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Abstract
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for a bipartite state. It provides a well-defined measure of pairwise quantum correlations in quantum systems and

has operational significance in quantum metrology. In this work, we analytically derive the expression of local

quantum uncertainty for two-qubit X states which are of paramount importance in various fields of quantum

information. As an illustration, we consider two-qubit states extracted from even and odd spin coherent states.
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1 Introduction

Quantum correlations in multipartite systems are a fundamental resource in various protocols of quantum infor-

mation processing [1, 2, 3, 4]. In this respect, the characterization of the degree of quantumness of correlations

between the different parts of a composite system is highly desirable. During the last two decades, several quan-

tifiers were investigated in the literature (for a recent review see [5]). The most familiar ones are the concepts of

concurrence, entanglement of formation, quantum discord and its different geometric versions [6, 7, 8, 9, 10, 11].

The interest in quantum discord lies in the existence of nonclassical correlations even in separable states which

are not captured by the entanglement [10, 11]. This explains the particular interest and the huge amount of

efforts dedicated to the significance and the computation of quantum discord in different quantum systems.

However, the derivation of the explicit expression of quantum discord, based on von Neumann entropy, of an

arbitrary bipartite quantum system is in general very challenging. Quantum discord can be computed only for

some special instances of two-qubit states.

An alternative way to overcome this problem consists in adopting geometric tools to quantify the dis-

tance between a bipartite state and its closed one exhibiting only classical correlations [12, 13, 14] (see also

[15, 16, 17, 18]). Two variants of geometric quantum discord were introduced in terms of Schatten p-norm: trace

norm (p = 1) and Hilbert-Schmidt norm (p = 2). The geometric quantum discord based on Hilbert-Schmidt

norm is contractive under local operations by the unmeasured party and therefore cannot be employed as a faith-

ful quantifier of quantum correlations [19, 20]. The explicit analytical expression of trace discord for two-qubit

X states was reported in [21]. The derivation involves lengthy algebraic manipulations and one should recognize

that the computability of this quantifier for higher dimensional quantum systems (qudits) is drastically difficult.

Besides these entropic and geometric quantifiers, the notion of local quantum uncertainty, recently reported

in [22], constitutes a promising tool in investigating quantum correlations in multipartite systems. This is es-

sentially due to its reliability and its easiness of computability. This quantifier employs the formalism of skew

information, introduced in Ref. [23], which determines the uncertainty in the measurement of an observable.

More precisely, the local quantum uncertainty is given by the minimum of the skew information over all possible

local observables acting on one party of a bipartite system. This minimization can be analytically worked out

for any qubit-qudit bipartite system [22]. The local quantum uncertainty is related to the notion of quantum

Fisher information [24, 25, 26] and in this sense it is a key ingredient of paramount importance in quantum

metrology protocols [22].

In this paper, we give the explicit analytical expression of local quantum uncertainty for a generic family of

two qubit X states. This completes the recently obtained results for Bell diagonal, Werner and isotropic states

[27, 28]. To illustrate our results, we consider the pairwise quantum correlation in spin coherent states viewed

as multipartite symmetric qubit states.
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The paper is structured as follows. In section 2, we give a brief review of the concept of local quantum

uncertainty. The analytical expression of this discord-like quantifier of quantum correlations is derived for an

arbitrary two-qubit X state. We discuss some special two-qubit X states, especially Bell diagonal states and

orthogonally invariant two-qubit states for which the local quantum uncertainty was recently derived in [27, 28].

In section 3, we consider the pairwise local quantum uncertainty in balanced superpositions of spin coherent

states. We consider two partitioning schemes. The first bipartition lies on the factorization property of SU(2)

coherent states. In this picture a j-spin coherent state factorizes as a product of 2j identical qubit states ( 12 -spin

coherent states). The second scheme is obtained by a trace procedure over the degree of freedom of 2j−2 qubits.

A special focus is dedicated to even and odd spin coherent states. Concluding remarks close this paper.

2 Local quantum uncertainty in two qubit X states

Closed analytical expression of local quantum uncertainty has been worked out only for certain class of two-qubit

states [27, 28, 29]. In this section, we take a step forward and give the method for tackling the calculation of

local quantum uncertainty for a generic family of two-qubit X-state which includes diagonal Bell states, Werner

states [30] and many others of relevance in several areas of quantum information.

2.1 Local quantum uncertainty: definition

In quantum mechanics, the uncertainty of an observable H in a quantum state ρ is quantified by the variance

as

V(ρ,H) = Tr(ρH2)− (TrρH)2.

For pure states, the variance is of purely quantum nature. But, for mixed states it comprises both classical and

quantum contributions. The discrimination between classical and quantum parts is of paramount importance

in quantum information theory. In this sense, to deal only with the quantum part of the variance, one employs

the formalism of skew information defined as [23, 24]

I(ρ,K) = Tr(ρH2)− Tr(
√
ρH

√
ρH).

