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We investigate the local quantum uncertainty (LQU) between a block of L qubits and one single qubit 
in a composite system of n qubits driven through a quantum phase transition (QPT). A first-order QPT 
is analytically considered through a Hamiltonian implementation of the quantum search. In the case of 
second-order QPTs, we consider the transverse-field Ising chain via a numerical analysis through density 
matrix renormalization group. For both cases, we compute the LQU for finite-sizes as a function of L and 
of the coupling parameter, analyzing its pronounced behavior at the QPT.
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1. Introduction

The interplay between quantum information theory and statis-
tical mechanics has brought emerging connections between these 
research fields [1–3]. In particular, it has provided a deeper un-
derstanding about the role played by correlations in quantum 
phase transitions (QPTs). A seminal result in this direction is a 
link between the scaling of pairwise entanglement and QPTs in 
quantum spin chains [4,5]. This has been further developed by 
introducing a distinction between the characterization of first-
order and continuous QPTs [6,7]. For a block analysis, entangle-
ment entropy has been found to be related to the central charge 
of the Virasoro algebra associated with the conformal field the-
ory behind the critical model [8–10]. More generally, it has been 
shown that quantum correlation measures such as provided by 
the quantum discord [11] are also able to identify quantum crit-
icality [12,13]. Remarkably, pairwise quantum discord may ex-
hibit a more robust characterization of QPTs than pairwise en-
tanglement in certain cases. For instance, pairwise quantum dis-
cord between distant sites in a quantum chain may indicate 
a quantum critical point, while entanglement is absent already 
for very short distances [14,15]. In addition, for finite temper-
atures, pairwise quantum discord is able to reveal the QPT by 
non-analyticities in its derivatives, while the pronounced behav-
ior in two-qubit entanglement disappears for even small tempera-
tures [16].
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In this work, we aim at investigating the behavior of the local 
quantum uncertainty (LQU) [17] at quantum criticality. The LQU 
has been introduced as a quantum discord-like measure, which is 
primarily related with the skew information [18,19]. In particu-
lar, it plays a role in the characterization of quantum metrology 
protocols [17,20]. The behavior of LQU between pairs of spins in a 
quantum spin chain has been recently considered [21,22]. Here, we 
generalize this previous analysis for systems of dimension 2 × 2 by 
considering the LQU for blocks of arbitrary dimension D × 2 and 
also by discussing its finite-size behavior in both first-order and 
second-order QPTs. More specifically, we will evaluate the LQU be-
tween a block of L quantum bits (qubits) and one single qubit 
in a composite system of n qubits. For a first-order QPT, we will 
consider a Hamiltonian implementation of the quantum search, 
which is designed to find out a marked element in an unstruc-
tured search space of N = 2n elements. By analytical evaluation, 
we will show that the LQU exponentially saturates to a constant 
value at the critical point as we increase the block length L. This 
saturation is found to be enhanced by the system size n. On the 
other hand, at non-critical points, the LQU will be shown to van-
ish for large n. In the case of second-order QPTs, we consider the 
transverse-field Ising model with open boundary conditions. By 
implementing a numerical analysis via density matrix renormal-
ization group (DMRG), we will show that the concavity of the LQU 
as a function of the block size L characterizes the QPT. For both 
first-order and second-order QPTs, we also consider the LQU as a 
function of the coupling parameter, showing that the LQU exhibits 
a pronounced behavior at the quantum critical point indepen-
dently of the block sizes of L qubits. In particular, this pronounced 
behavior is sensitive to n, showing a scaling behavior as we in-
crease the size of the system.
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2. Local quantum uncertainty

The uncertainty of an observable K in a quantum state ρ is 
usually quantified by the variance V (ρ, K ) = TrρK 2 − (TrρK )2. 
It may exhibit contributions from both quantum and classical 
sources. Quantum uncertainty comes from the noncommutativity 
between K and ρ , being quantified by the skew (not commuting) 
information [18,19]

