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1 Introduction

Quantum correlations in finite dimensional quantum systems are widely recognized as crucial resources to en-

hance the performance of quantum protocols in comparison with their classical analogue [1]. However, from

applicative point of view, the exploitation of quantum correlations is limited by the decoherence effects resulting

from the system-environment interaction [2]. Various strategies to annihilate or at least to reduce the effects

of environmental couplings in open-system evolutions were proposed in the literature. On the other hand,

from a fundamental point of view, considerable effort to distinguish the main features differentiating between

classical and non classical correlations. This explains the extensive investigations devoted to the quantification

of quantum correlations in quantum systems comprising two or more qubits. While pure states can be sepa-

rable or entangled, the mixed states exhibit more subtle features of non-classical correlations. In this sense,

various quantum correlations indicators were investigated during the last two-decades. Each quantifier presents

advantages and disadvantages. For instance, the quantum discord introduced in [3, 4] to characterize quantum

correlations beyond the entanglement is not easily computable for a generic two qubit state. The geometric

quantum discord based on Hilbert-Schmidt [5] is appropriate for calculations but grow under local operations on

unmeasured qubit and therefore can not be considered as a faithful indicator of quantmness [6, 7]. This leads to

a reformulation of geometric quantum discord by employing the trace distance (Schatten 1-norm) [8, 9, 10, 11].

These various measures have provided the tools to gain deeper understanding of the role of quantum correlations

in many-body systems and especially in quantum phase transitions [12, 13, 14]. The changes in quantum corre-

lations affect strongly the properties of a many-body system. Interesting results were obtained in analyzing the

connection between the pairwise entanglement and quantum phase transitions in quantum spin chains [15, 16].

Also, the pairwise quantum discord has been shown more adequate to reveal quantum phase transitions in such

systems even in the absence of entanglement [17, 18]. This is essentially due to the robustness character of this

quantum quantifier introduced initially to go beyond entanglement measure. The interplay between quantum

phase transitions and quantum correlations at finite temperatures was also considered in some recent works (see

for instance [19, 20]). Quantum phase transitions occur at absolute zero temperature which cannot be reached

experimentally. Therefore the detection of quantum phase transitions require to work at very low temperatures

where the quantum fluctuations are dominant.

Besides the aforementioned measures, the local quantum uncertainty [21] was recently adopted to detect

the occurrence of quantum criticality in multipartite spin systems [22, 23]. The local quantum uncertainty is a

quantum discord-like defined as the coherence based measure of quantum correlations induced by the Wigner-

Yanase skew information [24]. The local quantum uncertainty all the properties that a bona fide indicator

is required to exhibit [21]. In addition, this reliable quantifier is effortlessly computable contrarily to some

other measures for which closed analytical expressions are not always easy obtainable. We note also that the

local quantum uncertainty is related to the Fisher information and therefore constitutes a key tool in quantum

metrology protocols [25]. In this paper we shall employ the local quantum uncertainty as a quantifier of discord-

like correlations in a two qubit one dimensional XY Z Heisenberg spin chain in nonuniform external field with
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Dzyaloshinski-Moriya interaction [26, 27] which arises from the spin-orbit coupling. We notice that in the last

decade, there has been an ongoing effort to quantify the entanglement and quantum discord in such system to

understand the effects of spin-spin interaction and spin-orbit coupling on the entanglement properties. Several

scenarios were investigated to point out the role of Dzyaloshinski-Moriya interaction in protecting or suppressing

the quantum correlations in in two-qubit Heisenberg systems [28, 29, 30, 31, 32, 33]. In this sense, the main

goal of this work is the quantification of quantum correlations in XY Z Heisenberg model via the notion of local

quantum uncertainty and to characterize the corresponding behaviors with respect to the effects induced by the

Dzyaloshinski-Moriya coupling in different magnetic field regimes.

