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Abstract

These notes originated from a formal course of lectures delivered during the academic years

2012 − 2013, 2014 − 2015 to Master students of theoretical physics and also from informal

lectures given to Master and doctoral students in theoretical physics who were and still are

preparing their dissertations under my supervision.
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Chapter 1

Summary of General Relativity

Essentials

1.1 Equivalence Principle

The classical (Newtonian) theory of gravity is based on the following two equations. The

gravitational potential Φ generated by a mass density ρ is given by Poisson’s equations (with

G being Newton constant)

∇2Φ = 4πGρ. (1.1)

The force exerted by this potential Φ on a particle of mass m is given by

~F = −m~∇Φ. (1.2)

These equations are obviously not compatible with the special theory of relativity. The above

first equation will be replaced, in the general relativistic theory of gravity, by Einstein’s equa-

tions of motion while the second equation will be replaced by the geodesic equation. From the

above two equations we see that there are two measures of gravity: ∇2Φ measures the source

of gravity while ~∇Φ measure the effect of gravity. Thus ~∇Φ, outside a source of gravity where

ρ = ∇2Φ = 0, need not vanish. The analogues of these two different measures of gravity, in

general relativity, are given by the so-called Ricci curvature tensor Rµν and Riemann curvature

tensor Rµναβ respectively.

The basic postulate of general relativity is simply that gravity is geometry. More pre-

cisely gravity will be identified with the curvature of spacetime which is taken to be a pseudo-

Riemannian (Lorentzian) manifold. This can be made more precise by employing the two

guiding ”principles” which led Einstein to his equations. These are:

• The weak equivalence principle: This states that all particles fall the same way in a grav-

itational field which is equivalent to the fact that the inertial mass is identical to the

gravitational mass. In other words, the dynamics of all free particles, falling in a gravi-

tational field, is completely specified by a single worldline. This is to be contrasted with
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charged particles in an electric field which obviously follow different worldlines depending

on their electric charges. Thus, at any point in spacetime, the effect of gravity is fully

encoded in the set of all possible worldlines, corresponding to all initial velocities, passing

at that point. These worldlines are precisely the so-called geodesics.

In measuring the electromagnetic field we choose ”background observers” who are not

subject to electromagnetic interactions. These are clearly inertial observers who follow

geodesic motion. The worldline of a charged test body can then be measured by observing

the deviation from the inertial motion of the observers.

This procedure can not be applied to measure the gravitational field since by the equiv-

alence principle gravity acts the same way on all bodies, i.e. we can not insulate the

”background observers” from the effect of gravity so that they provide inertial observers.

In fact, any observer will move under the effect of gravity in exactly the same way as the

test body.

The central assumption of general relativity is that we can not, even in principle, construct

inertial observers who follow geodesic motion and measure the gravitational force. Indeed,

we assume that the spacetime metric is curved and that the worldlines of freely falling

bodies in a gravitational field are precisely the geodesics of the curved metric. In other

words, the ”background observers” which are the geodesics of the curved metric coincide

exactly with motion in a gravitational field.

Therefore, gravity is not a force since it can not be measured but is a property of spacetime.

Gravity is in fact the curvature of spacetime. The gravitational field corresponds thus to

a deviation of the spacetime geometry from the flat geometry of special relativity. But

infinitesimally each manifold is flat. This leads us to the Einstein’s equivalence principle:

In small enough regions of spacetime, the non-gravitational laws of physics reduce to

special relativity since it is not possible to detect the existence of a gravitational field

through local experiments.

• Mach’s principle: This states that all matter in the universe must contribute to the local

definition of ”inertial motion” and ”non-rotating motion”. Equivalently the concepts of

”inertial motion” and ”non-rotating motion” are meaningless in an empty universe. In the

theory of general relativity the distribution of matter in the universe, indeed, influence the

structure of spacetime. In contrast, the theory of special relativity asserts that ”inertial

motion” and ”non-rotating motion” are not influenced by the distribution of matter in

the universe.

Therefor, in general relativity the laws of physics must:

1) reduce to the laws of physics in special relativity in the limit where the metric gµν becomes

flat or in a sufficiently small region around a given point in spacetime.
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2) be covariant under general coordinate transformations which generalizes the covariance

under Poincaré found in special relativity. This means in particular that only the metric

gµν and quantities derived from it can appear in the laws of physics.

In summary, general relativity is the theory of space, time and gravity in which spacetime is a

curved manifold M , which is not necessarily R4, on which a Lorentzian metric gµν is defined.

The curvature of spacetime in this metric is related to the stress-energy-momentum tensor of

the matter in the universe, which is the source of gravity, by Einstein’s equations which are

schematically given by equations of the form

curvature ∝ source of gravity. (1.3)

This is the analogue of (1.1). The worldlines of freely falling objects in this gravitational field are

precisely given by the geodesics of this curved metric. In small enough regions of spacetime,

curvature vanish, i.e. spacetime becomes flat, and the geodesic become straight. Thus, the

analogue of (1.2) is given schematically by an equation of the form

worldline of freely falling objects = geodesic. (1.4)

1.2 Relativistic Mechanics

In special relativity spacetime has the manifold structure R4 with a flat metric of Lorentzian

signature defined on it. In special relativity, as in pre-relativity physics, an inertial motion is

one in which the observer or the test particle is non-accelerating which obviously corresponds

to no external forces acting on the observer or the test particle. An inertial observer at the

origin of spacetime can construct a rigid frame where the grid points are labeled by x1 = x,

x2 = y and x3 = z. Furthermore, she/he can equip the grid points with synchronized clocks

which give the reading x0 = ct. This provides a global inertial coordinate system or reference

frame of spacetime where every point is labeled by (x0, x1, x2, x3). The labels has no intrinsic

meaning but the interval between two events A and B defined by −(x0A−x0B)2+(xiA−xiB)2 is an
intrinsic property of spacetime since its value is the same in all global inertial reference frames.

The metric tensor of spacetime in a global inertial reference frame {xµ} is a tensor of type (0, 2)

with components ηµν = (−1,+1,+1,+1), i.e. ds2 = −(dx0)2 + (dxi)2. The derivative operator

associated with this metric is the ordinary derivative, and as a consequence the curvature of

this metric vanishes. The geodesics are straight lines. The timelike geodesics are precisely the

world lines of inertial observables.

Let ta be the tangent of a given curve in spacetime. The norm ηµνt
µtν is positive, negative

and zero for spacelike, timelike and lightlike(null) curves respectively. Since material objects

can not travel faster than light their paths in spacetime must be timelike. The proper time

along a timelike curve parameterized by t is defined by

cτ =

∫

√

−ηµνtµtνdt. (1.5)
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This proper time is the elapsed time on a clock carried on the timelike curve. The so-called ”twin

paradox” is the statement that different timelike curves connecting two points have different

proper times. The curve with maximum proper time is the geodesic connecting the two points

in question. This curve corresponds to inertial motion between the two points.

The 4−vector velocity of a massive particle with a 4−vector position xµ is Uµ = dxµ/dτ

where τ is the proper time. Clearly we must have UµUµ = −c2. In general, the tangent vector

Uµ of a timelike curve parameterized by the proper time τ will be called the 4−vector velocity

of the curve and it will satisfy

UµUµ = −c2. (1.6)

A free particle will be in an inertial motion. The trajectory will therefore be given by a timelike

geodesic given by the equation

Uµ∂µU
ν = 0. (1.7)

Indeed, the operator Uµ∂µ is the directional derivative along the curve. The energy-momentum

4−vector pµ of a particle with rest mass m is given by

pµ = mUµ. (1.8)

This leads to (with γ = 1/
√

1− ~u2/c2 and ~u = d~x/dt)

E = cp0 = mγc2 , ~p = mγ~u. (1.9)

We also compute

pµpµ = −m2c2 ⇔ E =
√

m2c4 + ~p2c2. (1.10)

The energy of a particle as measured by an observed whose velocity is vµ is then clearly given

by

E = −pµvµ. (1.11)

1.3 Differential Geometry Primer

1.3.1 Metric Manifolds and Vectors

Metric Manifolds: An n−dimensional manifoldM is a space which is locally flat, i.e. locally

looks like Rn, and furthermore can be constructed from pieces of Rn sewn together smoothly.

A Lorentzian or pseudo-Riemannian manifold is a manifold with the notion of ”distance”,

equivalently ”metric”, included. ”Lorentzian” refers to the signature of the metric which in

general relativity is taken to be (−1,+1,+1,+1) as opposed to the more familiar/natural

”Euclidean” signature given by (+1,+1,+1,+1) valid for Riemannian manifolds. The metric
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is usually denoted by gµν while the line element (also called metric in many instances) is written

as

ds2 = gµνdx
µdxν . (1.12)

For example Minkowski spacetime is given by the flat metric

gµν = ηµν = (−1,+1,+1,+1). (1.13)

Another extremely important example is Schwarzschild spacetime given by the metric

ds2 = −(1 − Rs

r
)dt2 + (1− Rs

r
)−1dr2 + r2dΩ2. (1.14)

This is quite different from the flat metric ηµν and as a consequence the curvature of Schwarzschild

spacetime is non zero. Another important curved space is the surface of the 2−dimensional

sphere on which the metric, which appears as a part of the Schwarzschild metric, is given by

ds2 = r2dΩ2 = r2(dθ2 + sin2θdφ2). (1.15)

The inverse metric will be denoted by gµν , i.e.

gµνg
νλ = ηλµ. (1.16)

Charts: A coordinate system (a chart) on the manifold M is a subset U of M together with

a one-to-one map φ : U −→ Rn such that the image V = φ(U) is an open set in Rn, i.e. a set

in which every point y ∈ V is the center of an open ball which is inside V . We say that U is

an open set in M . Hence we can associate with every point p ∈ U of the manifold M the local

coordinates (x1, ..., xn) by

φ(p) = (x1, ..., xn). (1.17)

Vectors: A curved manifold is not necessarily a vector space. For example the sphere is not a

vector space because we do not know how to add two points on the sphere to get another point

on the sphere. The sphere which is naturally embedded in R3 admits at each point p a tangent

plane. The notion of a ”tangent vector space” can be constructed for any manifold which is

embedded in Rn. The tangent vector space at a point p of the manifold will be denoted by Vp.

There is a one-to-one correspondence between vectors and directional derivatives in Rn.

Indeed, the vector v = (v1, ..., vn) in Rn defines the directional derivative
∑

µ v
µ∂µ which acts

on functions on Rn. These derivatives are clearly linear and satisfy the Leibniz rule. We will

therefore define tangent vectors at a given point p on a manifold M as directional derivatives

which satisfy linearity and the Leibniz rule. These directional derivatives can also be thought

of as differential displacements on the spacetime manifold at the point p.

This can be made more precise as follows. First, we define s smooth curve on the manifold

M as a smooth map from R into M , viz γ : R −→M . A tangent vector at a point p can then
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be thought of as a directional derivative operator along a curve which goes through p. Indeed,

a tangent vector T at p = γ(t) ∈M , acting on smooth functions f on the manifold M , can be

defined by

T (f) =
d

dt
(f ◦ γ(t))|p. (1.18)

In a given chart φ the point p will be given by p = φ−1(x) where x = (x1, ..., xn) ∈ Rn.

Hence γ(t) = φ−1(x). In other words, the map γ is mapped into a curve x(t) in Rn. We have

immediately

T (f) =
d

dt
(f ◦ φ−1(x))|p =

n
∑

µ=1

Xµ(f)
dxµ

dt
|p. (1.19)

The maps Xµ act on functions f on the Manifold M as

Xµ(f) =
∂

∂xµ
(f ◦ φ−1(x)). (1.20)

These can be checked to satisfy linearity and the Leibniz rule. They are obviously directional

derivatives or differential displacements since we may make the identification Xµ = ∂µ. Hence

these vectors are tangent vectors to the manifold M at p. The fact that arbitrary tangent

vectors can be expressed as linear combinations of the n vectors Xµ shows that these vectors

are linearly independent, span the vector space Vp and that the dimension of Vp is exactly n.

Equation (1.19) can then be rewritten as

T =

n
∑

µ=1

XµT
µ. (1.21)

The components T µ of the vector T are therefore given by

T µ =
dxµ

dt
|p. (1.22)

1.3.2 Geodesics

The length l of a smooth curve C with tangent T µ on a manifoldM with Riemannian metric

gµν is given by

l =

∫

dt
√

gµνT µT ν . (1.23)

The length is parametrization independent. Indeed, we can show that

l =

∫

dt
√

gµνT µT ν =

∫

ds
√

gµνSµSν , Sµ = T µ dt

ds
. (1.24)

In a Lorentzian manifold, the length of a spacelike curve is also given by this expression. For

a timelike curve for which gabT
aT b < 0 the length is replaced with the proper time τ which is
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given by τ =
∫

dt
√

−gabT aT b. For a lightlike (or null) curve for which gabT
aT b = 0 the length

is always 0.

We consider the length of a curve C connecting two points p = C(t0) and q = C(t1). In a

coordinate basis the length is given explicitly by

l =

∫ t1

t0

dt

√

gµν
dxµ

dt

dxν

dt
. (1.25)

The variation in l under an arbitrary smooth deformation of the curve C which keeps the two

points p and q fixed is given by

δl =
1

2

∫ t1

t0

dt
(

gµν
dxµ

dt

dxν

dt
)−

1

2

(

1

2
δgµν

dxµ

dt

dxν

dt
+ gµν

dxµ

dt

dδxν

dt

)

=
1

2

∫ t1

t0

dt
(

gµν
dxµ

dt

dxν

dt

)− 1

2

(

1

2

∂gµν
∂xσ

δxσ
dxµ

dt

dxν

dt
+ gµν

dxµ

dt

dδxν

dt

)

=
1

2

∫ t1

t0

dt
(

gµν
dxµ

dt

dxν

dt

)− 1

2

(

1

2

∂gµν
∂xσ

δxσ
dxµ

dt

dxν

dt
− d

dt
(gµν

dxµ

dt
)δxν +

d

dt
(gµν

dxµ

dt
δxν)

)

.

(1.26)

We can assume without any loss of generality that the parametrization of the curve C satisfies

gµν(dx
µ/dt)(dxν/dt) = 1. In other words, we choose dt2 to be precisely the line element (in-

terval) and thus T µ = dxµ/dt is the 4−velocity. The last term in the above equation becomes

obviously a total derivative which vanishes by the fact that the considered deformation keeps

the two end points p and q fixed. We get then

δl =
1

2

∫ t1

t0

dtδxσ
(

1

2

∂gµν
∂xσ

dxµ

dt

dxν

dt
− d

dt
(gµσ

dxµ

dt
)

)

=
1

2

∫ t1

t0

dtδxσ
(

1

2

∂gµν
∂xσ

dxµ

dt

dxν

dt
− ∂gµσ

∂xν
dxν

dt

dxµ

dt
− gµσ

d2xµ

dt2

)

=
1

2

∫ t1

t0

dtδxσ
(

1

2

(∂gµν
∂xσ

− ∂gµσ
∂xν

− ∂gνσ
∂xµ

)dxµ

dt

dxν

dt
− gµσ

d2xµ

dt2

)

=
1

2

∫ t1

t0

dtδxρ

(

1

2
gρσ

(∂gµν
∂xσ

− ∂gµσ
∂xν

− ∂gνσ
∂xµ

)dxµ

dt

dxν

dt
− d2xρ

dt2

)

.

(1.27)

By definition geodesics are curves which extremize the length l. The curve C extremizes the

length between the two points p and q if and only if δl = 0. This leads immediately to the

equation

Γρ
µν
dxµ

dt

dxν

dt
+
d2xρ

dt2
= 0. (1.28)

This equation is called the geodesic equation. It is the relativistic generalization of Newton’s

second law of motion (1.2). The Christoffel symbols are defined by

Γρ
µν = −1

2
gρσ

(∂gµν
∂xσ

− ∂gµσ
∂xν

− ∂gνσ
∂xµ

)

. (1.29)
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In the absence of curvature we will have gµν = ηµν and hence Γ = 0. In other words, the

geodesics are locally straight lines.

Since the length between any two points on a Riemannian manifold (and between any two

points which can be connected by a spacelike curve on a Lorentzian manifold) can be arbitrarily

long we conclude that the shortest curve connecting the two points must be a geodesic as it is

an extremum of length. Hence the shortest curve is the straightest possible curve. The converse

is not true: a geodesic connecting two points is not necessarily the shortest path.

Similarly, the proper time between any two points which can be connected by a timelike

curve on a Lorentzian manifold can be arbitrarily small and thus the curve with the greatest

proper time, if it exists, must be a timelike geodesic as it is an extremum of proper time. On the

other hand, a timelike geodesic connecting two points is not necessarily the path with maximum

proper time.

1.3.3 Tensors

Tangent (Contravariant) Vectors: Tensors are a generalization of vectors. Let us start

then by giving a more precise definition of the tangent vector space Vp. Let F be the set of all

smooth functions f on the manifold M , i.e. f :M −→ R. We define a tangent vector v at the

point p ∈ M as a map v : F −→ R which is required to satisfy linearity and the Leibniz rule.

In other words,

v(af + bg) = av(f) + bv(g) , v(fg) = f(p)v(g) + g(p)v(f) , a, b ∈ R , f, g ∈ F . (1.30)

The vector space Vp is simply the set of all tangents vectors v at p. The action of the vector v

on the function f is given explicitly by

v(f) =

n
∑

µ=1

vµXµ(f) , Xµ(f) =
∂

∂xµ
(f ◦ φ−1(x)). (1.31)

In a different chart φ
′

we will have

X
′

µ(f) =
∂

∂x′µ
(f ◦ φ′−1)|x′=φ′ (p). (1.32)

We compute

Xµ(f) =
∂

∂xµ
(f ◦ φ−1)|x=φ(p)

=
∂

∂xµ
f ◦ φ′−1(φ

′ ◦ φ−1)|x=φ(p)

=
n

∑

ν=1

∂x
′ν

∂xµ
∂

∂x′ν
(f ◦ φ′−1(x

′

))|x′=φ′(p)

=
n

∑

ν=1

∂x
′ν

∂xµ
X

′

ν(f). (1.33)
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This is why the basis elements Xµ may be thought of as the partial derivative operators ∂/∂xµ.

The tangent vector v can be rewritten as v =
∑n

µ=1 v
µXµ =

∑n
µ=1 v

′µX
′

µ. We conclude imme-

diately that

v
′ν =

n
∑

ν=1

∂x
′ν

∂xµ
vµ. (1.34)

This is the transformation law of tangent vectors under the coordinate transformation xµ −→
x

′µ.

Cotangent Dual (covariant) Vectors or 1-Forms: Let V ∗
p be the space of all linear maps

ω∗ from Vp into R, viz ω∗ : Vp −→ R. The space V ∗
p is the so-called dual vector space to Vp

where addition and multiplication by scalars are defined in an obvious way. The elements of

V ∗
p are called dual vectors. The dual vector space V ∗

p is also called the cotangent dual vector

space at p and the vector space of one-forms at p. The elements of V ∗
p are then called cotangent

dual vectors. Another nomenclature is to refer to the elements of V ∗
p as covariant vectors as

opposed to the elements of Vp which are referred to as contravariant vectors.

The basis {Xµ∗} of V ∗
p is called the dual basis to the basis {Xµ} of Vp. The basis elements

of V ∗
p are given by vectors Xµ∗ defined by

Xµ∗(Xν) = δµν . (1.35)

We have the transformation law

Xµ∗ =

n
∑

ν=1

∂xµ

∂x′ν
Xν∗′ . (1.36)

From this result we can think of the basis elements Xµ∗ as the gradients dxµ, viz

Xµ∗ ≡ dxµ. (1.37)

Let v =
∑

µ v
µXµ be an arbitrary tangent vector in Vp, then the action of the dual basis

elements Xµ∗ on v is given by

Xµ∗(v) = vµ. (1.38)

The action of a general element ω∗ =
∑

µ ωµX
µ∗ of V ∗

p on v is given by

ω∗(v) =
∑

µ

ωµv
µ. (1.39)

Again we conclude the transformation law

ω
′

ν =
n

∑

ν=1

∂xµ

∂x′ν
ωµ. (1.40)
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Generalization: A tensor T of type (k, l) over the tangent vector space Vp is a multilinear

map form (V ∗
p × V ∗

p × ...× V ∗
p )× (Vp × Vp × ...× Vp) into R given by

T : V ∗
p × V ∗

p × ...× V ∗
p × Vp × Vp × ...× Vp −→ R. (1.41)

The domain of this map is the direct product of k cotangent dual vector space V ∗
p and l tangent

vector space Vp. The space T (k, l) of all tensors of type (k, l) is a vector space of dimension

nk.nl since dimVp = dimV ∗
p = n.

The tangent vectors v ∈ Vp are therefore tensors of type (1, 0) whereas the cotangent dual

vectors v ∈ V ∗
p are tensors of type (0, 1). The metric g is a tensor of type (0, 2), i.e. a linear

map from Vp × Vp into R, which is symmetric and nondegenerate.

1.4 Curvature Tensor

1.4.1 Covariant Derivative

A covariant derivative is a derivative which transforms covariantly under coordinates trans-

formations x −→ x
′

. In other words, it is an operator ∇ on the manifold M which takes a

differentiable tensor of type (k, l) to a differentiable tensor of type (k, l + 1). It must clearly

satisfy the obvious properties of linearity and Leibniz rule but also satisfies other important

rules such as the torsion free condition given by

∇µ∇νf = ∇ν∇µf , f ∈ F . (1.42)

Furthermore, the covariant derivative acting on scalars must be consistent with tangent vectors

being directional derivatives. Indeed, for all f ∈ F and tµ ∈ Vp we must have

tµ∇µf = t(f) ≡ tµ∂µf. (1.43)

In other words, if ∇ and ∇̃ be two covariant derivative operators, then their action on scalar

functions must coincide, viz

tµ∇µf = tµ∇̃µf = t(f). (1.44)

We compute now the difference ∇̃µ(fων) − ∇µ(fων) where ω is some cotangent dual vector.

We have

∇̃µ(fων)−∇µ(fων) = ∇̃µf.ων + f∇̃µων −∇µf.ων − f∇µων

= f(∇̃µων −∇µων). (1.45)

We use without proof the following result. Let ω
′

ν be the value of the cotangent dual vector ων

at a nearby point p
′

, i.e. ω
′

ν − ων is zero at p. Since the cotangent dual vector ων is a smooth
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function on the manifold, then for each p
′ ∈ M , there must exist smooth functions f(α) which

vanish at the point p and cotangent dual vectors µ
(α)
ν such that

ω
′

ν − ων =
∑

α

f(α)µ
(α)
ν . (1.46)

We compute immediately

∇̃µ(ω
′

ν − ων)−∇µ(ω
′

ν − ων) =
∑

α

f(α)(∇̃µµ
(α)
ν −∇µµ

(α)
ν ). (1.47)

This is 0 since by assumption f(α) vanishes at p. Hence we get the result

∇̃µω
′

ν −∇µω
′

ν = ∇̃µων −∇µων . (1.48)

In other words, the difference ∇̃µων − ∇µων depends only on the value of ων at the point p

although both ∇̃µων and ∇µων depend on how ων changes as we go away from the point p since

they are derivatives. Putting this differently we say that the operator ∇̃µ −∇µ is a linear map

which takes cotangent dual vectors at a point p into tensors, of type (0, 2), at p and not into

tensor fields defined in a neighborhood of p. We write

∇µων = ∇̃µων − Cγ
µνωγ. (1.49)

The tensor Cγ
µν stands for the map ∇̃µ−∇µ and it is clearly a tensor of type (1, 2). By setting

ωµ = ∇µf = ∇̃µf we get ∇µ∇νf = ∇̃µ∇̃νf − Cγ
µν∇γf . By employing now the torsion free

condition (1.42) we get immediately

Cγ
µν = Cγ

νµ. (1.50)

Let us consider now the difference ∇̃µ(ωνt
ν) − ∇µ(ωνt

ν) where tν is a tangent vector. Since

ωνt
ν is a function we have

∇̃µ(ωνt
ν)−∇µ(ωνt

ν) = 0. (1.51)

From the other hand, we compute

∇̃µ(ωνt
ν)−∇µ(ωνt

ν) = ων(∇̃µt
ν −∇µt

ν + Cν
µγt

γ). (1.52)

Hence, we must have

∇µt
ν = ∇̃µt

ν + Cν
µγt

γ . (1.53)

For a general tensor T µ1...µk
ν1...νl of type (k, l) the action of the covariant derivative operator

will be given by the expression

∇γT
µ1...µk

ν1...νl = ∇̃γT
µ1...µk

ν1...νl +
∑

i

Cµi
γdT

µ1...d...µk
ν1...νl −

∑

j

Cd
γνjT

µ1...µk
ν1...d...νl.

(1.54)
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1.4.2 Parallel Transport

Let C be a curve with a tangent vector tµ. Let vµ be some tangent vector defined at each

point on the curve. The vector vµ is parallelly transported along the curve C if and only if

tµ∇µv
ν |curve = 0. (1.55)

If t is the parameter along the curve C then tµ = dxµ/dt are the components of the vector tµ

in the coordinate basis. The parallel transport condition reads explicitly

dvν

dt
+ Γν

µλt
µvλ = 0. (1.56)

By demanding that the inner product of two vectors vµ and wµ is invariant under parallel

transport we obtain, for all curves and all vectors, the condition

tµ∇µ(gαβv
αwβ) = 0 ⇒ ∇µgαβ = 0. (1.57)

Thus given a metric gµν on a manifold M the most natural covariant derivative operator is the

one under which the metric is covariantly constant.

There exists a unique covariant derivative operator ∇µ which satisfies ∇µgαβ = 0. The proof

goes as follows. We know that ∇µgαβ is given by

∇µgαβ = ∇̃µgαβ − Cγ
µαgγβ − Cγ

µβgαγ . (1.58)

By imposing ∇µgαβ = 0 we get

∇̃µgαβ = Cγ
µαgγβ + Cγ

µβgαγ. (1.59)

Equivalently

∇̃αgµβ = Cγ
αµgγβ + Cγ

αβgµγ. (1.60)

∇̃βgµα = Cγ
µβgγα + Cγ

αβgµγ. (1.61)

Immediately, we conclude that

∇̃µgαβ + ∇̃αgµβ − ∇̃βgµα = 2Cγ
µαgγβ . (1.62)

In other words,

Cγ
µα =

1

2
gγβ(∇̃µgαβ + ∇̃αgµβ − ∇̃βgµα). (1.63)

This choice of Cγ
µα which solves ∇µgαβ = 0 is unique. In other words, the corresponding

covariant derivative operator is unique. The most important case corresponds to the choice

∇̃a = ∂a for which case Cc
ab is denoted Γc

ab and is called the Christoffel symbol.
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Equation (1.56) is almost the geodesic equation. Recall that geodesics are the straightest

possible lines on a curved manifold. Alternatively, a geodesic can be defined as a curve whose

tangent vector tµ is parallelly transported along itself, viz tµ∇µt
ν = 0. This reads in a coordinate

basis as

d2xν

dt2
+ Γν

µλ
dxµ

dt

dxλ

dt
= 0. (1.64)

This is precisely (1.28). This is a set of n coupled second order ordinary differential equations

with n unknown xµ(t). We know, given appropriate initial conditions xµ(t0) and dxµ/dt|t=t0 ,

that there exists a unique solution. Conversely, given a tangent vector tµ at a point p of a

manifold M there exists a unique geodesic which goes through p and is tangent to tµ.

1.4.3 The Riemann Curvature Tensor

Definition: The parallel transport of a vector from point p to point q on the manifold M is

actually path-dependent. This path-dependence is directly measured by the so-called Riemann

curvature tensor. The Riemann curvature tensor can be defined in terms of the failure of

successive operations of differentiation to commute. Let us start with an arbitrary tangent

dual vector ωa and an arbitrary function f . We want to calculate (∇a∇b −∇b∇a)ωc. First we

have

∇a∇b(fωc) = ∇a∇bf.ωc +∇bf∇aωc +∇af∇bωc + f∇a∇bωc. (1.65)

Similarly

∇b∇a(fωc) = ∇b∇af.ωc +∇af∇bωc +∇bf∇aωc + f∇b∇aωc. (1.66)

Thus

(∇a∇b −∇b∇a)(fωc) = f(∇a∇b −∇b∇a)ωc. (1.67)

We can follow the same set of arguments which led from (A.58) to (A.62) to conclude that

the tensor (∇a∇b − ∇b∇a)ωc depends only on the value of ωc at the point p. In other words

∇a∇b − ∇b∇a is a linear map which takes tangent dual vectors into tensors of type (0, 3).

Equivalently we can say that the action of ∇a∇b −∇b∇a on tangent dual vectors is equivalent

to the action of a tensor of type (1, 3). Thus we can write

(∇a∇b −∇b∇a)ωc = Rabc
dωd. (1.68)

The tensor Rabc
d is precisely the Riemann curvature tensor. We compute explicitly

∇a∇bωc = ∇a(∂bωc − Γd
bcωd)

= ∂a(∂bωc − Γd
bcωd)− Γe

ab(∂eωc − Γd
ecωd)− Γe

ac(∂bωe − Γd
beωd)

= ∂a∂bωc − ∂aΓ
d

bc.ωd − Γd
bc∂aωd − Γe

ab∂eωc + Γe
abΓ

d
ecωd − Γe

ac∂bωe + Γe
acΓ

d
beωd.

(1.69)
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Thus

(∇a∇b −∇b∇a)ωc =

(

∂bΓ
d

ac − ∂aΓ
d

bc + Γe
acΓ

d
be − Γa

bcΓ
d

ae

)

ωd. (1.70)

We get then the components

Rabc
d = ∂bΓ

d
ac − ∂aΓ

d
bc + Γe

acΓ
d

be − Γe
bcΓ

d
ae. (1.71)

The action on tangent vectors can be found as follows. Let ta be an arbitrary tangent vector.

The scalar product taωa is a function on the manifold and thus

(∇a∇b −∇b∇a)(t
cωc) = 0. (1.72)

This leads immediately to

(∇a∇b −∇b∇a)t
d = −Rabc

dtc (1.73)

Generalization of this result and the previous one to higher order tensors is given by the following

equation

(∇a∇b −∇b∇a)T
d1...dk

c1...cl = −
k

∑

i=1

Rabe
diT d1...e...dk

c1...cl +

l
∑

i=1

Rabci
eT d1...dk

c1...e...cl.