I(ρ, K ) = TrρK 2 − Trρ1/2 Kρ1/2 K . (1)

Indeed, suppose ρ and K commute. Then, ρ and K have a com-
mon basis of eigenstates {|k〉}, which means that the uncertainty of 
K in an individual eigenstate |k〉 vanishes. Hence, a nonvanishing 
uncertainty V (ρ, K ) is only possible if ρ is a classical mixing of 
{|k〉}. Therefore, the commutation of ρ and K implies that V (ρ, K )

has a classical origin.
The quantum uncertainty is intrinsically connected with the 

concept of quantum correlation. For example, let us consider a 
Bell state of two qubits, namely, |ψ〉 = (|00〉 + |11〉)/√2, where 
{|0〉, |1〉} denotes the computational basis. This is an eigenstate of 
the global observable σz ⊗σz , so there is no uncertainty on the re-
sult of a measurement of such an observable. On the other hand, 
the measurement of local spin observables is intrinsically uncertain 
for the density operator |ψ〉〈ψ |, since an entangled state cannot 
be an eigenstate of a local observable. In particular, the variance 
V (ρ, K ) for a local observable K will vanish if and only if the state 
is uncorrelated.

The concept of quantum uncertainty can be extended to mixed 
states. In this case, the skew information I(ρ, K ) vanishes if and 
only if ρ is not disturbed by the measurement of K . If K is a 
local observable, the states left invariant by local measurement are 
the states with zero quantum discord with respect to that local 
subsystem [23]. The quantum uncertainty on local observables is 
then intimately related to the notion of quantum discord and, as 
shown in Ref. [17], it can be used as a discord-like quantifier. We 
are now ready to define the local quantum uncertainty (LQU). Let 
ρ = ρAB be the state of a bipartite system, and let K � denote a 
local observable on B (K is represented by a Hermitian operator 
on B with nondegenerate spectrum �). The LQU as defined in [4], 
is given by

Q (ρ) = minK � I(ρ, K �). (2)

Notice that Q is the minimum quantum uncertainty associated to 
a single measurement on subsystem B . If there is a K for which 
Q = 0 then there is no quantum correlation between the two parts 
of the state ρ . As proved in Ref. [17], the LQU satisfies all the good 
properties of a discord-like measure. An analytical expression for 
Q can be obtained if we consider a bipartite D × 2 system. In this 
case

Q (ρAB) = 1 − λmax(W AB), (3)

where λmax is the maximum eigenvalue of the 3 × 3 symmetric 
matrix W whose elements are given by

(W AB)i j = Tr[ρ1/2
AB (I A ⊗ σiB)ρ

1/2
AB (I A ⊗ σ jB)]. (4)

In this work, we will consider a set of n qubits aligned in a chain, 
with the bipartition in subsystems A and B chosen as shown in 
Fig. 1.

3. LQU for the quantum search

The aim of the search problem is to find out a marked element 
in an unstructured list of N candidates. In a quantum setting, it is 
possible to solve the search problem with scaling 

√
N , as proved 

by Grover [24]. Here, we consider a Hamiltonian implementation 
Fig. 1. Bipartition used to defined the subsystems A and B for the LQU evaluation. 
The size L of the block A is arbitrarily chosen and subsystem B is taken as one 
qubit.

through a quantum system composed of n qubits, whose Hilbert 
space has dimension N = 2n . We denote the computational basis 
by the set {|i〉} (0 ≤ i ≤ N − 1). Without loss of generality, we can 
assume an oracular model such that the marked element is the 
state |0〉. So the implementation of the quantum search can be 
achieved through the projective Hamiltonian

H(s) = (1 − s)(1 − |ψ0〉〈ψ0|) + s(1 − |0〉〈0|), (5)

where |ψ0〉 = (1/
√

N) 
∑N−1

i=0 |i〉, and s denotes the normalized time 
0 ≤ s ≤ 1. By preparing the system in its ground state at time t = 0
and by considering an adiabatic dynamics, it evolves to the corre-
sponding instantaneous ground state at later times. In particular, 
the system exhibits a first-order QPT at s = 1/2. The ground state 
energy in terms of the normalized time s reads

