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Abstract

The description of qudits in a formalism based on a generalized variant of Weyl-Heisenberg algebras is

discussed. The unitary phase operators for a multi-qudit system and the corresponding phase states (the

eigenstates of the phase operator) are constructed. We discuss the dynamics of multi-qudit phase states governed

by a specific Hamiltonian involving one and two-body interaction which offers a remarkable connection between

phase states and generalized graph states which are of paramount importance in quantum information. Another

important facet of this work concerns the construction of mutually unbiased bases from phase states. Finally,

entanglement aspects of some special class of phase states are examined.
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1 Introduction

The proper quantization of the phase angle of an oscillator or single-mode electromagnetic field was considered

first by Dirac in 1927 [1]. However, as pointed out later by Susskind and Glogower [2], the major difficulty in

formulating in a consistent way a unitary phase operator for a quantum oscillator is the infinite character of the

spectrum of the number operator. To address this issue, Pegg and Barnett suggested the formalism of truncated

harmonic oscillator in which a unitary phase operator can be adequately defined [3]. In this formalism, the

creation, annihilation and number operators are defined in a finite (but arbitrarily large) space. This space is

spanned by finite number states and its dimension is allowed to tend to infinity only after physical quantities,

such as expectation values, have been calculated in the truncated Hilbert space. The only disadvantage of the

Pegg-Barnett approach is the fact that the operators do not form a closed algebra. Instead of the truncated

harmonic oscillator, several attempts studied other proposals to realize the Pegg-Barnett phase operator for

algebras possessing finite dimensional representations. One may quote for instance, the phase operator formu-

lations proposed for su(2) and su(1, 1) algebras [4], q-deformed oscillator wit q root of unity [5], non linear

Weyl-Heisenberg algebras [6] and recently for su(3) [7, 8] and su(2, 1) algebras [7]. On the other hand the

definition of the phase states constitutes an important component in the theory of the phase operators. The

phase states set is defined as the eigenstate basis of the phase operator. For the truncated harmonic oscillator,

the properties of the eigenstates of Pegg-Barnett phase operator coincide with those normally associated with

a phase [3]. Phase states associated with the phase operators of the algebras su(2), su(1, 1), su(3) and su(2, 1)

and their properties were investigated in [4, 7].

In this paper, we shall study the construction of graph states from phase states. This will establish a relation

between the formalisms of graph states and phase states which may at first sight seem unrelated. Graph states

were extensively investigated and widely used in the context of quantum information theory. The interest on

such states is especially due to their special and very informative entanglement structures [9, 10]. In addition,

certain kinds of graph states (as for instance cluster states) can be used as resource states for measurement-

based quantum computing [11, 12, 13, 14]. They have also found numerous applications in several areas of

quantum information processing such as quantum error correction [15, 16] and secure quantum communication

[17]. Graph states have been used in entanglement purification [18] and in examining the properties of fractional

braiding statistics of anyons [19]. Furthermore, various types of multi-partite states like Greenberger-Horne-

Zeilinger (GHZ) states and cluster states play an essential role in fundamental tests of quantum non-locality

[20, 21]. This explains the great deal of effort devoted to the theoretical analysis of their properties [22, 23] and

their experimental generation and manipulation [24, 25, 26, 27]. Now it is commonly accepted that the graph

state formalism is viewed as promising tool providing a classification (although not exhaustive) of multi-qubit

systems entanglement [28, 29].

As we shall be essentially concerned with the relation between quantum phase states and generalized graph

states, we first discuss the realization of a multi-qudit system. In particular, we give the algebraic realization of a
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two level via a modified Weyl-Heisenberg algebra. In such realization qubits satisfy the exclusion Pauli principle

like fermions and behaves collectively like bosons. The generalization to d-level systems is also investigated in

a scheme where a qudit can be realized as the composition of (d− 1) qubits. For each qudit, we construct, the

associated phase operator and the corresponding phase states. The phase states of the system are defined as

the common eigenstates of the phase operator of each qudit. As by-product, we give the phase states for the

whole system. In particular, by assuming that the dynamics of the whole system is governed by a quadratic

Hamiltonian, we show that the graph states introduced in [30] can be generated from the phase states of a qudit

ensemble. This correspondence provides us with the appropriate tool to examine the entanglement properties of

phases states. In fact, the phase states are locally equivalent to generalized graph states. A second facet of this

work concerns the relation between the phase states evolving under a quadratic Hamiltonian and the concept

of mutually unbiased bases (MUBs). Due to their prominent role in several areas of quantum information, such

bases were recently investigated from an angular momentum approach [31, 32]. They maximize the information

extraction per measurement and minimize the effects of statistical errors [33, 34]. Besides their special use in

the context of state tomography, mutually unbiased states have been shown of special relevance to enhance the

performances of quantum key distribution protocols [35, 36] and in the so-called mean king problem [37, 38].

Moreover, they are useful for entanglement detection [39] and have interesting connections with symmetric

informationally complete positive-operator-valued measures [40] and complex t-designs [41, 42].

This paper is organized as follows. In Section 2 we discuss the algebraic description of a d-level quantum

system (qudit) using a particular variant of generalized Weyl-Heisenberg algebra. In section 3, we define the

unitary phase operator and we determine the phase states for a collection of n qudits. The properties of

phase operators and phase states are examined and in particular we discuss the discrete Fourier transformation

between the phase state basis and the computational basis. In section 4, we assume that the Hamiltonian

governing the dynamics of a collection of identical qudits is the sum of one and two body interaction. The

two-body term plays an important role in establishing the connection between phase states and generalized

graph states. Section 4 deals with the derivation of mutually unbiased bases from phase states is developed

in section 5. The basic entanglement proprieties of phase states in relation with graph states are examined in

section 6. Concluding remarks close this paper.