It expresses the information contained in the state ρ that is unaccessible by measuring the observable H. The

skew information vanishes only and only when ρ and H commute. The difference C(ρ,K) = V(ρ,K)− I(ρ,K)

has the meaning of classical mixing uncertainty. The disentanglement of the variance into classical and quantum

parts is behind the relevance of the skew information in quantifying non classical correlations. Indeed, when the

state ρ = ρ12 describes a two-qubit system and H = H1 ⊗ I2 is a local observable acting only on the first qubit,

the lower bound of the skew information leads to nonclassical correlations of the discord type [22]. In fact,

quantum discord quantifies the amount of information in a bipartite system which is accessible by performing

local measurements on one part of the global system. In this sense, the local quantum uncertainty is defined by

the minimization of the skew information over local observables with fixed non-degenerate spectrum [22]

U(ρ12) ≡ min
H1

I(ρ12,H1 ⊗ I2), (1)
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The properties, reliability and computability of this discord-like quantifier were reported in [22]. Indeed, the

local quantum uncertainty vanishes for the so-called classical-quantum states of the form ρ12 =
∑

i pi|i⟩1⟨i|⊗ρ2
, where {|i⟩} is an orthonormal basis. Furthermore, this measure possesses the invariance property under

local unitary transformations and does not increase under local quantum transformations on the unmeasured

subsystem. In this sense, the local quantum uncertainty provides a reliable discord-like measure. The explicit

calculation of this quantum correlations indicator was reported in [22] for a 2× d bipartite system (qubit-qudit

system). In particular, for a two qubit system (spin-12 particles), the local quantum uncertainty writes [22]

U(ρ12) = 1−max(ω1, ω2, ω3), (2)

where ωi (i = 1, 2, 3) denote the eigenvalues of the 3× 3 matrix W whose matrix elements are given by

ωij ≡ Tr(
√
ρ12 σi ⊗ σ0

√
ρ12 σj ⊗ σ0), (3)

where σ0 stands for the identity matrix I2 and i, j = 1, 2, 3. The matrices σi (i = 1, 2, 3) are the usual Pauli

matrices. The explicit derivation of the local quantum uncertainty (2) gets simplified for two-qubit density

matrices with symmetries invariance [22, 27, 28]. Therefore, we shall focus on the local quantum uncertainty for

X states which include various types of quantum states usually used in investigating entanglement and quantum

correlations in various condensed matter models such ones describing spin collective systems.

2.2 Local quantum uncertainty for X states

In the computational basis of the Hilbert space associated with a two qubit system, the X density matrix have

non-zero entries only along the diagonal and anti-diagonal and therefore they are parameterized by seven real

parameters [31, 32]. The corresponding symmetry is fully characterized by the su(2)× su(2)× u(1) subalgebra

of the full su(4) algebra describing an arbitrary two-qubit system [33]. The X states have already found

applications in several investigations of concurrence, entanglement of formation, quantum discord [32, 34, 35, 36].

The density matrix for a two-qubit X state writes as

ρ =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

 . (4)

in the computational basis {|00⟩, |01⟩, |10⟩, |11⟩}. The entries are subjected to the normalization property (Trρ =

1), the positivity condition (ρ11ρ44 ≥ |ρ14|2 and ρ22ρ33 ≥ |ρ23|2) and the complex conjugation requirement

(ρ14 = ρ41 and ρ23 = ρ32 ). The phase factors eiθ14 = ρ14

|ρ14| and e
iθ23 = ρ23

|ρ23| of the off diagonal elements can be

removed using the local unitary transformations

|0⟩1 → exp

(
− i

2
(θ14 + θ23)

)
|0⟩1 |0⟩2 → exp

(
− i

2
(θ14 − θ23)

)
|0⟩2.

Hence, the anti-diagonal entries of the density matrix can be made positive. Hereafter, we assume that the

elements of the density matrix are non negative. The eigenvalues of the density matrix ρ write

λ1 =
1

2
t1 +

1

2

√
t21 − 4d1, λ2 =

1

2
t2 +

1

2

√
t22 − 4d2, λ3 =

1

2
t2 −

1

2

√
t22 − 4d2, λ4 =

1

2
t1 −

1

2

√
t21 − 4d1
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with t1 = ρ11 + ρ44, t2 = ρ22 + ρ33, d1 = ρ11ρ44 − ρ14ρ41 = ρ11ρ44 − ρ214, and d2 = ρ22ρ33 − ρ32ρ23 =

ρ22ρ33 − ρ232. The Fano-Bloch decomposition of the state ρ writes as

ρ =
1

4

∑
α,β

Rαβσα ⊗ σβ (5)

where the correlation matrix Rαβ are given by Rαβ = Tr(ρ σα⊗σβ) with α, β = 0, 1, 2, 3. Explicitly, they write

R03 = 1− 2ρ22 − 2ρ44, R30 = 1− 2ρ33 − 2ρ44, R11 = 2 (ρ32 + ρ41),

R22 = 2 (ρ32 − ρ41), R00 = ρ11 + ρ22 + ρ33 + ρ44 = 1, R33 = 1− 2ρ22 − 2ρ33.