(1.74)

Properties: We state without proof the following properties of the curvature tensor:

• Anti-symmetry in the first two indices:

Rabc
d = −Rbac

d. (1.75)

• Anti-symmetrization of the first three indices yields 0:

R[abc]
d = 0 , R[abc]

d =
1

3
(Rabc

d +Rcab
d +Rbca

d). (1.76)

• Anti-symmetry in the last two indices:

Rabcd = −Rabdc , Rabcd = Rabc
eged. (1.77)

• Symmetry if the pair consisting of the first two indices is exchanged with the pair con-

sisting of the last two indices:

Rabcd = Rcdab. (1.78)
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• Bianchi identity:

∇[aRbc]d
e = 0 , ∇[aRbc]d

e =
1

3
(∇aRbcd

e +∇cRabd
e +∇bRcad

e). (1.79)

• The so-called Ricci tensor Rac, which is the trace part of the Riemann curvature tensor,

is symmetric, viz

Rac = Rca , Rac = Rabc
b. (1.80)

• The Einstein tensor can be constructed as follows. By contracting the Bianchi identity

and using ∇agbc = 0 we get

ge
c(∇aRbcd

e +∇cRabd
e +∇bRcad

e) = 0 ⇒ ∇aRbd +∇eRabd
e −∇bRad = 0. (1.81)

By contracting now the two indices b and d we get

gbd(∇aRbd +∇eRabd
e −∇bRad) = 0 ⇒ ∇aR− 2∇bRa

b = 0. (1.82)

This can be put in the form

∇aGab = 0. (1.83)

The tensor Gab is called Einstein tensor and is given by

Gab = Rab −
1

2
gabR. (1.84)

The so-called scalar curvature R is defined by

R = Ra
a. (1.85)

1.5 The Stress-Energy-Momentum Tensor

1.5.1 The Stress-Energy-Momentum Tensor

We will mostly be interested in continuous matter distributions which are extended macro-

scopic systems composed of a large number of individual particles. We will think of such

systems as fluids. The energy, momentum and pressure of fluids are encoded in the stress-

energy-momentum tensor T µν which is a symmetric tensor of type (2, 0). The component T µν

of the stress-energy-momentum tensor is defined as the flux of the component pµ of the 4−vector

energy-momentum across a surface of constant xν .

Let us consider an infinitesimal element of the fluid in its rest frame. The spatial diagonal

component T ii is the flux of the momentum pi across a surface of constant xi, i.e. it is the

amount of momentum pi per unit time per unit area traversing the surface of constant xi. Thus
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T ii is the normal stress which we also call pressure when it is independent of direction. We

write T ii = Pi. The spatial off-diagonal component T ij is the flux of the momentum pi across

a surface of constant xj , i.e. it is the amount of momentum pi per unit time per unit area

traversing the surface of constant xj which means that T ij is the shear stress.

The component T 00 is the flux of the energy p0 through the surface of constant x0, i.e. it is

the amount of energy per unit volume at a fixed instant of time. Thus T 00 is the energy density,

viz T 00 = ρc2 where ρ is the rest-mass density. Similarly, T i0 is the flux of the momentum pi

through the surface of constant x0, i.e. it is the i momentum density times c. The T 0i is the

energy flux through the surface of constant xi divided by c. They are equal by virtue of the

symmetry of the stress-energy-momentum tensor, viz T 0i = T i0.

1.5.2 Perfect Fluid

We begin with the case of ”dust” which is a collection of a large number of particles in

spacetime at rest with respect to each other. The particles are assumed to have the same rest

mass m. The pressure of the dust is obviously 0 in any direction since there is no motion of

the particles, i.e. the dust is a pressureless fluid. The 4−vector velocity of the dust is the

constant 4−vector velocity Uµ of the individual particles. Let n be the number density of the

particles, i.e. the number of particles per unit volume as measured in the rest frame. Clearly

N i = nU i = n(γui) is the flux of the particles, i.e. the number of particles per unit area per

unit time in the xi direction. The 4−vector number-flux of the dust is defined by

Nµ = nUµ. (1.86)

The rest-mass density of the dust in the rest frame is clearly given by ρ = nm. This rest-mass

density times c2 is the µ = 0, ν = 0 component of the stress-energy-momentum tensor T µν in

the rest frame. We remark that ρc2 = nmc2 is also the µ = 0, ν = 0 component of the tensor

Nµpν where Nµ is the 4−vector number-flux and pµ is the 4−vector energy-momentum of the

dust. We define therefore the stress-energy-momentum tensor of the dust by

T µν = Nµpν = (nm)UµUν = ρUµUν . (1.87)

The next fluid of paramount importance is the so-called perfect fluid. This is a fluid determined

completely by its energy density ρ and its isotropic pressure P in the rest frame. Hence T 00 = ρc2

and T ii = P . The shear stresses T ij (i 6= j) are absent for a perfect fluid in its rest frame. It

is not difficult to convince ourselves that stress-energy-momentum tensor T µν is given in this

case in the rest frame by

T µν = ρUµUν +
P

c2
(c2ηµν + UµUν) = (ρ+

P

c2
)UµUν + Pηµν . (1.88)

This is a covariant equation and thus it must also hold, by the principle of minimal coupling

(see below), in any other global inertial reference frame. We give the following examples:

• Dust: P = 0.
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• Gas of Photons: P = ρc2/3.

• Vacuum Energy: P = −ρc2 ⇔ T ab = −ρc2ηab.

1.5.3 Conservation Law

The stress-energy-momentum tensor T µν is symmetric, viz T µν = T νµ. It must also be

conserved, i.e.

∂µT
µν = 0. (1.89)

This should be thought of as the equation of motion of the perfect fluid. Explicitly this equation

reads

∂µT
µν = ∂µ(ρ+

P

c2
).UµUν + (ρ+

P

c2
)(∂µU

µ.Uν + Uµ∂µU
ν) + ∂νP = 0. (1.90)

We project this equation along the 4−vector velocity by contracting it with Uν . We get (using

Uν∂µU
ν = 0)

∂µ(ρU
µ) +

P

c2
∂µU

µ = 0. (1.91)

We project the above equation along a direction orthogonal to the 4−vector velocity by con-

tracting it with P µ
ν given by

P µ
ν = δµν +

UµUν

c2
. (1.92)

Indeed, we can check that P µ
νP

ν
λ = P µ

λ and P µ
νU

ν = 0. By contracting equation (1.90)

with P λ
ν we obtain

(ρ+
P

c2
)Uµ∂µUλ + (ηνλ +

UνUλ

c2
)∂νP = 0. (1.93)

We consider now the non-relativistic limit defined by

Uµ = (c, ui) , |ui| << 1 , P << ρc2. (1.94)

The parallel equation (1.91) becomes the continuity equation given by

∂tρ+ ~∇(ρ~u) = 0. (1.95)

The orthogonal equation (1.93) becomes Euler’s equation of fluid mechanics given by

ρ(∂t~u+ (~u~∇)~u) = −~∇P. (1.96)
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1.5.4 Minimal Coupling

The laws of physics in general relativity can be derived from the laws of physics in special

relativity by means of the so-called principle of minimal coupling. This consists in writing the

laws of physics in special relativity in tensor form and then replacing the flat metric ηµν with

the curved metric gµν and the derivative operator ∂µ with the covariant derivative operator ∇µ.

This recipe works in most cases.

For example take the geodesic equation describing a free particle in special relativity given

by Uµ∂µU
ν = 0. Geodesic motion in general relativity is given by Uµ∇µU

ν = 0. These are the

geodesics of the curved metric gµν and they describe freely falling bodies in the corresponding

gravitational field.

The second example is the equation of motion of a perfect fluid in special relativity which

is given by the conservation law ∂νTνλ = 0. In general relativity this conservation law becomes

∇νTνλ = 0. (1.97)

Also, by applying the principle of minimal coupling, the stress-energy-momentum tensor Tµν of

a perfect fluid in general relativity is given by equation (1.88) with the replacement η −→ g,

viz

Tµν = (ρ+
P

c2
)UµUν + Pgµν . (1.98)

1.6 Einstein’s Equation

Although local gravitational forces can not be measured by the principle of equivalence,

i.e. since the spacetime manifold is locally flat, relative gravitational forces, the so-called tidal

gravitational forces, can still be measured by observing the relative acceleration of nearby

geodesics. This effect is described by the geodesic deviation equation.

1.6.1 Tidal Gravitational Forces

Let us first start by describing tidal gravitational forces in Newtonian physics. The force

of gravity exerted by an object of mass M on a particle of mass m a distance r away is
~F = −r̂GMm/r2 where r̂ is the unit vector pointing from M to m and r is the distance

between the center of M and m. The corresponding acceleration is ~a = −r̂GM/r2 = −~∇Φ,

Φ = −GM/r. We assume now that the mass m is spherical of radius ∆r. The distance between

the center of M and the center of m is r. The force of gravity exerted by the mass M on a

particle of mass dm a distance r±∆r away on the line joining the centers of M and m is given

by ~F = −r̂GMdm/(r ±∆r)2. The corresponding acceleration is

~a = −r̂GM 1

(r +∆r)2
= −r̂GM 1

r2
+ r̂GM

2∆r

r3
+ ... (1.99)
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The first term is precisely the acceleration experienced at the center of the body m due to M .

This term does not affect the observed acceleration of particles on the surface of m. In other

words, since m and everything on its surface are in a state of free fall with respect to M , the

acceleration of dm with respect to m is precisely the so-called tidal acceleration, and is given

by the second term in the above expansion, viz

~at = r̂GM
2∆r

r3
+ ...

= −(∆~r.~∇)(~∇Φ). (1.100)

1.6.2 Geodesic Deviation Equation

In a flat Euclidean geometry two parallel lines remain always parallel. This is not true in

a curved manifold. To see this more carefully we consider a one-parameter family of geodesics

γs(t) which are initially parallel and see what happens to them as we move along these geodesics

when we increase the parameter t. The map (t, s) −→ γs(t) is smooth, one-to-one, and its

inverse is smooth, which means in particular that the geodesics do not cross. These geodesics

will then generate a 2−dimensional surface on the manifold M . The parameters t and s can

therefore be chosen to be the coordinates on this surface. This surface is given by the entirety

of the points xµ(s, t) ∈M . The tangent vector to the geodesics is defined by

T µ =
∂xµ

∂t
. (1.101)

This satisfies therefore the equation T µ∇µT
ν = 0. The so-called deviation vector is defined by

Sµ =
∂xµ

∂s
. (1.102)

The product Sµds is the displacement vector between two infinitesimally nearby geodesics.

The vectors T µ and Sµ commute because they are basis vectors. Hence we must have [T, S]µ =

T ν∇νS
µ − Sν∇νT

µ = 0 or equivalently

T ν∇νS
µ = Sν∇νT

µ. (1.103)

This can be checked directly by using the definition of the covariant derivative and the way it

acts on tangent vectors and equations (1.101) and (1.102).

The quantity V µ = T ν∇νS
µ expresses the rate of change of the deviation vector along a

geodesic. We will call V µ the relative velocity of infinitesimally nearby geodesics. Similarly

the relative acceleration of infinitesimally nearby geodesics is defined by Aµ = T ν∇νV
µ. We
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compute

Aµ = T ν∇νV
µ

= T ν∇ν(T
λ∇λS

µ)

= T ν∇ν(S
λ∇λT

µ)

= (T ν∇νS
λ).∇λT

µ + T νSλ∇ν∇λT
µ

= (Sν∇νT
λ).∇λT

µ + T νSλ(∇λ∇νT
µ −Rνλσ

µT σ)

= Sλ∇λ(T
ν∇νT

µ)− Rνλσ
µT νSλT σ

= −Rνλσ
µT νSλT σ. (1.104)

This is the geodesic deviation equation. The relative accelaration of infinitesimally nearby

geodesics is 0 if and only if Rνλσ
µ = 0. Geodesics will accelerate towards, or away from, each

other if and only if Rνλσ
µ 6= 0. Thus initially parallel geodesics with V µ = 0 will fail generically

to remain parallel.

1.6.3 Einsetin’s Equation

We will assume that, in general relativity, the tidal acceleration of two nearby particles is

precisely the relative acceleration of infinitesimally nearby geodesics given by equation (1.104),

viz

Aµ = −Rνλσ
µT νSλT σ

= −Rνλσ
µUν∆xλUσ. (1.105)

This suggest, by comparing with (1.100), we make the following correspondence

Rνλσ
µUνUσ ↔ ∂λ∂

µΦ. (1.106)

Thus

Rνµλ
µUνUλ ↔ ∆Φ. (1.107)

By using the Poisson’s equation (1.1) we get then the correspondence

Rνµσ
µUνUσ ↔ 4πGρ. (1.108)

From the other hand, the stress-energy-momentum tensor T µν provides the correspondence

TνσU
νUσ ↔ ρc4. (1.109)

We expect therefore an equation of the form

Rνµσ
µ

4πG
=
Tνσ
c4

⇐ Rνσ =
4πG

c4
Tνσ. (1.110)
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This is the original equation proposed by Einstein. However, it has the following problem.

From the fact that ∇νGνσ = 0, we get immediately ∇νRνσ = ∇σR/2, and as a consequence

∇νTνσ = c4∇σR/8πG. This result is in direct conflict with the requirement of the conservation

of the stress-energy-momentum tensor given by ∇νTνσ = 0. An immediate solution is to

consider instead the equation

Gνσ = Rνσ −
1

2
gνσR =

8πG

c4
Tνσ. (1.111)

The conservation of the stress-energy-momentum tensor is now guaranteed. Furthermore, this

equation is still in accord with the correspondence RνσU
νUσ ↔ 8πGρ. Indeed, by using the

result R = −4πGT/c4 we can rewrite the above equation as

Rνσ =
8πG

c4
(Tνσ −

1

2
gνσT ). (1.112)

We compute RµνU
µUν = (8πG/c4)(TµνU

µUν + c2T/2). By keeping only the µ = 0, ν = 0

component of Tµν and neglecting the other components the right hand side is exactly 4πGρ as

it should be.

1.6.4 Newtonian Limit

The Newtonian limit of general relativity is defined by the following three requirements:

1) The particles are moving slowly compared with the speed of light.

2) The gravitational field is weak so that the curved metric can be expanded about the flat

metric.

3) The gravitational field is static.

Geodesic Equation: We begin with the geodesic equation, with the proper time τ as the

parameter of the geodesic, is

Γρ
µν
dxµ

dτ

dxν

dτ
+
d2xρ

dτ 2
= 0. (1.113)

The assumption that particles are moving slowly compared to the speed of light means that

|d~x
dτ

| << c| dt
dτ

|. (1.114)

The geodesic equation becomes

c2Γρ
00(

dt

dτ
)2 +

d2xρ

dτ 2
= 0. (1.115)

We recall the Christoffel symbols

Γd
ab =

1

2
gdc(∂agbc + ∂bgac − ∂cgab). (1.116)
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Since the gravitational field is static we have

Γd
00 = −1

2
gdc∂cg00. (1.117)

The second assumption that the gravitational field is weak allows us to decompose the metric

as

gab = ηab + hab , |hab| << 1. (1.118)

Thus

Γd
00 = −1

2
ηdc∂ch00. (1.119)

The geodesic equation becomes

d2xρ

dτ 2
=
c2

2
ηdc∂ch00(

dt

dτ
)2. (1.120)

In terms of components this reads

d2x0

dτ 2
=
c2

2
η00∂0h00(

dt

dτ
)2 = 0. (1.121)

d2xi

dτ 2
=
c2

2
ηii∂ih00(

dt

dτ
)2 =

c2

2
∂ih00(

dt

dτ
)2. (1.122)

The first equation says that dt/dτ is a constant. The second equation reduces to

d2xi

dt2
=
c2

2
∂ih00 = −∂iΦ , h00 = −2Φ

c2
. (1.123)

Einstein’s Equations: Now we turn to the Newtonian limit of Einstein’s equation Rνσ =

8πG(Tνσ− 1
2
gνσT )/c

4 with the stress-energy-momentum tensor Tµν of a perfect fluid as a source.

The perfect fluid is describing the Earth or the Sun. The stress-energy-momentum tensor is

given by Tµν = (ρ + P/c2)UµUν + Pgµν. In the Newtonian limit this can be approximated by

the stress-energy-momentum tensor of dust given by Tµν = ρUµUν since in this limit pressure

can be neglected as it comes from motion which is assumed to be slow. In the rest frame of the

perfect fluid we have Uµ = (U0, 0, 0, 0) and since gµνU
µUν = −c2 we get U0 = c(1+h00/2) and

U0 = c(−1 + h00/2) and as a consequence

T 00 = ρc2(1 + h00) , T00 = ρc2(1− h00). (1.124)

The inverse metric is obviously given by g00 = −1− h00 since gµνgνρ = δµρ . Hence

T = −ρc2. (1.125)
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The µ = 0, ν = 0 component of Einstein’s equation is therefore

R00 =
4πG

c2
ρ(1− h00). (1.126)

We recall the Riemann curvature tensor and the Ricci tensor

Rµνσ
λ = ∂νΓ

λ
µσ − ∂µΓ

λ
νσ + Γδ

µσΓ
λ

νδ − Γδ
νσΓ

λ
µδ. (1.127)

Rµσ = Rµνσ
ν . (1.128)

Thus (using in particular R000
0 = 0)

R00 = R0i0
i = ∂iΓ

i
00 − ∂0Γ

i
i0 + Γe

00Γ
i
ie − Γe

i0Γ
i
0e. (1.129)

The Christoffel symbols are linear in the metric perturbation and thus one can neglect the third

and fourth terms in the above equation. We get then

R00 = ∂iΓ
i
00 = −1

2
∆h00. (1.130)

Einstein’s equation reduces therefore to Newton’s equation, viz

−1

2
∆h00 =

4πG

c2
ρ⇒ ∆Φ = 4πGρ. (1.131)

1.7 Killing Vectors and Maximally Symmetric Spaces

A spacetime which is spatially homogeneous and spatially isotropic is a spacetime in which

the space is maximally symmetric. A maximally symmetric space is a space with the maximum

number of isometries, i.e. the maximum number of symmetries of the metric. These isometries

are generated by the so-called Killing vectors.

As an example, if ∂σgµν = 0, for some fixed value of σ, then the translation xσ −→ xσ+aσ is a

symmetry and thus it is an isometry of the curved manifoldM with metric gµν . This symmetry

will be naturally associated with a conserved quantity. To see this let us first recall that the

geodesic equation can be rewritten in terms of the 4−vector energy-momentum pµ = mUµ as

pµ∇µpν = 0. Explicitly

m
dpν
dt

= Γλ
µνp

µpλ

=
1

2
∂νgµρ.p

µpρ. (1.132)

Thus if the metric is invariant under the translation xσ −→ xσ + aσ then ∂σgµν = 0 and as a

consequence the momentum pσ is conserved as expected.
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For obvious reasons we must rewrite the condition which expresses the symmetry under

xσ −→ xσ + aσ in a covariant fashion. Let us thus introduce the vector K = ∂(σ) via its

components which are given (in the basis in which ∂σgµν = 0) by

Kµ = (∂(σ))
µ = δµσ . (1.133)

Clearly then pσ = pµK
µ. Since ∂σgµν = 0 we must have dpσ/dt = 0 or equivalently d(pµK

µ)/dt =

0. This means that the directional derivative of the scalar quantity pµK
µ along the geodesic is

0, viz

pν∇ν(pµK
µ) = 0. (1.134)

We compute

pν∇ν(pµK
µ) = pµpν∇µKν =

1

2
pµpν(∇µKν +∇νKµ). (1.135)

We obtain therefore the so-called Killing equation

∇µKν +∇νKµ = 0. (1.136)

Thus for any vector K which satisfies the Killing equation ∇µKν +∇νKµ = 0 the momentum

pµK
µ is conserved along the geodesic with tangent p. The vector K is called a Killing vector.

The Killing vector K generates the isometry which is associated with the conservation of pµK
µ.

The symmetry transformation under which the metric is invariant is expressed as infinitesimal

motion in the direction of K.

Let us check that the vector Kµ = δµσ satisfies the Killing equation. Immediately, we have

Kµ = gµσ and

∇µKν +∇νKµ = ∂µgνσ + ∂νgµσ − 2Γρ
µνgρσ

= ∂σgµν

= 0. (1.137)

Thus if the metric is independent of xσ then the vector Kµ = δµσ will satisfy the Killing equation.

Conversely if a vector satisfies the killing equation then one can always find a basis in which

the vector satisfies Kµ = δµσ . However, if we have more than one Killing vector we can not find

a single basis in which all of them satisfy Kµ = δµσ .

Some of the properties of Killing vectors are:

∇µ∇νK
λ = Rνµρ

λKρ. (1.138)

∇µ∇νK
µ = RνµK

µ. (1.139)
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Kµ∇µR = 0. (1.140)

The last identity in particular shows explicitly that the geometry does not change under a

Killing vector.

The isometries of Rn with flat Euclidean metric are n independent translations and n(n −
1)/2 independent rotations (which form the group of SO(n) rotations). Hence Rn with flat

Euclidean metric has n + n(n − 1)/2 = n(n + 1)/2 isometries. This is the number of Killing

vectors on Rn with flat Euclidean metric which is the maximum possible number of isometries

in n dimensions. The space Rn is therefore called maximally symmetric space. In general a

maximally symmetric space is any space with n(n + 1)/2 Killing vectors (isometries). These

spaces have the maximum degree of symmetry. The only Euclidean maximally symmetric

spaces are planes Rn with 0 scalar curvature, spheres Sn with positive scalar curvature and

hyperboloids Hn with negative scalar curvature 1.

The curvature of a maximally symmetric space must be the same everywhere (translations)

and the same in every direction (rotations). More precisely, a maximally symmetric space must

be locally fully characterized by a constant scalar curvature R and furthermore must look like

the same in all directions, i.e. it must be invariant under all Lorentz transformations at the

point of consideration.

In the neighborhood of a point p ∈ M we can always choose an inertial reference frame

in which gµν = ηµν . This is invariant under Lorentz transformations at p. Since the space is

maximally symmetric the Riemann curvature tensor Rµνλρ at p must also be invariant under

Lorentz transformations at p. This tensor must therefore be constructed from ηµν , the Kronecker

delta δµν and the Levi-Civita tensor ǫµνλρ which are the only tensors which are known to

be invariant under Lorentz transformations. However, the curvature tensor satisfies Rµνλγ =

−Rνµλγ , Rµνλγ = −Rµνγλ, Rµνλγ = Rλγµν , R[µνλ]γ = 0 and∇[µRνλ]γρ = 0. The only combination

formed out of ηµν , δµν and ǫµνλρ which satisfies these identities is Rµνλγ = κ(ηµληνγ − ηµγηνλ)

with κ a constant. This tensorial relation must hold in any other coordinate system, viz

Rµνλγ = κ(gµλgνγ − gµγgνλ). (1.141)

We compute Rµνλ
γ = κ(gµλδ

γ
ν − δγµgνλ), Rµλ = Rµνλ

ν = κ(n− 1)gµλ and hence R = κn(n− 1).

In other words the scalar curvature of a maximally symmetric space is a constant over the

manifold. Thus the curvature of a maximally symmetric space must be of the form

Rµνλγ =
R

n(n− 1)
(gµλgνγ − gµγgνλ). (1.142)

Conversely if the curvature tensor is given by this equation with R constant over the manifold

then the space is maximally symmetric.

1The corresponding maximally symmetric Lorentzian spaces are Minkowski spaces Mn (R = 0), de Sitter

spaces dSn (R > 0) and Anti-de Sitter spaces AdSn (R < 0).
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1.8 The Hilbert-Einstein Action

The Einstein’s equations for general relativity reads

Rµν −
1

2
gµνR = 8πGTµν . (1.143)

The dynamical variable is obviously the metric gµν . The goal is to construct an action principle

from which the Einstein’s equations follow as the Euler-Lagrange equations of motion for the

metric. This action principle will read as

S =

∫

dnx L(g). (1.144)

The first problem with this way of writing is that both dnx and L are tensor densities rather

than tensors. We digress briefly to explain this important different.

Let us recall the familiar Levi-Civita symbol in n dimensions defined by

ǫ̃µ1...µn
= +1 even permutation

= −1 odd permutation

= 0 otherwise. (1.145)

This is a symbol and not a tensor since it does not change under coordinate transformations,

The determinant of a matrix M can be given by the formula

ǫ̃ν
1
...νndetM = ǫ̃µ

1
...µn

Mµ1
ν
1
...Mµn

νn . (1.146)

By choosing Mµ
ν = ∂xµ/∂yν we get the transformation law

ǫ̃ν
1
...νn = det

∂y

∂x
ǫ̃µ

1
...µn

∂xµ1

∂yν1
...
∂xµn

∂yνn
. (1.147)

In other words ǫ̃µ
1
...µn

is not a tensor because of the determinant appearing in this equation.

This is an example of a tensor density. Another example of a tensor density is detg. Indeed

from the tensor transformation law of the metric g
′

αβ = gµν(∂x
µ/∂yα)(∂xν/∂yβ) we can show

in a straightforward way that

detg
′

= (det
∂y

∂x
)−2 detg. (1.148)

The actual Levi-Civita tensor can then be defined by

ǫµ1...µn
=

√

detg ǫ̃µ1...µn
. (1.149)

Next under a coordinate transformation x −→ y the volume element transforms as

dnx −→ dny = det
∂y

∂x
dnx. (1.150)
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In other words the volume element transforms as a tensor density and not as a tensor. We

verify this important point in our language as follows. We write

dnx = dx0 ∧ dx1 ∧ ... ∧ dxn−1

=
1

n!
ǫ̃µ1...µn

dxµ1 ∧ ... ∧ dxµn . (1.151)

Recall that a differential p−form is a (0, p) tensor which is completely antisymmetric. For

example scalars are 0−forms and dual cotangent vectors are 1−forms. The Levi-Civita tensor

ǫµ1...µn
is a 4−form. The differentials dxµ appearing in the second line of equation (1.151)

are 1−forms and hence under a coordinate transformation x −→ y we have dxµ −→ dyµ =

dxν∂yµ/∂xν . By using this transformation law we can immediately show that dxn transforms

to dny exactly as in equation (1.150).

It is not difficult to see now that an invariant volume element can be given by the n−form

defined by the equation

dV =
√

detg dnx. (1.152)

We can show that

dV =
1

n!

√

detg ǫ̃µ1...µn
dxµ1 ∧ ... ∧ dxµn

=
1

n!
ǫµ1...µn

dxµ1 ∧ ... ∧ dxµn

= ǫµ1...µn
dxµ1 ⊗ ...⊗ dxµn

= ǫ. (1.153)

In other words the invariant volume element is precisely the Levi-Civita tensor. In the case of

Lorentzian signature we replace detg with −detg.

We go back now to equation (1.144) and rewrite it as

S =

∫

dnx L(g)

=

∫

dnx
√

−detg L̂(g). (1.154)

Clearly L =
√−detg L̂. Since the invariant volume element dnx

√−detg is a scalar the function

L̂ must also be a scalar and as such can be identified with the Lagrangian density.

We use the result that the only independent scalar quantity which is constructed from the

metric and which is at most second order in its derivatives is the Ricci scalar R. In other words

the simplest choice for the Lagrangian density L̂ is

L̂(g) = R. (1.155)

The corresponding action is called the Hilbert-Einstein action. We compute

δS =

∫

dnxδ
√

−detg gµνRµν +

∫

dnx
√

−detg δgµνRµν +

∫

dnx
√

−detg gµνδRµν .

