

to non zero values and exhibits a freezing behavior of the amount of quantum correlations between

the two mechanical modes. The other interesting aspect is that the steerability detection’s requires

an optimal amount of light squeezing. This can be easily seen by comparing the results depicted in

the panel (a) for r = 0.1 and in the panel (b) for r = 0.5. Indeed, for r = 0.1 the light squeezing is

insufficient to produce steerability. Therefore, by increasing the squeezing parameter r, the quantum

steering can be observed (as in the panels (a), (b) and (c)) but it must be stressed that from a

certain degree of squeezing the quantum steering disappears completely (see the inset representing the

case r = 1.7). Clearly, from a critical degree of squeezing, the squeezed light degrades the quantum

steerability between the mechanical modes. This can be explained by the fact that the input thermal

noise affecting each cavity becomes important and more aggressive, reducing the quantum correlations

in the system. The plot reveals that the Gaussian steering occurs for r = 0.5 (panel (b)), r = 1 (panel

(c)), r = 1.1 (panel (d)). In the cases where r = 0.5 and r = 1, the behavior of quantum steering

is divided in three phases: no-way, one-way and two-way steering. We note also that, in these two

situations, the amounts of quantum steering GA→B, GB→A and the steering asymmetry G∆
AB tend

to constant values for long time evolution. Like entanglement, the Gaussian steering between the

mechanical modes exhibits a freezing behavior. Comparing the one-way steering for r = 0.5 and

r = 1, one observes that in the first case the state is steerable in the direction A → B and in the

second case the steerability is in the opposite direction B → A. The results reported in the panel

(d), for r = 1.1, shows that the bipartite system is always steerable only in the direction B → A (i.e.,

GA→B = 0). This result indicates also that the steerability from A → B disappears and this can be

followed by the degradation of the steering of the in the opposite direction by increasing the degree of

squeezing (see the inset). Finally to close this section, we mention that the results depicted in Figs. ??

and ?? show that the quantum Gaussian steering is always upper bounded by the Gaussian Rényi-2

entanglement E2. Moreover, the steering asymmetry G∆
AB (see the blue dashed-lines in Figs. ?? and

??) cannot exceed the value ln 2, it is maximal when the state is non-steerable in one way (GA→B > 0

and GB→A = 0 or GA→B = 0 and GB→A > 0) and it decreases with increasing steerability in either

way, which is consistent with the results found in [?].
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Figure 2: Plot of the Gaussian steering GA→B (green solid line), GB→A (red solid line), the steering

asymmetry G∆
AB (blue dashed line) and entanglement E2 (yellow solid line) between the two mechanical

modes A and B as a function of the scaled time γt for C1 = 15 and C2 = 35. We used nth,1 = nth,2 = 1

as values of the mean thermal photons numbers. The squeezing parameter r is fixed as: panel (a)

r = 0.1 (r = 1.7 in the inset), panel (b) r = 0.5, panel (c) r = 1 and finally panel (d) r = 1.1.

Interestingly, panel (d) shows a situation where the states of the two mechanical modes are entangled

(for γt > 0.05), nevertheless they are steerable only in one direction (from B → A), which reflects

genuinely the asymmetry of quantum correlations. As shown also in panel (a) and the inset (à),

entangled states are not necessarily steerable, whereas steerable states are always entangled as depicted

in panel (b),(c) and (d).
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