The plan of the paper is as follows. In section 2, we first introduce the thermal density matrix describing a

two qubit system with Dzyaloshinski-Moriya interaction in equilibrium with a thermal bath. We also give the

analytical expression of local quantum uncertainty measuring the amount of quantum correlations contained

in the system. To analyze the effects of the Dzyaloshinski-Moriya interaction on the quantum discord we shall

consider in section 3 some special cases of the XY Z Heisenberg model, namely Ising Model, isotropic Heisenberg

model and some variants of XY Z spin models which are tractable numerically. A particular attention is also

devoted to the comparison of local quantum uncertainty and entanglement of formation to show that this new

kind of quantumness indicator goes indeed beyond entanglement. Concluding remarks close this paper.

2 Thermal quantum discord via local quantum uncertainty

It is well known that the XY Z Heisenberg models describe appropriately magnetic properties in solids. It is also

adapted to the investigation of the connection between quantum correlations and quantum phase transitions.

Hence, we shall study the amount of local quantum uncertainty in a pair of qubits (spin-1/2) at finite temperature

in presence of an external magnetic fields acting on both qubits. We also consider the situation where the two

qubits are coupled via the Dzyaloshinski-Moriya interaction which arises from the spin-orbit coupling. It can

be described by

HDM ∼
−→
D.(−→σ 1 ∧ −→σ 2)

where
−→
D = (Dx, Dy, Dz) denotes the vector coupling and σx

i , σ
y
i and σz

i are the usual Pauli matrices asso-

ciated with the two qubits (i = 1, 2). In what follows we shall restrict our study to the situation where the

Dzyaloshinski-Moriya interaction is along the z direction (i.e, Dx = Dy = 0).

2.1 The Heisenberg model with Dzyaloshinski-Moriya interaction

In the framework of XY Z Heisenberg model, the Hamiltonian describing two spin-1/2 with Dzyaloshinski-

Moriya interaction along the z-direction, is given by

J’ai pose Bz = b1 + b2 et bz = b1 − b2

H = −Jxσ
x
1σ

x
2 − Jyσ

y
1σ

y
2 − Jzσ

z
1σ

z
2 − 1

2
Dz(σ

x
1σ

y
2 − σy

1σ
x
2 )− b1σ

z
1 − b2σ

z
2 (1)

where Ji (i = x, y, z) denote the coupling constants, b1 (resp. b2) is the z-component of the external magnetic

field acting on the qubit 1 (resp. qubit 2). For Ji > 0 (resp. Ji < 0 ) corresponds to the ferromagnetic (resp.
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anti-ferromagnetic) phase. In the two-qubit computational basis B={|0, 0⟩, |0, 1⟩, |1, 0⟩, |1, 1⟩}, the Hamiltonian

(1) can be expressed as following form:

H =


−b1 − b2 − Jz 0 0 −Jx + Jy

0 b1 − b2 + Jz −Jx − Jy − iDz 0

0 −Jx − Jy + iDz −b1 + b2 + Jz 0

−Jx + Jy 0 0 b1 + b2 − Jz

 (2)

The corresponding eigenvalues and eigenstates are given by

E1 = −Jz +

√
(b1 + b2)2 + (J−)

2
, |φ1⟩ = cos

(
θ1
2

)
|00⟩+ sin

(
θ1
2

)
|11⟩ , (3)

E2 = −Jz −
√
(b1 + b2)2 + (J−)

2
, |φ2⟩ = sin

(
θ1
2

)
|00⟩ − cos

(
θ1
2

)
|11⟩ , (4)

E3 = Jz +

√
(b1 − b2)2 +D2

z + (J+)
2
, |φ3⟩ = cos

(
θ2
2

)
|01⟩+ e−iφ sin

(
θ2
2

)
|10⟩ , (5)

E4 = Jz −
√
(b1 − b2)2 +D2

z + (J+)
2

, |φ4⟩ = sin

(
θ2
2

)
|01⟩ − e−iφ cos

(
θ2
2

)
|10⟩ , (6)

where J± = Jx ± Jy, tan(θ1) = − J−
b1+b2

, tan(θ2) =

√
D2

z+(J+)2

b1+b2
and tan(φ) = Dz

J+
.

The system is assumed to be in equilibrium with a thermal reservoir at temperature T (canonical ensemble).

It is then described by the density operator

ρ(T ) =
e−βH

Z
=

1

Z

4∑
i=1

e−βEi |φi⟩ ⟨φi| (7)

where Z = Tre−βH is the partition function of the system and β = 1/kBT (kB is the Boltzmann constant).