For simultaneously non vanishing t1 (trace of the sub-block matrix 1-4) and t2 (trace of the sub-block matrix

2-3), the square root of the density matrix ρ writes, in the computational basis, as

√
ρ =



ρ11+
√
d1√

t1+2
√
d1

0 0 ρ14√
t1+2

√
d1

0 ρ22+
√
d2√

t2+2
√
d2

ρ23√
t2+2

√
d2

0

0 ρ32√
t2+2

√
d2

ρ33+
√
d2√

t2+2
√
d2

0

ρ41√
t1+2

√
d1

0 0 ρ44+
√
d1√

t1+2
√
d1

 . (6)

and the associated eigenvalues
√
λ1,

√
λ2,

√
λ3 and

√
λ4 are given by√

λ1 =
1

2

√
t1 + 2

√
d1 +

1

2

√
t1 − 2

√
d1,

√
λ2 =

1

2

√
t2 + 2

√
d2 +

1

2

√
t2 − 2

√
d2

√
λ3 =

1

2

√
t2 + 2

√
d2 −

1

2

√
t2 − 2

√
d2,

√
λ4 =

1

2

√
t1 + 2

√
d1 −

1

2

√
t1 − 2

√
d1.

The Fano-Bloch representation of the matrix (6) writes as

√
ρ =

1

4

∑
α,β

Rαβσα ⊗ σβ

with Rαβ = Tr(
√
ρ σα ⊗ σβ). The non vanishing matrix correlation elements Rαβ are explicitly given by

R00 =

√
t1 + 2

√
d1 +

√
t2 + 2

√
d2 R03 =

1

2

R30 +R03√
t1 + 2

√
d1

− 1

2

R30 −R03√
t2 + 2

√
d2

R30 =
1

2

R30 +R03√
t1 + 2

√
d1

+
1

2

R30 −R03√
t2 + 2

√
d2

R11 =
1

2

R11 +R22√
t2 + 2

√
d2

+
1

2

R11 −R22√
t1 + 2

√
d1

R22 =
1

2

R11 +R22√
t2 + 2

√
d2

− 1

2

R11 −R22√
t1 + 2

√
d1

R33 =

√
t1 + 2

√
d1 −

√
t2 + 2

√
d2

Using the following relations of the Pauli matrices

{σi, σj} = 2δij Tr(σiσj) = 2δij Tr(σiσjσkσl) = 2(δijδkl − δikδjl + δilδjk),

one shows that the matrix W (3) is diagonal and the diagonal elements are

ωii =
1

4

[∑
β

(
R2

0β −
∑
k

R2
kβ

)]
+

1

2

∑
β

R2
iβ (7)

where i, k = 1, 2, 3 and β = 0, 1, 2, 3. They can be cast in the following closed form

ωii =
1

4
ηαβ(RRt)αβ +

1

2
(RRt)ii (8)
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where the summation over repeated indices is understood, the subscript t stands for transposition transforma-

tion, η is the diagonal matrix η = diag(1,−1,−1,−1). The eigenvalues ω11, ω22 and ω33 (8) involve only the

non vanishing Fano-Bloch components of the square root of the density matrix ρ12. Alternatively, they can be

expanded as

ω11 =
1

4
(R2

00 −R2
33 +R2

03 −R2
30 +R2

11 −R2
22),

ω22 =
1

4
(R2

00 −R2
33 +R2

03 −R2
30 −R2

11 +R2
22),

ω33 =
1

4
(R2

00 +R2
33 +R2

03 +R2
30 −R2

11 −R2
22).

Using the expressions of Fano-Bloch elements Rαβ associated with the matrix
√
ρ12, the eigenvalues ωii (i =

1, 2, 3) can be also expressed in terms of the correlation matrix elements Rαβ of the state ρ12 as

ω11 =

√
(t1 + 2

√
d1)(t2 + 2

√
d2) +

1

4

(R2
11 −R2

22) + (R2
03 −R2

30)√
(t1 + 2

√
d1)(t2 + 2

√
d2)

, (9)

ω22 =

√
(t1 + 2

√
d1)(t2 + 2

√
d2) +

1

4

(R2
22 −R2

11) + (R2
03 −R2

30)√
(t1 + 2

√
d1)(t2 + 2

√
d2)

, (10)

ω33 =
1

2

(
1 + 2(

√
d1 +

√
d2)

)
+

1

8

[
(R03 +R30)

2 − (R11 −R22)
2

t1 + 2
√
d1

]
+

1

8

[
(R03 −R30)