2 Qudits and generalized Weyl-Heisenberg algebra

Dealing with bosonic and fermionic many particles states is simplified by considering the algebraic structures

of the corresponding raising and lowering operators. For bosons the creation and annihilation operators satisfy

the commutations relations

[b−i , b
+
j ] = δijI, [b−i , b

−
j ] = [b+i , b

+
j ] = 0. (1)

where the unit operator I commute with the creation and annihilation operators b+i and bii. On the hand,

fermions are specified by the following anti-commutation relations

{f−i , f
+
j } = δijI, {f+i , f

+
j } = {f−i , f

−
j } = 0. (2)
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The Fock spaces for bosons and fermions give the realizations of the associated commutation and anti-commutation

relations and subsequently the symmetric and antisymmetric waves functions. The properties of Fock states

follow from the commutation and anti-commutation relations which imposes only be one particle in each state

for fermions (two dimension) and multiple particles for bosons (infinite dimension). Following Wu and Vidal

there is a crucial difference between fermions and qubits. In fact, a qubit is a vector in a two dimensional

Hilbert space like fermions and the Hilbert space of a multi-qubit system has a tensor product structure like

bosons. In this respect, the raising and lowering operators commutation rules for qubits are neither specified

by relations of bosonic type (1) nor of fermionic type (2).

2.1 Qubit algebra from generalized Weyl-Heisenberg algebra

The qubits appear like objects which exhibits both bosonic and fermionic properties so that they cannot de-

scribed by Fermi-like or Bose-like operators. An alterative way for the algebraic description of qubits and qudits,

is possible by resorting the formalism of generalized Weyl-Heisenberg algebras. We by |0⟩ the ground state and

|1⟩ the excited state of a two-level system and we define the lowering, raising and number operators by

a− = |0⟩⟨1|, a+ = |1⟩⟨0|, N = |1⟩⟨1|. (3)

They satisfy the following commutation relations

[a−, a+] = I− 2N, [N, a+] = −a+, [N, a−] = +a−. (4)

where I is the unit operator. In this scheme, the qubit is described by a modified bosonic algebra and the creation

and the annihilation operators satisfy the nilpotency condition: (a+)2 = (a−)2 = 0 like Fermi operators. This

algebra turns out to be a particular case of the generalized Weyl-Heisenberg algebra Aκ introduced in [6, 7]

(κ ∈ R). The structure relations of the algebra Aκ are defined by

[a−, a+] = I+ 2κN, [N, a+] = −a+, [N, a−] = +a− (5)

where κ ∈ R. For κ < 0, the Hilbert space representations is finite dimensional. The algebra Aκ reduces to the

algebra (4) for κ = −1 . It must be stressed that the commutation relations (4) coincide with ones defining the

algebra introduced in [43] to introduce an alternative algebraic description of qubits instead of the parafermionic

formulation considered in [44].

To describe a l-qubit system, we consider l copies of the algebra A−1 generated by the raising and lowering

operators a+i and a−i , the number operators Ni and the unit operator I such that they satisfy the relations

[a−i , a
+
j ] = (I− 2Ni) δij , [Ni, a

+
j ] = −δija+j , [Ni, a

−
j ] = +δija

−
j [a−i , a

−
j ] = [a+i , a

+
j ] = 0. (6)

where i = 1, 2, · · · , l. Let denote by Hi = {|ki⟩, ki = 0, 1} the Hilbert space for the qudit i. In view of the

relation [a−i , a
+
j ] = 0 for i ̸= j, the n-qubit Hilbert space has the following tensor product structure

H(l) =
l⊗

i=1

Hi = {|n1, n2, · · · , nl⟩, ki = 0, 1}.

like bosons and {|n1, n2, · · · , nl⟩, ni = 0, 1 for i = 1, 2, · · · , l} is its orthonormal basis.
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2.2 Qudit algebra and Dicke states

For (d− 1)-qubits, the Hilbert space is given by

H(d− 1) =
d−1⊗
i=1

Hi = {|n1, n2, · · · , nd−1⟩, ki = 0, 1}.

The corresponding creation and annihilation operators a±i (i = 1, 2, · · · , d − 1) satisfy the structure relations

(6). We define the collective lowering and raising operators in the Hilbert space H(d− 1) as follows

A− =
d−1∑
i=1

a−i A+ =
d−1∑
i=1

a+i (7)

in terms of the creation and annihilation operators a+i and a−i . Here and in the following the index i refers to

the system the operator is acting on, e.g.

a±i ≡ I⊗ · · · I⊗ a±i ⊗ I⊗ · · · I.

It is simple to see that the state |0, 0, · · · , 0⟩ ≡ |d − 1, 0⟩ satisfies A−|d − 1, 0⟩ = 0. Furthermore, using the

commutation relations (6), one gets the following nilpotency conditions

(A−)d = 0 (A+)d = 0

which extends the Pauli exclusion principle for ordinary qubits (i.e., d = 2). The actions of the operators A−

and A+ on the Hilbert space H(d− 1) can be determined from the standard actions of the fermionic operators

a−i and a+i . Using a recursive procedure, one verifies that repeated applications of the raising operator A+ on

the vacuum |0, 0, · · · , 0⟩ gives

(A+)k|d− 1, 0⟩ =

√
k!(d− k)!

(d− 1− k)!
|d− 1, k⟩ (8)

where the vectors |d− 1, k⟩ are the symmetric Dicke states with k excitations (k = 0, 1, 2, · · · , d− 1). They are

defined by

|d− 1, k⟩ =

√
k!(d− 1− k)!

(d− 1)!