E(s) = 1 −
√

1 − 4s(1 − s)N

2
, (6)

with N = 1 − 1/N . For the ground state vector |ψ(s)〉, we obtain

|ψ(s)〉 = √
a(s)|0〉 + √

c(s)
N−1∑
i=1

|i〉, (7)

where we have defined the quantities a(s) = 1
1+(N−1)k2

s
, c(s) =

k2
s

1+(N−1)k2
s

, and ks = 1 − E(s)
(1−s)N

. Note that, in the thermodynamic 
limit n → ∞, the structure of the Hamiltonian implies that the 
LQU can only be non-vanishing at the quantum critical point, even 
though its scaling is nontrivial at finite sizes. This can be observed 
from Eq. (5), where both |0〉 and |ψ0〉 are product states that be-
come orthogonal for n → ∞. In this limit, the ground state is |ψ0〉
for 0 ≤ s < 1/2, with energy E(s) = s, while the ground state is |0〉
for 1/2 < s ≤ 1, with energy E(s) = 1 − s. At s = 1/2 the ground 
state is degenerate. From Eq. (7), |ψ(1/2)〉 will be an equal super-
position of |0〉 and |ψ0〉 for n → ∞. It then follows that Q = 0
everywhere except at s = 1/2.

In order to determine the scaling at finite size n, we consider 
the density matrix ρ = |ψ(s)〉〈ψ(s)| describing the system in the 
ground state, which can be written as

ρ(s) =

⎡
⎢⎢⎢⎣

a b b . . . b
b c c . . . c
...

...
...

. . .
...

b c c . . . c

⎤
⎥⎥⎥⎦ , (8)

where b = √
a(s)c(s). As we trace out n′ qubits of the system, the 

resulting partial density matrix ρ ′(s) will be given by

ρ ′(s) =

⎡
⎢⎢⎢⎣

a′ b′ b′ . . . b′
b′ c′ c′ . . . c′
...

...
...

. . .
...

b′ c′ c′ . . . c′

⎤
⎥⎥⎥⎦ , (9)
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where a′ = a + (2n′ − 1)c, b′ = b + (2n′ − 1)c, and c′ = 2n′
c. We 

observe that ρ ′ is an N ′ × N ′ matrix, with N ′ = 2n−n′
. Taking the 

square root from Eq. (9), we obtain

√
ρ ′ =

⎡
⎢⎢⎢⎣

ar br br . . . br

br cr cr . . . cr
...

...
...

. . .
...

br cr cr . . . cr

⎤
⎥⎥⎥⎦ , (10)

where we have defined ar = λ+ +λ− , br = λ+β+ +λ−β− , and cr =
λ+(β+)2 + λ−(β−)2, with r = √

4(b′)2(N ′ − 1) + (a′ − c′(N ′ − 1))2, 

β± = c′(N ′−1)−a′±r
2b′(N ′−1)

and λ± =
√

a′+c′(N ′−1)±r
2 /(1 +(N ′ −1)(β±)2). By 

rewriting Eq. (10) in block form, we get

√
ρ ′ =

⎡
⎢⎢⎢⎣

A B B . . . B
B† C C . . . C
...

...
...

. . .
...