Reporting (3), (4), (5) and (6) in the equation (7), the thermal state ρ(T ) writes, in the computational basis,

as

ρ(T ) =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

 (8)

where the diagonal entries are given by

ρ11 =
eβJz

Z

[
e−β∆ cos2

(
θ1
2

)
+ eβ∆ sin2

(
θ1
2

)]
, ρ22 =

e−βJz

Z

[
e−β∆′

cos2
(
θ2
2

)
+ eβ∆

′
sin2

(
θ2
2

)]
,(9)

ρ33 =
e−βJz

Z

[
e−β∆′

sin2
(
θ2
2

)
+ eβ∆

′
cos2

(
θ2
2

)]
, ρ44 =

eβJz

Z

[
e−β∆ sin2

(
θ1
2

)
+ eβ∆ cos2

(
θ1
2

)]
,(10)

and the off-diagonal matrix elements are

ρ14 = ρ41 = −eβJz

Z
sin (θ1) sinh (β∆) , ρ23 =

−
ρ32 = − eiφ

e−βJz

Z
sin (θ2) sinh (β∆

′) , (11)

in terms of the quantities ∆ and ∆′ defined by ∆ =
√

(b1 + b2)2 + J2
−, and ∆′ =

√
(b1 − b2)2 +D2

z + J2
+. The

partition function Z is given by the following expression

Z = 2 eβJz cosh (β∆) + 2 e−βJz cosh (β ∆′)
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2.2 Local quantum uncertainty

Due to its easiness of computability, the local quantum uncertainty is now considered as a promising quantifier

of quantum correlation in multipartite systems. For pure bipartite states, it reduces to linear entropy of the

reduced densities of the subsystems. Also, it vanishes for classically correlated states. Another interesting

property of local quantum uncertainty is its invariance under local unitary operations. This quantumness

indicator enjoys all required properties of being a reliable quantifier of quantum correlations [21]. The local

quantum uncertainty quantifies the minimal quantum uncertainty in a quantum state due to a measurement of

a local observable [21]. For a bipartite quantum state ρ, the local quantum uncertainty is defined as

U(ρ) ≡ min
K1

I(ρ,K1 ⊗ I2), (12)

where K1 is some local observable on the qubit 1, I2 is the identity operator and

I(ρ,K1 ⊗ I2) = −1

2
Tr([

√
ρ,K1 ⊗ I2]2) (13)

is the skew information [24, 34]. The skew information represents the non-commutativity between the state and

the observable K1. The analytical evaluation the local quantum uncertainty requirers a minimization procedure

over the set of all observales acting on the part 1. A closed form for qubit-qudit systems was derived in [21]. In

particular, for qubits (12 -spin particles), the expression of the local quantum uncertainty is given by [21]

U(ρ) = 1−max{λ1, λ2, λ3}, (14)

where λ1, λ2 and λ3 are the eigenvalues of the 3× 3 matrix W whose matrix elements are defined by

ωij ≡ Tr{√ρ(σi ⊗ I2)
√
ρ(σj ⊗ I2)}, (15)

with i, j = 1, 2, 3.

The thermal state (28) is X-shaped. This resembles to the alphabet X with non-zero entries only along the

diagonal and anti-diagonal. The Fano-Bloch decomposition of the state ρ(T ) writes as

ρ(T ) =
1

4

∑
α,β

Rαβσα ⊗ σβ

where the correlation matrix Rαβ are given by Rαβ = Tr(
√
ρ σα ⊗ σβ). They write

R03 = 1− 2ρ22 − 2ρ44, R30 = 1− 2ρ33 − 2ρ44, R11 = 2 Re(ρ32 + ρ41), R22 = 2 Re(ρ32 − ρ41)

R12 = −2i Im(ρ41− ρ32) R21 = −2i Im(ρ41+ ρ32), R00 = ρ11+ ρ22+ ρ33+ ρ44 = 1, R33 = 1− 2ρ22− 2ρ33.