∑
σεSd−1

| 0, 0, · · · , 0︸ ︷︷ ︸
d−k−1

, 1, 1, · · · , 1, 1︸ ︷︷ ︸
k

⟩ (9)

where Sd−1 is the permutation group of (d− 1) objets. The Dicke states generate an orthonormal basis of the

symmetric Hilbert subspace Hs ⊂ H with dimHs = d. To write the explicit actions of the ladder operators A±,

we introduce the structure function defined by F (k) = k(d− k). The equation (8) rewrites as

(A+)k|d− 1, 0⟩ =
√
F (k)! |d− 1, k⟩ (10)

where F (k)! = F (k)F (k − 1) · · ·F (1) and F (0) = 1. After some algebra, it is simple to verify that

A+|d− 1, k⟩ =
√
F (k + 1) |d− 1, k + 1⟩, A−|d− 1, k⟩ =

√
F (k) |d− 1, k − 1⟩ (11)

and the action of the creation and annihilation operators on the vectors |d− 1, 0⟩ and |d− 1, d− 1⟩ gives

A−|d− 1, 0⟩ = 0 A+|d− 1, d− 1⟩ = 0. (12)
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The number operator A is defined as

A|d− 1, k⟩ = k |d− 1, k⟩. (13)

The qudit operators A+, A− and A satisfy the commutation rules

[A+, A−] = (d− 1)I− 2A, [A+, A] = A+, [A−, A] = −A− (14)

Using the commutation relation
[
a+i , a

−
j

]
= 0 for i ̸= j, it is simple to verify that

[
A+, A−] = ∑

i,j

[
a+i , a

−
j

]
=

∑
i

[
a+i , a

−
i

]
and the operator A can be expressed as

A =
d−1∑
i=1

Ni

where Ni is the single qubit number operator (Ni|0⟩i = 0 and Ni|1⟩i = 1|1⟩i). It is remarkable that the creation

and annihilation operator A+ and A− close the following trilinear relation commutation

[A−, [A+, A−]] = 2A−, [A+, [A+, A−]] = −2A+

characterizing a parafermion. Note also that the definition (7) is similar to Green decomposition in the construc-

tion of parafermions from ordinary fermions. Therefore, the operators A+, A− and A satisfying the relations

(14) provide a simple algebraic description of d-level quantum systems (qudit). We notice also that by re-scaling

the generators of the algebra (14)

A± −→ A±
√
d− 1

,

one recovers the algebra Aκ with κ = 1/(1 − d). This shows clearly that the generalized Weyl-Heisenberg

provides the appropriate tools to describe qudit systems. In particular, this realization expresses the Hilbert

states of a qudit system in terms of Dicke states of (d−1) qubits. In this way, the global properties of the qubit

ensemble are encoded in the qudit system. To close this section that the algebraic description of qudit systems

provides us with the necessary ingredients to define the phase operator for a qudit system and subsequently the

phase states for a collection of identical qudits. This constitutes the main issue of the next section.

3 Phase operators and phase states

In the following we define phase operators (or more precisely, a unitary exponential operators) for a multipartite

system comprising n qudits. This definition originates from the polar decomposition of the raising and lower

operators A+
i and A−

i associated with each qudit i (i = 1, 2, · · · , n). We shall employ the algebraic description

and in particular the Hilbert representation of the generalized Weyl-Heisenbeg algebra discussed in the previous

section. Furthermore, we construct the phase states, i.e., the eigenstates of the phase operators. The properties

of the phase operators and their eigenstates are discussed.
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3.1 Phase operators

An ensemble of n qudits can be described by the n commuting algebras {A+
i , A

−
i ; i = 1, 2, · · · , n} satisfying

the structure relations (similar to the relations (14) )

[
A+

i , A
−
j

]
=

(
(d− 1)I− 2Ai

)
δij ,

[
A+

i , A
+
j

]
=

[
A−

i , A
−
j

]
= 0,

Here also the commutation relations
[
A+

i , A
−
j

]
= 0 for i ̸= j infers to the Hilbert space a tensor product

structure

H⊗n
s = {|d− 1, k1⟩ ⊗ |d− 1, k2⟩ · · · |d− 1, kn⟩ ≡ |k1, k2, · · · , kn⟩}

where the Dicke states |d − 1, ki⟩ are given by (9) with i = 1, 2, · · · , n. Using the polar decomposition of the

qudit raising and lowering operators

A−
i = Ei

√
A+

i A
−
i A+

i =
√
A+

i A
−
i E†

i , (15)

one verifies that the operators Ei act on the Hilbert space H⊗n
s as follows

Ei|k1, k2, · · · , ki, · · · , kn⟩ = |k1, k2, · · · , ki − 1, · · · , kn⟩, Ei|k1, k2, · · · , 0, · · · , kn⟩ = |k1, k2, · · · , d− 1, · · · , kn⟩ (16)

and equivalently the actions of the conjugate of the phase operators give

E†
i |k1, k2, · · · , ki, · · · , kn⟩ = |k1, k2, · · · , ki + 1, · · · , kn⟩, E†

i |k1, k2, · · · , d− 1, · · · , kn⟩ = |k1, k2, · · · , 0, · · · , kn⟩ (17)

From this definition, the phase operators Ei are indeed unitary

E†
iEi = EiE

†
i = I.

By using the actions (16) and (13), one obtains the commutation relations between the phase operators Ei and

the number operators Ai

[Ei, Aj ] = δij Ei.