(1.156)
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We have

δRµν = δRµρν
ρ

= ∂ρδΓ
ρ

µν − ∂µδΓ
ρ

ρν + δ(Γλ
µνΓ

ρ
ρλ − Γλ

ρνΓ
ρ

µλ)

= (∇ρδΓ
ρ

µν − Γρ
ρλδΓ

λ
µν + Γλ

ρµδΓ
ρ

λν + Γλ
ρνδΓ

ρ
λµ)− (∇µδΓ

ρ
ρν − Γρ

µλδΓ
λ

ρν + Γλ
µρδΓ

ρ
λν

+ Γλ
µνδΓ

ρ
ρλ) + δ(Γλ

µνΓ
ρ

ρλ − Γλ
ρνΓ

ρ
µλ)

= ∇ρδΓ
ρ

µν −∇µδΓ
ρ

ρν . (1.157)

In the second line of the above equation we have used the fact that δΓρ
µν is a tensor since it

is the difference of two connections. Thus

∫

dnx
√

−detg gµνδRµν =

∫

dnx
√

−detg gµν
(

∇ρδΓ
ρ

µν −∇µδΓ
ρ

ρν

)

=

∫

dnx
√

−detg ∇ρ

(

gµνδΓρ
µν − gρνδΓµ

µν

)

. (1.158)

We compute also (with δgµν = −gµαgνβδgαβ)

δΓρ
µν =

1

2
gρλ

(

∇µδgνλ +∇νδgµλ −∇λδgµν

)

= −1

2

(

gνλ∇µδg
λρ + gµλ∇νδg

λρ − gµαgνβ∇ρδgαβ
)

. (1.159)

Thus
∫

dnx
√

−detg gµνδRµν =

∫

dnx
√

−detg ∇ρ

(

gµν∇ρδgµν −∇µδg
µρ

)

. (1.160)

By Stokes’s theorem this integral is equal to the integral over the boundary of spacetime of the

expression gµν∇ρδgµν −∇µδg
µρ which is 0 if we assume that the metric and its first derivatives

are held fixed on the boundary. The variation of the action reduces to

δS =

∫

dnxδ
√

−detg gµνRµν +

∫

dnx
√

−detg δgµνRµν . (1.161)

Next we use the result

δ
√

−detg = −1

2

√

−detg gµνδg
µν . (1.162)

Hence

δS =

∫

dnx
√

−detg δgµν(Rµν −
1

2
gµνR). (1.163)

This will obviously lead to Einstein’s equations in vacuum which is partially our goal. We want

also to include the effect of matter which requires considering the more general actions of the

form

S =
1

16πG

∫

dnx
√

−detg R + SM . (1.164)
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SM =

∫

dnx
√

−detg L̂M . (1.165)

The variation of the action becomes

δS =
1

16πG

∫

dnx
√

−detg δgµν(Rµν −
1

2
gµνR) + δSM

=

∫

dnx
√

−detg δgµν
[

1

16πG
(Rµν −

1

2
gµνR) +

1√−detg

δSM

δgµν

]

. (1.166)

In other words

1√−detg

δS

δgµν
=

1

16πG
(Rµν −

1

2
gµνR) +

1√−detg

δSM

δgµν
. (1.167)

Einstein’s equations are therefore given by

Rµν −
1

2
gµνR = 8πGTµν . (1.168)

The stress-energy-momentum tensor must therefore be defined by the equation

Tµν = − 2√−detg

δSM

δgµν
. (1.169)

As a first example we consider the action of a scalar field in curved spacetime given by

Sφ =

∫

dnx
√

−detg

[

− 1

2
gµν∇µφ∇νφ− V (φ)

]

. (1.170)

The corresponding stress-energy-momentum tensor is calculated to be given by

T (φ)
µν = ∇µφ∇νφ− 1

2
gµνg

ρσ∇ρφ∇σφ− gµνV (φ). (1.171)

As a second example we consider the action of the electromagnetic field in curved spacetime

given by

SA =

∫

dnx
√

−detg

[

− 1

4
gµνgαβFµνFαβ

]

. (1.172)

In this case the stress-energy-momentum tensor is calculated to be given by

T (A)
µν = F µλF ν

λ −
1

4
gµνFαβF

αβ. (1.173)



Chapter 2

Black Holes

2.1 Spherical Star

2.1.1 The Schwarzschild Metric

We consider a matter source which is both static and spherically symmetric. Clearly a static

source means that the components of the metric are all independent of time. By requiring also

that the physics is invariant under time reversal, i.e. under t −→ −t, the components g0i which

provide space-time cross terms in the metric must be absent. We have already found that the

most general spherically symmetric metric in 3−dimension is of the form

d~u2 = e2β(r)dr2 + r2dΩ2. (2.1)

The most general static and spherically symmetric metric in 4−dimension is therefore of the

form

ds2 = −e2α(r)c2dt2 + d~u2 = −e2α(r)c2dt2 + e2β(r)dr2 + r2dΩ2. (2.2)

We need to determine the functions α(r) and β(r) from solving Einstein’s equations. First we

need to evaluate the Christoffel symbols. We find

Γ0
0r = ∂rα

Γr
00 = ∂rαe

2(α−β) , Γr
rr = ∂rβ , Γ

r
θθ = −re−2β , Γr

φφ = −re−2β sin2 θ

Γθ
rθ =

1

r
, Γθ

φφ = − sin θ cos θ

Γφ
rφ =

1

r
, Γφ

θφ =
cos θ

sin θ
. (2.3)

The non-zero components of the Riemann curvature tensor are

R0rr
0 = −Rr0r

0 = ∂2rα + (∂rα)
2 − ∂rβ∂rα

R0θθ
0 = −Rθ0θ

0 = re−2β∂rα

R0φφ
0 = −Rφ0φ

0 = re−2β∂rα sin2 θ. (2.4)
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R0r0
r = −Rr00

r = (∂2rα + (∂rα)
2 − ∂rβ∂rα)e

2(α−β)

Rrθθ
r = −Rθrθ

r = −re−2β∂rβ

Rrφφ
r = −Rφrφ

r = −re−2β∂rβ sin
2 θ. (2.5)

R0θ0
θ = −Rθ00

θ =
1

r
∂rαe

2(α−β)

Rrθr
θ = −Rθrr

θ =
1

r
∂rβ

Rθφφ
θ = −Rφθφ

θ = sin2 θ(e−2β − 1). (2.6)

R0φ0
φ = −Rφ00

φ =
1

r
∂rαe

2(α−β)

Rrφr
φ = −Rφrr

φ =
1

r
∂rβ

Rθφθ
φ = −Rφθθ

φ = 1− e−2β. (2.7)

We compute immediately the non-zero components of the Ricci tensor as follows

R00 = R0r0
r +R0θ0

θ +R0φ0
φ =

(

∂2rα + (∂rα)
2 − ∂rβ∂rα +

2

r
∂rα

)

e2(α−β)

Rrr = Rr0r
0 +Rrθr

θ +Rrφr
φ = −∂2rα− (∂rα)

2 + ∂rβ∂rα +
2

r
∂rβ

Rθθ = Rθ0θ
0 +Rθrθ

r +Rθφθ
φ = e−2β

(

r∂rβ − r∂rα− 1

)

+ 1

Rφφ = Rφ0φ
0 +Rφrφ

r +Rφθφ
θ = sin2 θ

[

e−2β

(

r∂rβ − r∂rα− 1

)

+ 1

]

. (2.8)

We compute also the scalar curvature

R = −2e−2β

(

∂2rα+ (∂rα)
2 − ∂rβ∂rα +

2

r
(∂rα− ∂rβ) +

1

r2
(1− e2β)

)

. (2.9)

Now we are in a position to solve Einstein’s equations outside the static spherical source (the

star). In the absence of any other matter sources in the region outside the star the Einstein’s

equations read

Rµν = 0. (2.10)

We have immediately three independent equations

∂2rα+ (∂rα)
2 − ∂rβ∂rα +

2

r
∂rα = 0

∂2rα+ (∂rα)
2 − ∂rβ∂rα− 2

r
∂rβ = 0

e−2β

(

r∂rβ − r∂rα− 1

)

+ 1 = 0. (2.11)
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By subtracting the first two conditions we get ∂r(α + β) = 0 and thus α = −β + c where c is

some constant. By an appropriate rescaling of the time coordinate we can redefine the value

of α as α+ c
′

where c
′

is an arbitrary constant. We can clearly choose this constant such that

α = −β. The third condition in the above equation (2.11) becomes then

e2α
(

2r∂rα + 1
)

= 1. (2.12)

Equivalently

∂r(re
2α) = 1. (2.13)

The solution is (with Rs is some constant)

e2α = 1− Rs

r
. (2.14)

The first and the second conditions in equation (2.11) take now the form

∂2rα + 2(∂rα)
2 +

2

r
∂rα = 0 (2.15)

We compute

∂rα =
Rs

2(r2 − Rsr)
, ∂2rα = −Rs(2r − Rs)

2(r2 −Rsr)2
. (2.16)

In other words the form (2.14) is indeed a solution.

The Schwarzschild metric is the metric corresponding to this solution. This is the most

important spacetime after Minkowski spacetime. It reads explicitly

ds2 = −(1− Rs

r
)c2dt2 + (1− Rs

r
)−1dr2 + r2dΩ2. (2.17)

In the Newtonian limit we know that (with Φ the gravitational potential and M the mass of

the spherical star)

g00 = −(1 + 2
Φ

c2
) = −(1 − 2GM

c2r
). (2.18)

The g00 component of the Schwarzschild metric should reduce to this form for very large dis-

tances which here means r >> Rs. By comparison we obtain

Rs =
2GM

c2
. (2.19)

This is called the Schwarzschild radius. We stress that M can be thought of as the mass of the

star only in the weak field limit. In general M will also include gravitational binding energy.

In the limit M −→ 0 or r −→ ∞ the Schwarzschild metric reduces to the Minkowski metric.

This is called asymptotic flatness.
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The powerful Birkhoff’s theorem states that the Schwarzschild metric is the unique vacuum

solution (static or otherwise) to Einstein’s equations which is spherically symmetric 1.

We remark that the Schwarzschild metric is singular at r = 0 and at r = Rs. However only

the singularity at r = 0 is a true singularity of the geometry. For example we can check that

the scalar quantity RµναβRµναβ is divergent at r = 0 whereas it is perfectly finite at r = Rs
2.

Indeed the divergence of the Ricci scalar or any other higher order scalar such as RµναβRµναβ at

a point is a sufficient condition for that point to be singular. We say that r = 0 is an essential

singularity.

The Schwarzschild radius r = Rs is not a true singularity of the metric and its appearance

as such only reflects the fact that the chosen coordinates are behaving badly at r = Rs. We

say that r = Rs is a coordinate singularity. Indeed it should appear like any other point if we

choose a more appropriate coordinates system. It will, on the other hand, specify the so-called

event horizon when the spherical sphere becomes a black hole.

2.1.2 Particle Motion in Schwarzschild Spacetime

We start by rewriting the Christoffel symbols (2.3) as

Γ0
0r =

Rs

2r(r − Rs)

Γr
00 =

Rs(r −Rs)

2r3
, Γr

rr = − Rs

2r(r − Rs)
, Γr

θθ = −r +Rs , Γ
r

φφ = (−r +Rs) sin
2 θ

Γθ
rθ =

1

r
, Γθ

φφ = − sin θ cos θ

Γφ
rφ =

1

r
, Γφ

θφ =
cos θ

sin θ
. (2.20)

The geodesic equation is given by

d2xρ

dλ2
+ Γρ

µν
dxµ

dλ

dxν

dλ
= 0. (2.21)

Explicitly we have

d2x0

dλ2
+

Rs

r(r − Rs)

dx0

dλ

dr

dλ
= 0. (2.22)

d2r

dλ2
+
Rs(r − Rs)

2r3
(dx0

dλ

)2 − Rs

2r(r − Rs)

( dr

dλ

)2 − (r − Rs)

[

(dθ

dλ

)2
+ sin2 θ

(dφ

dλ

)2
]

= 0. (2.23)

d2θ

dλ2
+

2

r

dr

dλ

dθ

dλ
− sin θ cos θ

(dφ

dλ

)2
= 0. (2.24)

1Exercise: Try to prove this theorem. This is quite difficult so it is better to consult references right away.
2Exercise: Verify this explicitly.
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d2φ

dλ2
+

2

r

dr

dλ

dφ

dλ
+ 2

cos θ

sin θ

dθ

dλ

dφ

dλ
= 0. (2.25)

The Schwarzschild metric is obviously invariant under time translations and space rotations.

There will therefore be 4 corresponding Killing vectors Kµ and 4 conserved quantities given by

Q = Kµ
dxµ

dλ
. (2.26)

The motion of a particle under a central force of gravity in flat spacetime has invariance under

time translation which leads to conservation of energy and invariance under rotations which

leads to conservation of angular momentum. The angular momentum is a vector in 3 dimensions

with a length (one component) and a direction (two angles). Conservation of the direction

means that the motion happens in a plane. In other words we can choose θ = π/2.

In Schwarzschild spacetime the same symmetries are still present and therefore the four

Killing vectorsKµ must be associated with time translation and rotations and the four conserved

quantities Q are the energy and the angular momentum. The two Killing vectors associated

with the conservation of the direction of the angular momentum lead precisely, as in the flat

case, to a motion in the plane, viz

θ =
π

2
. (2.27)

The metric is independent of x0 and φ and hence the corresponding Killing vectors are

Kµ = (∂x0)µ = δµ0 = (1, 0, 0, 0) , Kµ = gµ0 = (−(1 − Rs

r
), 0, 0, 0). (2.28)

Rµ = (∂φ)
µ = δµφ = (0, 0, 0, 1) , Rµ = gµφ = (0, 0, 0, r2 sin2 θ). (2.29)

The corresponding conserved quantities are the energy and the magnitude of the angular mo-

mentum given by

E = −Kµ
dxµ

dλ
= (1− Rs

r
)
dx0

dλ
. (2.30)

L = Rµ
dxµ

dλ
= r2 sin2 θ

dφ

dλ
. (2.31)

The minus sign in the energy is consistent with the definition pσ = pµK
µ = cpµ(∂(σ))

µ. Fur-

thermore E is actually the energy per unit mass for a massive particle whereas for a massless

particles it is indeed the energy since the momentum of a massless particle is identified with its

4−vector velocity. A similar remark applies to the angular momentum. Note that E should be

thought of as the total energy including gravitational energy which is the quantity that really

needs to be conserved. In other words E is different from the kinetic energy −pava which is

the energy measured by an observer whose velocity is va. Note also that the conservation of

angular momentum is precisely Kepler’s 2nd law.
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There is an extra conserved quantity along the geodesic given by

ǫ = −gµν
dxµ

dλ

dxν

dλ
. (2.32)

We compute

dǫ

dλ
= −dgµν

dλ
.
dxµ

dλ

dxν

dλ
− 2gµν

d2xµ

dλ2
dxν

dλ

= −dgµν
dλ

.
dxµ

dλ

dxν

dλ
+ 2gµνΓ

µ
αβ
dxα

dλ

dxβ

dλ

dxν

dλ

= −dx
α

dλ

dxβ

dλ

dxρ

dλ

[

∂ρgαβ − 2Γµ
αβgµρ

]

= −dx
α

dλ

dxβ

dλ

dxρ

dλ

[

∂ρgαβ − Γµ
αρgµβ − Γµ

ρβgµα

]

= −dx
α

dλ

dxβ

dλ

dxρ

dλ
∇ρgαβ

= 0. (2.33)

We clearly need to take

ǫ = c2 , massive particle. (2.34)

ǫ = 0 , massless particle. (2.35)

The above conserved quantity reads explicitly

ǫ =
E2

1− Rs

r

− 1

1− Rs

r

(dr

dλ

)2 − L2

r2
. (2.36)

Equivalently

E2 −
( dr

dλ

)2 − (1− Rs

r
)(
L2

r2
+ ǫ) = 0. (2.37)

We also rewrite this as

1

2

(dr

dλ

)2
+ V (r) = E . (2.38)

E =
1

2
(E2 − ǫ). (2.39)

V (r) =
1

2
(1− Rs

r
)(
L2

r2
+ ǫ)− ǫ

2

= −ǫGM
c2r

+
L2

2r2
− GML2

c2r3
. (2.40)
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This is the equation of a particle with unit mass and energy E in a potential V (r). In this

potential only the last term is new compared to Newtonian gravity. Clearly when r −→ 0 this

potential will go to −∞ whereas if the last term is absent (the case of Newtonian gravity) the

potential will go to +∞ when r −→ 0. See figure GR1a.

The potential V (r) is different for different values of L. It has one maximum and one

minimum if cL/GM >
√
12. Indeed we have

dV (r)

dr
= 0 ⇔ ǫr2 − c2L2

GM
r + 3L2 = 0. (2.41)

For massive particles the stable (minimum) and unstable (maximum) orbits are located at

rmax =
L2 −

√

L4 − 12G2M2L2

c2

2GM
, rmin =

L2 +
√

L4 − 12G2M2L2

c2

2GM
. (2.42)

Both orbits are circular. See figure GR1b. In the limit L −→ ∞ we obtain

rmax =
3GM

c2
, rmin =

L2

GM
. (2.43)

The stable circular orbit becomes farther away whereas the unstable circular orbit approaches

3GM/c2.

In the limit of small L, the two orbits coincide when

L4 − 12G2M2L2

c2
= 0 ⇔ L =

√
12
GM

c
. (2.44)

At which point

rmax = rmin =
L2

2GM
=

6GM

c2
. (2.45)

This is the smallest radius possible of a stable circular orbit in a Schwarzschild spacetime.

For massless particles (ǫ = 0) there is a solution at r = 3GM/c2. This corresponds always

to unstable circular orbit. We have then the following criterion

stable circular orbits : r >
6GM

c2
. (2.46)

unstable circular orbits :
3GM

c3
< r <

6GM

c2
. (2.47)

These are of course all geodesics, i.e. orbits corresponding to free fall in a gravitational field.

There are also bound non-circular orbits which oscillates around the stable circular orbit. For

example if a test particle starts from a point rmax < r2 < rmin at which E = V (r2) < 0 it will

move in the potential until it hits the potential at a point r1 > rmin at which E = V (r1) where

it bounces back. The corresponding bound precessing orbit is shown on figure GR1c.
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There exists also scattering orbits. If a test particle comes from infinity with energy E > 0

then it will move in the potential and may hit the wall of the potential at rmax < r2 < rmin for

which E = V (r2) > 0. If it does not hit the wall of the potential (the energy E is sufficiently

large) then the particle will plunge into the center of the potential at r = 0. See figures GR1d

and GR1e.

In contrast to Newtonian gravity these orbits do not correspond to conic section as we will

show next.

2.1.3 Precession of Perihelia and Gravitational Redshift

Precession of Perihelia The equation for the conservation of angular momentum reads

L = r2
dφ

dλ
. (2.48)

Together with the radial equation

1

2

(dr

dλ

)2
+ V (r) = E . (2.49)

We have for a massive particle the equation

( dr

dφ

)2
+
c2r4

L2
− 2GMr3

L2
+ r2 − 2GMr

c2
=
r4E2

L2
. (2.50)

In the case of Newtonian gravity equation (2.41) for a massive particle gives r = L2/GM . This

is the radius of a circular orbit in Newtonian gravity. We perform the change of variable

x =
L2

GMr
. (2.51)

The above last differential equation becomes

(dx

dφ

)2
+

L2c2

G2M2
− 2x+ x2 − 2G2M2x3

L2c2
=

L2E2

G2M2
. (2.52)

We differentiate this equation with respect to x to get

d2x

dφ2
− 1 + x =

3G2M2

L2c2
x2. (2.53)

We solve this equation in perturbation theory as follows. We write

x = x0 + x1. (2.54)

The 0th order equation is

d2x0
dφ2

− 1 + x0 = 0. (2.55)
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The 1st order equation is

d2x1
dφ2

+ x1 =
3G2M2

L2c2
x20. (2.56)

The solution to the 0th order equation is precisely the Newtonian result

x0 = 1 + e cosφ. (2.57)

This is an ellipse with eccentricity e = c/a =
√

1− b2/a2 with the center of the coordinate

system at the focus (c, 0) and φ is the angle measured from the major axis 3. The semi-major

axis a is the distance to the farthest point whereas the semi-minor axis b is the distance to

the closest point. In other words at φ = π we have x0 = 1 − e = a(1 − e2)/(a + c) and at

φ = 0 we have x0 = 1 + e = a(1 − e2)/(a − c). By comparing also the equation of the ellipse

a(1− e2)/r = 1+ e cos φ with the solution for x0 we obtain the value of the angular momentum

L2 = GMa(1 − e2). (2.62)

The 1st order equation becomes

d2x1
dφ2

+ x1 =
3G2M2

L2c2
(1 + e cosφ)2

=
3G2M2

L2c2
(1 +

e2

2
+
e2

2
cos 2φ+ 2e cosφ). (2.63)

3The ellipse is the set of points where the sum of the distances r1 and r2 from each point on the ellipse to

two fixed points (the foci) is a constant equal 2a. We have then

r1 + r2 = 2a. (2.58)

Let 2c be the distance between the two foci F1 and F2 and let O be the middle point of the segment [F1, F2].

The coordinates of each point on the ellipse are x and y with respect to the Cartesian system with O at the

origin. Clearly then r1 =
√

(c+ x)2 + y2 and r2 =
√

(c− x)2 + y2. The equation of the ellipse becomes

x2

a2
+

y2

b2
= 1 (2.59)

The semi-major axis is a and the semi-minor axis is b =
√
a2 − c2. We take the focus F2 as the center of our

system of coordinates and we use polar coordinates. Then x = r cos θ− c and y = r sin θ and hence the equation

of the ellipse becomes (with eccentricity e = c/a)

a(1− e2)

r
= 1− e cos θ. (2.60)

If we had taken the focus F1 instead as the center of our system of coordinates we would have obtained

a(1− e2)

r
= 1 + e cos θ. (2.61)
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Remark that

d2

dφ2
(φ sinφ) + φ sinφ = 2 cosφ

d2

dφ2
(cos 2φ) + cos 2φ = −3 cos 2φ. (2.64)

Then we can write

d2y1
dφ2

+ y1 =
3G2M2

L2c2
(1 +

e2

2
) , y1 = x1 −

3G2M2

L2c2
(−e

2

6
cos 2φ+ eφ sinφ). (2.65)

Define also

z1 =
y1

3G2M2

L2c2
(1 + e2

2
)
. (2.66)

The differential equations becomes

d2z1
dφ2

− 1 + z1 = 0 (2.67)

The solution is immediately given by

z1 = 1 + e cosφ ⇔ x1 =
3G2M2

L2c2
(1 +

e2

2
)(1 + e cosφ) +

3G2M2

L2c2
(−e

2

6
cos 2φ+ eφ sinφ). (2.68)

The complete solution is

x =

[

1 +
3G2M2

L2c2
(1 +

e2

2
)

]

(1 + e cosφ) +
3G2M2

L2c2
(−e

2

6
cos 2φ+ eφ sinφ). (2.69)

We can rewrite this in the form

x =

[

1 +
3G2M2

L2c2
(1 +

e2

2
)

]

(1 + e cos(1− α)φ) +
3G2M2

L2c2
(−e

2

6
cos 2φ). (2.70)

The small number α is given by

α =
3G2M2

L2c2
. (2.71)

The last term in the above solution oscillates around 0 and hence averages to 0 over successive

revolutions and as such it is irrelevant to our consideration.

The above result can be interpreted as follows. The orbit is an ellipse but with a period

equal 2π/(1−α) instead of 2π. Thus the perihelion advances in each revolution by the amount

∆φ = 2πα =
6πG2M2

L2c2
. (2.72)
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By using now the value of the angular momentum for a perfect ellipse given by equation (2.62)

we get

∆φ =
6πGM

a(1− e2)c2
. (2.73)

In the case of the motion of Mercury around the Sun we can use the values

GM

c2
= 1.48× 105cm , a = 5.79× 1012cm , e = 0.2056. (2.74)

We obtain

∆φMercury =
6πGM

a(1 − e2)c2
= 5.03× 10−7 rad/orbit. (2.75)

However Mercury completes one orbit each 88 days thus in a century its perihelion will advance

by the amount

∆φMercury =
100× 365

88
× 5.03× 10−7180× 3600

3.14
arcsecond/century

= 43.06 arcsecond/century. (2.76)

The total precession of Mercury is around 575 arcseconds per century4 with a 532 arcseconds per

century due to other planets and 43 arcseconds per century due to the curvature of spacetime

caused by the Sun5.

Gravitational Redshift We consider a stationary observer (U i = 0) in Schwarzschild space-

time. The 4−vector velocity satisfies gµνU
µUν = −c2 and hence

U0 =
c

√

1− 2GM
c2r

. (2.77)

The energy (per unit mass) of a photon as measured by this observer is

Eγ = −Uµ
dxµ

dλ

= c2
√

1− 2GM

c2r

dt

dλ

=
cE

√

1− 2GM
c2r

. (2.78)

The E2 is the conserved energy (per unit mass) of the Schwarzschild metric given by (2.30).

Thus a photon emitted with an energy Eγ1 at a distance r1 will be observed at a distance

r2 > r1 with an energy Eγ2 given by

Eγ2

Eγ1

=

√

√

√

√

1− 2GM
c2r1

1− 2GM
c2r2

< 1. (2.79)

4There is a huge amount of precession due to the precession of equinoxes which is not discussed here.
5There is also a minute contribution due to the oblatness of the Sun
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Thus the energy Eγ2 < Eγ1, i.e. as the photon climbs out of the gravitational field it gets

redshifted. In other words the frequency decreases as the strength of the gravitational field

decreases or equivalently as the gravitational potential increases. This is the gravitational

redshift. In the limit r >> 2GM/c2 the formula becomes

Eγ2

Eγ1

= 1 +
Φ1

c2
− Φ2

c2
, Φ = −GM

r
. (2.80)

2.1.4 Free Fall

For a radially (vertically) freely object we have dφ/dλ = 0 and thus the angular momentum

is 0, viz L = 0. The radial equation of motion becomes

( dr

dλ

)2 − 2GM

r
= E2 − c2. (2.81)

This is essentially the Newtonian equation of motion. The conserved energy is given by

E = c(1− 2GM

c2r
)
dt

dλ
. (2.82)

We also consider the situation in which the particle was initially at rest at r = ri, viz

dr

dλ
|r=ri = 0. (2.83)

This means in particular that

E2 − c2 = −2GM

ri
. (2.84)

The equation of motion becomes

( dr

dλ

)2
=

2GM

r
− 2GM

ri
. (2.85)

We can identify the affine parameter λ with the proper time for a massive particle. The proper

time required to reach the point r = rf is

τ =

∫ τ

0

dλ = −(2GM)−
1

2

∫ rf

ri

dr

√

rri
ri − r

. (2.86)

The minus sign is due to the fact that in a free fall dr/dλ < 0. By performing the change of

variables r = ri(1 + cosα)/2 we find the closed result

τ =

√

r3i
8GM

(αf + sinαf). (2.87)

This is finite when r −→ 2GM/c2. Thus a freely falling object will cross the Schwarzschild

radius in a finite proper time.
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We consider now a distant stationary observer hovering at a fixed radial distance r∞. His

proper time is

τ∞ =

√

1− 2GM

c2r2∞
t. (2.88)

By using equations (2.81) and (2.82) we can find dr/dt. We get

dr

dt
= −E 1

2

dλ

dt
(E − c

dλ

dt
)
1

2

= − c

E
(1− 2GM

c2r
)

(

E2 − c2(1− 2GM

c2r
)

) 1

2

. (2.89)

Near r = 2GM/c2 we have

dr

dt
= − c3

2GM
(r − 2GM

c2
). (2.90)

The solution is

r − 2GM

c2
= exp(− c3t

2GM
). (2.91)

Thus when r −→ 2GM/c2 we have t −→ ∞.

We see that with respect to a stationary distant observer at a fixed radial distance r∞ the

elapsed time τ∞ goes to infinity as r −→ 2GM/c2. The correct interpretation of this result

is to say that the stationary distant observer can never see the particle actually crossing the

Schwarzschild radius rs = 2GM/c2 although the particle does cross the Schwarzschild radius in

a finite proper time as seen by an observer falling with the particle.

2.2 Schwarzschild Black Hole

We go back to the Schwarzschild metric (2.17), viz (we use units in which c = 1)

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2. (2.92)

For a radial null curve, which corresponds to a photon moving radially in Schwarzschild space-

time, the angles θ and φ are constants and ds2 = 0 and thus

0 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2. (2.93)

In other words

dt

dr
= ± 1

1 − 2GM
r

. (2.94)
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This represents the slope of the light cone at a radial distance r on a spacetime diagram of

the t− r plane. In the limit r −→ ∞ we get ±1 which is the flat Minkowski spacetime result

whereas as r decreases the slope increases until we get ±∞ as r −→ 2GM . The light cones

close up at r = 2GM (the Schwarzschild radius). See figure GR2.

Thus we reach the conclusion that an infalling observer, as seen by us, never crosses the event

horizon rs = 2Gm in the sense that any fixed interval ∆τ1 of its proper time will correspond to

a longer and longer interval of our time. In other words the infalling observer will seem us to

move slower and slower as it approaches rs = 2GM but it will never be seen to actually cross

the event horizon. This does not mean that the trajectory of the infalling observer will never

reach rs = 2GM because it actually does, however, we need to change the coordinate system

to be able to see this.

We integrate the above equation as follows

t = ±
∫

dr

1− 2GM
r

= ±
∫

dr ± 2GM

∫

dr

r − 2GM

= ±
(

r + 2GM log(
r

2GM
− 1)

)

+ constant

= ±r∗ + constant. (2.95)

We call r∗ the tortoise coordinate which makes sense only for r > 2GM . The event horizon

r = 2GM corresponds to r∗ −→ ∞. We compute dr∗ = rdr/(r − 2GM) and as a consequence

the Schwarzschild metric becomes

ds2 = (1− 2GM

r
)(−dt2 + dr2∗) + r2dΩ2. (2.96)

Next we define v = t+ r∗ and u = t− r∗. Then

ds2 = −(1− 2GM

r
)dvdu+ r2dΩ2. (2.97)

For infalling radial null geodesics we have t = −r∗ or equivalently v = constant whereas for

outgoing radial null geodesics we have t = +r∗ or equivalently u = constant. We will think

of v as our new time coordinate whereas we will change u back to the radial coordinate r via

u = v − 2r∗ = v − 2r − 4GM log(r/(2GM) − 1). Thus du = dv − 2dr/(1− 2GM/r) and as a

consequence

ds2 = −(1 − 2GM

r
)dv2 + 2dvdr + r2dΩ2. (2.98)

These are called the Eddington-Finkelstein coordinates. We remark that the determinant of

the metric in this system of coordinates is g = −r4 sin2 θ which is regular at r = 2GM , i.e. the

metric is invertible and the original singularity at r = 2GM is simply a coordinate singularity
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characterizing the system of coordinates (t, r, θ, φ). In the Eddington-Finkelstein coordinates

the radial null curves are given by the condition
[

(1− 2GM

r
)
dv

dr
− 2

]

dv

dr
= 0. (2.99)

We have the following solutions:

• dv/dr = 0 or equivalently v = constant which corresponds to an infalling observer.

• dv/dr 6= 0 or equivalently dv/dr = 2/(1 − 2GM
r

). For r > 2GM we obtain the solution

v = 2r + 4GM log(r/2GM − 1) + constant which corresponds to an outgoing observer

since dv/dr > 0. This actually corresponds to u = constant.

• dv/dr 6= 0 or equivalently dv/dr = 2/(1 − 2GM
r

). For r < 2GM we obtain the solution

v = 2r + 4GM log(1 − r/2GM) + constant which corresponds to an infalling observer

since dv/dr < 0.

• For r = 2GM the above equation reduces to dvdr = 0. This corresponds to the observer

trapped at r = 2GM .

The above solutions are drawn on figure GR3 in the plane (v − r) − r, i.e. the time axis (the

perpendicular axis) is v−r and not v. Thus for every point in spacetime we have two solutions:

• The points outside the event horizon such as point 1 on figure GR3: There are two

solutions one infalling and one outgoing.

• The points inside the event horizon such as point 3 on figure GR3: There are two solutions

both are infalling.

• The points on the event horizon such as point 2 on figure GR3: There are two solutions

one infalling and one trapped.

Several other remarks are of order:

• The light cone at each point of spacetime is determined (bounded) by the two solutions

at that point. See figure GR3.

• The left side of the light cones is always determined by infalling observers.

• The right side of the light cones for r > 2GM is always determined by outgoing observers.

• The right side of the light cones for r < 2GM is always determined by infalling observers.

• The light cone tilt inward as r decreases. For r < 2GM the light cone is sufficiently tilted

that no observer can escape the singularity at r = 0.

• The horizon r = 2GM is clearly a null surface which consists of observers who can neither

fall into the singularity nor escape to infinity (since it is a solution to a null condition

which is trapped at r = 2GM).
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2.3 The Kruskal-Szekres Diagram: Maximally Extended

Schwarzschild Solution

We have shown explicitly that in the (v, r, θ, φ) coordinate system we can cross the horizon at

r = 2GM along future directed paths since from the definition v = t+ r∗ we see that for a fixed

v (infalling null radial geodesics) we must have t = −r∗ + constant and thus as r −→ 2GM we

must have t −→ +∞. However we have also shown that we can cross the horizon at r = 2GM

along past directed paths corresponding to v = 2r∗ + constant or equivalently u = constant

(outgoing null radial geodesics) and thus as r −→ 2GM we must have t −→ −∞. We have

also been able to extend the solution to the region r ≤ 2GM .

In the following we will give a maximal extension of the Schwarzschild solution by construct-

ing a coordinate system valid everywhere in Schwarzschild spacetime. We start by rewriting

the Schwarzschild metric in the (u, v, θ, φ) coordinate system as

ds2 = −(1− 2GM

r
)dvdu+ r2dΩ2. (2.100)

The radial coordinate r should be given in terms of u and v by solving the equations

1

2
(v − u) = r + 2GM log(

r

2GM
− 1). (2.101)

The event horizon r = 2GM is now either at v = −∞ or u = +∞. The coordinates of the

event horizon can be pulled to finite values by defining new coordinates u
′

and v
′

as

v
′

= exp(
v

4GM
)

=

√

r

2GM
− 1 exp(

r + t

4GM
). (2.102)

u
′

= − exp(− u

4GM
)

= −
√

r

2GM
− 1 exp(

r − t

4GM
). (2.103)

The Schwarzschild metric becomes

ds2 = −32G3M3

r
exp(− r

2GM
)dv

′

du
′

+ r2dΩ2. (2.104)

It is clear that the coordinates u and v are null coordinates since the vectors ∂/∂u and ∂/∂v

are tangent to light cones and hence they are null vectors. As a consequence u
′

and v
′

are null

coordinates. However, we prefer to work with a single time like coordinate while we prefer the

other coordinate to be space like. We introduce therefore new coordinates T and R defined for

r > 2GM by

T =
1

2
(v

′

+ u
′

) =

√

r

2GM
− 1 exp(

r

4GM
) sinh

t

4GM
. (2.105)
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R =
1

2
(v

′ − u
′

) =

√

r

2GM
− 1 exp(

r

4GM
) cosh

t

4GM
. (2.106)

Clearly T is time like while R is space like. This can be confirmed by computing the metric.