B† C C . . . C

⎤
⎥⎥⎥⎦ , (11)

where A, B and C are 2 × 2 matrices defined as

A =
[

ar br

br cr

]
, B =

[
br br

cr cr

]
, C =

[
cr cr

cr cr

]
. (12)

Now we define Mi = √
ρ ′ · (1 ⊗ σi), where σi are the 2 × 2

Pauli matrices. We now compute the matrix elements (W AB)i j =
Tr[Mi M j]. This can be analytically performed for arbitrary size N , 
yielding

W1,1 = 2
(

b2
r + crar + 4qbrcr + 2q2c2

r

)
,

W2,2 = 2
(

crar − b2
r

)
,

W3,3 = a2
r − 2b2

r + c2
r ,

W3,1 = W1,3 = 2
(

brar − brcr + qb2
r − qc2

r

)
, (13)

with q = (N ′/2 − 1) and the remaining matrix elements of W van-
ishing. We notice that the matrix W would be left unchanged if 
we interchange blocks A and B , taking block A as the first qubit 
from the left and B as the L remaining qubits. In order to obtain 
the LQU, we have to find out the largest eigenvalue of W AB and 
use it into Eq. (3). Since four entries of the matrix W have van-
ished, this can be done analytically as well.

By taking the LQU between a block of length L and a single 
qubit, we obtain an exponential saturation of the LQU at the quan-
tum critical point. This is illustrated in Fig. 2, where we plot the 
LQU as a function of L for s = 1/2. As we can see, the saturation 
value is enhanced by n and L, attaining Q = 1/2 for n → ∞ and 
L → ∞. In this regime, the composite system AB is described by 
a pure state, with the LQU equivalent to bipartite entanglement as 
measured by the linear entropy [17]. By computing the linear en-
tropy S(ρB) = 2 

(
1 − Trρ2

B

)
from Eq. (7) for n → ∞ and L → ∞, 

we directly obtain S(ρB) = 1/2, in agreement with the thermody-
namic limit in Fig. 2. On the other hand, as displayed in Fig. 3, 
the behavior of the LQU displays a “tilde” form if the system is 
driven to a non-critical point. In this case, as the total number 
of spins n grows, the curve tends to vanish independently of the 
block length L.

The behavior of the LQU as a function of s for a fixed block size 
L is also remarkable. Since we have a first order QPT, the LQU itself 
shows a sharp behavior at s = 1/2, as shown in Fig. 4. Indeed, this 
is exhibited for a pair of qubits for systems of distinct total number 
n of qubits. Notice that, for L = 1, we obtain Q = 1/3 in the limit 
n → ∞. This value comes from the structure of |ψ(1/2)〉 in Eq. (7)
for n → ∞, which is an equal superposition of the states |0〉 and 
Fig. 2. (Color online.) LQU between a block of length L and a single qubit at the 
quantum critical point s = 0.5. An exponential saturation as a function of L is ob-
served, with the saturation value enhanced by the system size n. The inset shows 
the curve for n = 40, which approaches the asymptotic form and can be fit by 
Q (L) = 1/2 − ae−bL , with a ≈ 0.29 and b ≈ 0.71.

Fig. 3. (Color online.) LQU between a block of length L and a single qubit at the 
non-critical point s = 0.49. The LQU tends to vanish as we increase the size n of 
the system (see inset).

Fig. 4. (Color online.) LQU between a pair of qubits (L = 1) as a function of the 
normalized time s in the ground state. The system shows a sharp behavior at the 
critical point as a function of the system size n. In particular, exponential conver-
gence of the LQU towards its thermodynamical value is obtained for each value of s.

|ψ0〉. In particular, this maximum value of Q , which is obtained at 
the critical point s = 1/2, strongly depends on L. This is illustrated 
in Fig. 5, where it is shown that the maximum value of the LQU 
increases along with the total number n of qubits in the system 
and L for the block, approaching Q = 1/2 in the limit of both L
and n approaching infinity.
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Fig. 5. (Color online.) The maximum of the LQU for distinct sizes L of blocks.

Fig. 6. (Color online.) LQU as a function of the block size L in the transverse-field 
Ising model at quantum critical point λ = 1.