Furthermore, they satisfy the following relations

[Ei, Ej ] = 0, [Ei, E
†
j ] = 0

and the periodicity relation

(Ei)
d = I, (E†

i )
d = I. (18)

3.2 Phase states

Now, we consider the explicit determination of the phase states for a multi-qudit system. First, note that the

phase operators Ei are pairwise commuting and can be diagonalized in the same basis. The common eigen-basis

is given by the product states

|z1, z2, · · · , zi, · · · , zn⟩ = |z1⟩ ⊗ |z2⟩ · · · ⊗ |zi⟩ · · · ⊗ |zn⟩
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where the vectors |zi⟩ (i = 1, 2, · · · , n) are the solutions of the following eigenvalue equations

Ei|zi⟩ = zi|zi⟩ (19)

The complex variable zi is the eigenvalue associated with the qudit i. To solve this equation, we expand the

state |zi⟩ as follows

|zi⟩ =
d−1∑
ki=0

Ckiz
ki
i |ki⟩

and reporting it in the equation (19) one gets

Cki+1 = Cki for ki = 0, 1, · · · , d− 2, C0 = zdi Cd−1 (20)

From this recurrence relation one shows

C0 = C1 = · · · = Cd−1 and C0 = zdi Cd−1. (21)

It follows the complex number zi is subjected to the nilpotency condition zdi = 1 which is consistent with the

periodicity property of the phase operators Ei (18). Thus, each variable zi takes discrete values on the unit

circle

zi = ωmi , mi = 0, 1, · · · , d− 1 ω = ei
2π
d . (22)

By imposing the normalization condition of the common eigenstates |zi⟩ of the phase operators Ei, one has

C0 = 1√
d
. The eigenvector |zi⟩, which is now labeled by the integers mi ∈ Z/dZ, writes

|mi⟩ =
1√
d

d−1∑
ki=0

ωmiki |ki⟩

Hence, the eigenstates |z1, z2, · · · , zn⟩ take the following form

|m1,m2, · · · ,mn⟩ =
1√
dn

∑
k1,k2,··· ,kn

ωm1k1ωm2k2 · · ·ωmnkn |k1, k2, · · · , kn⟩. (23)

The phase states (23) are now labeled by the set of parameters (m1,m2, · · · ,mn) and satisfy:

Ei|m1,m2, · · · ,mn⟩ = ωmi
i |m1,m2, · · · ,mn⟩. (24)

It is interesting to notice that the states |m1,m2, · · · ,mn⟩ correspond to an ordinary discrete Fourier trans-

form of the basis {|k1, k2, · · · , ki, · · · , kn⟩ : ki = 0, 1, . . . , d − 1} of the Hilbert space H⊗n
s . The phase states

|m1,m2, · · · ,mn⟩ have the following remarkable properties:

(i) The equiprobability relation

|⟨k1, k2, · · · , kn|m1,m2, · · · ,mn⟩| =
1√
dn

mi ∈ Z/dZ. (25)

(ii) The ortho-normalization relation

⟨m1,m2, · · · ,mn|m′
1,m

′
2, · · · ,m′

n, ⟩ = δm1,m′
1
δm2,m′

2
· · · δmn,m′

n
mi,m

′
i ∈ Z/dZ. (26)

It follows that the set of phase states {|m1,m2, · · · ,mn⟩;mi ∈ Z/dZ} form a basis of the Hilbert space which

are obtained from the computational basis {|k1, k2, · · · , kn⟩; ki ∈ Z/dZ}. As consequence of the property (i),
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they are mutually unbiased. We recall that two orthonormal bases are mutually unbiased if all mutual scalar

products, between any element of the first basis with an arbitrary element of the second basis, are equals. The

generation of other mutually unbiased bases can be realized by Hamiltonian evolutions involving non linear

terms. This issue is discussed in Section 5.

4 Phase states evolution and generalized graph states

Graph states are quantum states of a quantum system comprising multi-partite subsystems. For a system of n

constituents, each graph state is associated with a graph fully characterized by a symmetric n× n matrix. The

off-diagonal matrix elements encode the pairwise interaction between the different components of the quantum

system. Graph states provide a superb resource in several areas of quantum information science. Indeed, graph

states offer a graphical representation to tackle the the intriguing questions related to aspects of multi-particle

entanglement in terms of the adjacency matrix [22]. Graph states play a prominent role in quantum-gate-based

quantum computation and quantum error correction [45] and in investigating quantum secret sharing [46]. In

this section we address the interesting question concerning the derivation of generalized graph states from the

phase states of a multi-qudit system. The generation of generalized graph is approached from the dynamical

evolution of the phase states. This evolution is governed by a specific Hamiltonian involving two-particle

interaction which ensures the generation of entangled phase states.

4.1 A generalized Hamiltonian of a collection of n qudits

Since the creation and annihilation operators A+
i and A−

i (i = 1, 2, · · · , n) represent the dynamical variables as-

sociated with a n-qudit system, the Hamiltonian H governing the corresponding dynamics is naturally expressed

in terms of A+
i and A−

i . The evolution of the phase states (23) can be captured by the relation

e−itH |m1,m2, · · · ,mn⟩ ≡ |m1,m2, · · · ,mn, t⟩. (27)

In general, the generation of entangled states in multipartite systems can be treated by Hamiltonian evolution

involving nonlinear terms. Let us consider the time evolution is dictated by a quadratic Hamiltonian which is

the sum of two terms

H =

n∑
i=1

aiiHi +Hint (28)

where

Hi = A+
i A

−
i , Hint =

∑
i<j

aijAi ⊗Aj . (29)

where the coefficients aii and aij are reals and aij = aji. The single qudit Hamiltonian Hi is a natural

generalization of the ordinary harmonic oscillator. The second term in (28) includes the qubit-qubit interaction

and the parameters aij denote the coupling strength between the qudits i and j.

This special form of the Hamiltonian H (28) is interesting for two reasons. First, the quadratic spectrum of H

is the key tool which will used later to construct mutually unbiased bases from the states |m1,m2, · · · ,mn, t⟩

[6]. Second, the pairwise interaction term establish a link between two qudits. This allows us as we shall
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discuss hereafter the derivation of the generalized graph states from the evolved phase states. The qudit-qudit

Hamiltonian Hint acts an entangling operator on the phase states and generates entangled phase states. The

Hamiltonian H is diagonal in the computational basis:

H|k1, k2, · · · , kn⟩ = Ek1,k2,··· ,kn |k1, k2, · · · , kn⟩ (30)

where the energy eigenvalues are given by

Ek1,k2,··· ,kn =

[ n∑
i

aiiki(d− ki) +
∑
i<j

aijkikj

]
.