This is given by

ds2 =
32G3M3

r
exp(− r

2GM
)(−dT 2 + dR2) + r2dΩ2. (2.107)

We see that T is always time like while R is always space like since the sign of the components

of the metric never get reversed.

We remark that

T 2 −R2 = v
′

u
′

= − exp
v − u

4GM

= − exp
r + 2GM log( r

2GM
− 1)

2GM

= (1− r

2GM
) exp

r

2GM
. (2.108)

The radial coordinate r is determined implicitly in terms of T and R from this equation, i.e.

equation (2.108). The coordinates (T,R, θ, φ) are called Kruskal-Szekres coordinates. Remarks

are now in order

• The radial null curves in this system of coordinates are given by

T = ±R + constant. (2.109)

• The horizon defined by r −→ 2GM is seen to appear at T 2 −R2 −→ 0, i.e. at (2.109) in

the new coordinate system. This shows in an elegant way that the event horizon is a null

surface.

• The surfaces of constant r are given from (2.108) by T 2 − R2 = constant which are

hyperbolae in the R− T plane.

• For r > 2GM the surfaces of constant t are given by T/R = tanh t/4GM = constant

which are straight lines through the origin. In the limit t −→ ±∞ we have T/R −→ ±1

which are precisley the horizon r = 2GM .

• For r < 2GM we have

T =
1

2
(v

′

+ u
′

) =

√

1− r

2GM
exp(

r

4GM
) cosh

t

4GM
. (2.110)

R =
1

2
(v

′ − u
′

) =

√

1− r

2GM
exp(

r

4GM
) sinh

t

4GM
. (2.111)

The metric and the condition determining r implicitly in terms of T and R do not change

form in the (T,R, θ, φ) system of coordinates and thus the radial null curves, the horizon

as well as the surfaces of constant r are given by the same equation as before.
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• For r < 2GM the surfaces of constant t are given by T/R = 1/ tanh t/4GM = constant

which are straight lines through the origin.

• It is clear that the allowed range for R and T is (analytic continuation from the region

T 2 − R2 < 0 (r > 2GM) to the first singularity which occurs in the region T 2 − R2 < 1

(r < 2GM))

−∞ ≤ R ≤ +∞ , T 2 −R2 ≤ 1. (2.112)

A Kruskal-Szekres diagram is shown on figure GR4. Every point in this diagram is actually

a 2−dimensional sphere since we are suppressing θ and φ and drawing only R and T . The

Kruskal-Szekres diagram gives the maximal extension of the Schwarzschild solution. In some

sense it represents the entire Schwarzschild spacetime. It can be divided into 4 regions:

• Region 1: Exterior of black hole with r > 2GM (R > 0 and T 2 −R2 < 0). Clearly future

directed time like (null) worldlines will lead to region 2 whereas past directed time like

(null) worldlines can reach it from region 4. Regions 1 and 3 are connected by space like

geodesics.

• Region 2: Inside of black hole with r < 2GM (T > 0, 0 < T 2 − R2 < 1). Any future

directed path in this region will hit the singularity. In this region r becomes time like

(while t becomes space like) and thus we can not stop moving in the direction of decreasing

r in the same way that we can not stop time progression in region 1.

• Region 3: Parallel exterior region with r > 2GM (R < 0, T 2 − R2 < 0). This is another

asymptotically flat region of spacetime which we can not access along future or past

directed paths.

• Region 4: Inside of white hole with r < 2GM (T < 0, 0 < T 2 − R2 < 1). The white

hole is the time reverse of the black hole. This corresponds to a singularity in the past

at which the universe originated. This is a part of spacetime from which observers can

escape to reach us while we can not go there.

2.4 Various Theorems and Results

The various theorems and results quoted in this section requires a much more careful and

detailed analysis much more than what we are able to do at this stage.

• Birkhoff’s Theorem: The Schwarzschild solution is the only spherically symmetric

solution of general relativity in vacuum.

This is to be compared with Coulomb potential which is the only spherically symmetric

solution of Maxwell’s equations in vacuum.
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• No-Hair Theorem (Example): General relativity coupled to Maxwell’s equations ad-

mits a small number of stationary asymptotically flat black hole solutions which are

non-singular outside the event horizon and which are characterized by a limited num-

ber of parameters given by the mass, the charge (electric and magnetic) and the angular

momentum.

In contrast with the above result there exists in general relativity an infinite number of

planet solutions and each solution is generically characterized by an infinite number of

parameters.

• Event Horizon: Black holes are characterized by their event horizons. A horizon is

a boundary line between two regions of spacetime. Region I consists of all points of

spacetime which are connected to infinity by time like geodesics whereas region II consists

of all spacetime points which are not connected to infinity by time like geodesics, i.e.

observers can not reach infinity starting from these points. The boundary between regions

I and II, which is the event horizon, is a light like (null) hyper surface.

The event horizon can be defined as the set of points where the light cones are tilted over

(in an appropriate coordinate system). In the Schwarzschild solution the event horizon

occurs at r = 2GM which is a null surface although r = constant is time like surface for

large r.

In a general stationary metric we can choose a coordinate system where ∂tgµν = 0 and

on hypersurfaces t = constant the coordinates will resemble spherical polar coordinates

(r, θ, φ) sufficiently far away. Thus hypersurfaces r = constant are time like with the

topology S2 × R as r −→ ∞. It is obvious that ∂µr is a normal one-form to these

hypersurfaces with norm

grr = gµν∂µr∂νr. (2.113)

If the time like hypersurfaces r = constant become null at some r = rH then we will get

an event horizon at r = rH since any time like geodesic crossing to the region r < rH will

not be able to escape back to infinity. For r > rH we have clearly grr > 0 whereas for

r < rH we have grr < 0. The event horizon is defined by the condition

grr(rH) = 0. (2.114)

• Trapped Surfaces:In general relativity singularities are generic and they are hidden

behind event horizons. As shown by Hawking and Penrose singularities are inevitable if

gravitational collapse reach a point of no return, i.e. the appearance of trapped surface.

Let us consider a 2−sphere in Minkowski spacetime. We consider then null rays emanating

from the sphere inward or outward. The rays emanating outward describe growing spheres

whereas the rays emanating inward describe shrinking spheres. Consider now a 2−sphere

in Schwarzschild spacetime with r < 2GM . In this case the rays emanating outward
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and inward will correspond to shrinking spheres (r is time like). This is called a trapped

surface.

A trapped surface is a compact space like 2−dimensional surface with the property that

outward light rays are in fact moving inward.

• Singularity Theorem (Example): A trapped surface in a manifold M with a generic

metric gµν (which is a solution of Einstein’s equation satisfying the strong energy condition
6) can only be a closed time like curve or a singularity.

• Cosmic Censorship Conjecture: In general relativity singularities are hidden behind

event horizons. More precisely, naked singularities can not appear in the gravitational

collapse of a non singular state in an asymptotically flat spacetime which fulfills the

dominant energy condition 7.

• Hawking’s Area Theorem: In general relativity black holes can not shrink but they

can grow in size. Clearly the size of the black hole is measured by the area of the event

horizon.

Hawking’s area theorem can be stated as follows. The area of a future event horizon

in an asymptotically flat spacetime is always increasing provided the cosmic censorship

conjecture and the weak energy condition hold 8 9.

• Stokes’s Theorem : Next we recall stokes’s theorem
∫

Σ

dω =

∫

∂Σ

ω. (2.115)

Explicitly this reads

∫

Σ

dnx
√

|g| ∇µV
µ =

∫

∂Σ

dn−1y
√

|γ| σµV µ. (2.116)

The unit vector σµ is normal to the boundary ∂Σ. In the case that Σ is the whole space,

the boundary ∂Σ is the 2−sphere at infinity and thus σµ is given, in an appropriate system

of coordinates, by the components (0, 1, 0, 0).

• Energy in GR: The concept of conserved total energy in general relativity is not straight-

forward.

6Exercise: The strong energy condition is given by Tµνt
µtν ≥ T λ

λt
σtσ/2 for any time like vector tµ. Show

that this is equivalent to ρ+ P ≥ 0 and ρ+ 3P ≥ 0.
7Exercise: The dominant energy condition is given by Tµνt

µtν ≥ 0 and TµνT
ν

λt
µtλ ≤ 0 for any time like

vector tµ. Show that these are equivalent to ρ ≥ |P |.
8Exercise: The weak energy condition is given by Tµνt

µtν ≥ 0 for any time like vector tµ. Show that these

are equivalent to ρ ≥ 0 and ρ+ P ≥ 0.
9Exercise: Show that for a Schwarzschild black hole this theorem implies that the mass of the black hole can

only increase.
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For a stationary asymptotically flat spacetime with a time like Killing vector field Kµ we

can define a conserved energy-momentum current Jµ
T by 10

Jµ
T = KνT

µν . (2.117)

Let Σ by a space like hypersurface with a unit normal vector nµ and an induced metric

γij. By integrating the component of Jµ
T along the normal nµ over the surface Σ we get

an energy, viz

ET =

∫

Σ

d3x
√
γ nµJ

µ
T . (2.118)

This definition is however inadequate since it gives zero energy in the case of Schwarzschild

spacetime.

Let us consider instead the following current

Jµ
R = KνR

µν

= 8πGKν

(

T µν − 1

2
gµνT

)

. (2.119)

We compute now

∇µJ
µ
R = Kν∇µR

µν . (2.120)

By using now the contracted Bianchi identity ∇µG
µν = ∇µ(R

µν − gµνR/2) = 0 or equiv-

alently ∇µR
µν = ∇νR/2 we get

∇µJ
µ
R =

1

2
Kν∇νR. (2.121)

The derivative of the scalar curvature along a Killing vector must vanish 11 and as a

consequence Jµ
R is conserved. The corresponding energy is defined by

ER =
1

4πG

∫

Σ

d3x
√
γ nµJ

µ
R. (2.122)

The normalization is chosen for later convenience. The Killing vector Kµ satisfies among

other things ∇ν∇µKν = RµνKν
12 and hence the vector Jµ

R is actually a total derivative,

viz

Jµ
R = ∇ν∇µKν . (2.123)

10Exercise: Verify that Jµ
T is conserved by using the fact that the energy-momentum tensor is conserved

(∇µT
µν = 0) and the fact that Kµ is a Killing vector (∇µKν +∇νKµ = 0).

11Exercise: Show this explicitly.
12Exercise: Show this explicitly. This is one of the formula which might be used in the previous exercise.
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The energy ER becomes

ER =
1

4πG

∫

Σ

d3x
√
γ nµ∇ν∇µKν

=
1

4πG

∫

Σ

d3x
√
γ ∇ν

(

nµ∇µKν
)

− 1

4πG

∫

Σ

d3x
√
γ ∇νnµ.∇µKν . (2.124)

In the second term we can clearly replace ∇νnµ with (∇νnµ−∇µnν)/2 = (∂νnµ−∂µnν)/2.

The surface Σ is space like and thus the unit vector nµ is time like. For example Σ can be

the whole of space and thus nµ must be given, in an appropriate system of coordinates,

by the components (1, 0, 0, 0). In this system of coordinates the second term vanishes.

The above equation reduces to

ER =
1

4πG

∫

Σ

d3x
√
γ ∇ν

(

nµ∇µKν
)

. (2.125)

By using stokes’s theorem we get the result

ER =
1

4πG

∫

∂Σ

d2x
√

γ(2) σν
(

nµ∇µKν
)

. (2.126)

This is Komar integral which defines the total energy of the stationary spacetime. For

Schwarzschild spacetime we can check that ER =M 13. The Komar energy agrees with the

ADM (Arnowitt, Deser, Misner) energy which is obtained from a Hamiltonian formulation

of general relativity and which is associated with invariance under time translations.

2.5 Reissner-Nordström (Charged) Black Hole

2.5.1 Maxwell’s Equations and Charges in GR

Maxwell’s equations in flat spacetime are given by

∂µF
µν = −Jν . (2.127)

∂µFνλ + ∂λFµν + ∂νFλµ = 0. (2.128)

Maxwell’s equations in curved spacetime can be obtained from the above equations using the

principle of minimal coupling which consists in making the replacements ηµν −→ gµν and ∂µ −→
Dµ where Dν is the covariant derivative associated with the metric gµν . The homogeneous

equation does not change under these substitutions since the extra corrections coming from the

Christoffel symbols cancel by virtue of the antisymmetry under permutations of µ, ν and λ 14.

13Exercise: Show this explicitly.
14Exercise: Show this explicitly.
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This also means that the field strength tensor Fµν in curved spacetime is still given by the same

formula as in the flat case, viz

Fµν = ∂µAν − ∂νAµ. (2.129)

The inhomogeneous Maxwell’s equation in curved spacetime is given by

DµF
µν = −Jν . (2.130)

We compute

DµF
µν = ∂µF

µν + Γµ
µαF

αν

= ∂µF
µν +

1

2
gµρ∂αgµρF

αν . (2.131)

Let g = det gµν and let ei be the eigenvalues of the matrix gµν . We have the result

∂
√−g√−g =

1

2

∂g

g
=

1

2

∑

i

∂ei
ei

=
1

2
gµρ∂gµρ. (2.132)

Thus

DµF
µν = ∂µF

µν +
∂α

√−g√−g F αν . (2.133)

Using this result we can put the inhomogeneous Maxwell’s equation in the equivalent form

∂µ(
√−gF µν) = −√−gJν . (2.134)

The law of conservation of charge in curved spacetime is now obvious given by

∂µ(
√−gJµ) = 0. (2.135)

This is equivalent to the form

DµJ
µ = 0. (2.136)

The energy-momentum tensor of electromagnetism is given by 15

Tµν = FµαFν
α − 1

4
gµνFαβF

αβ + gµνJαA
α. (2.137)

We define the electric and magnetic fields by F0i = Ei and Fij = ǫijkBk with ǫ123 = −1.

The amount of electric charge passing through a space like hypersurface Σ with unit normal

vector nµ is given by the integral

Q = −
∫

Σ

d3x
√
γnµJ

µ

= −
∫

Σ

d3x
√
γnµDνF

µν . (2.138)

15Exercise: Construct a derivation of this result.
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The metric γij is the induced metric on the surface Σ. By using Stokes’s theorem we obtain

Q = −
∫

∂Σ

d2x
√

γ(2)nµσνF
µν . (2.139)

The unit vector σµ is normal to the boundary ∂Σ.

The magnetic charge P can be defined similarly by considering instead the dual field strength

tensor ∗F µν = ǫµναβFαβ/2.

2.5.2 Reissner-Nordström Solution

We are interested in finding a spherically symmetric solution of Einsetin-Maxwell equations

with some mass M , some electric charge Q and some magnetic charge P , i.e. we want to find

the gravitational field around a star of mass M , electric charge Q and magnetic charge P .

We start from the metric

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdφ2). (2.140)

We compute immediately
√−g =

√
ABr2 sin2 θ. The components of the Ricci tensor in this

metric are given by (with A = e2α, B = e2β)

R00 =
(

∂2rα + (∂rα)
2 − ∂rβ∂rα +

2

r
∂rα

)

e2(α−β)

Rrr = −∂2rα− (∂rα)
2 + ∂rβ∂rα +

2

r
∂rβ

Rθθ = e−2β
(

r∂rβ − r∂rα− 1
)

+ 1

Rφφ = sin2 θ
[

e−2β
(

r∂rβ − r∂rα− 1
)

+ 1
]

. (2.141)

We also need to provide an ansatz for the electromagnetic field. By spherical symmetry the

most general electromagnetic field configuration corresponds to a radial electric field and a

radial magnetic field. For simplicity we will only consider a radial electric field which is also

static, viz

Er = f(r) , Eθ = Eφ = 0 , Br = Bθ = Bφ = 0. (2.142)

We will also choose the current Jµ to be zero outside the star where we are interested in finding a

solution. We compute F 0r = −f(r)/AB while all other components are 0. The only non-trivial

component of the inhomogeneous Maxwell’s equation is ∂r(
√−gF r0) = 0 and hence

∂r
(r2f(r)√

AB

)

= 0 ⇔ f(r) =
Q
√
AB

4πr2
. (2.143)

The constant of integration Q will play the role of the electric charge since it is expected that

A and B approach 1 when r −→ ∞. The homogeneous Maxwell’s equation is satisfied since

the only non-zero component of F µν , i.e. F 0r is clearly of the form −∂rA0 for some potential

A0 while the other components of the vector potential (Ar, Aθ and Aφ) are 0.
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We have therefore shown that the above electrostatic ansatz solves Maxwell’s equations. We

are now ready to compute the energy-momentum tensor in this configuration. We compute

Tµν =
f 2(r)

AB

( 1

A
gµ0gν0 −

1

B
gµrgνr +

1

2
gµν

)

=
f 2(r)

2AB
diag(A,−B, r2, r2 sin2 θ). (2.144)

Also

Tµ
ν = gνλTµλ

=
f 2(r)

2AB
diag(−1,−1,+1,+1). (2.145)

The trace of the energy-momentum is therefore traceless as it should be for the electromagnetic

field. Thus Einstein’s equation takes the form

Rµν = 8πGTµν . (2.146)

We find three independent equations given by

(

∂2rα + (∂rα)
2 − ∂rβ∂rα +

2

r
∂rα

)

A = 4πGf 2. (2.147)

(

− ∂2rα− (∂rα)
2 + ∂rβ∂rα +

2

r
∂rβ

)

A = −4πGf 2. (2.148)

e−2β
(

r∂rβ − r∂rα− 1
)

+ 1 = 4πGf 2 r
2

AB
. (2.149)

From the first two equations (2.147) and (2.148) we deduce

∂r(α+ β) = 0. (2.150)

In other words

α = −β + c⇔ B =
c
′

A
. (2.151)

c and c
′

are constants of integration. By substituting this solution in the third equation (2.149)

we obtain

∂r(
r

B
) = 1−GQ2 1

4πr2
⇔ 1

B
= 1 +

GQ2

4πr2
+
b

r
. (2.152)

In other words

A = c
′

+
GQ2c

′

4πr2
+
bc

′

r
. (2.153)
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The first equation (2.147) is equivalent to

∂2rA +
2

r
∂rA = 8πGf 2. (2.154)

By substituting the solution (2.153) back in (2.154) we get c
′

= 1. In other words we must have

B =
1

A
, A = 1 +

GQ2

4πr2
+
bc

′

r
. (2.155)

Similarly to the Schwarzschild solution we can now invoke the Newtonian limit to set bc
′

=

−2GM . We get then the solution

A = 1− 2GM

r
+
GQ2

4πr2
. (2.156)

If we also assume a radial magnetic field generated by a magnetic charge P inside the star we

obtain the more general metric 16

ds2 = −∆(r)dt2 +∆−1(r)dr2 + r2(dθ2 + sin2 θdφ2). (2.157)

∆ = 1− 2GM

r
+
G(Q2 + P 2)

4πr2
. (2.158)

This is the Reissner-Nordström solution. The event horizon is located at r = rH where

∆(rH) = 0 ⇔ r2 − 2GMr +
G(Q2 + P 2)

4π
= 0. (2.159)

We should then consider the discriminant

δ = 4G2M2 − G(Q2 + P 2)

π
. (2.160)

There are three possible cases:

• The case GM2 < (Q2+P 2)/4π. There is a naked singularity at r = 0. The coordinate r is

always space like while the coordinate t is always time like. There is no event horizon. An

observer can therefore travel to the singularity and return back. However the singularity

is repulsive. More precisely a time like geodesic does not intersect the singularity. Instead

it approaches r = 0 then it reverses its motion and drives away.

This solution is in fact unphysical since the condition GM2 < (Q2 + P 2)/4π means that

the total energy is less than the sum of two of its components which is impossible.

16Exercise: Verify this explicitly.
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• The case GM2 > (Q2 + P 2)/4π. There are two horizons at

r± = GM ±
√

G2M2 − G(Q2 + P 2)

4π
. (2.161)

These are of course null surfaces. The horizon at r = r+ is similar to the horizon of the

Schwarzschild solution. At this point the coordinate r becomes time like (∆ < 0) and a

falling observer will keep going in the direction of decreasing r. At r = r− the coordinate

r becomes space like again (∆ > 0). Thus the motion in the direction of decreasing r can

be reverses, i.e. the singularity at r = 0 can be avoided.

The fact that the singularity can be avoided is consistent with the fact that r = 0 is a

time like line in the Reissner-Nordström solution as opposed to the singularity r = 0 in

the Schwarzschild solution which is a space like surface.

The observer in the region r < r− can therefore move either towards the singularity

at r = 0 or towards the null surface r = r−. After passing r = r− the coordinate r

becomes time like once more and the observer in this case can only move in the direction

of increasing r until it emerges from the black hole at r = r+.

• The case GM2 = (Q2 + P 2)/4π (Extremal RN Black Holes). There is a single horizon at

r = GM . In this case the coordinate r is always space like except at r = GM where it is

null. Thus the singularity can also be avoided in this case.

2.5.3 Extremal Reissner-Nordström Black Hole

The metric at GM2 = (Q2 + P 2)/4π takes the form

ds2 = −(1− GM

r
)2dt2 + (1− GM

r
)−2dr2 + r2(dθ2 + sin2 θdφ2). (2.162)

We define the new coordinate ρ = r − GM and the function H(ρ) = 1 + GM/ρ. The metric

becomes

ds2 = −H−2(ρ)dt2 +H2(ρ)
(

dρ2 + ρ2(dθ2 + sin2 θdφ2)
)

. (2.163)

Equivalently

ds2 = −H−2(~x)dt2 +H2(~x)d~x2 , H(~x) = 1 +
GM

|~x| . (2.164)

For simplicity let us consider only a static electric field which is given by Er = F0r = Q/4πr2.

From the extremal condition we have Q2 = 4πGM2. For electrostatic fields we have F0r =

−∂rA0 and the rest are zero. Then it is not difficult to show that

A0 =
Q

4πr
=

1√
4πG

GM

ρ+GM
, Ai = 0. (2.165)
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Equivalently

√
4πGA0 = 1− 1

H(ρ)
, Ai = 0. (2.166)

The metric (2.164) together with the gauge field configuration (2.166) with an arbitrary function

H(~x) still solves the Einstein-Maxwell’s equations provided H(~x) satisfies the Laplace equation
17

~∇2H = 0. (2.167)

The general solution is given by

H(~x) = 1 +

N
∑

i=1

GMi

|~x− ~xi|
. (2.168)

This describes a system of N extremal RN black holes located at ~xi with massesMi and charges

Q2
i = 4πGM2

i .

2.6 Kerr Spacetime

2.6.1 Kerr (Rotating) and Kerr-Newman (Rotating and Charged)

Black Holes

• The Schwarzschild black hols and the Reissner-Nordström black holes are spherically

symmetric. Any spherically symmetric vacuum solution of Einstein’s equations possess a

time like Killing vector and thus is stationary.

In a stationary metric we can choose coordinates (t, x1, x2, x3) where the killing vector is

∂t, the metric components are all independent of the time coordinate t and the metric is

of the form

ds2 = g00(x)dt
2 + 2g0i(x)dtdx

i + gij(x)dx
idxj. (2.169)

This stationary metric becomes static if the time like Killing vector ∂t is also orthogonal

to a family of hypersurfaces. In the coordinates (t, x1, x2, x3) the Killing vector ∂t is

orthogonal to the hypersurfaces t = constant and equivalently a stationary metric becomes

static if g0i = 0.

• In contrast the Kerr and the Kerr-Newman black holes are not spherically symmetric and

are not static but they are stationary. A Kerr black hole is a vacuum solution of Einstein’s

equations which describes a rotating black hole and thus is characterized by mass and

angular momentum whereas the Kerr-Newman black hole is a charged Kerr black hole

17Exercise: Derive explicitly this result.
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and thus is characterized by mass, angular momentum and electric and magnetic charges.

The rotation clearly breaks spherical symmetry and makes the black holes not static.

However since the black hole rotates in the same way at all times it is still stationary.

The Kerr and Kerr-Newman metrics must therefore be of the form

ds2 = g00(x)dt
2 + 2g0i(x)dtdx

i + gij(x)dx
idxj. (2.170)

• The Kerr metric must be clearly axial symmetric around the axis fixed by the angular

momentum. This will correspond to a second Killing vector ∂φ.

• In summary the metric components, in a properly adapted system of coordinates, will

not depend on the time coordinate t (stationary solution) but also it will not depend on

the angle φ (axial symmetry). Furthermore if we denote the two coordinates t and φ by

xa and the other two coordinates by yi the metric takes then the form

ds2 = gab(y)dx
adxb + gij(y)dx

idxj . (2.171)

• In the so-called Boyer-Lindquist coordinates (t, r, θ, φ) the components of the Kerr metric

are found (Kerr (1963)) to be given by

gtt = −(1 − 2GMr

ρ2
) , ρ2 = r2 + a2 cos2 θ. (2.172)

gtφ = −2GMar sin2 θ

ρ2
. (2.173)

grr =
ρ2

∆
, ∆ = r2 − 2GMr + a2. (2.174)

gθθ = ρ2 , gφφ =
sin2 θ

ρ2
[

(r2 + a2)2 − a2∆sin2 θ
]

. (2.175)

This solution is characterized by the two numbers M and a. The mass of the Kerr black

hole is precisely M whereas the angular momentum of the black hole is J = aM .

• In the limit a −→ 0 (no rotation) we obtain the Schwarzschild solution

gtt = −(1− 2GM

r
) , grr = (1− 2GM

r
)−1 , gθθ = r2 , gφφ = r2 sin2 θ. (2.176)

• In the limit M −→ 0 we obtain the solution

gtt = −1 , grr =
r2 + a2 cos2 θ

r2 + a2
, gθθ = r2 + a2 cos2 θ , gφφ = (r2 + a2) sin2 θ. (2.177)
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A solution with no mass and no rotation must correspond to flat Minkowski spacetime.

Indeed the coordinates r, θ and φ are nothing but ellipsoidal coordinates in flat space.

The corresponding Cartesian coordinates are 18

x =
√
r2 + a2 sin θ cos φ , y =

√
r2 + a2 sin θ sin φ , z = r cos θ. (2.178)

• The Kerr-Newman black hole is a generalization of the Kerr black hole which includes also

electric and magnetic charges and an electromagnetic field. The electric and magnetic

charges can be included via the replacement

2GMr −→ 2GMr −G(Q2 + P 2). (2.179)

The electromagnetic field is given by

At =
Qr − Pa cos θ

ρ2
, Aφ =

−Qar sin2 θ + P (r2 + a2) cos θ

ρ2
. (2.180)

2.6.2 Killing Horizons

In Schwarzschild spacetime the Killing vector K = ∂t becomes null at the event horizon. We

say that the event horizon (which is a null surface) is the Killing horizon of the Killing vector

K = ∂t. In general the Killing horizon of a Killing vector χµ is a null hypersurface Σ along

which the Killing vector χµ becomes null. Some important results concerning Killing horizons

are as follows:

• Every event horizon in a stationary, asymptotically flat spacetime is a Killing horizon for

some Killing vector χµ.

In the case that the spacetime is stationary and static the Killing vector is precisely K = ∂µ.

In the case that the spacetime is stationary and axial symmetric then the event horizon is a

Killing horizon where the Killing vector is a combination of the Killing vector R = ∂t and the

Killing vector R = ∂φ associated with axial symmetry. These results are purely geometrical. In

the general case of a stationary spacetime then Einstein’s equations together with appropriate

assumptions on the matter content will also yield the result that every event horizon is a Killing

horizon for some Killing vector which is either stationary or axial symmetric.

2.6.3 Surface Gravity

Every Killing horizon is associated with an acceleration called the surface gravity. Let Σ be

a killing horizon for the Killing vector χµ. We know that χµχµ is zero on the Killing horizon

and thus ∇ν(χ
µχµ) = 2χµ∇νχ

µ must be normal to the Killing horizon in the sense that it is

18Exercise: Show this explicitly.
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orthogonal to any vector tangent to the horizon. The normal to the Killing horizon is however

unique given by χµ and as a consequence we must have

χµ∇νχ
µ = −κχν . (2.181)

This means in particular that the Killing vector χµ is a non-affinely parametrized geodesic on

the Killing horizon. The coefficient κ is precisely the surface gravity. Since the Killing vector

ξµ is hypersurface orthogonal we have by the Frobenius’s theorem the result 19

χ[µ∇νχσ] = −κχν . (2.182)

We compute

∇µχνχ[µ∇νχσ] = 2κ2χσ + 2χσ∇µχν∇µχν + 2∇µχν
(

∇σ(χµχν)− χµ∇σχν

)

= 4κ2χσ + 2χσ∇µχν∇µχν . (2.183)

We get immediately the surface gravity

κ2 = −1

2
∇µχν∇µχν . (2.184)

In a static and asymptotically flat spacetime we have χ = K where K = ∂t whereas in a

stationary and asymptotically flat spacetime we have χ = K + ΩHR where R = ∂φ. In both

cases fixing the normalization of K as KµKµ = −1 at infinity will fix the normalization of χ

and as a consequence fixes the surface gravity of any Killing horizon uniquely.

In a static and asymptotically flat spacetime a more physical definition of surface gravity

can be given. The surface gravity is the acceleration of a static observer on the horizon as seen

by a static observer at infinity. A static observer is an observer whose 4−vector velocity Uµ is

proportional to the Killing vector Kµ. By normalizing Uµ as UµUµ = −1 we have

Uµ =
Kµ

√

−KµKµ

. (2.185)

A static observer does not necessarily follow a geodesic. Its acceleration is defined by

Aµ = Uν∇νU
µ. (2.186)

We define the redshift factor V by

V =
√

−KµKµ. (2.187)

19Exercise: Show this result explicitly.
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We compute

Aµ = − 1

V 3
KσKµ∇σV +

Uσ

V
∇σKµ

=
1

V 4
KσKµKα∇σKα − Uσ

V
∇µKσ

= −Uσ

V
∇µKσ

= −∇µ
(Uσ

V
Kσ

)

+∇µ
(Uσ

V

)

Kσ

=
1

V
∇µUσK

σ +∇µ(
1

V
)UσK

σ

= ∇µ lnV. (2.188)

The magnitude of the acceleration is

A =

√

∇µV∇µV

V
. (2.189)

The redshift factor V goes obviously to 0 at the Killing Horizon and hence A goes to infinity.