Calculer les elements Rαβ pour la matrice ρ(T )

It is simple to check that the square root of the density matrix ρ(T ) is also X-shaped and writes as

√
ρ(T ) =


ρ̃11 0 0 ρ̃14

0 ρ̃22 ρ̃23 0

0 ρ̃32 ρ̃33 0

ρ̃41 0 0 ρ̃44

 (16)
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where the diagonal entries are given by

ρ̃11 =

√
eβJz

2Z

(
1 + e−β∆ + 2 sin2

(
θ1
2

)
sinh (β∆)√

1 + cosh(β∆)

)
, ρ̃22 =

√
e−βJz

2Z

(
1 + e−β∆′

+ 2 sin2
(
θ2
2

)
sinh (β∆′)√

1 + cosh(β∆′)

)
, (17)

ρ̃33 =

√
e−βJz

2Z

(
1 + eβ∆

′ − 2 sin2
(
θ2
2

)
sinh (β∆′)√

1 + cosh(β∆′)

)
, ρ̃44 =

√
eβJz

2Z

(
1 + eβ∆ − 2 sin2

(
θ1
2

)
sinh (β∆)√

1 + cosh(β∆)

)
, (18)

and the off-diagonal matrix elements are

ρ̃14 = ρ̃41 = −
√

eβJz

2Z

(
sin (θ1) sinh (β∆)√

1 + cosh(β∆)

)
, ρ̃23 = ρ̃32 = −

√
e−βJz

2Z

(
eiφ sin (θ2) sinh (β∆

′)√
1 + cosh(β∆′)

)
.(19)

In Fano-Bloch representation, the matrix
√
ρ(T ) writes as

√
ρ(T ) =

1

4

∑
α,β

Rαβσα ⊗ σβ

with Rαβ = Tr(
√
ρ(T ) σα ⊗ σβ). The non vanishing matrix correlation elements Rαβ are explicitly given by

R00 =

√
t1 + 2

√
d1 +

√
t2 + 2

√
d2 R03 =

1

2

R30 +R03√
t1 + 2

√
d1

− 1

2

R30 −R03√
t2 + 2

√
d2

R30 =
1

2

R30 +R03√
t1 + 2

√
d1

+
1

2

R30 −R03√
t2 + 2

√
d2

R11 =
1

2

R11 +R22√
t2 + 2

√
d2

+
1

2

R11 −R22√
t1 + 2

√
d1

R12 =
1

2

R12 +R21√
t1 + 2

√
d1

+
1

2

R12 −R21√
t2 + 2

√
d2

R21 =
1

2

R12 +R21√
t1 + 2

√
d1

− 1

2

R12 −R21√
t2 + 2

√
d2

R22 =
1

2

R11 +R22√
t2 + 2

√
d2

− 1

2

R11 −R22√
t1 + 2

√
d1

R33 =

√
t1 + 2

√
d1 −

√
t2 + 2

√
d2

where t1 = ρ11 + ρ44, t2 = ρ22 + ρ33, d1 = ρ11ρ44 − ρ14ρ41 and d2 = ρ22ρ33 − ρ23ρ32.

Calculer les elements Rαβ pour la matrice
√

ρ(T )

At this stage, we have the tools to evaluate the matrix elements defined by

ωij = Tr

(√
ρ(T ) (σi ⊗ σ0)

√
ρ(T ) (σj ⊗ σ0)

)
where i and j take the values 1, 2, 3. Using the following identities

{σi, σj} = 2δij Tr(σiσj) = 2δij Tr(σiσjσkσl) = 2(δijδkl − δikδjl + δilδjk),

The elements ωij write

ωij = δij

[
1

4

∑
β

(
R2

0β −
∑
k

R2
kβ

)]
+

1

2

∑
β

RiβRjβ

where β = 0, 1, 2, 3 and k = 1, 2, 3. The diagonal elements are

ωii =
1

4

[∑
β

(
R2

0β −
∑
k

R2
kβ

)]
+

1

2

∑
β

R2
iβ

and the off-diagonal elements are

ωij =
1

2

∑
β

RiβRjβ i ̸= j
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Explicitly, we have

ω11 =
1

4

[
(R2

00 −R2
33) + (R2

11 −R2
22) + (R2

12 −R2
21) + (R2

03 −R2
30)