The evolved phase states write explicitly as

|m1,m2, · · · ,mn, t⟩ =
1√
dn

∑
k1,k2,··· ,kn

ωm1k1ωm2k2 · · ·ωmnkne−itEk1,k2,··· ,kn |k1, k2, · · · , kn⟩ (31)

The overlap between two evolved phase states |m′
1,m

′
2, · · · ,m′

n, t
′⟩ and |m1,m2, · · · ,mn, t⟩ reads

⟨m1,m2, · · · ,mn, t|m′
1,m

′
2, · · · ,m′

n, t
′) =

1

dn

∑
k1,k2,··· ,kn

e
∑n

j=1(
2πi
d (mj−m′

j)kj)e−i(t′−t)Ek1,k2,··· ,kn . (32)

It is remarkable that the unitary evolution operator factorizes as

e−itH =
∏
i≤j

(
Uij(t)

)bij

i, j = 1, 2, · · · , n (33)

where the elements of the n× n matrix b are defined by

bii = 2aii and bij = aij for i ̸= j,

in terms of the matrix elements aij entering in the expression H (28). The one and two body operators Uii(t)

and Uij(t) with i ̸= j are defined by

Uii(t) = e−i t
2Ai(d−Ai) and Uij(t) = e−itAiAj (34)

where the operators Ai (i = 1, 2, · · · , n) are the number operators. Using the factorized form of the evolution

operator (33) together with the definitions (34), one verifies that the evolved phase states write as

|m1,m2, · · · ,mn, t⟩ ≡ |−→m, t⟩ = ω
−→m.

−→
A
∏
i≤j

(
Uij(t)

)bij

|+, n⟩, (35)

where −→m.
−→
A = m1A1 +m2A2 + · · ·+mnAn and the state |+, n⟩ is given by

|+, n⟩ = |+⟩⊗n =

[
1√
d

d−1∑
ki=1

|ki⟩

]⊗n

=
1√
dn

∑
k1,k2,··· ,kn

|k1, k2, · · · , kn⟩. (36)

The expression (35) turns out to be of special relevance in the derivation of graph states from evolved phase

states. This is discussed in what follows.
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4.2 Graph states from evolved phase states

To derive generalized phase graph from the evolved phase states (31), we first recall briefly some elements of

graph states formalism of relevance for our purpose. For n-qubit system, a pure graph state is a state in the

Hilbert space {|0⟩, |1⟩}⊗n. Graph states are associated with mathematical graph G = (V,E) where V is a finite

set of vertices and E ⊂ V ×V is a set of edge. Each vertex corresponds to a qubit and each edge to an entangling

gate connecting some vertex pairs. Here, we shall consider undirected graphs (i.e, the edges are unordered pairs

of vertices) with multiple edges as well as self-loops. We can describe an undirected graph by the elements of

a n × n symmetric matrix A where the diagonal entries Aii correspond to the self-loops and the off-diagonal

elements Aij are given by the number of the edges linking two vertices. Such a matrix is called an adjacency

matrix of the graph G [46, 47, 48].

The generalized graph states are defined be means of a n×n adjacency matrix A with entries in Z/dZ with d a

prime number. Each vertex corresponds to a vector in the finite dimensional Hilbert space {|0⟩, |1⟩, · · · , |d−1⟩}.

As for qubit systems, the diagonal elements Aii of the matrix A give the number of self-loops around the vertex i

and the off-diagonal elements Aij represent the number of edges linking the vertices i and j. Given an adjacency

matrix, the generalized graph states can be constructed by adopting the picture interaction via one and two

qudit phase gates. We define the generalized graph state as

|G⟩ =
∏
i≤j

(
Ui,j

)Aij

|+, n⟩ (37)

where |+, n⟩ is the n-qudit state given by (36) and the unitary operators Ui,i and Ui,j (i ̸= j) are defined by

Ui,i|ki⟩ = ω
1
2ki(d−ki)|ki⟩, Ui,j |ki, kj⟩ = ωkikj |ki, kj⟩, (38)

The one and two body gate phase Ui,i and Ui,j can be obtained from the operators Ui,i(t) and Ui,j(t) given

by (34). This will allow us to establish relationship between phases states and graph states. We consider the

situation where t takes the special values

t =
2π

d
(d− p) with p ∈ Z/dZ.

In this case, the phase states given in (31) take the form

|m1,m2, · · · ,mn, p⟩ =
1√
dn

∑
k1,k2,··· ,kn

ωm1k1ωm2k2 · · ·ωmnknωp
[∑n

i=0 aiiki(d−ki)+
∑

i<j aijkikj

]
|k1, k2, · · · , kn⟩

(39)

Now, we introduce the n× n matrix A whose diagonal Aii and off diagonal Aij matrix elements are defined by

Aii = 2p aii, Aij = p aij . (40)

The quantities aii and aij are the physical parameters entering in the expression of the Hamiltonian describing

the multi-qudit system (28) and Aii and Aij will denote the elements of the adjacency matrix {Aij , i, j =

1, 2, · · · , n} defining the graph states which are in correspondence with the muli-partite phase states (39). For
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Aii ∈ Z/dZ and Aij ∈ Z/dZ , the evolved phase states (39) are graph states of type (37) which are fully specified

by the adjacency matrix A (40). The phase states (39) can be written as

|m1,m2, · · · ,mn, p⟩ = |GA(m1,m2, · · · ,mn)⟩ (41)

where |GA(m1,m2, · · · ,mn)⟩ are the graph states associated to the adjacency matrix Aij , i, j = 1, 2, · · · , n given

by

|GA(m1,m2, · · · ,mn)⟩ =
1√
dn

∑
k1,k2,··· ,kn

ωm1k1ωm2k2 · · ·ωmnknω
1
2 [
∑

i Aiiki(d−ki)+2
∑

i<j Aijkikj ]|k1, k2, · · · , kn⟩

(42)