2 − (R11 +R22)
2

t2 + 2
√
d2

]
, (11)

where the quantities ti and di (i = 1, 2) are also re-expressed as

t1 =
1

2
(R00 +R33), t2 =

1

2
(R00 −R33)

d1 =
1

16

[
(R00 +R33)

2 − (R30 +R03)
2 − (R11 −R22)

2

]
, d2 =

1

16

[
(R00 −R33)

2 − (R30 −R03)
2 − (R11 +R22)

2

]
,

in terms of the Fano-Bloch components Rαβ . We observe that, for two-qubit X states with positive entries, R11

is always larger than R22. This implies ω11 ≥ ω22 and the local quantum uncertainty for the states (4) writes

simply as

U(ρ12) = 1−max(ω11, ω33). (12)

Therefore, only two distinct situations have to be separately treated, that is ω11 ≥ ω33 and ω11 ≤ ω33.

2.3 Particular cases

The X density matrices split in two 2× 2 block matrices corresponding to decoupling Hilbert subspaces (1− 4)

and (2 − 3). In deriving the result (12), we have assumed that the trace t1 of the sub-matrix (1 − 4) and the

trace t2 of the sub-matrix (2− 3) are non zero. Now, we consider the special situations where t1 = 0 or t2 = 0.

We note that when t1 = 0, the trace condition of the density matrix ρ12 imposes t2 = 1 and vice-versa. We note

also t1 vanishes if and only if ρ11 = ρ44 = 0 and the positivity condition of the density matrix ρ12 (4) implies

ρ14 = ρ41 = 0. In this case, we have d1 = 0. Similarly, t2 = 0 implies ρ22 = ρ33 = 0 and subsequently one has

ρ23 = ρ32 = 0 and d2 = 0.
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In the case where the density matrix (4) is restricted to the block matrix (2−3), the correlation matrix elements

of the matrix
√
ρ write simply as

R00 = −R33 =

√
1 + 2

√
ρ22ρ33 − ρ223, R11 = R22 =

2ρ23√
1 + 2

√
ρ22ρ33 − ρ223

, R30 = −R03 =
ρ22 − ρ33√

1 + 2
√
ρ22ρ33 − ρ223

Therefore, for t1 = 0 the equation (8) gives ω11 = 0, ω22 = 0 and

ω33 =
1

2

[
1 + 2

√
ρ22ρ33 − ρ223

]
+

1

2

[
(ρ22 − ρ33)

2 − 4ρ223

1 + 2
√
ρ22ρ33 − ρ223

]
(13)

in terms of the matrix elements of the density ρ12. For this special two-qubit state, the local quantum uncer-

tainty is given by 1− ω33.

Similarly, in the special case where t2 = 0 (or equivalently ρ22 = ρ33 = ρ23 = ρ32 = 0), the Fano-Bloch

elements of the matrix
√
ρ are given by

R00 = R33 =

√
1 + 2

√
ρ11ρ44 − ρ214, R11 = −R22 =

2ρ14√
1 + 2

√
ρ11ρ44 − ρ214

, R03 = R30 =
ρ11 − ρ44√

1 + 2
√
ρ11ρ44 − ρ214

It follows that for the X states with t2 = 0, one gets ω11 = 0, ω22 = 0 and

ω33 =
1

2

[
1 + 2

√
ρ11ρ44 − ρ214

]
+

1

2

[
(ρ11 − ρ44)

2 − 4ρ214

1 + 2
√
ρ11ρ44 − ρ214

]
(14)

in terms of the non vanishing density matrix elements. In this case, the local quantum uncertainty reads as

1− ω33.

2.4 Local quantum uncertainty for some special two qubit X states

To exemplify our method for calculating the local quantum uncertainty, we discuss now on some special two-qubit

states for which the quantum correlations were evaluated recently in the literature using this quantifier. We shall

consider three special X states: (i) Werner states, (ii) Bell-diagonal states and (iii) orthogonal invariant two-

qubit states. These three types of two-qubit states are X shaped states with correlation elements verifying (i)

R11 = R22 = R33 and R30 = R03 = 0, (ii) R11 ̸= R22 ̸= R33 and R30 = R03 = 0, (iii) Rii ̸= Ri+1 i+1 = Ri+2 i+2

and R30 = R03 = 0 with i = 1, 2, 3 (mod 3).

2.4.1 Werner states

The two-qubit Werner states given by [30]

ρW =
1− f

3
σ0 ⊗ σ0 +

4f − 1

3
|ψ−⟩⟨ψ−| (15)

are the mixtures of maximally chaotic state and the maximally entangled state |ψ−⟩ = 1√
2
(|01⟩ + |10⟩). f

denotes the fidelity which characterizes the overlap between Bell state and isotropic state (0 ≤ f ≤ 1). The

Werner states are separable for f ≤ 1
2 and entangled for 1

2 < f ≤ 1. This is easily verified from the concurrence

formula given by C(ρW) = max(0, 2f − 1). In the Fano-Bloch representation, the states ρW write

ρW =
1

4

(
σ0 ⊗ σ0 +

1− 4f

3

3∑
i=1

σi ⊗ σi

)
. (16)
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Using the results (9), (10) and (11), one gets

ω11 = ω22 = ω33 =
2

3
(1− f) +

2√
3

√
f(1− f) (17)

and the local quantum uncertainty is simply given by

U(ρW) = 1− 2

3
(1− f) +

2√
3

√
f(1− f) (18)

which coincides with the result derived in [29].

