
ENTANGLEMENT MEASURE OF PURE SYMMETRIC STATES

VIA SPIN COHERENT STATES

Abstract.

1. Introduction
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2. Spin Coherent States

Any pure spin-j state |ψj⟩ can be expanded in the standard angular momentum

basis {|j,m⟩ : −j ≤ m ≤ +j} of joint eigenstates of J2 and Jz as

(2.1) |ψj⟩ =
+j∑

m=−j

cm |j,m⟩

with cm complex coefficients such that
∑

m |cm|2 = 1.
Coherent states are eigenstates of J.ϵ with eigenvalue j, where ϵ is a unit vector

pointing along a given direction. For spin-12 , their general expression reads

(2.2) |1
2
, ϵ⟩ = 1√

1 + ϵ̄ϵ
|1
2
,
1

2
⟩+ ϵ√

1 + ϵ̄ϵ
|1
2
,−1

2
⟩

More generally, a spin-j coherent state |j, ϵ⟩ has expansion

(2.3) |j, ϵ⟩ = 1

(1 + ϵ̄ϵ)j

+j∑
m=−j

ϵj+m
√
Cj+m

2j |j,m⟩



SHORT TITLE (FOR THE RUNNING HEAD) 3

3. Correspondance Between N-Spinors States And Pure Symmetric
States

As early as 1932, Majorana had proposed a connection between N-spinors and
pure symmetric state that can be seen geometrically as a set of points in the Bloch
sphere as follows[?].

(3.1) |N
2
, l −N⟩ =M

∑
p

P̂ {|ϵ1, ϵ2, . . . , ϵN ⟩} ,

where

(3.2) |ϵl⟩ = cos(βl/2)e
−iαl/2 |0⟩+ sin(βl/2)e

iαl/2 |1⟩ , l = 0, 1, 2, . . . , N.

and |N2 , l −N⟩ is N-spinor, P̂ corresponds to the set of all N! permutations of qubits
{|ϵl⟩} and M is a normalization factor.

Every symmetric state of N qubits can be expressed in a unique way over the
Dicke basis formed by the N + 1 joined eigenstates

{
|N2 , l −N⟩

}
of the collective

operators ŜZ =
∑N

i=1 σ̂
Z
i and Ŝ2, where Ŝ =

∑N
i=1 σ̂i as follows.

(3.3) |N
2
, l −N⟩ = 1√

CN
l

|0, 0 . . . , 0︸ ︷︷ ︸
l

, 1, 1 . . . , 1︸ ︷︷ ︸
N−l

⟩+ permutations


ForN = 2, the pure symmetric state describe a spin−1 particle, |1, l − 2⟩, l = 0, 1, 2
each l correspond to a state of spin-1 particle {|j = 1,m = −1⟩ , |j = 1,m = 0⟩ , |j = 1,m = 1⟩}
as follows

|j = 1,m = −1⟩ −→ |N
2

= 1, l −N = 0⟩ = |0, 0⟩

|j = 1,m = 0⟩ −→ |N
2

= 1, l −N = −1⟩ = 1√
2
(|0, 1⟩+ |1, 0⟩)

|j = 1,m = 1⟩ −→ |N
2

= 1, l −N = −2⟩ = |1, 1⟩

An arbitrary pure state of a spin-j can be expressed as.

(3.4)

j∑
m=−j

c′m |j,m⟩ =
N∑
l=0

cl |
N

2
= j, l −N⟩ ,

In this way, we can decompose state of a spin-j into 2j spin − 1
2 that can be

geometrically represented by 2j points in the Bloch sphere.
There is a simple way to express the coefficients cl in terms of the Majorana

spinor orientations (αl, βl)[?], it may be first identified that an identical rotation
R ⊗ R . . . ⊗ R on the symmetric state transforms it into another symmetric state.
Choosing R−1 (αs, βs)⊗R−1 (αs, βs)⊗ . . .⊗R−1 (αs, βs), where αs, βs correspond
to the orientation of any one of the spinors

(3.5) ⟨1, 1, . . . , 1|R−1 (αs, βs)⊗R−1 (αs, βs)⊗ . . .⊗R−1 (αs, βs) |Ψsym⟩ = 0.
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This is because the rotation R−1
s ⊗R−1

s ⊗. . .⊗R−1
s takes one of the spinors |ϵs⟩ with

the orientation angles (αs, βs) to |0⟩. There exist N rotations R−1
s , s = 1, 2, . . . , N

which lead to the same result

(3.6) ⟨1, 1, . . . , 1|R−1
s ⊗R−1

s ⊗ . . .⊗R−1
s

{
N∑
l=0

cl |
N

2
, l −N⟩

}
= 0.

or

(3.7)
N∑
l=0

cl ⟨
N

2
,−N

2
|R−1

s |N
2
, l − N

2
⟩ = 0,

with R−1
s ≡ R−1

s ⊗R−1
s ⊗ . . .⊗R−1

s . This quantity can be expressed as follow
(3.8)
N∑
l=0

cl ⟨
N

2
,−N

2
|R−1

s |N
2
, l − N

2
⟩ =

N∑
l=0

cl (−1)
l
√
CN

l

(
cos

(
βs
2

))N−l (
sin

(
βs
2

))l

ei(l−
N
2 )αs = 0

and simplifying, we obtain

(3.9) A

N∑
l=0

cl (−1)
l
√
CN

l ϵ
l = 0,

where ϵ = tan
(

βs

2

)
e(iαs) and A =

(
cos

(
βs

2

))N

e−iαs
N
2 . In other words, given

the parameters cl, the N-roots ϵs determine the orientations (αs, βs) of the spinors
constituting the N-qubit symmetric state.