Using the definitions (38), it is simple to check∏
i≤j

U
Aij

ij |+⟩⊗n =
1√
dn

∑
k1,k2,··· ,kn

ω
1
2 [
∑

i Aiiki(ki−1)+2
∑

i<j Aijkikj ]|k1, k2, · · · , kn⟩. (43)

It follows that the phase states (39) rewrite in terms of one qudit operators Ui and two qudit controlled operators

Ui,j as

|GA(m1,m2, · · · ,mn)⟩ =
n∏

i=1

ωmiAi

∏
i≤j

U
Aij

ij |+⟩⊗n (44)

where Ai is the number operator for the qudit i. The overlap between two generalized graph states write

⟨GA′(m′
1,m

′
2, · · · ,m′

n)|GA(m1,m2, · · · ,mn)⟩ = ⟨+, n|
n∏

i=1

ω(mi−m′
i)Ai

∏
i≤j

U
Aij−A′

ij

ij |+, n⟩. (45)

Using this overlap, we shall investigate the mutual unbiasedness for n-qudit systems.

5 Mutually Unbiased Bases from phase states

The multi-partite temporally stable phase states can be used to derive mutually unbiased bases associated with

a collection of n qudits whose dynamics is governed by a quadratic hamiltonian of type (28). Let us recall that

two orthonormal bases {|aα⟩ : α = 0, 1, . . . , d − 1} and {|bβ⟩ : β = 0, 1, . . . , d − 1} in a d-dimensional Hilbert

space (with an inner product ⟨ | ⟩) are said to be mutually unbiased iff

|⟨aα|bβ⟩| = δa,bδα,β +
1√
d
(1− δa,b). (46)

For fixed d, it is known that the number of mutually unbiased bases is less than or equal to d + 1 and this

number is exactly d+ 1 when d is the power of a prime number [50, 51].

5.1 Mutual unbiasedness of generalized graph states

To discuss the mutual unbiasedness of generalized graph states and the construction of MUBs using evolved

phase states (39), we consider the situation where the elements Aii and Aij , which take discrete values in Z/dZ,

of the form

Aii = pi ∈ Z/dZ, Aij = pij ∈ Z/dZ. (47)

12



To simplify our notations, we denote the graph states |GA(m1,m2, · · · ,mn)⟩ by |−→m,A⟩ so that

|−→m,A⟩ = 1√
dn

∑
k1,k2,··· ,kn

ωm1k1ωm2k2 · · ·ωmnknω
1
2 [
∑

i piki(d−ki)+2
∑

i<j pijkikj ]|k1, k2, · · · , kn⟩ (48)

The overlap between two phase states of type (48) is given by

⟨−→m,A|−→m′, A′⟩ = 1

dn

∑
k1,k2,··· ,kn

ω
∑n

i=1(mi−m′
i)kiω

1
2

[∑i=n
i=1 (pi−p′

i)ki(d−ki)+2
∑

i<j(pij−p′
ij)kikj

]
. (49)

It can be can be cast in the following closed form which

⟨−→m,A|−→m′, A′⟩ = 1

dn

∑
k1,k2,··· ,kn

e
iπ
d (−→v t.

−→
k +

−→
k t.D.

−→
k ) (50)

where
−→
k = (k1, k2, · · · , kn)t, −→v = (v1, v2, · · · , vn)t with vi := 2(mi −m′

i)− (p′i − pi)d (the superscript t stands

for matrix transposition) and the elements of the n× n matrix D are defined by

Dii = ui := p′i − pi, Dij := pij − p′ij for i ̸= j.

The expression (50) can be cast into a compact form involving the generalized quadratic Gauss sum defined by

[52]

S(u, v, w) :=
|w|−1∑
k=0

eiπ(uk
2+vk)/w, (51)

where u, v and w are integers such that u and w are mutually prime, uw ̸= 0. Nonzero values of S(u, v, w)

require that uw+v must be even. Indeed, by diagonalizing the matrix D, one can rewrite the quadratic portion

in the exponent of the overlap (50) without cross terms. The matrix D is symmetric with entries in Z/dZ can

be diagonalized via a congruence transformation C such that [51]

Dd = CtDC = diag(λ1, λ2, · · · , λn).

It follows that the scalar product (50) rewrites now as

⟨−→m,A|−→m′, A′⟩ = 1

dn

∑
l1,l2,··· ,ln

e
iπ
d (−→v ′t.

−→
l +

−→
l t.Dd.

−→
l ) (52)

or equivalently

⟨−→m,A|−→m′, A′⟩ = 1

dn

∑
l1,l2,··· ,ln

eiπ(
∑n

i=1 v′
ili+λil

2
i )/d (53)

where the vectors −→v ′ and
−→
l are defined by

−→v ′ = Ct−→v
−→
l = Ct−→k .

Using (51), the overlap (53) can be expressed as

⟨−→m,A|−→m′, A′⟩ = 1

dn

n∏
i=1

S(λi, v′i, d). (54)
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It is interesting to note that for a pair of generalized graph states such that pij = p′ij (i.e., Dij = 0) for i ̸= j,

the overlap (50) rewrites

⟨−→m,A|−→m′, A′⟩ = 1

dn

n∏
i=1

S(ui, vi, d) (55)

with

ui := p′i − pi vi := −(p′i − pi)d+ 2(mi −m′
i) (56)

We notice that dui+vi is even. Clearly, when the difference matrix D = A−A′ is diagonal, the overlap between

a pair of generalized graph states factorize and write in terms of generalized quadratic Gauss sum.