2.4.2 Two qubit Bell-diagonal states

The subset of X states which are diagonal in the Bell basis is parameterized by three parameters. The corre-

sponding density matrices are of the form

ρB =
1

4
(σ0 ⊗ σ0 +

3∑
i=1

ciσi ⊗ σi). (19)

Using the results (9), (10) and (11), the eigenvalues of the matrix W (cf. equation (3)) write as

ω11 =
1

2

(√
(1− c1)2 − (c2 + c3)2 +

√
(1 + c1)2 − (c2 − c3)2

)
(20)

ω22 =
1

2

(√
(1− c2)2 − (c3 + c1)2 +

√
(1 + c2)2 − (c3 − c1)2

)
(21)

ω33 =
1

2

(√
(1− c3)2 − (c1 + c2)2 +

√
(1 + c3)2 − (c1 − c2)2

)
(22)

in terms of the correlation elements c1, c2 and c3. This is exactly the result derived in [27]. For c1 = c2 =

c3 = 1−4f
3 , the Bell diagonal states become of Werner type and in this case the expressions (20), (21) and (22)

reduce to the eigenvalues given by (17) and one recovers the local quantum uncertainty of Werner states (18).

2.4.3 Orthogonal invariant two-qubit states

Any two qubit state invariant under the operation O ⊗ O ( with O an arbitrary orthogonal matrix) can be

expanded in terms of the three generators I4 , F1 and F2 as [28]

ρO = aI4 + bF1 + cF2 (23)

where the real parameters a, b and c are positive and satisfy 4a+2b+2c = 1 (trace condition), I4 is the identity

and the operators F1 and F2 are defined by

F1 =
∑
ij

|ij⟩⟨ji| F2 =
∑
ij

|ii⟩⟨jj|

in the computational basis. The density matrix (23) is X shaped

ρO =


a+ b+ c 0 0 c

0 a b 0

0 b a 0

c 0 0 a+ b+ c

 . (24)

From the general expressions (9), (10) and (11), one obtains

ω11 = ω33 = 2

(√
(a+ b)(a+ b+ 2c) +

√
a2 − b2

)
ω22 = 2

(√
(a− b)(a+ b+ 2c) + (a+ b)

)
which reproduces the result obtained in [28].
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3 Pairwise local quantum uncertainty in spin coherent states sys-

tems

For completeness, we shall briefly recall the most useful relations for SU(2) coherent states. The corresponding

Lie algebra is spanned by three generators J+ , J− and Jz satisfying the structure relations

[J±, J3] = ±J± [J+, J−] = 2J3

The associated unitary representations are labeled by the angular momentum quantum number j (integer or

half integer) and the representation space is Hj = {|j,m⟩,m = −j,−j + 1, · · · , j − 1, j}. As it is well known,

the spin coherent states can be constructed from the lowest-weight state |j,−j⟩ as follows

|j, η⟩ = exp(ξJ+ − ξ∗J−)|j,−j⟩ ξ ∈ C. (25)

Using the disentangling theorem for angular momentum operators, one gets

|j, η⟩ = Dj(ξ)|j,−j⟩ = exp(ξJ+ − ξ∗J−)|j,−j⟩ = (1 + |η|2)−j exp(ηJ+)|j,−j⟩ , (26)

where η = (ξ/|ξ|) tan |ξ|. Using the standard action of the rasing operator J+ on Hj given by

|j,m⟩ =

√
(2j)!

(j +m)!(j −m)!

(J+)
j+m

(j +m)!
|j,−j⟩,

the states (26) can be expanded as

|j, η⟩ = (1 + |η|2)−j

j∑
m=−j

[
(2j)!

(j +m)!(j −m)!