]
(20)

ω22 =
1

4

[
(R2

00 −R2
33) + (R2

22 −R2
11) + (R2

21 −R2
12) + (R2

03 −R2
30)

]
(21)

ω33 =
1

4

[
(R2

00 +R2
33)− (R2

11 +R2
22)− (R2

12 +R2
21) + (R2

03 +R2
30)

]
(22)

ω12 = ω21 =
1

2

(
R11R21 +R12R22

)
, ω13 = ω31 = 0, ω23 = ω32 = 0. (23)

Calculer les elements ωij et diagonaliser la matrice W

The eigenvalues of the matrix W (cf. 15) write

λ1 =
1

2
(ω11 + ω22) +

√
ω2
12 +

1

4
(ω11 − ω22)2 (24)

λ2 =
1

2
(ω11 + ω22)−

√
ω2
12 +

1

4
(ω11 − ω22)2 (25)

λ3 = ω33. (26)

It is clear that λ2 ≤ λ2 and as result the LQU (12) is then given by

U(ρ) = 1−max{λ1, λ3} (27)

Verifier que ces resultats conduisent aux valeurs propres que tu as calcule pour la matrice W donnees dans

ce qui suit

The explicit form of the eigenvalues of λ1, λ2 and λ3 are given by

λ1 =
2

Z

(
1 + cosh (β∆′) + cosh (β∆) + coshβ (∆−∆′) + 2 sinh (β∆′) sinh (β∆) sin2

(
θ1+θ2

2

)√
1 + cosh (β∆)

√
1 + cosh (β∆′)

)

λ2 =
2

Z

(
1 + cosh (β∆′) + cosh (β∆) + coshβ (∆−∆′) + 2 sinh (β∆′) sinh (β∆) sin2

(
θ1−θ2

2

)√
1 + cosh (β∆)

√
1 + cosh (β∆′)

)
,

λ3 =
eβJz

Z

(
1 + 2 cosh (β∆) + cosh (2β∆)− 2 sin2 θ1 sinh

2 β∆

1 + cosh (β∆)

)
+

e−βJz

Z

(
1 + 2 cosh(β∆′) + cosh(2β∆′)− 2 sin2 (θ2) sinh

2 (β∆′)

1 + cosh(β∆′)

)
. (28)

Therefore one should consider the situations where λmax is λ1 or λ3. This question is examined numerically in

what for various values of the coupling constants Jx, Jy and Jz, in presence or absence of external magnetic

fields as well as the effect of DM interaction on the quantum correlations in the state ρ(T ).
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3 The effect of DM interaction on thermal quantum discord

Using the analytical formula (27) for the local quantum uncertainty, we present a detailed study for the the

general XY Z model. Before to to this, we shall consider first consider the Ising model (Jx = Jy = 0), the XY

model (Jz = 0), the XXX model (Jx = Jy = Jz = J) and the XXZ (Jx = Jy = J, Jz ̸= J). For each of the

above mentioned models we discuss the quantum discord in presence or absence of magnetic fields. We especially

focus on the behavior of quantum correlations versus the temperature and the DM interaction coupling.

3.0.1 Ising Model (Jx=Jy = 0 and Jz ̸= 0)

Premier cas (i)b1 = b2 = 0

Prendre une valeur positive Jz (0.5) et aussi une valeur negative (-0.5)

Tracer E(ρ(T )) et U(ρ(T )) en fonction de T pour differentes valeurs de D

Second cas (ii)b1 = b2 = b

Prendre une valeur positive Jz (0.5) et aussi une valeur negative (-0.5)

Tracer E(ρ(T )) et U(ρ(T )) en fonction de T et b pour differentes valeurs de D

Let us consider here, the Ising chain with DM interaction in a external magnetic field. Fig.1 demonstrates

the LQU behavior versus Dz and uniform magnetic field Bz. It is clear that the LQU is an increasing function of

DM interaction Dz. Consequently, we show that the LQU can be enhanced by introducing the DM interaction.