The case whene cl = ηl
√
CN

l , the equation (3.9) become

(3.10) (ϵη − 1)N = 0,

with one solution ϵ = 1
η that means, all the stars in the Bloch sphere coincide in a

single point, this case represents a coherent state whene all the |ϵi⟩ are equal then
we have

(3.11) |j, ϵ⟩ = |ϵ, ϵ, . . . , ϵ︸ ︷︷ ︸
2j

⟩ = 1

(1 + ϵ̄ϵ)j

+j∑
m=−j

ϵj+m
√
Cj+m

2j |j,m⟩
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4. Entanglement Classes For Tripartite Symmetric States

In the case of tripartite states, several classes can be defined, apart from fully
separable states and fully entangled states, a new concept appears is the partially
separable states. There is also others classes that we call |W ⟩ and |GHZ⟩ states.

It is known that two pure states |ψ⟩ and |ϕ⟩ are in the same class if they are
related by SLOCC operator with non-zero probability.

Tripartite symmetric states can generally expressed as follow

(4.1) |N
2
, l −N⟩ =M

∑
p

P̂ {|ϵ1, ϵ2, ϵ3⟩} ,

In the case when all the three qubits {|ϵi⟩} are equal, we have separable states
which are in this case coherent states. When two of the three qubits are equal
M

∑
p P̂ {|ϵ1, ϵ1, ϵ2⟩} this state can be related by a SLOCC operator with the state

|W ⟩ = |001⟩+|010⟩+|100⟩ so we can define theW class as :|W ⟩ =M
∑

p P̂ {|ϵ1, ϵ1, ϵ2⟩}
that can be represented in the Bloch sphere as 2 points one of theme is de-
generate 2 times. The third class is the GHZ that can be defined as follow
|GHZ⟩ = M

∑
p P̂ {|ϵ1, ϵ2, ϵ3⟩}with : ϵ1 ̸= ϵ2 ̸= ϵ3, geometrically can be seen

as 3 distinct points in the Bloch sphere.
We can also classify the tripartite symmetric states, based on the concept of

tangle τABC = τA(BC) − τAB − τAC . The tangle can be seen as the discriminant of

the polynomial P (ϵ) = c0 − c1
√
3ϵ+ c2

√
3ϵ2 − c3ϵ

3.

τABC ∝ (ϵ1 − ϵ2)
2(ϵ1 − ϵ3)

2(ϵ2 − ϵ3)
2

It is clear that τABC ̸= 0, ϵ1 ̸= ϵ2 ̸= ϵ3 correspond to GHZ class. The vanishing of
the tangle indicate the W or separable class,
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5. Entanglement Measure Of W States

The case when N=2 in symmetric states (Bipartite qubit states) we have |ψ⟩ =
c0 |0, 0⟩+ c1/

√
2(|0, 1⟩+ |1, 0⟩) + c2 |1, 1⟩. to write |ψ⟩ as a symmetric state of two

qubits we must solve the equation
∑N

l=0 cl (−1)
l
√
CN

l ϵ
l = 0, in the case N=2

(5.1) c0 − c1
√
2ϵ+ c2ϵ

2 = 0 =⇒
ϵ1 =

c1
√
2−

√
2c21−4c0c2

2c2

ϵ2 =
c1

√
2+

√
2c21−4c0c2

2c2

We have separability when ϵ1 = ϵ2 ⇔ |2c21 − 4c0c2| = 0. This quantity cas be seen
also as concurrence, which can be defined as a distance separate the two points on
the Bloch sphere.
This quantity in terms of ϵ1 and ϵ2 can be written as follow:

(5.2) |(ϵ1 − ϵ2)
2| = 0

It is clear that the concurrence represents a distance between the two points on the
Bloch sphere.

In the case N=3, we have three points on the Bloch sphere, the measure via
the distance beetwen theme is not evident to be a measure of entanglement but in
the case of W class, we have just two points on the Bloch sphere and the distance
beetwen them is a good candidate to be a measure of entanglement of W class.

In order to have a condition of separability in case of tripartite symmetric state,
this equation c0−c1

√
3ϵ+c2

√
3ϵ2−c3ϵ3 = 0 must have one solution. The condition

to have it, is as follow:

(5.3)
P (ϵ) = c0 − c1

√
3ϵ+ c2

√
3ϵ2 − c3ϵ

3 = 0

P ′(ϵ) = −c1
√
3 + 2c2

√
3ϵ− 3c3ϵ

2 = 0

P ′′(ϵ) = 2c2
√
3− 6c3ϵ = 0

Then we can have the separability criterion in more simple way:

(5.4)

(
c2√
3

)2

− c1√
3
c3 = 0

c0c3 − c1√
3

c2√
3

= 0

In the case of W class (|W ⟩ =M
∑

p P̂ {|ϵ1, ϵ1, ϵ2⟩}), if we write these conditions in
terms of ϵ1,ϵ2, we will find the same condition as the concurrence |(ϵ1 − ϵ2)

2| = 0.
That can be seen as minimum distance between our W state and the separable
state which can be a measure of entanglement.
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