]1/2
ηj+m|j,m⟩, (27)

in the angular momentum basis {|j,m⟩}. The coherent states |j, η⟩ satisfy the over-completion property given

by ∫
dµ(j, η)|j, η⟩⟨j, η| = I , dµ(j, η) =

2j + 1

π

d2η

(1 + |η|2)2
. (28)

They are not orthogonal to each other and the overlap between two distinct SU(2) coherent states is non zero:

⟨j, η1|j, η2⟩ = (1 + |η1|2)−j(1 + |η2|2)−j(1 + η∗1η2)
2j . (29)

For j = 1
2 , the spin coherent states (27) reduce to

|η⟩ = 1√
1 + η̄η

| ↓⟩+ η√
1 + η̄η

| ↑⟩. (30)

Here and in the following |η⟩ is short for the spin- 12 coherent state | 12 , η⟩ with | ↑⟩ ≡ | 12 ,
1
2 ⟩ and | ↓⟩ ≡ | 12 ,−

1
2 ⟩)

or equivalently |0⟩ ≡ | 12 ,−
1
2 ⟩ and |1⟩ ≡ | 12 ,+

1
2 ⟩. It is also remarkable that the tensorial product of two different

spin coherent states |j1, η⟩ and |j2, η⟩ gives a j1 + j2-spin coherent state labeled by the same parameter. This

factorization property writes as

|j1, η⟩ ⊗ |j2, η⟩ = (Dj1 ⊗Dj2) (|j1, j1⟩ ⊗ |j2, j2⟩) = Dj1+j2 |j1 + j2, j1 + j2⟩ = |j1 + j2, η⟩. (31)
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This property is very interesting in our context. Indeed, a j-spin coherent state may be viewed as multipartite

state describing 2j qubits:

|j, η⟩ = (|η⟩)⊗2j
=

(
1√

1 + η̄η
| ↓⟩+ η√

1 + η̄η
| ↑⟩

)⊗2j

= (1 + η̄η)−j

+j∑
m=−j

(
2j

j +m

) 1
2

ηj+m|j,m⟩.

In this section, we study the pairwise quantum correlations in balanced superpositions of spin coherent states

using the concept of local quantum uncertainty. A special attention is devoted to two-qubit states extracted

from even and odd spin coherent states defined by

|j, η,m⟩ = Nm(|j, η⟩+ eimπ|j,−η⟩) (32)

where the integer m ∈ Z takes the values m = 0 (mod 2) and m = 1 (mod 2). The normalization factor Nm is

Nm =
[
2 + 2p2j cosmπ

]−1/2

where p denotes the scalar product between the states |η⟩ and | − η⟩:

p = ⟨η| − η⟩ = 1− η̄η

1 + η̄η
. (33)

Clearly for j = 1
2 the SU(2) coherent states coincides with qubits and the even and odd coherent states coincide

with | ↑⟩ and | ↓⟩. It follows that the states |j, η,m⟩ can be treated as multi-qubit (or multi-fermion) states

comprising 2j qubits (or fermions)

|j, η,m⟩ = Nm((|η⟩)⊗2j
+ eimπ (| − η⟩)⊗2j

). (34)

This key property provides a scheme to study with pairwise correlations in even and odd spin coherent states

considered not as single entity but viewed as multi-qubit systems. Thus, to derive the local quantum uncertainty

in such states we consider in what follows two different partitioning schemes.

3.1 Pure bipartite spin coherent states

We begin with a pure bipartite partition of the following balanced superposition of spin coherent states

|j, η, θ⟩ = Nθ(|j, η⟩+ eiθ|j,−η⟩) (35)

where the normalization factor is given by |Nθ|−2 = 2 + 2p2j cos θ. Using the factorization property of spin

coherent states (31), the states (35) can be also expressed as

|j, η, θ⟩ = Nθ(|j1, η⟩ ⊗ |j2, η⟩+ eiθ|j1,−η⟩ ⊗ |j2,−η⟩) (36)

with j = j1 + j2 so that the spin j system splits into two subsystems of spin j1 and j2. The resulting bipartite

states can be also rewritten as two qubit states in the basis

|ji, η, 0⟩ −→ |0⟩ji |ji, η, π⟩ −→ |1⟩ji , i = 1, 2.

defined by means of odd and even spin coherent associated with the angular momenta j1 and j2. Indeed, for

each subsystem, an orthogonal basis {|0⟩l, |1⟩l}, with l = j1 or j2, can be defined as

|0⟩l =
|l, η⟩+ |l,−η⟩√

2(1 + p2l)
|1⟩l =

|l, η⟩ − |l,−η⟩√
2(1− p2l)

. (37)
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The bipartite density state ρ = |j, η, θ⟩⟨j, η, θ| is pure. The concurrence in this pure bipartite system writes

Cj1,j2(θ) =
√
1− p4j1

√
1− p4j2

1 + p2j cos θ
. (38)

Using the Schmidt decomposition, the state (36) can be written as

|j, η, θ⟩ =
√
λ+|+⟩1 ⊗ |+⟩2 +

√
λ−|−⟩1 ⊗ |−⟩2 (39)

where λ± denote the eigenvalues of the reduced density of the first subsystem ρj1 = Trj2(ρ) obtained by tracing

out the spin j2 . They write as

λ± =
1

2

(
1±

√
1− C2

)
. (40)

in terms of the concurrence C ≡ Cj1,j2(θ) given by (38). In the basis {|+⟩1⊗|+⟩2, |+⟩1⊗|−⟩2, |−⟩1⊗|+⟩2, |−⟩1⊗

|−⟩2}, the density matrix ρj1,j2(θ) = |j, η, θ⟩⟨j, η, θ| takes the form

ρj1,j2(θ) =


λ+ 0 0

√
λ+λ−

0 0 0 0

0 0 0 0√
λ+λ− 0 0 λ−

 (41)