4. The transverse field Ising model

Let us consider now the Ising spin chain in a transverse mag-
netic field, whose Hamiltonian is given by

H I = − J
n∑

i=1

(
σ z

i σ z
i+1 + λσ x

i

)
, (14)

with open boundary conditions assumed. Without loss of general-
ity, we will set the energy scale such that J = 1. This Hamiltonian 
is Z2-symmetric and exhibits a second-order QPT from ferromag-
netic to paramagnetic state at λ = 1 [25,26]. It can be exactly diag-
onalized by mapping it to a spinless free fermion model with sin-
gle orbitals. However, instead of this solution, it is very convenient 
to consider a treatment based on density matrix renormalization 
group (DMRG) [27], since (L +1)-point correlators and partial den-
sity matrices will be the objects of interest for the computation of 
the LQU for block systems. In the DMRG scenario adopted here, 
we truncate the system at each renormalization step of the den-
sity matrix, keeping a number M = 30 states for chain sizes up to 
48 sites. This is well justified in the transverse-field Ising model, 
since the neglected states in the DMRG procedure have probabili-
ties of the order of 10−10.

We consider the behavior of the LQU as a function of the 
block size L for λ = 1, λ = 0.8, and λ = 1.2, which are exhib-
ited in Figs. 6, 7, and 8, respectively. As we can see, Fig. 6 shows 
that, at the critical point, the concavity of the LQU is undefined. 
We can also observe that the LQU reaches its maximum value 
(Q max ≈ 0.41) independently of the number n of sites. This is in-
dicated by the dashed line in Fig. 6. On the other hand, concavity 
Fig. 7. (Color online.) LQU as a function of the block size L in the transverse-field 
Ising model at λ = 0.8 (below the critical point).

Fig. 8. (Color online.) LQU as a function of the block size L in the transverse-field 
Ising model at λ = 1.2 (above the critical point).

Fig. 9. (Color online.) LQU as a function of the coupling parameter λ in the 
transverse-field Ising model for distinct chain sizes n. Inset: First derivative of Q
with respect to λ, displaying the characterization of the QPT.

is well-defined at off-critical points. Below the critical point, LQU 
is a convex function of the block size L, as shown in Fig. 7. Oppo-
sitely, LQU is a concave function of L above the critical point, as 
displayed in Fig. 8.

The quantum critical point can also be revealed as a function 
of the coupling parameter λ for a fixed length L. By varying λ, 
we can observe a sharp behavior of the LQU around λ = 1 for fi-
nite systems. This is illustrated in Fig. 9, where the LQU between a 
block of L = 10 sites and a single site is shown for distinct lengths 
n of chains. The inset in Fig. 9 shows the first derivative of the 
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Fig. 10. (Color online.) LQU and its first derivative as a function of the coupling parameter λ and the block size L.
LQU with respect to parameter λ. As a typical characterization 
of the QPT by a quantum discord-like measure [13], the critical 
point is identified by the first-derivative of the LQU with respect 
to λ.

In Fig. 10, we show the LQU and its first derivative in the 
(λ, L) plane. It is observed that around the critical point (λ = 1), 
the value of the corresponding LQU on the color scale is approxi-
mately 0.4. The first derivative of LQU is also shown in Fig. 10. The 
sharp behavior of this quantity characterizes the QPT. The mini-
mum value of the first derivative has a symmetry behavior as a 
function of block size L.

5. Conclusion

In conclusion, we have investigated the scaling properties of 
the LQU at first-order and second-order QPTs. We have considered 
the behavior of the LQU in terms of either the block size L or 
the coupling parameter inducing the QPT. In both cases, the QPTs 
are precisely identified by the LQU. The scaling of the LQU as a 
function of the size of the block opens the possibility of search-
ing for connections between quantum correlations and finite-size 
properties of critical systems. As a future step, it would be in-
teresting to investigate possible universal properties of LQU, e.g. 
analyzing its behavior for quantum critical spins chains belonging 
to distinct universality classes. A relevant point would be a pos-
sible scaling related to the central charge of the Virasoro algebra 
behind the critical chain. Other points of interest would be the in-
vestigation of the quantum critical behavior for finite temperatures 
as well as the effect of boundary conditions over the scaling of the 
LQU for systems D × 2. These investigations are left for further re-
search.
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