5.2 Mutually unbiased bases

Based on the previous analysis of the mutual unbiasedness of generalized graph states, we shall consider the

construction of mutually unbiased bases when d is a prime integer. We shall focus in what follows on generalized

graph states such that the difference of corresponding adjacency matrices is diagonal. Using (48), this kind of

generalized graph states can be written as

|−→m,A⟩ =
∏
i<j

(Uij)
Aij |−→m,−→p ⟩

for some fixed values of the elements Aij(i ̸= j) and the integers pi ≡ Aii (i = 1, 2, · · · , n) take the values

0, 1, · · · , d− 1. The explicit expression of the states |−→m,−→p ⟩ is given by

|−→m,−→p ⟩ = 1√
dn

∑
k1,k2,··· ,kn

ωm1k1ωm2k2 · · ·ωmnknω
1
2 [
∑

i piki(d−ki)]|k1, k2, · · · , kn⟩ (57)

Clearly, in this case the overlap between the generalized graph states |−→m,A⟩ and |−→m′, A′⟩ coincides with the

overlap between |−→m,−→p ⟩ and |−→m′,−→p ′⟩. This is given by

⟨−→m,−→p |−→m′,−→p ′⟩ = 1

dn

n∏
i=1

S(ui, vi, d) (58)

in terms of the generalized quadratic Gauss sum defined by (51) with ui := p′i − pi and vi := −(p′i − pi)d +

2(mi − m′
i). It is clear that to construct the mutually unbiased bases it is sufficient to take the off-diagonal

elements Aij = 0. This implies that the two-body interaction term in the Hamiltonian H (28) is not relevant

in our analysis. Using the results reported in [52, 53] (see also [31]), one shows that when d is a prime integer

and for −→p ̸= −→p ′, the overlap (58) is simply given by

⟨−→m,−→p |−→m′,−→p ′⟩ = 1√
dn
. (59)

In this case we obtain the following dn mutually unbiased bases

B−→p := {|−→m,−→p ⟩ : mi = 0, 1, . . . , d− 1} (60)

where the components pi (i = 1, 2, · · · , n) of the vector −→p take the values pi = 0.1, . . . , d − 1. On the other

hand, it is clear that any basis B−→p and the computational basis

Bc := {|k1, k2, · · · , kn⟩ : ki = 0, 1, . . . , d− 1}, (61)
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are mutually unbiased. Hence, for d a prime integer, the dn bases B−→p and the computational basis Bc constitute

a complete set of dn + 1 of mutually unbiased bases. This shows the usefullness of generalized graph states

formalism in generating the mutually unbiased bases for n qudit system governed by a quadratic Hamiltonian.

6 Phase states of GHZ-type

In the expression of the quadratic Hamiltonian, the one-body term play an essential role in constructing the

set of mutually unbiased bases B−→p (60). In this section, we discuss the importance of the two-body interaction

which acts as an entangling operator on the phase states (23). Hence, in this section discuss some entanglement

aspects of generalized graph states obtained from the muli-qudit phase states. In particular, we shall focus on

generalized graph states (48) which are locally equivalent to the maximally entangled n-qudit states of GHZ

type

|GHZn,d⟩ =
1√
d

d−1∑
k=0

| k, k, · · · , k︸ ︷︷ ︸
n

⟩.

We recall that two n-qudit quantum states |ψ1⟩ and |ψ2⟩ are local unitary (LU) equivalent if there exists a local

unitary operator U =
⊗n

i=1 Ui such that U |ψ1⟩ = |ψ2⟩, where each Ui is a single-qudit unitary operation.

6.1 Bipartite qudit phase states

To examine the entanglement aspects of the phase states, we first rewrite the phase states (48), associated with

the adjacency matrix A, as

|−→m,A⟩ = ωm1A1 ⊗ ωm2A2 ⊗ · · · ⊗ ωmnAn |ψA, n⟩ (62)

with Ai is the number operator of the qudit i (i = 1, 2, · · · , n) and the state |ψM ⟩ is given by

|ψA, n⟩ =
1√
dn

∑
k1,k2,··· ,kn

ω
1
2

∑
i piki(d−ki)+2

∑
i<j pijkikj |k1, · · · , ki, · · · , kn⟩

where pi and pij denote respectively the diagonal and off-diagonal entries of the matrix A. The phase states

|−→m,A⟩ and |ψA, n⟩ are local unitary equivalent. The operations ωAi (i = 1, 2, · · · , n), usually called the self-

controlled phase gates, are local unitary operations which preserve the amount of the entanglement in the states

|ψA, n⟩ . It follows that the basic entanglement properties of the phase states are encoded in the generalized

graph states of type |ψA⟩. We remark that when pij = 0 for all i ̸= j, the pure states are unentangled |ψA, n⟩

. It is clear that the entanglement in these states arises from the cross terms pijkikj . Thus, to examine the

entanglement properties of generalized graph states, we shall focus on the states characterized by adjacency

matrices with zero-elements along the main diagonal. This means that the Hamiltonian H (28) governing the

system reduces to Hint given (29). In this case, the state |ψA, n⟩, for a two qudit system, is given

|ψA, 2⟩ =
1√
d

d−1∑
k1=0

|k1⟩|ψk1⟩ =
1√
d

d−1∑
k2=0

|ψk2⟩|k2⟩ (63)

where the states |ψk1⟩ and |ψk2⟩ are defined by

|ψki⟩ =
1√
d

∑
kj

ωpijkikj |kj⟩, for i ̸= j = 1, 2. (64)
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u1 u2

Figure 1: n = 2 graph with p12 = 1

The graph state |ψA, 2⟩ is represented in Figure 1. The state |m1,m2, A⟩ (62) and the state |ψA, 2⟩ are local

unitary equivalents. Indeed, from the expressions (62) and (63), one gets

|m1,m2, A⟩ = (ωm1A1
1 ⊗ ωA2m2

2 F )
1√
d

∑
k1

|k1, k1⟩ (65)

where the unitary operator F is defined by

F =
1√
d

∑
ki,kj

ωpijkikj |ki⟩⟨kj |. (66)

It follows that the phase state |m1,m2, A⟩ is local unitary equivalent to the maximally entangled state |GHZ2,d⟩.