Using the result (7), one verifies that ω11 = 0 , ω22 = 0 and ω33 = 1−4λ+λ−. It follows that the local quantum

uncertainty coincides with the squared concurrence (38)

U(ρj1,j2(θ)) = C2
j1,j2(θ). (42)

For θ = mπ (m ∈ Z), the logical qubits |j, η,m = 0⟩ and |j, η,m = 1⟩ coincide with even and odd spin coherent

states. They behave like a multipartite state of Greenberger-Horne-Zeilinger (GHZ) type [37] in the limit p→ 0.

Indeed, in this limit the states |η⟩ and | − η⟩ approach orthogonality and an orthogonal basis can be defined

such that |0⟩ ≡ |η⟩ and |1⟩ ≡ | − η⟩. Thus, the state |j, η,m⟩ becomes of GHZ-type

|j, η,m⟩ ∼ |GHZ⟩2j =
1√
2
(|0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩+ eimπ|1⟩ ⊗ |1⟩ ⊗ · · · ⊗ |1⟩) (43)

which is maximally entangled and the bipartite local quantum uncertainty is U(ρj1,j2(θ = mπ)) = 1.

Another interesting limiting case concerns the situation where p2 → 1 (or η → 0 ). In this case the state

|j, η,m = 0 (mod 2)⟩ (34) reduces to ground state of a collection of 2j fermions

|j, 0, 0 (mod 2)⟩ ∼ | ↓⟩ ⊗ | ↓⟩ ⊗ · · · ⊗ | ↓⟩, (44)

which is completely separable and

U(ρj1,j2(θ = mπ) = 0.

The odd spin coherent state |j, η, 1 (mod 2)⟩ becomes a multipartite state of W type [38]

|j, 0, 1 (mod 2)⟩ ∼ |W⟩2j =
1√
2j

(| ↑⟩⊗ | ↓⟩⊗ · · ·⊗ | ↓⟩+ | ↓⟩⊗ | ↑⟩⊗ . . .⊗| ↓⟩+ · · ·+ | ↓⟩⊗ | ↓⟩⊗ · · ·⊗ | ↑⟩) . (45)

and, in this limiting situation, the local quantum uncertainty is given by

U(ρj1,j2(θ = π)) = 4
j1j2
j1 + j2

.
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3.2 Mixed bipartite states

Now, we consider bipartite mixed density matrices ρij obtained, from the even and odd spin coherent states,

by a trace procedure consisting in removing all degrees of freedom of all 1
2 -spins except two labeled by i and

j. The whole system is invariant under exchange symmetry. Thus, the trace procedure leads to 2j(2j − 1)/2

identical density matrices that we denote in what follows by ρ12. After some algebra, one obtains

ρ12 = N 2(|η, η⟩⟨η, η|+ | − η,−η⟩⟨−η,−η|+ eimπq| − η,−η⟩⟨η, η|+ e−imπq|η, η⟩⟨−η,−η|), (46)

where q is defined by

q = p2j−2.

Setting η = eiϕ
√

1−p
1+p , the density matrix takes the form

ρ12 =
1

4(1 + p2j cosmπ)

 (1+p)2(1+q cosmπ) 0 0 e−2iϕ(1−p2)(1+q cosmπ)

0 (1−p2)(1−q cosmπ) (1−p2)(1−q cosmπ) 0

0 (1−p2)(1−q cosmπ) (1−p2)(1−q cosmπ) 0

e2iϕ(1−p2)(1+q cosmπ) 0 0 (1−p)2(1+q cosmπ)

 (47)

in the computational basis {| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩}. The phase factor ϕ is irrelevant for our purpose and will be

taken equal to zero. More precisely, the phase factor can be removed by a local transformation and the local

quantum uncertainty remains unchanged as we discussed in the previous section. The bipartite mixed density

ρ12 (47) writes in Fano-Bloch representation as

ρ12 =
∑
αβ

Rαβσα ⊗ σβ (48)

where the non vanishing correlations elements Rαβ (α, β = 0, 1, 2, 3) are given by

R00 = 1, R11 =
1− p2

1 + p2j cosmπ
, R22 =

(p2 − 1) p2j−2 cosmπ

1 + p2j cosmπ
,

R33 =
p2 + p2j−2 cosmπ

1 + p2j cosmπ
, R03 = R30 =

p+ p2j−1 cosmπ

1 + p2j cosmπ
.