The surface gravity is given precisely by the product V A, viz

κ = V A =
√

∇µV∇µV . (2.190)

This agrees with the original definition (2.184) as one can explicitly check 20. For a Schwarzschild

black hole we compute 21

κ =
1

4GM
. (2.191)

2.6.4 Event Horizons, Ergosphere and Singularity

• The event horizons occur at r = rH where grr(rH) = 0. Since grr = ∆/ρ2 we obtain the

equation

r2 − 2GMr + a2 = 0. (2.192)

The discriminant is δ = 4(G2M2 − a2). As in the case of Reissner-Nordström solution

there are three possibilities. We focus only on the more physically interesting case of

G2M2 > a2. In this case there are two solutions

r± = GM ±
√
G2M2 − a2. (2.193)

These two solutions correspond to two event horizons which are both null surfaces. Since

the Kerr solution is stationary and not static the event horizons are not Killing horizons

20Exercise: Verify this statement.
21Exercise: Derive this result.
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for the Killing vector K = ∂t. In fact the event horizons for the Kerr solutions are Killing

horizons for the linear combination of the time translation Killing vector K = ∂t and the

rotational Killing vector R = ∂φ which is given by

χµ = Kµ + ΩHR
µ. (2.194)

We can check that this vector becomes null at the outer event horizon r+. We check this

explicitly as follows. First we compute

Kµ = ∂µt = δµt = (1, 0, 0, 0) ⇔ Kµ = gµt = (−(1− 2GMr

ρ2
), 0, 0, 0). (2.195)

Rµ = ∂µφ = δµφ = (0, 0, 0, 1) ⇔ Rµ = gµφ = (0, 0, 0,
sin2 θ

ρ2
[

(r2 + a2)2 − a2∆sin2 θ
]

).(2.196)

Then

KµKµ = − 1

ρ2
(∆− a2 sin2 θ). (2.197)

RµRµ =
sin2 θ

ρ2
[

(r2 + a2)2 − a2∆sin2 θ
]

. (2.198)

RµKµ = gφt = −2GMar sin2 θ

ρ2
. (2.199)

Thus

χµχµ = − 1

ρ2
(∆− a2 sin2 θ) + Ω2

H

sin2 θ

ρ2
[

(r2 + a2)2 − a2∆sin2 θ
]

− ΩH
4GMar sin2 θ

ρ2
.

(2.200)

At the outer event horizon r = r+ we have ∆ = 0 and thus

χµχµ =
sin2 θ

ρ2
[

(r2+ + a2)ΩH − a
]2
. (2.201)

This is zero for

ΩH =
a

r2+ + a2
. (2.202)

As it turns out ΩH is the angular velocity of the event horizon r = r+ which is defined as

the angular velocity of a particle at the event horizon r = r+
22.

22Exercise: Compute this velocity directly by computing the angular velocity of a photon emitted in the φ

direction at some r in the equatorial plane θ = π/2 in a Kerr black hole.
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• Let us consider again the Killing vector K = ∂t. We have

KµKµ = − 1

ρ2
(∆− a2 sin2 θ). (2.203)

At r = r+ we have KµKµ = a2 sin2 θ/ρ2 ≥ 0 and hence this vector is space like at the

outer horizon except at θ = 0 (north pole) and θ = π (south pole) where it becomes null.

The so-called stationary limit surface or ergosurface is defined as the set of points where

KµKµ = 0. This is given by

∆ = a2 sin2 θ ⇔ (r −GM)2 = G2M2 − a2 cos2 θ. (2.204)

The outer event horizon is given by

∆ = 0 ⇔ (r+ −GM)2 = G2M2 − a2. (2.205)

The region between the stationary limit surface and the outer event horizon is called the

ergosphere. Inside the ergosphere the Killing vector Kµ is spacelike and thus observers

can not remain stationary. In fact they must move in the direction of the rotation of the

black hole but they can still move towards the event horizon or away from it.

• The naked singularity in Kerr spacetime occurs at ρ = 0. Since ρ2 = r2 + a2 cos2 θ we get

the conditions

r = 0 , θ =
π

2
. (2.206)

To exhibit what these conditions correspond to we substitute them in equation (2.178)

which is valid in the limit M −→ 0. We obtain immediately x2 + y2 = a2 which is a ring.

This ring singularity is, of course, only a coordinate singularity in the limit M −→ 0. For

M 6= 0 the ring singularity is indeed a true or naked singularity as one can explicitly check
23. The rotation has therefore softened the naked singularity at r = 0 of the Schwarzschild

solution but spreading it over a ring.

• A sketch of the Kerr black hole is shown on figure GR5.

2.6.5 Penrose Process

The conserved energy of a massive particle with mass m in a Kerr spacetime is given by

E = −Kµp
µ = −gttKtpt − gtφK

tpφ

= m(1− 2GMr

ρ2
)
dt

dτ
+

2GmMar sin2 θ

ρ2
dφ

dτ
. (2.207)

23Exercise: Show that RµναβR
µναβ diverges at ρ = 0.
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The angular momentum of the particle is given by

L = Rµp
µ = gφφR

φpφ + gφtR
φpt

=
m sin2 θ

ρ2
[

(r2 + a2)2 − a2∆sin2 θ
]dφ

dτ
− 2GmMar sin2 θ

ρ2
dt

dτ
. (2.208)

The minus sign in the definition of the energy guarantees positivity since both Kµ and pµ are

time like vectors at infinity and as such their scalar product is negative. Inside the ergosphere

the Killing vector Kµ becomes space like and thus it is possible to have particles for which

E = −Kµp
µ < 0.

We imagine an object starting outside the ergosphere with energy E(0) and momentum p(0)

and falling into the black hole. The energy E(0) = −Kµp
(0)
µ is positive and conserved along

the geodesic. Once the object enters the ergosphere it splits into two with momenta p(1) and

p(2). The object with momentum p(1) is allowed to escape back to infinity while the object

with momentum p(2) falls into the black hole.We have the momentum and energy conservations

p(0) = p(1) + p(2) and E(0) = E(1) +E(2). It is possible that the infalling object with momentum

p(2) have negative energy E(2) and as a consequence E(0) will be less than E(1). In other

words the escaping object can have more energy than the original infalling object. This so-

called Penrose process allows us therefore to extract energy from the black hole which actually

happens by decreasing its angular momentum. This process can be made more explicit as

follows.

The outer event horizon of a Kerr black hole is a Killing horizon for the Killing vector

χµ = Kµ + ΩHR
µ. This vector is normal to the event horizon and it is future pointing, i.e. it

determines the forward direction in time. Thus the statement that the particle with momentum

p(2) crosses the event horizon moving forward in time means that −p(2)µχµ ≥ 0. The analogue

statement in a static spacetime is that particles with positive energy move forward in time, i.e.

E = −p(2)µKµ ≥ 0. The condition −p(2)µχµ ≥ 0 is equivalent to

L(2) ≤ E(2)

ΩH
< 0. (2.209)

Since E(2) is assumed to be negative and ΩH is positive the angular momentum L(2) is negative

and hence the particle with momentum p(2) is actually moving against the rotation of the black

hole. After the particle with momentum p(1) escapes to infinity and the particle with momentum

p(2) falls into the black hole the mass and the angular momentum of the Kerr black hole change

(decrease) by the amounts

∆M = E(2) , ∆J = L(2). (2.210)

The bound L(2) ≤ E(2)/ΩH becomes

∆J ≤ ∆M

ΩH
. (2.211)
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Thus extracting energy from the black hole (or equivalently decreasing its mass) is achieved by

decreasing its angular momentum, i.e. by making the infalling particle carry angular momentum

opposite to the rotation of the black hole.

In the limit when the particle with momentum p(2) becomes null tangent to the event horizon

we get the ideal process ∆J = ∆M/ΩH .

2.7 Black Holes Thermodynamics

Let us start this section by calculating the area of the outer event horizon r = r+ of a Kerr

black hole. Recall first that

r+ = GM +
√
G2M2 − a2. (2.212)

We need the induced metric γij on the outer event horizon. Since the outer event horizon is

defined by r = r+ the coordinates on the outer event horizon are θ and φ. We set therefore

r = r+ (∆ = 0), dr = 0 and dt = 0 in the Kerr metric. We obtain the metric

ds2|r=r+ = γijdx
idxj

= gθθdθ
2 + gφφdφ

2

= (r2+ + a2 cos2 θ)dθ2 +
(r2+ + a2)2 sin2 θ

r2+ + a2 cos2 θ
dφ2. (2.213)

The area of the horizon can be constructed from the induced metric as follows

A =

∫

√

|detγ|dθdφ

=

∫

(r2+ + a2) sin θdθdφ

= 4π(r2+ + a2)

= 8πG2
(

M2 +

√

M4 − M2a2

G2

)

= 8πG2
(

M2 +

√

M4 − J2

G2

)

. (2.214)

The area is related to the so-called irreducible mass M2
irr by

M2
irr =

A

16πG2

=
1

2

(

M2 +

√

M4 − J2

G2

)

. (2.215)

The area (or equivalently the irreducible mass) depends on the two parameters characterizing

the Kerr black hole, namely its mass and its angular momentum. From the other hand we
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know that the mass and the angular momentum of the Kerr black hole decrease in the Penrose

process. Thus the area changes in the Penrose process as follows

∆A =
8πG√

G2M2 − a2

[

2GMr+∆M − a∆J
]

=
8πG√

G2M2 − a2

[

(r2+ + a2)∆M − a∆J
]

=
8πG(r2+ + a2)√
G2M2 − a2

[

∆M − ΩH∆J
]

=
8πGa

ΩH

√
G2M2 − a2

[

∆M − ΩH∆J
]

. (2.216)

This is equivalent to

∆M2
irr =

a

2G
√
G2M2 − a2

[∆M

ΩH

−∆J
]

⇔ ∆Mirr =
a

4GMirr

√
G2M2 − a2

[∆M

ΩH

−∆J
]

.

(2.217)

However we have already found that in the Penrose process we must have ∆J ≤ ∆M/ΩH . This

leads immediately to

∆Mirr ≥ 0. (2.218)

The irreducible mass can not decrease. From this result we deduce immediately that

∆A ≥ 0. (2.219)

This is the second law of black hole thermodynamics or the area theorem which states that the

area of the event horizon is always non decreasing. The area in black hole thermodynamics

plays the role of entropy in thermodynamics.

We can use equation (2.215) to express the mass of the Kerr black hole in terms of the

irreducible mass Mirr and the angular momentum J . We find

M2 = M2
irr +

J2

4G2M2
irr

=
A

16πG2
+

4πJ2

A
. (2.220)

Now we imagine a Penrose process which is reversible, i.e. we reduce the angular momentum

of the black hole from Ji to Jf such that ∆A = 0 (clearly ∆A > 0 is not a reversible process

simply because the reverse process violates the area theorem). Then

M2
i −M2

f =
4π

A
(J2

i − J2
f ). (2.221)

If we consider Jf = 0 then we obtain

M2
i −M2

f =
4π

A
J2
i ⇔M2

f =
A

16πG2
=M2

irr. (2.222)
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In other words if we reduce the angular momentum of the Kerr black hole to zero, i.e. until

the black hole stop rotating, then its mass will reduce to a minimum value given precisely by

Mirr. This is why this is called the irreducible mass. In fact Mirr is the mass of the resulting

Schwarzschild black hole. The maximum energy we can therefore extract from a Kerr black

hole via a Penrose process is M −Mirr. We have

Emax =M −Mirr =M − 1√
2

√

M2 +

√

M4 − J2

G2
. (2.223)

The irreducible mass is minimum at M2 = J/G or equivalently GM = a (which is the case of

extremal Kerr black hole) and as a consequence Emax is maximum for GM = a. At this point

Emax =M −Mirr =M − 1√
2
M = 0.29M. (2.224)

We can therefore extract at most 29 per cent of the original mass of Kerr black hole via Penrose

process.

The first law of black hole thermodynamics is essentially given by equation (2.216). This

result can be rewritten as

∆M =
κ

8πG
∆A + ΩH∆J. (2.225)

The constant κ is called the surface gravity of the Kerr black hole and it is given by

κ =
ΩH

√
G2M2 − a2

a

=

√
G2M2 − a2

r2+ + a2

=

√
G2M2 − a2

2GM(GM +
√
G2M2 − a2)

. (2.226)

The above first law of black hole thermodynamics is similar to the first law of thermodynamics

dU = TdS − pdV with the most important identifications

U ↔M

S ↔ A

4G

T ↔ κ

2π
. (2.227)

The quantity κ∆A/(8πG) is heat energy while ΩH∆J is the work done on the black by throwing

particles into it.

The zeroth law of black hole thermodynamics states that surface gravity is constant on the

horizon. Again this is the analogue of the zeroth law of thermodynamics which states that

temperature is constant throughout a system in thermal equilibrium.



Chapter 3

Cosmology I: The Observed Universe

The modern science of cosmology is based on three basic observational results:

• The universe, on very large scales, is homogeneous and isotropic.

• The universe is expanding.

• The universe is composed of: matter, radiation, dark matter and dark energy.

3.1 Homogeneity and Isotropy

The universe is expected to look exactly the same from every point in it. This is the

content of the so-called Copernican principle. On the other hand, the universe appears perfectly

isotropic to us on Earth. Isotropy is the property that at every point in spacetime all spatial

directions look the same, i.e. there are no preferred directions in space. The isotropy of the

observed universe is inferred from the cosmic microwave background (CMB) radiation, which

is the most distant electromagnetic radiation originating at the time of decoupling, and which

is observed at around 3 K, which is found to be isotropic to at least one part in a thousand by

various experiments such as COBE, WMAP and PLANK.

The 9 years results of the Wilkinson Microwave Anisotropy Probe (WMAP) for the temper-

ature distribution across the whole sky are shown on figure (3.1). The microwave background

is very homogeneous in temperature with a mean of 2.7 K and relative variations from the

mean of the order of 5 × 10−5 K. The temperature variations are presented through different

colours with the ”red” being hotter (2.7281 K) while the ”blue” being colder 2.7279 K than the

average. These fluctuations about isotropy are extremely important since they will lead, in the

theory of inflation, by means gravitational interactions, to structure formation.

The Copernican principle together with the observed isotropy means in particular that the

universe on very large scales must look homogeneous and isotropic. Homogeneity is the property

that all points of space look the same at every instant of time. This is the content of the so-called

cosmological principle. Homogeneity is verified directly by constructing three dimensional maps

of the distribution of galaxies such as the 2−Degree-Field Galaxy Redshift survey (2dFGRS)
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and the Sloan Digital Sky survey (SDSS). A slice through the SDSS 3−dimensional map of the

distribution of galaxies with the Earth at the center is shown on figure (3.2).

Figure 3.1: The all-sky map of the CMB. Source: http://map.gsfc.nasa.gov/news/.

3.2 Expansion and Distances

3.2.1 Hubble Law

The most fundamental fact about the universe is its expansion. This can be characterized

by the so-called scale factor a(t). At the present time t0 we set a(t0) = 1. At earlier times,

when the universe was much smaller, the value of a(t) was much smaller.

Spacetime can be viewed as a grid of points where the so-called comoving distance between

the points remains constant with the expansion, since it is associated with the coordinates

chosen on the grid, while the physical distance evolves with the expansion of the universe

linearly with the scale factor and the comoving distance, viz

distancephysical = a(t)× distancecomoving. (3.1)

In an expanding universe galaxies are moving away from each other. Thus galaxies must be

receding from us. Now, we know from the Doppler effect that the wavelength of sound or light

emitted from a receding source is stretched out in the sense that the observed wavelength is

larger than the emitted wavelength. Thus the spectra of galaxies, since they are receding from

us, must be redshifted. This can be characterized by the so-called redshift z defined by

1 + z =
λobs
λemit

≥ 1 ⇔ z =
∆λ

λ
. (3.2)

For low redshifts z −→ 0, i.e. for sufficiently close galaxies with receding velocities much smaller

than the speed of light, the standard Doppler formula must hold, viz

z =
∆λ

λ
≃ v

c
. (3.3)
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Figure 3.2: The Sloan Digital Sky survey. Source: http://www.sdss3.org/dr10/.
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This allows us to determine the expansion velocities of galaxies by measuring the redshifts of

absorption and emission lines. This was done originally by Hubble in 1929. He found a linear

relation between the velocity v of recession and the distance d given by

v = H0d. (3.4)

This is the celebrated Hubble law exhibited on figure (3.3). The constant H0 is the Hubble

constant given by the value

H0 = 72± 7(km/s)/Mpc. (3.5)

The Mpc is megapersec which is the standard unit of distances in cosmology. We have

1 parsec(pc) = 3.08× 1018cm = 3.26 light− year. (3.6)

The Hubble law can also be seen as follows. Starting from the formula relating the physical

distance to the comoving distance d = ax, and assuming no comoving motion ẋ = 0, we can

show immediately that the relative velocity v = ḋ is given by

v = Hd , H =
ȧ

a
. (3.7)

The Hubble constant sets essentially the age of the universe by keeping a constant velocity. We

get the estimate

tH =
1

H0

∼ 14 billion years. (3.8)

This is believed to be the time of the initial singularity known as the big bang where density,

temperature and curvature were infinite.

3.2.2 Cosmic Distances from Standard Candles

It is illuminating to start by noting the following distances:

• The distance to the edge of the observable universe is 14Gpc.

• The size of the largest structures in the universe is around 100Mpc.

• The distance to the nearest large cluster, the Virgo cluster which contains several thou-

sands galaxies, is 20Mpc.

• The distance to a typical galaxy in the local group which contains 30 galaxies is 50 −
1000kpc. For example, Andromeda is 725kpc away.

• The distance to the center of the Milky Way is 10kpc.

• The distance to the nearest star is 1pc.
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• The distance to the Sun is 5µpc.

But the fundamental question that one must immediately pose, given the immense expanses of

the universe, how do we come up with these numbers?

• Triangulation: We start with distances to nearby stars which can be determined using

triangulation. The angular position of the star is observed from 2 points on the orbit of

Earth giving two angles α and β, and as a consequence, the parallax p is given by

2p = π − α− β. (3.9)

For nearby stars the parallax p is a sufficiently small angle and thus the distance d to the

star is given by (with a the semi-major axis of Earth’s orbit)

d =
a

p
. (3.10)

This method was used, by the Hipparchos satellite, to determine the distances to around

120000 stars in the solar neighborhood.

• Standard Candles: Most cosmological distances are obtained using the measurements of

apparent luminosity of objects of supposedly known intrinsic luminosity. Standard candles

are objects, such as stars and supernovae, whose intrinsic luminosity are determined

from one of their physical properties, such as color or period, which itself is determined

independently. Thus a standard candle is a source with known intrinsic luminosity.

The intrinsic or absolute luminosity L, which is the energy emitted per unit time, of a

star is related to its distance d, determined from triangulation, and to the flux l by the

equation

L = l.4πd2. (3.11)

The flux l is the apparent brightness or luminosity which is the energy received per unit

time per unit area. By measuring the flux l and the distance d we can calculate the

absolute luminosity L.

Now, if all stars with a certain physical property, for example a certain blue color, and

for which the distances can be determined by triangulation, turn out to have the same

intrinsic luminosity, these stars will constitute standard candles. In other words, all blue

color stars will be assumed to have the following luminosity:

Lblue color stars = l.4πd2triangulation. (3.12)

This means that for stars farther away with the same blue color, for which triangulation

does not work, their distances can be determined by the above formula (3.11) assuming
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the same intrinsic luminosity (3.12) and only requiring the determination of their flux l

at Earth, viz

dblue color stars =

√

Lblue color stars

4πl
. (3.13)

Some of the standard candles are:

– Main Sequence Stars: These are stars who still burn hydrogen at their cores pro-

ducing helium through nuclear fusion. They obey a characteristic relation between

absolute luminosity and color which both depend on the mass. For example, the

luminosity is maximum for blue stars and minimum for red stars. The position of a

star along the main sequence is essentially determined by its mass. This is summa-

rized in a so-called Hertzsprung-Russell diagram which plots the intrinsic or absolute

luminosity against its color index. An example is shown in figure (3.4).

All main-sequence stars are in hydrostatic equilibrium since the outward thermal

pressure from the hot core is exactly balanced by the inward pressure of gravitational

collapse. The main-sequence stars with mass less than 0.23MO will evolve into white

dwarfs, whereas those with mass less than 10MO will evolve into red giants. Those

main-sequence stars with more mass will either gravitationlly collapse into black

holes or explode into supernova.

The HR diagram of main-sequence stars is calibrated using triangulation: The abso-

lute luminosity, for a given color, is measured by measuring the apparent luminosity

and the distance from triangulation and then using the inverse square law (3.11).

By determining the luminosity class of a star, i.e. whether or not it is a main-

sequence star, and determining its position on the HR diagram, i.e. its color, we can

determine its absolute luminosity. This allows us to calculate its distance from us

by measuring its apparent luminosity and using the inverse square law (3.11).

– Cepheid Variable Stars: These are massive, bright, yellow stars which arise in a

post main-sequence phase of evolution with luminosity of upto 1000 − 10000 times

greater than that of the Sun. These stars are also pulsating, i.e. they grow and

shrink in size with periods between 3 and 50 days. They are named after the δ

Cephei star in the constellation Cepheus which is the first star of this kind. These

stars lie in the so-called instability strip of the HR diagram (3.5).

The established strong correlation between the luminosity and the period of pulsation

allows us to use Cepheid stars as standard candles. By determining the variability

of a given Cepheid star, we can determine its absolute luminosity by determining its

position on the period-luminosity diagram such as (3.6). From this we can determine

its distance from us by determining its apparent luminosity and using the inverse

square law (3.11).

The period-luminosity diagram is calibrated using main-sequence stars and triangu-

lation. For example, Hipparchos satellite had provided true parallaxes for a good
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Figure 3.3: The Hubble law. Source: Wikipedia.

sample of Galactic Cepheids.

– Type Ia Supernovae: These are the only very far away discrete objects within

galaxies that can be resolved due to their brightness which can rival even the bright-

ness of the whole host galaxy. Supernovae are 100000 times more luminous than

even the brightest Cepheid, and several billion times more luminous than the Sun.

Type Ia supernova occurs when a white dwarf star in a binary system accretes

sufficient matter from its companion until its mass reaches the Chandrasekhar limit

which is the maximum possible mass that can be supported by electron degeneracy

pressure. The white dwarf becomes then unstable and explodes. These explosions

are infrequent and even in a large galaxy only one supernova per century occurs on

average.

The exploding white dwarf star in a supernova has always a mass close to the Chan-

drasekhar limit of 1.4MO and as a consequence all supernovae are basically the

same, i.e. they have the same absolute luminosity. This absolute luminosity can

be calculated by observing supernovae which occur in galaxies whose distances were

determined using Cepheid stars. Then we can use this absolute luminosity to mea-

sure distances to even farther galaxies, for which Cepheid stars are not available, by

observing supernovae in those galaxies and determining their apparent luminosities

and using the inverse square law (3.11).

• Cosmic Distance Ladder: Triangulation and the standard candles discussed above:

main-sequence stars, Cepheid variable stars and type Ia supernovae provide a cosmic

distance ladder.



GR, B.Ydri 81

Figure 3.4: The HertzsprungRussell diagram of 22000 stars from the Hipparcos catalogue to-

gether with 1000 low-luminosity stars, red and white dwarfs, from the Gliese catalogue of

Nearby stars. Source: Wikipedia.
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Figure 3.5: The instability strip. Source: http://www.astro.sunysb.edu/metchev/PHY515/cepheidpl.html.

Figure 3.6: The period-luminosity relation. Source:http://www.atnf.csiro.au/outreach/education/senior/astroph
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3.3 Matter, Radiation, and Vacuum

• Matter: This is in the form of stars, gas and dust held together by gravitational forces

in bound states called galaxies. The iconic Hubble deep field image, which covers a tiny

portion of the sky 1/30th the diameter of the full Moon, is perhaps the most conclusive

piece of evidence that galaxies are the most important structures in the universe. See

figure (3.7). The observed universe may contain 1011 galaxies, each one contains around

1011 stars with a total mass of 1012MO. The density of this visible matter is roughly given

by

ρvisible = 10−31g/cm3. (3.14)

• Radiation1: This consists of zero-mass particles such as photons, gravitons (gravita-

tional waves) and in many circumstances (neutrinos) which are not obviously bound by

gravitational forces. The most important example of radiation observed in the universe

is the cosmic microwave background (CMB) radiation with density given by

ρradiation = 10−34g/cm3. (3.15)

This is much smaller than the observed matter density since we are in a matter domi-

nated phase in the evolution of the universe. This CMB radiation is an electromagnetic

radiation left over from the hot big bang, and corresponds to a blackbody spectrum with

a temperature of T = 2.725± 0.001K. See Figure (3.8).

• Dark Matter: This is the most important form of matter in the universe in the sense

that most mass in the universe is not luminous (the visible matter) but dark although its

effect can still be seen from its gravitational effect.

It is customary to dynamically measure the mass of a given galaxy by using Kepler’s third

law:

GM(r) = v2(r)r. (3.16)

In the above equation we have implicitly assumed spherical symmetry, v(r) is the orbital

(rotational) velocity of the galaxy at a distance r from the center, and M(r) is the mass

inside r. The plot of v(r) as a function of the distance r is known as the rotation curve

of the galaxy.

Applying this law to spiral galaxies, which are disks of stars and dust rotating about a

central nucleus, taking r the radius of the galaxy, i.e. the radius within which much of

the light emitted by the galaxy is emitted, one finds precisely the mass density ρvisible =

10−31g/cm3 quoted above. This is the luminous mass density since it is associated with

the emission of light.

1Strictly speaking radiation should be included with matter.
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Optical observations are obviously limited due to the interstellar dust which does not

allow the penetration of light waves. However, this problem does not arise when making

radio measurements of atomic hydrogen. More precisely, neutral hydrogen (HI) atoms,

which are abundant and ubiquitous in low density regions of the interstellar medium,

are detectable in the 21 cm hyperfine line. This transition results from the magnetic

interaction between the quantized electron and proton spins when the relative spins change

from parallel to antiparallel.

Observations of the 21 cm line from neutral hydrogen regions in spiral galaxies can there-

fore be used to measure the speed of rotation of objects. More precisely, since objects in

galaxies are moving, they are Doppler shifted and the receiver can determine their veloc-

ities by comparing the observed wavelengths to the standard wavelength of 21 cm. By

extending to distances beyond the point where light emitted from the galaxy effectively

ceases, one finds the behavior, shown on figure (3.9) which is given by

v ∼ constant. (3.17)

We would have expected that outside the radius of the galaxy, with the luminous matter

providing the only mass, the velocity should have behaved as

v ∼ 1/r1/2. (3.18)

The result (3.17) indicates that even in the outer region of the galaxies the mass behaves

as

M(r) ∼ r. (3.19)

In other words, the mass always grows with r. We conclude that spiral galaxies, and in

fact most other galaxies, contain dark, i.e. invisible, matter which permeates the galaxy

and extends into the galaxy’s halo with a density of at least 3 to 10 times the mass density

of the visible matter, viz

ρhalo = (3− 10)× ρvisible. (3.20)

This form of matter is expected to be 1) mostly nonbaryonic , 2)cold, i.e. nonrelativistic

during most of the universe history, so that structure formation is not suppressed and 3)

very weakly interacting since they are hard to detect. The most important candidate for

dark matter is WIMP (weakly interacting massive particle) such as the neutralinos which

is the lightest of the additional stable particles predicted by supersymmetry with mass

around 100 GeV.

• Dark Energy: This is speculated to be the energy of empty space, i.e. vacuum energy,

and is the dominant component in the universe: around 70 per cent. The best candidate

for dark energy is usually identified with the cosmological constant.
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Figure 3.7: The Hubble deep field. Source: Wikipedia.

Figure 3.8: The black body spectrum. Source: Wikipedia.
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Figure 3.9: The galaxy rotation curve. Source: Wikipedia.

3.4 Flat Universe

The simplest isotropic and homogeneous spacetime is the one in which the line element is

given by

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2)

= −dt2 + a2(t)(dr2 + r2(dθ2 + sin2 θdφ2)). (3.21)

The function a(t) is the scale factor. This is a flat universe. The homogeneity, isotropy and

flatness are properties of the space and not spacetime.

The coordinate or comoving distance between any two points is given by

dcomoving =
√

∆x2 +∆y2 +∆z2. (3.22)

This is for example the distance between any pair of galaxies. This distance is constant in time

which can be seen as follows. Since we will view the distribution of galaxies as a smoothed

out cosmological fluid, and thus a given galaxy is a particle in this fluid with coordinates xi,

the velocity dxi/dt of the galaxy must vanish, otherwise it will provide a preferred direction

contradicting the isotropy property. On the other hand, the physical distance between any two

points depends on time and is given by

dphysical(t) = a(t)dcomoving. (3.23)

Clearly if a(t) increases with time then the physical distance dphysical(t) must increase with time

which is what happens in an expanding universe.

The energy of a particle moving in this spacetime will change similarly to the way that the

energy of a particle moving in a time-dependent potential will change. For a photon this change



GR, B.Ydri 87

in energy is precisely the cosmological redshift. The worldline of the photon satisfies

ds2 = 0. (3.24)

By assuming that we are at the origin of the spherical coordinates r, θ and φ, and that the

photon is emitted in a galaxy a comoving distance r = R away with a frequency ωe at time te,

and is received here at time t = t0 with frequency ω0, the worldline of the photon is therefore

the radial null geodesics

ds2 = −dt2 + a2(t)dr2 = 0. (3.25)

Integration yields immediately

R =

∫ t0

te

dt

a(t)
. (3.26)

For a photon emitted at time te + δte and observed at time t0 + δt0 we will have instead

R =

∫ t0+δt0

te+δte

dt

a(t)
. (3.27)

Thus we get

δt0
a(t0)

=
δte
a(te)

. (3.28)

In particular if δte is the period of the emitted light, i.e. δte = 1/νe, the period of the observed

light will be different given by δt0 = 1/ν0. The relation between νe and ν0 defines the redshift

z through

1 + z =
λ0
λe

=
νe
ν0

=
a(t0)

a(te)
. (3.29)

This can be rewritten as

z =
∆λ

λ
=
a(t0)− a(te)

a(te)
=
ȧ(te)

a(te)
(te − t0) + ... (3.30)

The physical distance d is related to the comoving distance R by d = a(t0)R. By assuming that

R is small we have from ds2 = 0 the result

te − t0 =

∫ R

0

a(t)dr = a(t0)R +O(R2). (3.31)

Thus

z =
∆λ

λ
=
ȧ(t0)

a(t0)
d+ ... (3.32)
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This is Hubble law. The Hubble constant is

H0 =
ȧ(t0)

a(t0)
. (3.33)

The Hubble time tH and the Hubble distance dH are defined by

tH =
1

H0
, dH = ctH . (3.34)

The line element (7.74) is called the flat Robertson-Walker metric, and when the scale factor

a(t) is specified via Einstein’s equations, it is called the flat Friedman-Robertson-Walker metric.

The time evolution of the scale factor a(t) is controled by the Friedman equation

ȧ2

a2
=

8πGρ

3
. (3.35)

For a detailed derivation see next chapter. ρ is the total mass-energy density. At the present

time this equation gives the relation between the Hubble constant H0 and the critical mass

density ρc given by

H2
0 ≡ ȧ2(t0)

a2(t0)
=

8πGρ(t0)

3
⇒ ρ(t0) =

3H2
0

8πG
≡ ρc. (3.36)

We can choose, without any loss of generality, a(t0) = 1. We have the following numerical

values

H0 = 100h(km/s)/Mpc , tH = 9.78h−1Gyr , dH = 2998h−1Mpc , ρc = 1.88× 10−29h2g/cm3.