Similarly, a same behavior is observed in Fig.2 is that the LQU always increases in terms of DM interaction Dz

versus inhomogeneity for magnetic field values bz. It is noted that our result is in agreement with recent works

where they showed the quantum correlations are enhanced by increasing the DM interaction[32]. Nevertheless,

in a strong degree of inhomogeneous magnetic field, the spin system is known a level-crossing (white line) that

occur in around of a quantum critical point (bzc = 0.9) and consequently, we can say that the Ising model

undergoes in a quantum phase transition. An another aspect slightly different is depicted in Fig.3 which the

thermally LQU is plotted versus Dz. One observes always a level-crossing when an increasing temperature

and secondly the LQU behavior versus DM interaction remains almost constant with weak Dz. But, the LQU

presents a sudden change in a Dz = 0.75 above which the LQU vanishes.

3.0.2 XXX spin model (Jx= Jy= Jz= J )

We now analyze XXX model where the Jx, Jy and Jz are assumed to equal to J . Fig.4 represents the LQU

variation versus Dz and Bz. It is found that the increasing of Dz interaction leads to the decreasing of the LQU,

and also increasing magnetic field Bz implies to enhance the LQU. However,Fig.5 demonstrates nonuniform

magnetic field bz affects negatively in the LQU such that increasing bz will decrease LQU. Therefore,Fig.6
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Figure 1: fig9:Model Ising jz=0.5,fig10:Model Ising1 jz=0.5,fig11:Model Ising3D jz=0.5,fig12:Model Ising3D

jz=-0.5

shows thermal LQU versus different Dz values whose the thermal LQU decrease with increasing Dz parameter

for T > Tc where Tc = is the critical temperature. Besides, when the temperature is less than at T = Tc,

the LQU takes zero value and we can against deduces that the critical temperature Tc is also affected by Dz

parameter in which the Tc will increase when parameter Dz increases .

3.0.3 XY Z spin model (Jx ̸= Jy ̸= Jz)

In order to see the brought novelty, if here we consider that Jx ̸= Jy ̸= Jz which an another behavior can

be observed from Fig.7 is that a level-crossing (white line) occurs between the fundamental and excited state

of Heisenberg system. one notices that also the level crossing takes place on the range of values of between

Dz ∈ [0.47, 0.65]. On the other hand, we depict the LQU behavior versus Dz and bz parameters (Fig.8). it

is seen that again a level-crossing (white line) between the ground and excited states is displayed and in this

case takes places as circular form. Note that, the results obtained in Heisenberg XYZ model are similar to

those developed in recent work describing the ground energy behavior of Heisenberg XYZ Hamiltonian [48].

In addition, thermal LQU is reported as function of parameter Dz (Fig.9) such as the thermal LQU increases

when parameter Dz increases unlike what we found in section 4.0.2. Besides, this sudden change of thermal

LQU can be attributed in the consideration of the Jx ̸= Jy ̸= Jz, so we say that this case the DM interaction

tend to enhance the thermal LQU.

Note that, all sudden changes of quantum correlations observed in several Heisenberg systems are generally

explained by a quantum phase transition occuring [50, 51, 52, 53, 54, 55]. Similarly, the sudden change presented

in LQU is due to the non-analyticity of the derivative of the LQU in the changing points [56]. We found that

the DM interaction plays a important role in detecting quantum phase transition in Heisenberg systems.

4 Conclusions

In summary, we have studied the LQU in two-qubit Heisenberg XY Z system in presence of DM interaction

and uniform and inhomogeneous magnetic field. Firstly, we found that the LQU measurement is affected by

(Dz ,Bz,bz) parameters. Furthermore, we have showed that the DM interaction play different behaviors in

Heisenberg systems where it improve LQU measurement in model Ising but in XXX model degrade the LQU
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Figure 2: fig13:Model XXX jz=0.1, j=0.1,fig14:Model XXX jz=0.5,fig15:Model XXX-2D jz=0.1

j=0.10,fig16:Model XXX2D jz=0.5

measurement.

On other hand, the DM interaction plays a important role is to detect quantum phase transition in Heisen-

berg systems. However, it is shown that we can use LQU measurement to exhibit quantum phase transition of

the Ising model and XY Z model, but in XXX model no phase transition takes places. Note that the XX,

XXZ models are also treated, but their results are respectively similar to Ising model, XXX model.
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