From the equations (9), (10) and (11), one obtains

ω11 =

√
1− p2

1 + p2

√
1− p4j−4

1 + p2j cosmπ
, ω22 = p2

√
1− p2

1 + p2

√
1− p4j−4

1 + p2j cosmπ
, ω33 =

2p2

1 + p2
1 + p2j−2 cosmπ

1 + p2j cosmπ
. (49)

We observe that ω11 is always larger than ω22 and to determine the expression of local quantum expression, one

should find the conditions under which ω11 ≤ ω33 or ω33 ≤ ω11. To do this, we study the sign of the difference

between ω11 and ω33. From (49), one shows that

sign(ω11 − ω33) = sign

(
2(1− p4)− (1 + 3p4)(1 + p2(j−1) cosmπ)

)
.

This condition is analyzed for some particular values of j (see the figures 1 and 2). It is important to note

that for j = 1, the state (47) is pure and coincides with the state ρj1,j2(θ) (41) when j1 = j2 = 1/2 and

θ = mπ. In this case, from the results (49) one verifies that (ω11 = 0, ω22 = 0, ω33 = 4p2

(1+p2)2 ) for m = 0 and

(ω11 = 0, ω22 = 0, ω33 = 0) for m = 1. Then, the local quantum uncertainty is given by

U(ρ1/2,1/2) =
(1− p2)2

(1 + p2)2
for m = 0
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and

U(ρ1/2,1/2) = 1 for m = 1.

This result can be also obtained from (42). Another interesting limiting case concerns the situation where j > 1

and p −→ 0. In this limit, the even and odd spin coherent states become of GHZ type. From (49) one obtains

ω11 = 1, ω22 = 0 ω33 = 0

and the pairwise local quantum uncertainty is identically vanishing (see the figures 1 and 2). Similarly, for j > 1

and p2 −→ 1, it is simple to check that the local quantum uncertainty vanishes for even spin coherent states

(m = 0) (see figure 1). This agrees with the fact that the even spin coherent states become separable in this

limiting situation (see (44)). However, for m = 1 and p2 −→ 1, the expressions of ω11, ω22 and ω33 given by

the equations (49) become

ω11 =
j − 2√

2j
, ω22 =

j − 2√
2j
, ω33 =

j − 1

j
.

In this case, the local quantum uncertainty behaves like

U(ρ12(m = 1)) ∼ 1

j

as it is depicted in figure 2. This result gives the pairwise local quantum correlations for two-qubit states

extracted from the multi-qubit states W2j of W type (45).

Finally, we note the sudden change in the behavior of local quantum uncertainty (see the figures). In fact, it

is commonly accepted that the quantum discord quantified by geometric or entropic measures might experience

sudden transition for certain two-qubit systems. This intriguing phenomenon, exhibited also by local quantum

uncertainty, might be useful in the understanding the role of quantum correlations in quantum phase transitions

[39].
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Figure 1. The pairwise local quantum uncertainty in even spin coherent states (m = 0) for different values of j.
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Figure 2. The pairwise local quantum uncertainty in odd spin coherent states (m = 1) for different values of j.

4 Concluding remarks

To conclude, we summarize the main points developed in this paper. The first result concerns the derivation

of the analytical expression of local quantum uncertainty for two-qubit in a generic X-states. This quantum

correlations quantifier provides an efficient and computable way to characterize the nature of correlations present

in a multi-partite quantum system. Moreover, the analytical expression of local quantum uncertainty obtained

in this paper reproduces the results recently reported in the literature for some special class of two-qubit states

such as Bell diagonal states [27], Werner states [29] and orthogonally invariant two-qubit states [28]. To illustrate

the obtained results, we computed the pairwise local quantum uncertainty in even and odd j-spin coherent states

viewed as multipartite systems comprising 2j qubits. Two partitioning schemes were considered. For the pure

bi-partitions, the local quantum uncertainty is given by the concurrence. The second partitioning picture deals

with two-qubit states obtained from even and odd j-spin coherent states by tracing out the degrees of freedom

of 2j − 2 qubits. The explicit form of pairwise local quantum uncertainty is determined and analyzed for some

specific values of spin. Our interest in X states is mainly motivated by their relevance in various collective spin

systems exhibiting quantum phase transitions such as Dicke model [40] and Lipkin-Meshkov-Glick [41] model.

The role of quantum correlations in connection with quantum phase transition was considered in several works

using either entropic or geometric quantum discord. In this sense, the analytical form of the local quantum

uncertainty obtained here provides a reliable quantum correlations indicator in such systems. We hope to report

on this issue in the future. We notice also that the derivation of local quantum uncertainty discussed throughout

this work is easily adapted to two-qubits states of the form [33]

ρ =


ρ11 ρ12 0 0

ρ21 ρ22 0 0

0 0 ρ33 ρ34

0 0 ρ43 ρ44

 (50)

where the coupling is between the subspaces (1 − 2) and (3 − 4). Finally, it will be important to examine the

dynamics of the discord-like local quantum uncertainty under decoherence effects due the inevitable interaction

of quantum systems with their environment.
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