(3.37)

The matter, radiation and vacuum contributions to the critical mass density are given by the

fractions

ΩM =
ρM(t0)

ρc
, ΩR =

ρR(t0)

ρc
, ΩV =

ρV (t0)

ρc
. (3.38)

Obviously

1 = ΩM + ΩR + ΩV . (3.39)

The generalization of this equation to t 6= t0 is given by

ρ(a) = ρc(
ΩM

a3
+

ΩR

a4
+ ΩV ). (3.40)

This can be derived as follows. By employing the principle of local conservation as expressed

by the first law of thermodynamics we have

dE = −PdV. (3.41)
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Thus the change in the total energy in a volume V , containing a fixed number of particles

and a pressure P , due to any change dV in the volume is equal to the work done on it. The

heat flow in any direction is zero because of isotropy. Alternatively because of homogeneity the

temperature T depends only on time and thus no place is hotter or colder than any other.

The volume dV is the physical volume and thus it is related to the time-independent co-

moving volume dVcomoving = dxdydz by dV = a3(t)dVcomoving. On the other hand, the energy E

is given in terms of the density ρ by E = ρdV . The first law of thermodynamics becomes

d

dt

(

ρa3(t)
)

= −P d

dt

(

a3(t)
)

. (3.42)

We have the following three possibilities

• Matter-Dominated Universe: In this case galaxies are approximated by a pressureless

dust and thus PM = 0. Also in this case all the energy comes from the rest mass since

kinetic motion is neglected. We get then

d

dt

(

ρMa
3(t)

)

= 0 ⇒ ρM(t) = ρM (t0)
a3(t0)

a3(t)
. (3.43)

• Radiation-Dominated Universe: In this case PR = ρR/3 (see below for a proof).

Thus

d

dt

(

ρRa
3(t)

)

= −1

3
ρR

d

dt

(

a3(t)
)

⇒ ρR(t) = ρR(t0)
a4(t0)

a4(t)
. (3.44)

It is not difficult to check that radiation dominates matter when the scale factor satisfies

a(t) ≤ a(t0)/1000, i.e. when the universe was 1/1000 of its present size. Thus over most

of the universe history matter dominated radiation.

• Vacuum-Dominated Universe: In this case PV = −ρV . Thus

d

dt

(

ρV a
3(t)

)

= ρV
d

dt

(

a3(t)
)

⇒ ρV (t) = ρV (t0)
a0(t0)

a0(t)
. (3.45)

In other words, ρV is always a constant and thus, unlike matter and radiation, it does not

decay away with the expansion of the universe. In particular, the future of any perpetually

expanding universe will be dominated by vacuum energy. In the case of a cosmological

constant we write

ρV =
c4

8πG
Λ. (3.46)

We compute immediately

ΩM (t) =
ρM(t)

ρc
=

ΩM

a3
. (3.47)
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ΩR(t) =
ρR(t)

ρc
=

ΩR

a4
. (3.48)

ΩV (t) =
ρV (t)

ρc
=

ΩV

a0
. (3.49)

The total mass-energy density is given by ρ(t) = ρcΩ(t) = ρc(ΩM(t) + ΩR(t) + ΩV (t) or equiv-

alently

ρ(a) = ρc(
ΩM

a3
+

ΩR

a4
+ ΩV ). (3.50)

By using this last equation in the Friedmann equation we get the equivalent equation

1

2H2
0

ȧ2 + Veff(a) = 0 , Veff(a) = −1

2

(ΩM

a
+

ΩR

a2
+ a2ΩV

)

. (3.51)

This is effectively the equation of motion of a zero-energy particle moving in one dimension

under the influence of the potential Veff(a). The three possible distinct solutions are:

• Matter-Dominated Universe: In this case ΩM = 1, ΩR = ΩV = 0 and thus

Veff(a) = − 1

2a
⇒ 1

2H2
0

ȧ2 − 1

2a
= 0 ⇒ a =

( t

t0

)2/3
, t0 =

2

3H0
. (3.52)

• Radiation-Dominated Universe: In this case ΩR = 1, ΩM = ΩV = 0 and thus

Veff(a) = − 1

2a2
⇒ 1

2H2
0

ȧ2 − 1

2a2
= 0 ⇒ a =

( t

t0

)1/2
, t0 =

1

2H0

. (3.53)

In this case, as well as in the matter-dominated case, the universe starts at t = 0 with

a = 0 and thus ρ = ∞, and then expands forever. This physical singularity is what we

mean by the big bang. Here the expansion is decelerating since the potentials −1/2a

and −1/2a2 increase without limit from −∞ to 0, as a increases from 0 to ∞, and thus

corresponds to kinetic energies 1/2a and 1/2a2 which decrease without limit from +∞ to

0 over the same range of a.

• Vacuum-Dominated Universe: In this case ΩV = 1, ΩM = ΩR = 0 and thus

Veff(a) = −a
2

2
⇒ 1

2H2
0

ȧ2 − a2

2
= 0 ⇒ a = exp(H0(t− t0)) , H

2
0 = c4

Λ

3
. (3.54)

In this case the Hubble constant is truely a constant for all times.

In the actual evolution of the universe the three effects are present. The addition of the vacuum

energy results typically in a maximum in the potential Veff(a) when plotted as a function of
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a. Thus the universe is initially in a decelerating expansion phase consisting of a radiation-

dominated and a matter-dominated regions, then it becomes vacuum dominated with an ac-

celerating expansion. This is because beyond the maximum the potential becomes decreasing

function of a and as a consequence the kinetic energy is an increasing function of a.

In a matter-dominated universe the age of the universe is given in terms of the Hubble time

by the relation

t0 =
2

3H0

=
2

3
tH . (3.55)

This gives around 9 Gyr which is not correct since there are stars as old as 12 Gyr in our own

galaxy.

The size of the universe may be given in terms of the Hubble distance dH . A more accurate

measure will be given now in terms of the conformal time η defined as follows

dη =
dt

a(t)
. (3.56)

In the η − r spacetime diagram, radial geodesics are the 45 degrees lines. In this diagram the

big bang is the line η = 0, while our worldline may be chosen to be the line r = 0. At any

conformal instant η only signals from points inside the past light cone can be received. To each

conformal time η corresponds an instant t given through the equation

η =

∫ t

0

dt
′

a(t′)
. (3.57)

We have assumed that the big bang occurs at t = 0. Since ds2 = a2(t)(−dη2 + dr2) = 0, the

largest radius rhorizon(t) from which a signal could have reached the observer at t since the big

bang is given by

rhorizon(t) = η =

∫ t

0

dt
′

a(t′)
. (3.58)

The 3−dimensional surface in spacetime with radius rhorizon(t) is called the cosmological horizon.

This radius rhorizon(t) and as a consequence the cosmological horizon grow with time and thus a

larger region becomes visible as time goes on. The physical distance to the horizon is obviously

given by

dhorizon(t) = a(t)rhorizon(t) = a(t)

∫ t

0

dt
′

a(t′)
. (3.59)

The physical radius at the current epoch in a matter-dominated universe is

dhorizon(t) = t
2/3
0

∫ t0

0

t−2/3dt = 2tH = 8Gpc. (3.60)

This is different from the currently best measured age of 14 Gpc.
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3.5 Closed and Open Universes

There are two more possible Friedman-Robertson-Walker universes, beside the flat case,

which are isotropic and homogeneous. These are the closed universe given by a 3−sphere and

the open universe given by a 3−hyperboloid. The spacetime metric in the three cases is given

by

ds2 = −dt2 + a2(t)dl2. (3.61)

The spatial metric in the flat case can be rewritten as (with χ ≡ r)

dl2 = dχ2 + χ2(dθ2 + sin2 θdφ2). (3.62)

Now we discuss the other two cases.

Closed FRW Universe: A 3−sphere can be embedded in R4 in the usual way by

X2 + Y 2 + Z2 +W 2 = 1. (3.63)

We introduce spherical coordinates 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ χ ≤ π by

X = sinχ sin θ cosφ , Y = sinχ sin θ sinφ , Z = sinχ cos θ , W = cosχ. (3.64)

The line element on the 3−sphere is given by

dl2 = (dX2 + dY 2 + dZ2 + dW 2)S3

= dχ2 + sin2 χ(dθ2 + sin2 θdφ2). (3.65)

This is a closed space with finite volume and without boundary. The comoving volume is given

by

dV =

∫

√

detgd4X

=

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ π

0

dχ sin2 χ

= 2π2. (3.66)

The physical volume is of course given by dV (t) = a3(t)dV .

Open FRW Universe: A 3−hyperboloid is a 3−surface in a Minkowski spacetime M4 anal-

ogous to a 3−sphere in R4. It is embedded in M4 by the relation

X2 + Y 2 + Z2 − T 2 = −1. (3.67)

We introduce hyperbolic coordinates 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ χ ≤ ∞ by

X = sinhχ sin θ cos φ , Y = sinhχ sin θ sinφ , Z = sinhχ cos θ , T = coshχ. (3.68)
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The line element on this 3−surface is given by

dl2 = (dX2 + dY 2 + dZ2 − dT 2)H3

= dχ2 + sinh2 χ(dθ2 + sin2 θdφ2). (3.69)

This is an open space with infinite volume.

The three metrics (3.62), (3.65) and (3.69) can be rewritten collectively as

dl2 =
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2). (3.70)

The variable r and the parameter k, called the spatial curvature, are given by

r = sinχ , k = +1 : closed. (3.71)

r = χ , k = 0 : flat. (3.72)

r = sinhχ , k = −1 : open. (3.73)

The metric of spacetime is thus given by

ds2 = −dt2 + a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]

. (3.74)

Thus the open and closed cases are characterized by a non-zero spatial curvature. As before,

the scale factor must be given by Friedman equation derived in the next chapter. This is given

by

ȧ2

a2
=

8πGρ

3
− kc2

a2
. (3.75)

At t = t0 we get

H2
0 =

8πGρ(t0)

3
− kc2

a2(t0)
⇒ ρ(t0)− ρc =

3kc2

8πGa2(t0)
. (3.76)

The critical density is of course defined by

ρc =
3H2

0

8πG
. (3.77)

Thus for a closed universe the spacetime is positively curved and as a consequence the current

energy density is larger than the critical density, i.e. Ω = ρ(t0)/ρc > 1, whereas for an open

universe the spacetime is negatively curved and as a consequence the current energy density is

smaller than the critical density, i.e. Ω = ρ(t0)/ρc < 1. Only for a flat universe the current
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energy density is equal to the critical density, i.e. Ω = ρ(t0)/ρc = 1. The above equation can

also be rewritten as

Ω = 1 +
kc2

H2
0a

2(t0)
. (3.78)

Equivalently

ΩM + ΩR + ΩV + ΩC = 1 ⇒ ΩC = 1− ΩM − ΩR − ΩV . (3.79)

The density parameter ΩC associated with the spatial curvature is defined by

ΩC = − kc2

H2
0a

2(t0)
. (3.80)

We use now the formula

ρ(t) = ρcΩ(t)

= ρc

(

ΩM

ã3(t)
+

ΩR

ã4(t)
+ ΩV

)

, ã(t) =
a(t)

a(t0)
. (3.81)

The Friedman equation can then be put in the form (with t̃ = t/tH = H0t)

1

2

(dã

dt̃

)2
+ Veff(ã) =

ΩC

2
. (3.82)

Veff(ã) = −1

2

(ΩM

ã
+

ΩR

ã2
+ ã2ΩV

)

. (3.83)

We need to solve (3.79), (3.82) and (3.83). This is a generalization of the potential problem

(6.48) corresponding to the flat FRW model to the generic curved FRW models. This is

effectively the equation of motion of a particle moving in one dimension under the influence

of the potential Veff(ã) with energy ΩC/2. There are therefore four independent cosmological

parameters ΩM , ΩR, ΩV and H0. The solution of the above equation determines the scale factor

a(t) as well as the present age t0.

There are two general features worth of mention here:

• Open and Flat: In this case Ω ≤ 1 and thus ΩC = 1 − Ω ≥ 0. From the other hand,

Veff < 0. Thus Veff is strictly below the line ΩC/2. In other words, there are no turning

points where ”the total energy” ΩC/2 becomes equal to the ”potential energy” Veff , i.e.

”the kinetic energy” ȧ2/2 never vanishes and thus we never have ȧ = 0. The universe

starts from a big bang singularity at a = 0 and keeps expanding forever.

• Closed: In this case Ω > 1 and thus ΩC = 1− Ω < 0. There are here two scenarios:

– The potential is strictly below the line ΩC/2 and thus there are no turning points.

The universe starts from a big bang singularity at a = 0 and keeps expanding forever.
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– The potential intersects the line ΩC/2. There are two turning points given by the

intersection points. We have two possibilities depending on where ã = 1 is located

below the smaller turning point or above the larger turning point.

∗ ã = 1 is below the smaller turning point. The universe starts from a big bang

singularity at a = 0, expands to a maximum radius corresponding to the smaller

turning point, then recollapse to a big crunch singularity at a = 0.

∗ ã = 1 is above the larger turning point. The universe collapses from a larger

value of a, it bounces when it hits the largest turning point and then reexpands

forever. There is no singularity in this case. This case is ruled out by current

observations.

For an FRW universe dominated by matter and vacuum like ours the above possibilities are

sketched in the plane of the least certain cosmological parameters ΩM and ΩV on figure (3.10).

Flat FRW models are on the line ΩV = 1 − ΩM . Open models lie below this line while closed

models lie above it.

3.6 Aspects of The Early Universe

The most central property of the universe is expansion. The evidence for the expansion of

the universe comes from three main sets of observations. Firstly, light from distant galaxies is

shifted towards the red which can be accounted for by the expansion of the universe. Secondly,

the observed abundance of light elements can be calculated from big bang nucleosynthesis.

Thirdly, the cosmic microwave background radiation can be interpreted as the afterglow of

a hot early universe. The temperature of the universe at any instant of time t is inversely

proportional to the scale factor a(t), viz

T ∝ 1

a(t)
. (3.84)

The early universe is obviously radiation-dominated because of the relativistic energies involved.

During this era the temperature is related to time by

t

1 s
= (

1010 K

T
)2. (3.85)

In particle physics accelerators we can generate temperatures up to T = 1015K which means

that we can probe the conditions of the early universe down to 10−10s. From 10−10s to today

the history of the universe is based on well understood and well tested physics. For example

at 1s the big bang nucleosynthesis (BBN) begins where light nuclei start to form, and at 104

years matter-radiation equality is reached where the density of photons drops below that of

matter. After matter-radiation equality, which corresponds to a scale factor of about a = 10−4,

the relation between temperature and time changes to

t ∝ 1

T 3/2
. (3.86)
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Figure 3.10: The FRW models in the ΩM − ΩV plane.
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The universe after the big bang was a hot and dense plasma of photons, electrons and protons

which was very opaque to electromagnetic radiation. As the universe expanded it cooled down

until it reached the stage where the formation of neutral hydrogen was energetically favored and

the ratio of free electrons and protons to neutral hydrogen decreased to 1/10000. This event is

called recombination and it occurred at around T ≃ 0.3 eV or equivalently 378000 years ago

which corresponds to a scale factor a = 1/1200.

After recombination the universe becomes fully matter-dominated, and shortly after recom-

bination, photons decouple from matter and as a consequence the mean free path of photons

approaches infinity. In other words after photon decoupling the universe becomes effectively

transparent. These photons are seen today as the cosmic microwave background (CMB) radi-

ation. The decoupling period is also called the surface of last scattering.

3.7 Concordance Model

From a combination of cosmic microwave background (CMB) and large scale structure (LSS)

observations we deduce that the universe is spatially flat and is composed of 4 per cent ordinary

mater, 23 per cent dark matter and 73 per cent dark energy (vaccum energy or cosmological

constant Λ), i.e.

Ωk ∼ 0. (3.87)

ΩM ∼ 0.04 , ΩDM ∼ 0.23 , ΩΛ ∼ 0.73. (3.88)



Chapter 4

Cosmology II: The Expanding Universe

4.1 Friedmann-Lemâıtre-Robertson-Walker Metric

The universe on very large scales is homogeneous and isotropic. This is the cosmological

principle.

A spatially isotropic spacetime is a manifold in which there exists a congruence of timelike

curves representing observers with tangents ua such that given any two unit spatial tangent

vectors sa1 and s
a
2 at a point p, orthogonal to ua, there exists an isometry of the metric gab which

rotates sa1 into sa2 while leaving p and ua fixed. The fact that we can rotate sa1 into sa2 means

that there is no preferred direction in space.

On the other hand, a spacetime is spatially homogeneous if there exists a foliation of space-

time, i.e. a one-parameter family of spacelike hypersurfaces Σt foliating spacetime such that

any two points p, q ∈ Σt can be connected by an isometry of the metric gab. The surfaces

of homogeneity Σt are orthogonal to the isotropic observers with tangents ua and they must

be unique. In flat spacetime the isotropic observers and the surfaces of homogeneity are not

unique.

A manifold can be homogeneous but not isotropic such as R × S2 or it can be isotropic

around a point but not homogeneous such as the cone around its vertex. However, a spacetime

which is isotropic everywhere must be also homogeneous, and a spacetime which is isotropic at

a point and homogeneous must be isotropic everywhere.

The requirement of spatial isotropy and homogeneity of spacetime means that there exists a

foliation of spacetime consisting of 3−dimensional maximally symmetric spatial slices Σt. The

universe is therefore given by the manifold R× Σ with metric

ds2 = −c2dt2 +R2(t)d~u2. (4.1)

The metric on Σ is given by

dσ2 = d~u2 = γijdu
iduj. (4.2)

The scale factor R(t) gives the volume of the spatial slice Σ at the instant of time t. The coor-

dinates t, u1, u2 and u3 are called comoving coordinates. An observer whose spatial coordinates
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ui remain fixed is a comoving observer. Obviously, the universe can look isotropic only with

respect to a comoving observer. It is obvious that the relative distance between particles at

fixed spatial coordinates grows with time t as R(t). These particles draw worldlines in space-

time which are said to be comoving. Similarly, a comoving volume is a region of space which

expands along with its boundaries defined by fixed spatial coordinates with the expansion of

the universe.

A maximally symmetric metric is certainly a spherically symmetric metric. Recall that

the metric d~x2 = dx2 + dy2 + dz2 of the flat 3−dimensional space in spherical coordinates is

d~x2 = dr2+ r2dΩ2 where dΩ2 = dθ2+sin2 θdφ2. A general 3−dimensional metric with spherical

symmetry is therefore necessarily of the form

d~u2 = e2β(r)dr2 + r2dΩ2. (4.3)

The Christoffel symbols are computed to be given by

Γr
rr = ∂rβ , Γ

r
θθ = −re−2β(r) , Γr

φφ = −r sin2 θe−2β(r),Γr
rθ = Γr

rφ = Γr
θφ = 0.

(4.4)

Γθ
rθ =

1

r
, Γθ

φφ = − sin θ cos θ , Γθ
rr = Γθ

rφ = Γθ
θθ = Γθ

θφ = 0. (4.5)

Γφ
rφ =

1

r
, Γφ

θφ =
cos θ

sin θ
, Γφ

rr = Γφ
rθ = Γφ

θθ = Γφ
φφ = 0. (4.6)

The Ricci tensor is then given by

Rrr =
2

r
∂rβ. (4.7)

Rrθ = 0 , Rrφ = 0. (4.8)

Rθθ = 1 + e−2β(r∂rβ − 1). (4.9)

Rθφ = 0. (4.10)

Rφφ = sin2 θ[1 + e−2β(r∂rβ − 1)]. (4.11)

The above spatial metric is a maximally symmetric metric. Hence, we know that the 3−dimensional

Riemann curvature tensor must be of the form

R
(3)
ijkl =

R(3)

3(3− 1)
(γikγjl − γilγjk). (4.12)
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In other words, the Ricci tensor is actually given by

R
(3)
ik = (R(3))ijk

j = R
(3)
ijklγ

lj =
R(3)

3
γik. (4.13)

By comparison we get the two independent equations (with k = R(3)/6)

2ke2β =
2

r
∂rβ. (4.14)

2kr2 = 1 + e−2β(r∂rβ − 1). (4.15)

From the first equation we determine that the solution must be such that exp(−2β) = −kr2 +
constant, whereas from the second equation we determine that constant = 1. We get then the

solution

β = −1

2
ln(1− kr2). (4.16)

The spatial metric becomes

d~u2 =
dr2

1− kr2
+ r2dΩ2. (4.17)

The constant k is proportional to the scalar curvature which can be positive, negative or 0. It

also obviously sets the size of the spatial slices. Without any loss of generality we can normalize

it such that k = +1, 0,−1 since any other scale can be absorbed into the scale factor R(t) which

multiplies the length |d~u| in the formula for ds2.

We introduce a new radial coordinate χ by the formula

dχ =
dr√

1− kr2
. (4.18)

By integrating both sides we obtain

r = sinχ , k = +1

r = χ , k = 0

r = sinhχ , k = −1. (4.19)

Thus the metric becomes

d~u2 = dχ2 + sin2 χdΩ2 , k = +1

d~u2 = dχ2 + χ2dΩ2 , k = 0

d~u2 = dχ2 + sinh2 χdΩ2 , k = −1. (4.20)

The physical interpretation of this result is as follows:

• The case k = +1 corresponds to a constant positive curvature on the manifold Σ and is

called closed. We recognize the metric d~u2 = dχ2+sin2 χdΩ2 to be that of a three sphere,

i.e. Σ = S3. This is obviously a closed sphere in the same sense that the two sphere S2

is closed.
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• The case k = 0 corresponds to 0 curvature on the manifold Σ and as such is naturally

called flat. In this case the metric d~u2 = dχ2 + χ2dΩ2 corresponds to the flat three

dimensional Euclidean space, i.e. Γ = R3.

• The case k = −1 corresponds to a constant negative curvature on the manifold Σ and is

called open. We recognize the metric d~u2 = dχ2+sinh2 χdΩ2 to be that of a 3−dimensional

hyperboloid, i.e. Σ = H3. This is an open space.

The so-called Robertson-Walker metric on a spatially homogeneous and spatially isotropic

spacetime is therefore given by

ds2 = −c2dt2 +R2(t)
[ dr2

1− kr2
+ r2dΩ2

]

. (4.21)

4.2 Friedmann Equations

4.2.1 The First Friedmann Equation

The scale factor R(t) has units of distance and thus r is actually dimensionless. We reinstate

a dimensionful radius ρ by ρ = R0r. The scale factor becomes dimensionless given by a(t) =

R(t)/R0 whereas the curvature becomes dimensionful κ = k/R2
0. The Robertson-Walker metric

becomes

ds2 = −c2dt2 + a2(t)
[ dρ2

1− κρ2
+ ρ2dΩ2

]

. (4.22)

The non-zero components of the metric are g00 = −1, gρρ = a2/(1 − κρ2), gθθ = a2ρ2, gφφ =

a2ρ2 sin2 θ. We compute now the non-zero Christoffel symbols

Γ0
ρρ =

aȧ

c(1− κρ2)
, Γ0

θθ =
aȧρ2

c
, Γ0

φφ =
aȧρ2 sin2 θ

c
. (4.23)

Γρ
0ρ =

ȧ

ca
, Γρ

ρρ =
κρ

1− κρ2
, Γρ

θθ = −ρ(1 − κρ2) , Γρ
φφ = −ρ(1 − κρ2) sin2 θ. (4.24)

Γθ
0θ =

ȧ

ca
, Γθ

ρθ =
1

ρ
, Γθ

φφ = − sin θ cos θ. (4.25)

Γφ
0φ =

ȧ

ca
, Γφ

ρφ =
1

ρ
, Γφ

θφ =
cos θ

sin θ
. (4.26)

The non-zero components of the Ricci tensor are

R00 = − 3

c2
ä

a
. (4.27)



GR, B.Ydri 102

Rρρ =
1

c2(1− κρ2)
(aä + 2ȧ2 + 2κc2). (4.28)

Rθθ =
ρ2

c2
(aä+ 2ȧ2 + 2κc2) , Rφφ =

ρ2 sin2 θ

c2
(aä+ 2ȧ2 + 2κc2). (4.29)

The scalar curvature is therefore given by

R = gµνRµν =
6

c2

(

ä

a
+

(

ȧ

a

)2

+
κc2

a2

)

. (4.30)

The Einstein’s equations are

Rµν =
8πG

c4
(Tµν −

1

2
gµνT ). (4.31)

The stress-energy-momentum tensor

T µν = (ρ+
P

c2
)UµUν + Pgµν. (4.32)

The fluid is obviously at rest in comoving coordinates. In other words, Uµ = (c, 0, 0, 0) and

hence

T µν = diag(ρc2, P g11, P g22, P g33) ⇒ Tµ
λ = diag(−ρc2, P, P, P ). (4.33)

Thus T = Tµ
µ = −ρc2 + 3P . The µ = 0, ν = 0 component of Einstein’s equations is

R00 =
8πG

c4
(T00 +

1

2
T ) ⇒ −3

ä

a
= 4πG(ρ+ 3

P

c2
). (4.34)

The µ = ρ, ν = ρ component of Einstein’s equations is

Rρρ =
8πG

c4
(Tρρ −

1

2
gρρT ) ⇒ aä+ 2ȧ2 + 2κc2 = 4πG(ρ− P

c2
)a2. (4.35)

There are no other independent equations. The Einstein’s equation (4.34) is known as the

second Friedmann equation. This is given by

ä

a
= −4πG

3
(ρ+ 3

P

c2
). (4.36)

Using this result in the Einstein’s equation (4.35) yields immediately the first Friedmann equa-

tion. This is given by

ȧ2

a2
=

8πGρ

3
− κc2

a2
. (4.37)

In most cases, in which we know how ρ depends on a, the first Friedmann equation is sufficient

to solve for the problem.
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4.2.2 Cosmological Parameters

We introduce the following cosmological parameters:

• The Hubble parameter H: This is given by

H =
ȧ

a
. (4.38)

This provides the rate of expansion. At present time we have

H0 = 100h km sec−1 Mpc−1. (4.39)

The dimensionless Hubble parameter h is around 0.7 ± 0.1. The megaparsec Mpc is

3.09× 1024cm.

• The density parameter Ω and the critical density ρc: These are defined by

Ω =
8πG

3H2
ρ =

ρ

ρc
. (4.40)

ρc =
3H2

8πG
. (4.41)

• The deceleration parameter q: This provides the rate of change of the rate of the

expansion of the universe. This is defined by

q = −aä
ȧ2
. (4.42)

Using the first two parameters in the first Friedmann equation we obtain

ρ− ρc
ρc

= Ω− 1 =
κc2

H2a2
. (4.43)

We get immediately the behavior

closed universe : κ > 0 ↔ Ω > 1 ↔ ρ > ρc. (4.44)

flat universe : κ = 0 ↔ Ω = 1 ↔ ρ = ρc. (4.45)

open universe : κ < 0 ↔ Ω < 1 ↔ ρ < ρc. (4.46)
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4.2.3 Energy Conservation

Let us now consider the conservation law ∇µT
µ

ν = ∂µT
µ

ν + Γµ
µαT

α
ν − Γα

µνT
µ

α = 0.

In the comoving coordinates we have Tµ
ν = diag(−ρc2, P, P, P ). The ν = 0 component of the

conservation law is

−cρ̇− 3ȧ

ca
(ρc2 + P ) = 0. (4.47)

In cosmology the pressure P and the rest mass density ρ are generally related by the equation

of state

P = wρc2. (4.48)

The conservation of energy becomes

ρ̇

ρ
= −3(1 + w)

ȧ

a
. (4.49)

For constant w the solution is of the form

ρ ∝ a−3(1+w). (4.50)

There are three cases of interest:

• The matter-dominated universe: Matter (also called dust) is a set of collision-less

non-relativistic particles which have zero pressure. For example, stars and galaxies may

be considered as dust since pressure can be neglected to a very good accuracy. Since

PM = 0 we have w = 0 and as a consequence

ρM ∝ a−3. (4.51)

This can be seen also as follows. The energy density for dust comes entirely from the rest

mass of the particles. The mass density is ρ = nm where n is the number density which

is inversely proportional to the volume. Hence, the mass density must go as the inverse

of a3 which is the physical volume of a comoving region.

• The radiation-dominated universe: Radiation consists of photons (obviously) but

also includes any particles with speeds close to the speed of light. For an electromagnetic

field we can show that the stress-energy-tensor satisfies T µ
µ = 0. However, the stress-

energy-momentum tensor of a perfect fluid satisfies Tµ
µ = −ρc2+3P . Thus for radiation

we must have the equation of state PR = ρRc
2/3 and as a consequence w = 1/3 and hence

ρR ∝ a−4. (4.52)

In this case the energy of each photon will redshifts away as 1/a (see below) as the

universe expands which is the extra factor that multiplies the original factor 1/a3 coming

from number density.
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• The vacuum-dominated universe: The vacuum energy is a perfect fluid with equation

of state PV = −ρV , i.e. w = −1 and hence

ρV ∝ a0. (4.53)

The vacuum energy is an unchanging form of energy in any physical volume which does

not redshifts.

The null dominant energy condition allows for densities which satisfy the requirements ρ ≥ 0,

ρ ≥ |P |/c2 or ρ ≤ 0, P = −c2ρ < 0, thus in particular allowing the vacuum energy to be

either positive or negative, and as a consequence we must have in all the above discussed cases

|w| ≤ 1.

In general matter, radiation and vacuum can contribute simultaneously to the evolution of

the universe. Let us simply assume that all densities evolve as power laws, viz

ρi = ρi0a
−ni ⇔ wi =

ni

3
− 1. (4.54)

The first Friedmann equation can then be put in the form

H2 =
8πG

3

∑

i

ρi −
κc2

a2

=
8πG

3

∑

i,C

ρi. (4.55)

In the above equation the spatial curvature is thought of as giving another contribution to the

rest mass density given by

ρC = − 3

8πG

κc2

a2
. (4.56)

This rest mass density corresponds to the values wC = −1/3 and nC = 2. The total density

parameter Ω is defined by Ω =
∑

i 8πGρi/3H
2. By analogy the density parameter of the spatial

curvature is given by

ΩC =
8πGρC
3H2

= − κc2

H2a2
. (4.57)

The first Friedmann equation becomes the identity

∑

i,C

Ωi = 1 ⇔ ΩC = 1− Ω = 1− ΩM − ΩR − ΩV . (4.58)

The rest mass densities of matter and radiation are always positive whereas the rest mass

densities corresponding to vacuum and curvature can be either positive or negative.
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The Hubble parameter is the rate of expansion of the universe. The derivative of the Hubble

parameter is

Ḣ =
ä

a
−

(

ȧ

a

)2

= −4πG

3

∑

i

ρi(1 + 3wi)−
8πG

3

∑

i

ρi +
κc2

a2

= −4πG
∑

i

ρi(1 + wi) +
κc2

a2

= −4πG
∑

i,C

ρi(1 + wi). (4.59)

This is effectively the second Friedmann equation. In terms of the deceleration parameter this

reads

Ḣ

H2
= −1− q. (4.60)

An open or flat universe ρC ≥ 0 (κ ≤ 0) with ρi > 0 will never contract as long as
∑

i,C ρi 6= 0

since H2 ∝ ∑

i,C ρi from the first Friedmann equation (4.55). On the other hand, we have

|wi| ≤ 1, and thus we deduce from the second Friedmann equation (4.59) the condition Ḣ ≤ 0

which indicates that the expansion of the universe decelerates.