This local unitary equivalence writes as

|m1,m2, A⟩ = (ωm1A1
1 ⊗ ωA2m2

2 F )|GHZ2,d⟩ (67)

and implies that the state GHZ2,d⟩ can be represented also by the graph in Figure 1. This result can be extended

to three and more qudits.

6.2 Tripartite qudit phase states

For three qudits (n = 3), we consider generalized graph states associated with adjacency matrices with with

zeros along the main diagonal (p1 = p2 = p3 = 0). In this case the phase states (48) become

|m1,m2,m3, A⟩ =
1√
d3

∑
k1,k2,k3

ωm1k1ωm2k2ωm3k3ωp12k1k2+p23k2k3+p13k1k3 |k1, k2, k3⟩. (68)

To discuss the corresponding entanglement properties, we shall consider two types of connected the connected

graphs G. The first one is determined by the following edge set E(G) = {(12), (23)} in which the matrix element

p13 is zero (see Figure 1). The second one corresponds to the situation where the three qudits are connected

has edge set E(G) = {(12), (23), (13)} (see Figure 2). For the first set of graphs, the state (68) becomes

|m1,m2,m3, A⟩ == (ωm1A1 ⊗ ωA2m2 ⊗ ωA3m3)
1√
d

∑
k2

|ψk2⟩|k2⟩|ψk2⟩ (69)

where |ψk2⟩ is defined as in (64). This class of generalized graph states are is local unitary equivalents to the

state |GHZ3,d⟩. Indeed, one has

|m1,m2,m3, A⟩ == (ωA1m1 ⊗ ωA2m2F ⊗ ωA3m3F )|GHZ3,d⟩ (70)

where the unitary operation F is defined by (66). This shows that the generalized graph states belonging to

the first type of connected graph are maximally entangled. The second set of generalized graph states are not
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local unitary equivalents to states of type Greenberger-Horne-Zeilinger. Indeed, the states

|m1,m2,m3, A⟩ =
1√
d3

∑
k1,k2,k3

ωm1k1ωm2k2ωm3k3ωk1k2+k2k3+k1k3 |k1, k2, k3⟩ (71)

are local unitary equivalents to the states

|m1,m2,m3, A⟩ ∼
1√
d3

∑
k1,k2,k3

ωk1k2ωk2k3ωk1k3 |k1, k2, k3⟩,

but do not exist local unitary transformations such that these states can be converted in states of GHZ-type.

u
2

u
1

u
3

Figure 2: n = 3 graph with (p12 = p23 = 1, p13 = 0).

u2
u1 u3














 J

J
J
JJ
J
J
J

Figure 3: n = 3 graph with (p12 = p23 = p13 = 1).

It is worth noticing that the property of local unitary equivalence between generalized graph states and

states of GHZ-type discussed for two and three qudit systems can be extended to multi-qudit system when

only one qudit is entangled with the remaining qudits forming the system. This situation is described by the

the n-qudit star-shape graph G, i.e. with edge set E(G) = {(12), (13), . . . , (1n)}. The non vanishing entries of

the corresponding adjacency matrix are p12 = p13 = · · · = p1n = 1. In this case, it simple to verify that the

generalized graph states

|m1,m2, · · · ,mn, A⟩ =
1√
dn

∑
k1,k2,··· ,kn

ωm1k1ωm2k2 · · ·ωmnknωk1k2+k1k3+···+k1kn |k1, k2, · · · , kn⟩. (72)

are local unitary equivalents to the multi-qubit state |GHZn,d⟩. Indeed, we have

|m1,m2, · · · ,mn, A⟩ = (ωA1m1 ⊗ ωA2m2F, · · · ,⊗ωAnmnf)|GHZn,d⟩ (73)

which generalizes the results (67) and (70).

17



7 Concluding remarks

To close this paper, we summarize the main results. The algebraic description of qudits is formulated via a

generalized variant of Weyl-Heisenberg algebra possessing finite dimensional representations. This provides the

appropriate tool to define consistently the unitary phase operators for an ensemble of qudits and subsequently

to determine the corresponding phase states along the lines developed in [3] (see also [4, 6]). In investigating the

dynamics of multi-partite phase states governed by a quadratic Hamiltonian of type (28), we have established

a subtle connection between evolved phase states and the formalism of generalized graph states which are

of paramount importance in various areas of quantum information theory such as the study of multi-particle

entanglement. Also, in connection with the phase operator and multi-partite phase states for a collection of

qudits, the present work addresses two important issues: the generation of mutually unbiased bases by employing

of the phase state formalism. The second question concerns the correspondence between the phase states and

multipartite GHZ states. More prcesicely, we investigated some particular cases where the generalized graph

states are locally unitary equivalents to generalized GHZ states. It is well known that this kind of maximally

entangled states are suitable in various quantum protocols tasks such as quantum computation and quantum

communication. In this sense, the entangled multi-qudit phase states are expected to play a significant role to

encode quantum information and to protect it against the incoherence effects. It must be emphasized also that

the muti-partite phase states are a kind of the co-called cluster states which can be implemented for instance

in spin systems via Ising interaction between neighboring particles on a lattice. On the other hand, our study

is mainly motivated by the possible practical applications of multi-particle entangled phase states in quantum

key distribution with different mutually unbiased bases and the characterization of their quantum correlations

by exploiting the entanglement properties of generalized graph states and their equivalence with generalized

Greenberger- Horne-Zeilinger states.
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