For a flat universe dominated by a single component wi we can show that the deceleration

parameter is given by

qi =
1

2
(1 + 3wi). (4.61)

This is positive and thus the expansion is accelerating for a matter dominated universe (wi = 0)

whereas it is negative and thus the expansion is decelerating for a vacuum dominated universe

(wi = −1). The current cosmological data strongly favors the second possibility.

4.3 Examples of Scale Factors

Matter and Radiation Dominated Universes: From observation we know that the uni-

verse was radiation-dominated at early times whereas it is matter-dominated at the current

epoch. Let us then consider a single kind of rest mass density ρ ∝ a−n. The Friedmann

equation gives therefore ȧ ∝ a1−n/2. The solution behaves as

a ∼ t
2

n . (4.62)

For a flat (since ρC = 0) universe dominated by matter we have Ω = ΩM = 1 and n = 3. In

this case

a ∼ t
2

3 , Matter− Dominated Universe. (4.63)



GR, B.Ydri 107

This is also known as the Einstein-de Sitter universe. For a flat universe dominated by radiation

we have Ω = ΩR = 1 and n = 4 and hence a ∼ t1/2.

a ∼ t
1

2 , Radiation−Dominated Universe. (4.64)

These solutions exhibit a singularity at a = 0 known as the big bang. Indeed the rest mass

density diverges as a −→ 0. At this regime general relativity breaks down and quantum gravity

takes over. The so-called cosmological singularity theorems show that any universe with ρ > 0

and p ≥ 0 must start at a singularity.

Vacuum Dominated Universes: For a flat universe dominated by vacuum energy we have

H = constant since ρΛ = constant and hence a = exp(Ht). The universe expands exponentially.

The metric reads explicitly ds2 = −c2dt2 + exp(Ht)(dx2 + dy2 + dz2). This is the maximally

symmetric spacetime known as de Sitter spacetime. Indeed, the corresponding Riemann cur-

vature tensor has the characteristic form of a maximally symmetric spacetime in 4−dimension.

Since de Sitter spacetime has a positive scalar curvature whereas this space has zero curvature

the coordinates (t, x, y, z) must only cover part of the de Sitter spacetime. Indeed, we can show

that these coordinates are incomplete in the past.

From observation ΩR << ΩM,V,C . We will therefore neglect the effect of radiation and set

Ω = ΩM + ΩV . The curvature is ΩC = 1 − ΩM − ΩV . Recall that ΩC ∝ 1/a2, ΩM ∝ 1/a3 and

ΩV ∝ 1/a0. Thus in the limit a −→ 0 (the past), matter dominates and spacetime approaches

Einstein-de Sitter spacetime whereas in the limt a −→ ∞ (the future), vacuum dominates and

spacetime approaches de Sitter spacetime.

Milne Universe: For an empty space with spatial curvature we have

H2 = −κc
2

a2
. (4.65)

The curvature must be negative. This corresponds to the so-called Milne universe with a rest

mass density ρC ∝ a−2, i.e. n = 2. Hence the Milne universe expands linearly, viz

a ∼ t , Milne universe. (4.66)

The Milne universe can only be Minkowski spacetime in a certain incomplete coordinate system

which can be checked by showing that its Riemann curvature tensor is actually 0. In fact Milne

universe is the interior of the future light cone of some fixed event in spacetime foliated by

hyperboloids which have negative scalar curvature.

The Static Universe: A static universe satisfies ȧ = ä = 0. The Friedmann equations

become

κc2

a2
=

8πG

3

∑

i

ρi ,
∑

i

(ρi + 3
P

c2
) = 0. (4.67)
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Again by neglecting radiation the second equation leads to

ρM + ρV = − 3

c2
(PM + PV ) = 3ρV ⇒ ρM = 2ρV . (4.68)

The first equation gives the scalar curvature

κ =
4πGρMa

2

c2
. (4.69)

Expansion versus Recollapse: Recall that H = ȧ/a. Thus if H > 0 the universe is

expanding while if H < 0 the universe is collapsing. The point a∗ at which the universe goes

from expansion to collapse corresponds to H = 0. By using the Friedmann equation this gives

the condition

ρM0a
−3
∗ + ρV 0 + ρC0a

−2
∗ = 0. (4.70)

Recall also that ΩC0 = 1−ΩM0 −ΩV 0 and Ωi ∝ ρi/H
2. By dividing the above equation on H2

0

we get

ΩM0a
−3
∗ + ΩV 0 + (1− ΩM0 − ΩV 0)a

−2
∗ = 0 ⇒ ΩV 0a

3
∗ + (1− ΩM0 − ΩV 0)a∗ + ΩM0 = 0.

(4.71)

First we consider ΩV 0 = 0. For open and flat universes we have Ω0 = ΩM0 ≤ 1 and thus

the above equation has no solution. In other words, open and flat universes keep expanding.

For a closed universe Ω0 = ΩM0 > 1 and the above equation admits a solution a∗ and as a

consequence the closed universe will recollapse.

For ΩV 0 > 0 the situation is more complicated. For 0 ≤ ΩM0 ≤ 1 the universe will always

expand whereas for ΩM0 > 1 the universe will always expand only if ΩΛ is further bounded

from below as

ΩV 0 ≥ Ω̂V 0 = 4ΩM0 cos
3

[

1

3
cos−1

(

1− ΩM0

ΩM0

)

+
4π

3

]

. (4.72)

This means in particular that the universe with sufficiently large ΩM0 can recollapse for 0 <

ΩV 0 < Ω̂V 0. Thus a sufficiently large ΩM can halt the expansion before ΩV becomes dominant.

Note also from the above solution that the universe will always recollapse for ΩV 0 < 0.

Indeed, the effect of ΩV 0 < 0 is to cause deceleration and recollapse.

4.4 Redshift, Distances and Age

4.4.1 Redshift in a Flat Universe

Let us consider the metric

ds2 = −c2dt2 + a2(t)[dx2 + dy2 + dz2]. (4.73)
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Thus space at each fixed instant of time t is the Euclidean 3−dimensional space R3. The universe

described by this metric is expanding in the sense that the volume of the 3−dimensional spatial

slice, which is given by the so-called scale factor a(t), is a function of time. The above metric

is also rewritten as

g00 = −1 , gij = a2(t)δij , g0i = 0. (4.74)

It is obvious that the relative distance between particles at fixed spatial coordinates grows with

time t as a(t). These particles draw worldlines in spacetime which are said to be comoving.

Similarly a comoving volume is a region of space which expands along with its boundaries

defined by fixed spatial coordinates with the expansion of the universe.

We recall the formula of the Christoffel symbols

Γλ
µν =

1

2
gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν). (4.75)

We compute

Γ0
µν = −1

2
(∂µgν0 + ∂νgµ0 − ∂0gµν) ⇒ Γ0

00 = Γ0
0i = Γ0

i0 = 0 , Γ0
ij =

aȧ

c
δij . (4.76)

Γi
µν =

1

2a2
(∂µgνi + ∂νgµi − ∂igµν) ⇒ Γi

00 = Γi
jk = 0 , Γi

0j =
ȧ

ac
δij. (4.77)

The geodesic equation reads

d2xλ

dτ 2
+ Γλ

µν
dxµ

dτ

dxν

dτ
= 0. (4.78)

In particular

d2x0

dλ2
+ Γ0

ij
dxi

dλ

dxj

dλ
= 0 ⇒ d2t

dλ2
+
aȧ

c2

(

d~x

dλ

)2

= 0. (4.79)

For null geodesics (which are paths followed by massless particle such as photons) we have

ds2 = −c2dt2+a2(t)d~x2 = 0. In other words we must have along a null geodesic with parameter

λ the condition a2(t)d~x2/dλ2 = c2dt2/dλ2. We get then the equation

d2t

dλ2
+
ȧ

a

(

dt

dλ

)2

= 0. (4.80)

The solution is immediately given by (with ω0 a constant)

dt

dλ
=

ω0

c2a
. (4.81)

The energy of the photon as measured by an observer whose velocity is Uµ is given by E =

−pµUµ where pµ is the 4−vector energy-momentum of the photon. A comoving observer is an
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observer with fixed spatial coordinates and thus Uµ = (U0, 0, 0, 0). Since gµνU
µUν = −c2 we

must have U0 =
√

−c2/g00 = c. Furthermore we choose the parameter λ along the null geodesic

such that the 4−vector energy-momentum of the photon is pµ = dxµ/dλ. We get then

E = −gµνpµUν

= p0U0

=
dx0

dλ
c

=
ω0

a
. (4.82)

Thus if a photon is emitted with energy E1 at a scale factor a1 and then observed with energy

E2 at a scale factor a2 we must have

E1

E2
=
a2
a1
. (4.83)

In terms of wavelengths this reads

λ2
λ1

=
a2
a1
. (4.84)

This is the phenomena of cosmological redshift: In an expanding universe we have a2 > a1 and

as a consequence we must have λ2 > λ1, i.e. the wavelength of the photon grows with time.

The amount of redshift is

z =
E1 − E2

E2

=
a2
a1

− 1. (4.85)

This effect allows us to measure the change in the scale factor between distant galaxies (where

the photons are emitted) and here (where the photons are observed). Also it can be used to

infer the distance between us and distant galaxies. Indeed a greater redshift means a greater

distance. For example z close to 0 means that there was not sufficient time for the universe to

expand because the emitter and observer are very close to each other.

The scale factor a(t) as a function of time might be of the form

a(t) = tq , 0 < q < 1. (4.86)

In the limit t −→ 0 we have a(t) −→ 0. In fact the time t = 0 is a true singularity of this

geometry, which represents a big bang event, and hence it must be excluded. The physical

range of t is

0 < t <∞. (4.87)

The light cones of this curved spacetime are defined by the null paths ds2 = −c2dt2+a2(t)d~x2 =
0. In 1 + 1 dimensions this reads

ds2 = −c2dt2 + a2(t)dx2 = 0 ⇒ dx

dt
= ±ct−q. (4.88)
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The solution is

t =

(

± 1− q

c
(x− x0)

)
1

1−q

. (4.89)

These are the light cones of our expanding universe. Compare with the light cones of a flat

Minkowski universe obtained by setting q = 0 in this formula. These light cones are tangent

to the singularity at t = 0. As a consequence the light cones in this curved geometry of any

two points do not necessarily need to intersect in the past as opposed to the flat Minkowski

universe where the light cones of any two points intersect both in the past and in the future.

4.4.2 Cosmological Redshift

Recall that a Killing vector is any vector which satisfies the Killing equation ∇µKν +

∇νKµ = 0. This Killing vector generates an isometry of the metric which is associated with

the conservation of the momentum pµK
µ along the geodesic whose tangent vector is pµ.

In an FLRW universe there could be no Killing vector along timelike geodesic and thus no

concept of conserved energy. However we can define Killing tensor along timelike geodesic. We

introduce the tensor

Kµν = a2(t)(gµν +
UµUν

c2
). (4.90)

We have

∇(σKµν) = ∇σKµν +∇µKσν +∇νKµσ

= ∂σKµν + ∂µKσν + ∂νKµσ − 2Γρ
σµKρν − 2Γρ

σνKµρ − 2Γρ
µνKσρ. (4.91)

Since Uµ is the 4−vector velocity of comoving observers in the FLRW universe we have Uµ =

(c, 0, 0, 0) and Uµ = (−c, 0, 0, 0) and as a consequence Kµν = a4diag(0, 1/(1−κρ2), ρ2, ρ2 sin2 θ).

In other words Kij = a2gij = a4γij, K0i = K00 = 0. The first set of non trivial components of

∇(σKµν) are

∇(0Kij) = ∇(iK0j) = ∇(jKi0) = ∇0Kij

= ∂0Kij − 2Γk
0iKkj − 2Γk

0jKik. (4.92)

By using the result Γk
0i = ȧδki /ca we get

∇(0Kij) = ∂0Kij − 4
ȧa

c
gij

= ∂0Kij −
d

dx0
a4.γij

= 0. (4.93)
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The other set of non trivial components of ∇(σKµν) are

∇(iKjk) = ∇iKjk +∇jKik +∇kKij

= a4(∇iγjk +∇jγik +∇kγij)

= 0. (4.94)

In the last step we have used the fact that the 3−dimensional metric γij is covariantly constant

which can be verified directly.

We conclude therefore that the tensor Kµν is a Killing tensor and hence K2 = KµνV
µV ν

where V µ = dxµ/dτ is the 4−vector velocity of a particle is conserved along its geodesic. We

have two cases to consider:

• Massive Particles: In this case V µVµ = −c2 and thus (V 0)2 = c2 + gijV
iV j = c2 + ~V 2.

But since UµV
µ = −cV 0 we have

K2 = KµνV
µV ν

= a2(V µVµ +
(UµV

µ)2

c2
)

= a2~V 2. (4.95)

We get then the result

|~V | = K

a
. (4.96)

In other worlds particles slow down with respect to comoving coordinates as the universe

expands. This is equivalent to the statement that the universe cools down as it expands.

• Massless Particles: In this case V µVµ = 0 and hence

K2 = KµνV
µV ν

= a2(V µVµ +
(UµV

µ)2

c2
)

=
a2

c2
(UµV

µ)2. (4.97)

We get now the result

|UµV
µ| = cK

a
. (4.98)

However recall that the energy E of the photon as measured with respect to the comoving

observer whose 4−vector velocity is Uµ is given by E = −pµUµ. But the 4−vector energy-

momentum of the photon is given by pµ = V µ. Hence we obtain

E =
cK

a
. (4.99)
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An emitted photon with energy Eem will be observed with a lower energy Eob as the

universe expands, viz

Eem

Eob
=
aob
aem

> 1. (4.100)

We define the redshift

zem =
Eem − Eob

Eob

. (4.101)

This means that

aem =
aob

1 + zem
. (4.102)

Recall that a(t) = R(t)/R0. Thus if we are observing the photon today we must have

aob(t) = 1 or equivalently Rob(t) = R0. We get then

aem =
1

1 + zem
. (4.103)

The redshift is a direct measure of the scale factor at the time of emission.

4.4.3 Comoving and Instantaneous Physical Distances

Note that the above described redshift is due to the expansion of the universe and not

to the relative velocity between the observer and emitter and thus it is not the same as the

Doppler effect. However over distances which are much smaller than the Hubble radius 1/H0

and the radius of spatial curvature 1/
√
κ we can view the expansion of the universe as galaxies

moving apart and as a consequence the redshift can be thought of as a Doppler effect. The

redshift can therefore be thought of as a relative velocity. We stress that this picture is only

an approximation which is valid at sufficiently small distances.

The distance d from us to a given galaxy can be taken to be the instantaneous physical

distance dp. Recall the metric of the FLRW universe given by

ds2 = −c2dt2 +R2
0a

2(t)(dχ2 + S2
k(χ)dΩ

2). (4.104)

Sk(χ) = sinχ , k = +1

Sk(χ) = χ , k = 0

Sk(χ) = sinhχ , k = −1. (4.105)

Clearly the instantaneous physical distance dp from us at χ = 0 to a galaxy which lies on a

sphere centered on us of radius χ is

dp = R0a(t)χ. (4.106)
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The radial coordinate χ is constant since we are assuming that us and the galaxy are perfectly

comoving. The relative velocity (which we can define only within the approximation that the

redshift is a Doppler effect) is therefore

v = ḋp = R0ȧχ =
ȧ

a
dp = Hdp. (4.107)

At present time this law reads

v = H0dp. (4.108)

This is the famous Lemâıtre-Hubble law: Galaxies which are not very far from us move away

from us with a recess velocity which is linearly proportional to their distance.

The instantaneous physical distance dp is obviously not a measurable quantity since mea-

surement relates to events on our past light cone whereas dp relates events on our current spatial

hyper surface.

4.4.4 Luminosity Distance

The luminosity distance is the distance inferred from comparing the proper luminosity to the

observed brightness if we were in flat and non expanding universe. Recall that the luminosity

L of a source is the amount of energy emitted per unit time. This is the proper or intrinsic

luminosity of the source. We will assume that the source radiates equally in all directions. In

flat space the flux of the source as measured by an observer a distance d away is the amount

of energy per unit time per unit area given by F = L/4πd2. This is the apparent brightness at

the location of the observer. We write this result as

F

L
=

1

4πd2
. (4.109)

Now in the FLRW universe the flux will be diluted by two effects. First the energy of each

photon will be redshift by the factor 1/a = 1 + z due to the expansion of the universe. In

other words the luminosity L must be changed as L −→ (1 + z)L. In a comoving system light

will travel a distance |d~u| = cdt/(R0a) during a time dt. Hence two photons emitted a time

δt apart will be observed a time (1 + z)δt apart. The flux F must therefore be changed as

F −→ F/(1 + z). Hence in the FLRW universe we must have

F

L
=

1

(1 + z)2A
. (4.110)

The area A of a sphere of radius χ in the comoving system of coordinates is from the FLRW

metric

A = 4πR2
0a

2(t)S2
k(χ) = 4πR2

0S
2
k(χ). (4.111)
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Again we used the fact that at the current epoch a(t) = 1. The luminosity distance dL is the

analogue of d and thus it must be defined by

d2L =
L

4πF
⇒ dL = (1 + z)R0Sk(χ). (4.112)

Next on a null radial geodesic we have −c2dt2 + a2(t)R2
0dχ

2 = 0 and thus we obtain (by using

dt = da/(aH) and remembering that at the emitter position χ
′

= 0 and a = a(t) whereas at

our position χ
′

= χ and a = 1)

∫ χ

0

dχ
′

=
c

R0

∫ t1

ta

dt
′

a(t′)
=

c

R0

∫ 1

a

da
′

a′2H(a′)
. (4.113)

We convert to redshift by the formula a = 1/(1 + z
′

). We get

χ =
c

R0

∫ z

0

dz
′

H(z′)
. (4.114)

The Friedmann equation is

H2 =
8πG

3

∑

i,c

ρi

=
8πG

3

∑

i,c

ρi0a
−ni

=
8πG

3

∑

i,c

ρi0(1 + z
′

)ni

= H2
0

∑

i,c

Ωi0(1 + z
′

)ni

= H2
0E

2(z
′

). (4.115)

Thus

H(z
′

) = H0E(z
′

) , E(z
′

) =

[

∑

i,c

Ωi0(1 + z
′

)ni

]
1

2

. (4.116)

Hence

χ =
c

R0H0

∫ z

0

dz
′

E(z′)
. (4.117)

The luminosity distance becomes

dL = (1 + z)R0Sk

(

c

R0H0

∫ z

0

dz
′

E(z′)

)

. (4.118)
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Recall that the curvature density is Ωc = −κc2/(H2a2) = −k2c2/(H2R2(t)). Thus

Ωc0 = − kc2

H2
0R

2
0

⇒ R0 =
c

H0

√

− k

Ωc0
=

c

H0

√

1

|Ωc0|
. (4.119)

The above formula works for k = ±1. This formula will also lead to the correct result for k = 0

as we will now show. Thus for k = ±1 we have

c

R0H0
=

√

|Ωc0|. (4.120)

In other words

dL = (1 + z)
c

H0

1
√

|Ωc0|
Sk

(

√

|Ωc0|
∫ z

0

dz
′

E(z′)

)

. (4.121)

For k = 0, the curvature density Ωc0 vanishes but it cancels exactly in this last formula for dL
and we get therefore the correct answer which can be checked by comparing with the original

formula (4.118).

The above formula allows us to compute the distance to any source at redshift z given H0

and Ωi0 which are the Hubble parameter and the density parameters at our epoch. Conversely

given the distance dL at various values of the redshift we can extract H0 and Ωi0.

4.4.5 Other Distances

Proper Motion Distance: This is the distance inferred from the proper and observable

motion of the source. This is given by

dM =
u

θ̇
. (4.122)

The u is the proper transverse velocity whereas θ̇ is the observed angular velocity. We can

check that

dM =
dL

1 + z
. (4.123)

The Angular Diameter Distance: This is the distance inferred from the proper and ob-

served size of the source. This is given by

dA =
S

θ
. (4.124)

The S is the proper size of the source and θ is the observed angular diameter. We can check

that

dA =
dL

(1 + z)2
. (4.125)
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4.4.6 Age of the Universe

Let t0 be the age of the universe today and let t∗ be the age of the universe when the photon

was emitted. The difference t0 − t∗ is called lookback time. This is given by

t0 − t∗ =

∫ t0

t∗

dt

=

∫ 1

a∗

da

aH(a)

=
1

H0

∫ z∗

0

dz
′

(1 + z′)E(z′)
. (4.126)

For a flat (k = 0) matter-dominated (ρ ≃ ρM = ρM0a
−3) universe we have ΩM0 ≃ 1 and hence

E(z
′

) =
√

ΩM0(1 + z′)3 + ... = (1 + z
′

)3/2. Thus

t0 − t∗ =
1

H0

∫ z∗

0

dz
′

(1 + z′)
5

2

=
2

3H0

[

1− 1

(1 + z∗)
3

2

]

. (4.127)

By allowing t∗ −→ 0 we get the actual age of the universe. This is equivalent to z∗ −→ ∞ since

a photon emitted at the time of the big bang will be infinitely redshifted , i.e. unobservable.

We get then

t0 =
2

3H0
. (4.128)



Chapter 5

Cosmology III: The Inflationary

Universe

5.1 Cosmological Puzzles

The isotropy and homogeneity of the universe and its spatial flatness are two properties

which are highly non generic and as such they can only arise from very special set of initial

conditions which is a very unsatisfactory state of affair. Inflation is a dynamical mechanism

which allows us to go around this problem by permitting the universe to evolve to the state of

isotropy/homogeneity and spatial flatness from a wide range of initial conditions.

Another problem solved by inflation is the relics problem. Relics refer to magnetic monopoles,

domain walls and supersymmetric particles which are assumed to be produced during the early

universe yet they are not seen in observations.

As it turns out inflation does also provide the mechanism for the formation of large scale

structure in the universe starting from minute quantum fluctuations in the early universe.

5.1.1 Homogeneity/Horizon Problem

The metric of the FLRW universe can be put in the form

ds2 = −dt2 +R2(t)(dχ2 + S2
k(χ)dΩ

2). (5.1)

Sk(χ) = sinχ , k = +1

Sk(χ) = χ , k = 0

Sk(χ) = sinhχ , k = −1. (5.2)

We introduce the conformal time τ by

τ =

∫

dt

R(t)
. (5.3)
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The FLRW metric becomes

ds2 = R2(τ)

[

− dτ 2 + dχ2 + S2
k(χ)dΩ

2

]

≡ R2(τ)

[

− dτ 2 + d~χ2

]

. (5.4)

The motion of photons in the Friedmann-Lemâıtre-Robertson-Walker universe is given by null

geodesics ds2 = 0. In an isotropic universe it is sufficient to consider only radial motion. The

condition ds2 = 0 is then equivalent to dτ = dχ. The maximum comoving distance a photon

can travel since the initial singularity at t = ti (R(ti) = 0) is

χhor(t) ≡ τ − τi =

∫ t

ti

dt1
R(t1)

. (5.5)

The is called the particle horizon. Indeed, particles separated by distances larger than χhor

could have never been in causal contact. On the other hand, the comoving Hubble radius 1/aH

is such that particles separated by distances larger than 1/aH can not communicate to each

other now. The physical size of the particle horizon is

dhor = Rχhor. (5.6)

The existence of particle horizons is at the heart of the so-called horizon problem, i.e. of the

problem of why the universe is isotropic and homogeneous.

The universe has a finite age and thus photons can only travel a finite distance since the

big bang singularity. This distance is precisely dhor(t) which can be rewritten as

dhor(t) = a(t)

∫ t

ti

dt1
a(t1)

= a(t)

∫ a(t)

a(ti)=0

1

a(t1)H(t1)
d ln a(t1). (5.7)

The number 1/aH is precisely the comoving Hubble radius. The distance dhor(t0) is effectively

the distance to the surface of last scattering which corresponds to the decoupling event.

The first Friedmann equation can be rewritten as H2a2 = 8πGρ0a
−(1+3w)/3− κ. For a flat

universe we have

1

aH
=
a

1

2
(1+3w)

H0
. (5.8)

It is then clear that the particle horizon is given by

χhor =
2

H0(1 + 3w)
a

1

2
(1+3w). (5.9)

For a matter-dominated flat universe we have w = 0 and hence H = H0a
−3/2 or equivalently

a = (t/t0)
2/3. In this case

χhor =
2

H0
a

1

2 ⇒ dhor =
2

H
. (5.10)
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For a radiation-dominated flat universe we have w = 1/3 and hence H = H0a
−2 or equivalently

a = (t/t0)
1/2. In this case

χhor =
1

H0
a⇒ dhor =

1

H
. (5.11)

For a flat universe containing both matter and radiation we should get then

dhor ∼
1

H
. (5.12)

In other words

dhor ∼ dH . (5.13)

The so-called Hubble distance dH is defined simply as the inverse of the Hubble parameter H .

This is the source of the horizon problem. Inflation solves this problem by making dhor >> dH .

Let us put this important point in different words. The cosmic microwave background

(CMB) radiation consists of photons from the epochs of recombination and photon decoupling.

The CMB radiation comes uniformly from every direction of the sky. The physical distance at

the time of emission te of the source of the CMB radiation as measured from an observer on

Earth making an observation at time t0 is given by

∆d(te) = a(te)

∫ t0

te

dt1
a(t1)

= 3t2/3e (t
1/3
0 − t1/3e ) : MD. (5.14)

The physical distance between sources of CMB radiation coming from opposite directions of

the sky at the time of emission is therefore given by

2∆d(te) = 6t
2/3
e (t

1/3
0 − t

1/3
e ) : MD. (5.15)

At the time of emission te the maximum distance a photon had traveled since the big bang is

dhor(te) = a(te)

∫ te

0

dt1
a(t1)

= 3te : MD. (5.16)

This is the particle horizon at the time of emission, i.e. the maximum distance that light can

travel at the time of emission.

We compute

2∆d(te)

dhor(te)
= 2(a(te)

−1/2 − 1). (5.17)

By looking at CMB we are looking at the universe at a scale factor aCMB ≡ a(te) = 1/1200.

Thus

2∆d(te)

dhor(te)
≃ 67.28. (5.18)
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In other words 2∆d(te) > dhor(te). The two widely separated parts of the CMB considered above

have therefore non overlapping horizons and as such they have no causal contact at recombina-

tion (the time of emission te), yet these two widely separated parts of the CMB have the same

temperature to an incredible degree of precision (this is the observed isotropy/homogeneity

property). See figure 1COS, 1. How did they know how to do that?. This is precisely the

horizon problem.

5.1.2 Flatness Problem

The first Friedmann equation can be rewritten as

Ω− 1 =
κ

a2H2
. (5.19)

The density parameter is

Ω =
ρ

ρc
. (5.20)

The critical density is

ρc =
3

8πG
H2. (5.21)

We know that 1/(a2H2) = a1+3w/H2
0 and thus as the universe expands the quantity Ω − 1

increases, i.e. Ω moves away from 1. The value Ω = 1 is therefore a repulsive (unstable) fixed

point since any deviation from this value will tend to increase with time. Indeed we compute

(with g = Ω− 1)

a
dg

da
= (1 + 3w)g. (5.22)

By assuming the strong energy condition we have ρ+ P ≥ 0 and ρ+ 3P ≥ 0, i.e. 1 + 3w > 0.

The value Ω = 1 is then clearly a repulsive fixed point since dΩ/d ln a > 0.

As a consequence the value Ω ∼ 1 observed today can only be obtained if the value of Ω in

the early universe is fine-tuned to be extremely close to 1. This is the flatness problem.

5.2 Elements of Inflation

5.2.1 Solving the Flatness and Horizon Problems

The second Friedmann equation can be put into the form

ä

a
= −4πG

3
(ρ+ 3P ). (5.23)
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For matter satisfying the strong energy condition, i.e. ρ + 2P ≥ 0 we have ä < 0. Inflation is

any epoch with ä > 0. We explain this further below.

We have shown that the first Friedmann equation can be put into the form |Ω − 1| =

κ/(a2H2). The problem with the hot big bang model (big bang without inflation) is simply

that aH is always decreasing so that Ω is always flowing away from 1. Indeed, in a universe

filled with a fluid with an equation of state w = P/ρ with the strong energy condition 1+3w > 0

the comoving Hubble radius is given by

1

aH
∝ a

1+3w
2 . (5.24)

Thus ä = d(aH)/dt is always negative. Inflation is the hypothesis that during the early universe

there was a period of accelerated expansion ä > 0. We write this condition as

ä =
d(aH)

dt
> 0 ⇔ P < −ρ

3
. (5.25)

Thus the comoving Hubble length 1/(aH) is decreasing during inflation whereas in any other

epoch it will be increasing. This behavior holds in a vacuum-dominated flat universe (P = −ρ,
ρ ∝ a0, a(t) ∝ exp(Ht)). However inflation can only be a phenomena of the early universe and

thus must terminate quickly in order for the hot big bang theory to proceed normally.

Inflation solves the flatness problem by construction since in the first Friedmann equation

|Ω − 1| = κ/(a2H2) the right hand side decreases rapidly during inflation and thus driving Ω

towards 1 (towards flatness) quite fast. Another way of putting it using the first Friedmann

equation in the form H2 = 8πGρ/3− κ/a2 is as follows. In a vacuum-dominated (for example)

universe the mass density ρ ∝ a0 grows very fast with respect to the spatial curvature term

−κ/a2 and hence the universe becomes flatter very quickly.

The horizon problem is also solved by inflation. Recall that this problem arises from the fact

that the physical horizon length dhor(te) grows more rapidly with the scale factor (in a matter-

dominated or radiation-dominated universe) than the physical distance 2∆d(te) between any

two comoving objects. We need therefore to reverse this situation so that

∆d(te) << dhor(te). (5.26)

Or equivalently
∫ te

0

dt1
a(t1)

>>

∫ t0

te

dt1
a(t1)

. (5.27)

This means in particular that we want a situation where photons can travel much further

before recombination/decoupling than it can afterwards. Equivalently, if the Hubble radius is

decreasing then the strong energy condition is viloated and as a consequence the Big Bang

singularity is pushed to infinite negative conformal time since

τ =

∫

dt

a(t)
∝ 2

1 + 3w
a

1+3w
2 . (5.28)
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In other words, there is much more conformal time between the initial Big Bang singularity

and decoupling with inflation.

In a universe with a period of inflation the comoving Hubble length 1/(aH) is decreasing

during inflation. Thus if we start with a large Hubble length then a sufficiently large and smooth

patch within the Hubble length can form by ordinary causal interactions. Inflation will cause

this Hubble length to shrink enormously to within the smooth patch and after inflation comes

to an end the Hubble length starts increasing again but remains within the smooth patch. See

figure 1COS, 2.

This can also be stated as follows. All comoving scales k−1 which are relevant today were

larger than the Hubble radius until a = 10−5 (start of inflation). At earlier times these scales

were within the Hubble radius and thus were casually connected whereas at recent times these

scales re-entered again within the Hubble radius. See figure 1COS, 3.

The observable universe is therefore one causal patch of a much larger unobservable universe.

In other words there are parts of the universe which cannot communicate with us yet but they

will eventually come into view as the cosmological horizon moves out and which will appear to

us no different from any other region of space we have already seen since they are within the

smooth patch. This explains homogeneity or the horizon problem. However there are possibly

other parts of the universe outside the smooth patch which are different from the observable

universe.

5.2.2 Inflaton

Inflation can be driven by a field called inflaton. This is a scalar field coupled to gravity

with dynamics given by the usual action

Sφ =

∫

d4x
√

−detg

[

− 1

2
gµν∇µφ∇νφ− V (φ)

]

. (5.29)

The equations of motion read

δSφ

δφ
≡ ∇ν(g

µν∇µφ)−
δV

δφ

=
1√−detg

∂µ(
√

−detg ∂µφ)− δV

δφ

= ∂µ∂
µφ+

1

2
gαβ∂µgαβ∂

µφ− δV

δφ

= 0. (5.30)

For a homogeneous field φ ≡ φ(t, ~x) = φ(t) we obtain

∂0∂
0φ+

1

2
gαβ∂0gαβ∂

0φ− δV

δφ
= 0. (5.31)
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In the RW metric we obtain

φ̈+ 3Hφ̇+
δV

δφ
= 0. (5.32)

The corresponding stress-energy-momentum tensor is calculated to be given by

T (φ)
µν = ∇µφ∇νφ− 1

2
gµνg

ρσ∇ρφ∇σφ− gµνV (φ). (5.33)

Explicit calculation shows that this stress-energy-momentum tensor is of the form of the stress-

energy-momentum tensor of a perfect fluid Tµ
ν = (−ρφ, Pφ, Pφ, Pφ) with

ρφ =
1

2
φ̇2 + V , Pφ =

1

2
φ̇2 − V. (5.34)

The equation of state is therefore

wφ =
Pφ

ρφ
=

1
2
φ̇2 − V

1
2
φ̇2 + V

. (5.35)

We can have accelerated expansion wφ < −1/3 if the potential dominates over the kinetic

energy. In other words we will have inflation whenever the potential dominates. The first

Friedmann equation in this case reads (assuming also flatness)

H2 =
8πG

3
(
1

2
φ̇2 + V ). (5.36)

The second Friedmann equation reads

ä

a
= −8πG

3
(φ̇2 − V )

= H2(1− ǫ). (5.37)

The so-called slow-roll parameter is given by

ǫ = 4πG
φ̇2

H2

=
3

2
(1 + wφ). (5.38)

This can also be expressed as

ǫ = − Ḣ

H2
. (5.39)

Let us introduce N = ln a, i.e. dN = Hdt. Then we can show that

ǫ = −d lnH
dN

. (5.40)
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Inflation corresponds to ǫ < 1. In the so-called de Sitter limit Pφ −→ −ρφ (wφ −→ −1,

ǫ −→ 0) we observe that the kinetic energy can be neglected compared to the potential energy,

i.e. φ̇2 << V . We have then

ǫ << 1 ⇔ φ̇2 << V. (5.41)

This condition means that the scalar field is moving very slowly because for example the po-

tential is flat.

In order to maintain accelerated expansion for a sufficient long time we require also that

the second derivative of φ is small enough, viz |φ̈| << |3Hφ̇| and |φ̈| << |δV /δφ|. This second
condition means that the field keeps moving slowly over a wide range of its values and hence

the term slowly rolling. We compute

1

2ǫ

dǫ

dt
=
φ̈

φ̇
− Ḣ

H
⇒ 1

2ǫ

dǫ

dN
=

φ̈

Hφ̇
+ ǫ. (5.42)

We introduce a second slow-roll parameter by

η = − φ̈

φ̇H

= ǫ− 1

2ǫ

dǫ

dN
. (5.43)

It is clear that sustained acceleration is equivalent to the condition η << 1. In other words

η << 1 ⇔ |φ̈| << |3Hφ̇| , |φ̈| << |δV
δφ

|. (5.44)

The equations of motion in the slow-roll regime are

H2 ≃ 8πG

3
V , φ̇ = −δV/δφ

3H
. (5.45)

Since φ is almost constant during slow-roll we can assume that H2 ≃ constant in this regime

and hence a(t) ≃ exp(Ht). This is de Sitter spacetime.

Instead of the Hubble slow-roll parameters ǫ and η we can work with the potential slow-roll

parameters ǫV and ηV defined as follows. The first slow-roll parameter ǫ is equivalent to

ǫ ≃ 3

2

φ̇2

V

≃ 1

6H2

(δV/δφ)2

V

≃ 1

16πG

(δV/δφ)2

V 2

≃ ǫV . (5.46)



GR, B.Ydri 126

We compute

1

2ǫ

dǫ

dt
≃ φ̇

δV/δφ

(

δ2V

δφ2
− 1

V

(δV

δφ

)2
)

⇔ 1

2ǫ

dǫ

dN
≃ φ̇

HδV/δφ

(

δ2V

δφ2
− 1

V

(δV

δφ

)2
)

. (5.47)

The second slow-roll parameter η is therefore equivalent to

η ≃ 1

8πG

δ2V/δφ2

V
− ǫV

≃ ηV − ǫV . (5.48)

The slow-roll conditions ǫ, |η| << 1 are equivalent to

ǫV , |ηV | << 1. (5.49)

These are obviously conditions on the shape of the inflationary potential. The first (inflation)

states that the slope of the potential is small whereas the second (prolonged inflation) states

that the curvature of the potential is small. These are necessary conditions for the slow-roll

state but they are not sufficient. For example a potential could be very flat but the velocity of

the field is very large.

The amount of inflation is defined by the logarithm of the expansion or equivalently the

number of e−foldings N given by

N = ln
a(tend)

a(tinitial)
=

∫ te

ti

Hdt

=

∫ φ(te)

φ(ti)

H

φ̇
dφ

= 8πG

∫ φ(te)

φ(ti)

V

δV/δφ
dφ

=
√
8πG

∫ φ(te)

φ(ti)

1√
2ǫV

dφ. (5.50)

In order to solve the horizon and the flatness problems we need a minimum amount of inflation

of at least 60 e−foldings which is equivalent to an expansion by a factor of 1030.

Inflation ends at the value of the field φend where the kinetic energy becomes comparable

to the potential energy. This is the value where the slow-roll conditions breaks down, viz

ǫ(φend) = 1, ǫV (φend) ≃ 1. After inflation ends the scalar field starts oscillating around the

minimum of the potential and then decays into conventional matter. This is the process of

reheating which is followed by the usual hot big bang theory. See figure 1COS, 3.

The most simple and interesting models of inflation involve 1) a single rolling scalar field

and 2) a potential V which satisfies the slow-roll conditions in some regions and possesses a

minimum with zero potential where inflation terminates. Some of these models are

V = λpφ
p , chaotic inflation. (5.51)
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V = V0(1 + cos
φ

f
) , natural inflation. (5.52)

V = V0 exp(αφ) , power− law inflation. (5.53)

5.2.3 Amount of Inflation

As pointed out above in order to solve the horizon and the flatness problems we need a

minimum amount of inflation of at least 60 e−foldings which is equivalent to an expansion by

a factor of 1030. A clean argument is found in [41].

We imagine a universe in which inflation starts at ti with a scale factor a(ti) and ends at

tf with a scale factor a(tf ). The current time is t0 with a scale factor a(t0). During inflation

we can assume that H is constant (de Sitter spacetime) and as a consequence the (vacuum)

mass density ρV is constant. We assume for simplicity that between the end of inflation and

the current moment the universe is radiation-dominated with a density ρR behaving as 1/a4.

We assume that at tf the vacuum density is fully converted into radiation, viz ρR(tf ) = ρV .

We recall that the density parameter ΩC associated with curvature is given by

ΩC =
ρC
ρc

= − κ

a2H2
= − κ

ȧ2
. (5.54)

During inflation the expansion is accelerating, since gravity is acting as repulsive due to the

dominance of the vacuum energy, and thus ȧ increases and hence ΩC decreases. Thus ΩC << 1

today at t0 can be easily explained with more inflation. On the other hand, if inflation is

preceded with a long phase of deceleration in which gravity acts in the usual way as attractive,

then ȧ at ti must be very small and hence ΩC >> 1 at the beginning of inflation. This case

also would only require more inflation to explain. Thus it is sufficient to assume that ΩC ∼ 1

at t0 and ti. This means that at t0 and ti ρC is equal to the critical density ρc. In other words,

at t0 and ti we have nothing but curvature, viz

ρV (ti) = ρC(ti) , ρR(t0) = ρC(t0). (5.55)

We compute now

ρC(a0)

ρC(ai)
=

( ai
a0

)2

=
ρR(a0)

ρV (ai)

=
ρR(a0)

ρV (af )

=
ρR(a0)

ρR(af )

=
(af
a0

)4
. (5.56)
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The solution is thus

af
ai

=

√

a0
ai

=
a0
af
. (5.57)

In general we obtain
af
ai

≥ a0
af
. (5.58)

In terms of the e-fold number N = ln a this reads

Nf −Ni ≥ N0 −Nf . (5.59)

The amount of inflation is precisely ∆N = Nf − Ni. Thus we have more expansion during

inflation than since the end of inflation. Although there is no upper bound on the amount of

inflation, there is a lower bound given by

∆Nmin = N0 −Nf

= ln
a(t0)

a(tf )

=
1

4
ln
ρR(af )

ρR(a0)
. (5.60)

As we will show later the energy scale of inflation is ρR(af) ∼ 10−12ρpl. Also we have already

seen that the energy density contained in radiation is ρrad = 10−34g/cm3 = 10−127ρpl where

ρpl = 1093g/cm3. Hence the minimum amount of inflation is

∆Nmin =
1

4
ln

10−12

10−127
∼ 66. (5.61)

From this approach we can get another important estimation. We have

∆N = ln
a(tf )

a(ti)
=

∫

Hdt

= Hi(tf − ti) +
H2

i (tf − ti)
2

2

Ḣi

H2
i

+ ... (5.62)

We must then have

Hi(tf − ti) > 66. (5.63)

|Ḣi|
H2

i

<
1

66
. (5.64)

However, from the Friedmann equations H2 = 8πGρ̄/3, Ḣ = −4πG(ρ̄+ P̄) we have

Ḣ

H2
= −3

2
(1 +

P̄
ρ̄
). (5.65)

We get immediately the estimate

1 +
P̄i

ρ̄i
<

1

99
∼ 10−2. (5.66)
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5.2.4 End of Inflation: Reheating and Scalar-Matter-Dominated Epoch

We start by summarizing the main results of the previous section. The main equations are

the equation of motion of the inflaton scalar field and the Friedmann equation given respectively

by

φ̈+ 3Hφ̇+
∂V

∂φ
= 0. (5.67)

H2 =
8πG

3
(
1

2
φ̇2 + V ). (5.68)

The slow-roll approximation is given by the conditions

ǫ << 1 , η << 1 ⇔ φ̇2 << V , |φ̈| << |3Hφ̇| , |φ̈| << |δV
δφ

|. (5.69)

Equivalently

ǫV << 1 , ηV << 1 ⇔ (δV/δφ)2

V 2
<< 1 ,

δ2V/δφ2

V
<< 1. (5.70)

The equations of motion during slow-roll are:

H2 ≃ 8πG

3
V , φ̇ = −δV/δφ

3H
. (5.71)

These two equations can be combined to give the equation of motion

d ln a

dφ
= −8πG

V
∂V
∂φ

. (5.72)

The solution is

a(φ) = ai exp

(

− 8πG

∫ φ

φi

V
∂V
∂φ

dφ

)

. (5.73)

For a power-law potential V = λφn/n the slow-roll conditions are equivalent to φ >> 1 and

the above solution is given by

a(φ) = ai exp

(

− 4πG

n
(φ2 − φ2

i )

)

. (5.74)

Let us consider a quadratic potential V = m2φ2/2 at the end of inflation. By combining the

Friedmann equation and the equation of motion of the scalar field we obtain a differential

equation for φ̇ as a function of φ given by

dφ̇

dφ
= −

m2φ+
√

12πG(φ̇2 +m2φ2)

φ̇
. (5.75)
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In slow-roll we have dφ̇/dφ ∼ 0, φ̇ = constant and φ >> 1. A solution is given by

φ̇ = − m√
12πG

, φ = − m√
12πG

(tf − t). (5.76)

Since |φ| >> 1 during inflation we must have mt >> 1. The pressure is given by

P = −ρ+ φ̇2 = −ρ+ m2

12πG
. (5.77)

When the scalar field drops to its Planck value φ ∼ 1/
√
12πG we observe that the energy density

drops to m2/12πG and hence the pressure vanishes. Inflation is then over. Thus inflation ends

when the scalar field becomes of order 1 in Planck units. The duration of inflation is

∆t = tf − ti = −
√
12πG

m
∆φ =

√
12πG

φi

m
. (5.78)

By substituting the above solution into Friedmann equation we get

H =
1

3
m2(tf − t) = −

√

4πG

3
mφ. (5.79)

a(t) = a(tf ) exp
(

− m2

6
(tf − t)2

)

(5.80)

We get immediately

af
ai

= exp
(

2πGφ2
i

)

. (5.81)

Thus in order to get a 75 e-folds we must start with a value of the scalar field which is four

times the Planck value, viz φi ∼ 4/
√
G.

Alternatively, the Friedmann equation can be immediately solved by the ansatz

mφ =

√

3

4πG
H cos θ. (5.82)

φ̇ =

√

3

4πG
H sin θ. (5.83)

By taking the time derivative of the first equation and comparing with the second one we get

Ḣ

H
cos θ − θ̇ sin θ = m sin θ. (5.84)

By taking the time derivative of the second equation and comparing with the value of φ̈ obtained

from the equation of motion of the inflaton field we get

Ḣ

H
sin θ + θ̇ cos θ = −3H sin θ −m cos θ. (5.85)
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Solving the above two equations for Ḣ and θ̇ in terms of the original variables H and θ we get

Ḣ = −3H2 sin2 θ , θ̇ = −m− 3

2
H sin 2θ. (5.86)

In terms of α defined by θ = −mt + α these read

Ḣ = −3H2 sin2(mt− α) , α̇ =
3

2
H sin 2(mt− α). (5.87)

For mt >> 1, i.e. towards the end of inflation, we can neglect α:

Ḣ = −3H2 sin2(mt). (5.88)

The solution is

H =
2

3t

(

1− sin 2mt

2mt

)−1

=
2

3t

(

1 +
sin 2mt

2mt
+ ...

)

. (5.89)

Now we can check directly that α corresponds to oscillations with decaying amplitude. We

can also show that the scalar field oscillates with a frequency ω = m with slowly decaying

amplitude. On the other hand, the scale factor behaves as

a = t2/3
(

1 +O(
1

(m2t2)
)
)

. (5.90)

We get therefore a graceful exit into a matter-dominated phase. In summary, if the mass is

sufficiently small compared to the Planck mass the inflationary phase will last sufficiently long

and is followed by a matter-dominated phase. Furthermore, a quadratic potential gives rise

naturally to a post-inflationary matter-dominated universe consisting of heavy scalar particles

which will eventually be converted into photons, baryons and leptons (reheating). The usual

radiation-dominated, matter-dominated and vacuum-dominated phases follow after reheating.

Other power-law potentials will also give oscillatory stages with scale factors behaving as

a ∼ tp. For example, a quartic potential will give an oscillating scalar field with the scale factor

of a radiation-dominated universe, viz a ∼ t1/2.

5.3 Perfect Fluid Revisited

Let ρ be the mass density of a perfect fluid, P its pressure, S its entropy per unit mass and

~u its flow velocity vector, i.e. the velocity of an element of fluid at a point ~x at a time t. The

equation of state of the perfect fluid allows us to determine the pressure in terms of the mass

density ρ and the entropy S, viz

P = P (ρ, S). (5.91)
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The state of the prefect fluid is therefore completely determined by the mass density ρ, the

entropy per unit mass S and the flow velocity vector ~u. In the absence of dissipation the

entropy is conserved, i.e.

dS

dt
=

∂S

∂t
+ (~u.~∇)S

= 0. (5.92)

The mass M contained in a volume V is given by

M =

∫

V

dV ρ. (5.93)

The rate of change of the mass contained in V is obviously given by

dM

dt
=

∫

V

dV
∂ρ

∂t
. (5.94)

This rate of change is also obviously given by the mass flowing through the surface Σ which

encloses the volume V . Since the amount of mass flowing per unit area per unit time is ~J = ρ~u

the rate of change dM/dt can be rewritten as

dM

dt
= −

∮

Σ

d~σ ~J = −
∫

V

dV ~∇(ρ~u). (5.95)

We get therefore the continuity equation

∂ρ

∂t
+ ~∇(ρ~u) = 0. (5.96)

The Newtonian gravitational potential Φ generated by the mass density ρ is given by the Poisson

equation

∇Φ = 4πGρ. (5.97)

The force exerted by this potential Φ on a mass ∆M is given by Newton’s law of gravitation,

viz

~Fgr = −∆M~∇Φ. (5.98)

The other force acting on ∆M is due to the pressure P of the perfect fluid and is given by

~Fpr = −
∮

∆Σ

Pd~σ

= −
∮

∆V

~∇PdV

≃ −~∇P∆V. (5.99)
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Newton’s second law then reads

−∆M~∇Φ− ~∇P∆V = ∆M~g. (5.100)

However,

~g =
d~u

dt
=
∂~u

∂t
+ (~u~∇)~u. (5.101)

By identification we obtain Euler’s equation

∂~u

∂t
+ (~u~∇)~u+

~∇P
ρ

+ ~∇Φ = 0. (5.102)

We have seven equations: equation of state (5.91), conservation of the entropy (5.92), conti-

nuity equation (5.96), Poisson’s equation (5.97) and three Euler’s equations (5.102) for seven

unknowns: ρ, P , S, ~u and Φ.

Linearization of these equations around an expanding homogeneous and isotropic uni-

verse with mass density ρ0 = ρ0(t) and flow velocity vector ~u0 obeying the Hubble law, i.e.

~u0 = H(t)~x, leads to a Newtonian theory of gravitational instabilities. This topic is discussed

at length in [2]. In the following we will concentrate instead on the corresponding general

relativistic theory following mostly [2].

5.4 Cosmological Perturbations

5.4.1 Metric Perturbations

The universe is isotropic and homogeneous and spatially flat with a gravitational field de-

scribed by the RobertsonWalker metric. This is the punch line so far. However, this is just an

approximation which neglects the most obvious fact we observe directly around us which is the

presence of structure: galaxies, stars and us. All departures from homogeneity and isotropy

will be assumed to be small given by weak first order fluctuations. The perturbed metric is

given by

gµν = ḡµν + δgµν . (5.103)

ds̄2 = ḡµνdx
µdxν = −dt2 + a2(t)dxidxi. (5.104)

The inverse is given by

gµν = ḡµν − δgµν , δgµν = ḡµαḡνβδgαβ. (5.105)

The metric is a symmetric (0, 2) tensor containing 10 degrees of freedom. The 00 component

is a scalar under spatial rotations, the 0i (or equivalently i0) components form a vector under
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spatial rotations and the ij components form a rank 2 tensor under spatial rotations. We

introduce two scalars Φ and Ψ, a vector Bi and a traceless rank 2 tensor Eij under the action

of spatial rotations by the relations

δg00 = −2Φ

δg0i = aBi

δgij = a2[2Eij − 2Ψδij]. (5.106)

The metric takes the form

ds2 = −(1 + 2Φ)dt2 + 2aBidtdx
i + a2[2Eij + (1− 2Ψ)δij]dx

idxj . (5.107)

Ψδij and Eij form together a rank 2 tensor under spatial rotations where Ψ is precisely its trace.

We call Ψ the spatial curvature perturbation, Eij spatial shear tensor, Bi the shift and Φ the

lapse.

We can decompose any 3−vector such as Bi into a divergenceless 3−vector Si satisfying

∂iSi = 0, and a total derivative ∂iB as follows

Bi = −Si + ∂iB. (5.108)

This is Helmholtz’s decomposition. Similarly, we can Hodge decompose any symmetric traceless

3−tensor such as Eij into a divergenceless symmetric traceless 3−tensor hij satisfying ∂
ihij = 0

and hii = 0, and a divergenceless 3−vector Fi satisfying ∂
iFi = 0, and a scalar E as follows

Eij = ∂i∂jE + ∂iFj + ∂jFi +
1

2
hij . (5.109)

We get then the metric

ds2 = −(1 + 2Φ)dt2 + 2a(∂iB − Si)dtdx
i + a2

[

hij + 2∂i∂jE + 2∂iFj + 2∂jFi + (1− 2Ψ)δij
]

dxidxj .

(5.110)

There are 4 scalar degrees of freedom Φ, B, E and Ψ, 4 vector degrees of freedom contained in

Si and Fi which satisfy two constraints, and 2 tensor degrees of freedom contained in hij which

satisfies 4 constraints. Thus the total number of degrees of freedom is 4 + 4 + 2 = 10 which is

precisely the correct number of degrees of freedom contained in the perturbed metric.

As we will see scalars lead to, or are induced by, density fluctuations, and since they can

suffer from gravitational instabilities they can also lead to structure formation. On the other

hand, tensors lead to gravitational waves and as such they are absent in the Newtonian theory.

Further, it can be shown that the vector perturbations Si and Fi, which are related to the

rotational motions of the fluid, decay as 1/a2 with the expansion of the universe, which holds

true already in Newtonian theory, and thus they do not play an important role in cosmology.

The scalar, vector and tensor perturbations evolve independently of each other at the linear

order and as such they can be treated separately.



GR, B.Ydri 135

In the following we will mostly neglect vector perturbations for simplicity. The metric will

then read

ds2 = −(1 + 2Φ)dt2 + 2a∂iBdtdx
i + a2[hij + 2∂i∂jE + (1− 2Ψ)δij]dx

idxj. (5.111)

5.4.2 Gauge Transformations

We recall that coordinate transformations are given by

xµ −→ x
′µ = xµ + ǫµ(x). (5.112)

gµν(x) −→ g
′

µν(x
′

) =
∂xα

∂x′µ

∂xβ

∂x′ν
gαβ(x). (5.113)

Explicitly we have

g
′

µν(x
′

) = [δαµ − ∂ǫα

∂x′µ
][δβν − ∂ǫβ

∂x′ν
]gαβ(x)

= gµν(x)−
∂ǫα

∂x′ν
gµβ(x)−

∂ǫα

∂x′µ
gαν(x)

= gµν(x)−
∂ǫα

∂xν
gµα(x)−

∂ǫα

∂xµ
gαν(x). (5.114)

We will reinterpret these coordinate transformations as gauge transformations where all change

is encoded only in the field perturbations, viz

δgµν(x) −→ δg
′

µν(x) = δgµν(x) + ∆δgµν(x). (5.115)

Equivalently

∆δgµν(x) = g
′

µν(x)− gµν(x)

= δg
′

µν(x)− δgµν(x). (5.116)

We compute

∆δgµν(x) = g
′

µν(x
′ − ǫ)− gµν(x)

= g
′

µν(x
′

)− ǫλ
∂

∂xλ
gµν(x)− gµν(x)

= − ∂ǫβ

∂xν
ḡµβ(x)−

∂ǫα

∂xµ
ḡαν(x)− ǫλ

∂

∂xλ
ḡµν(x). (5.117)

Explicitly we have

∆δgij(x) = − ∂ǫi
∂xj

− ∂ǫj
∂xi

+ 2aȧǫ0δij . (5.118)
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∆δgi0(x) = −∂ǫi
∂t

− ∂ǫ0
∂xi

+ 2
ȧ

a
ǫi. (5.119)

∆δg00(x) = −2
∂ǫ0
∂t
. (5.120)

Let us consider the metric (5.110) with the vector and tensor perturbations set to zero. We

have then

ds2 = −(1 + 2Φ)dt2 + 2a∂iBdtdx
i + a2[2∂i∂jE + (1− 2Ψ)δij]dx

idxj . (5.121)

The coordinate transformations (5.112) are given explicitly by x0 −→ x
′0 = x0 + ǫ0, xi −→

x
′i = xi + ǫi. We will write ǫ0 = α. The vector ǫi can be decomposed as ǫi = a2∂iβ + ǫVi where

∂iǫVi = 0. As before we will neglect the vector contribution coming from ǫVi since it will only

contribute to the gauge transformations of the vector perturbations which we have dropped.

By setting ǫVi = 0 the coordinate transformations (5.112) take now the form

t −→ t
′

= t+ α , xi −→ x
′i = xi + ∂iβ. (5.122)

The corresponding gauge transformations are (with ḡij = a2δij , ḡi0 = 0, ḡ00 = −1 and H = ȧ/a)

∆Φ = −∂α
∂t

∆B = a−1α− a
∂β

∂t
∆E = −β
∆Ψ = Hα. (5.123)

This depends only on two functions α and β. Thus by choosing α and β appropriately we can

make any two of the four scalar perturbations E, B, Φ and Ψ vanish. In other words, the

space of the physical scalar perturbations is two dimensional. This space is spanned by the two

gauge-invariant linear combinations ΦB and ΨB known as Bardeen potentials which are defined

by

ΦB = Φ− d

dt

[

a(a∂tE −B)

]

ΨB = Ψ+ ȧ

[

a∂tE − B

]

. (5.124)

Indeed, we compute

∆ΦB = ∆Φ− d

dt

[

a(a∂t∆E −∆B)

]

= 0

∆ΨB = ∆Ψ+ ȧ

[

a∂t∆E −∆B

]

= 0. (5.125)
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Let us now consider the metric (5.110) with the scalar and vector perturbations set to zero.

We obtain

ds2 = −dt2 + a2[δij + hij ]dx
idxj . (5.126)

It is obvious from the above discussion that the tensor hij is invariant under gauge transforma-

tions, viz

∆hij = 0 (5.127)

Some of the used and most useful gauge choices are as follows:

• Longitudinal, Conformal-Newtonian Gauge: We can choose β so that E = 0 and

then choose α so that B = 0. These are unique choices which fix the gauge uniquely.

This gauge is therefore given by

E = B = 0. (5.128)

The metric becomes

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj . (5.129)

• Synchronous Gauge: We can choose β so that B = 0 and then choose α so that Φ = 0.

This gauge is therefore given by

B = Φ = 0. (5.130)

The metric becomes

ds2 = −dt2 + a2[2∂i∂jE + (1− 2Ψ)δij]dx
idxj. (5.131)

The synchronous gauge does not fix the gauge completely. Indeed, we can check immedi-

ately that the choice B = Φ = 0 remains intact under the gauge transformations

α(t, xi) = f1(x
i) , β(t, xi) = f1(x

i)

∫ t

−∞

dt
′

a2(t′)
+ f2(x

i), (5.132)

for any functions fi(x
i).

5.4.3 Linearized Einstein Equations

We want to linearize the Einstein Equations

Gµ
ν = Rµ

ν −
1

2
Rgµν = 8πGT µ

ν , (5.133)
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around the perturbed metric (5.103). We have already computed the components of the un-

perturbed Ricci tensor. We recall (with the prime denoting differentiation with respect to the

conformal time, dη = adt and H = a
′

/a)

R̄0
0 = 3

ä

a
= 3

H′

a2
. (5.134)

R̄i
j =

δij
a2

(aä+ 2ȧ2) =
δij
a2

(H′2 + 2H2). (5.135)

R̄i
0 = 0. (5.136)

The background stress-energy-momentum must also be diagonal by the background Einstein

equations, viz

T̄ 0
0 6= 0 , T̄ i

0 = 0 , T̄ i
j ∝ δij. (5.137)

The linearized Einstein’s equations are of the form

δGµ
ν = 8πGδT µ

ν . (5.138)

Both δGµ
ν and δT µ

ν are not gauge invariant. Indeed, under the gauge transformations (5.112)

the tensors δXµ
ν = δGµ

ν , δT
µ
ν will transform as second rank tensors similarly to δgµν , i.e. as

(5.115) with

∆δXµν(x) = X
′

µν(x
′ − ǫ)−Xµν(x)

= − ∂ǫβ

∂xν
X̄µβ(x)−

∂ǫα

∂xµ
X̄αν(x)− ǫλ

∂

∂xλ
X̄µν(x). (5.139)

More explicitly we have

∆δXij(x) = −2∂i∂jβ.
X̄kk

3
− α∂tX̄ij. (5.140)

∆δXi0(x) = −∂t∂iβ.
X̄kk

3
− ∂iαX̄00. (5.141)

∆δX00(x) = −2∂tαX̄00 − α∂tX̄00. (5.142)

We can construct gauge invariant quantities as follows. We observe that

∆I = −α , I = a(a∂tE −B) and ∆E = −β. (5.143)

Thus the following combinations are gauge invariant:

∆δX̂ij = 0 , δX̂ij = δXij − 2∂i∂jE.
X̄kk

3
− I∂tX̄ij. (5.144)
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∆δX̂i0 = 0 , δX̂i0 = δXi0 − ∂i
(

∂tE.
X̄kk

3
+ IX̄00

)

. (5.145)

∆δX̂00 = 0 , δX̂00 = δX00 − 2X̄00∂tI − I∂tX̄00. (5.146)

We use now the result

∆δXα
ν = ḡαµ∆δXµν −∆δgαµ.X̄µν

= ḡαµ∆δXµν +

(

∂µǫα + ∂αǫµ + ḡαρḡµσǫλ∂λḡρσ

)

X̄µν . (5.147)

We get now the gauge invariant observables

∆δX̂0
0 = 0 , δX̂0

0 = δX0
0 − I∂tX̄

0
0 . (5.148)

∆δX̂0
i = 0 , δX̂0

i = δX0
i − ∂iI(X̄

0
0 −

1

3
X̄k

k ). (5.149)

∆δX̂ i
j = 0 , δX̂ i

j = δX i
j − I∂tX̄

i
j . (5.150)

We can then write the linearized Einstein equations in a gauge invariant way as follows

δĜµ
ν = 8πGδT̂ µ

ν . (5.151)

We start from

ds2 = −dt2 + a2δijdx
idxj = a2

[

− dη2 + δijdx
idxj

]

. (5.152)

From here on the subscript 0 indicates conformal time. We compute

Γ̄0
00 =

ȧ

a
, Γ̄0

ij =
ȧ

a
δij , Γ̄

i
0j =

ȧ

a
δij. (5.153)

R̄00 = −3∂0(
ȧ

a
) , R̄ij =

(

∂0(
ȧ

a
) + 2

ȧ2

a2

)

δij , R̄ =
6

a2
(∂0(

ȧ

a
) +

ȧ2

a2
). (5.154)

Now we have the perturbations

δRµν = ∂αδΓ
α
µν − ∂µδΓ

α
αν + δΓβ

µνΓ̄
α
αβ + Γ̄β

µνδΓ
α
αβ − δΓβ

αν Γ̄
α
µβ − Γ̄β

ανδΓ
α
µβ. (5.155)

And1

δΓρ
µν =

1

2
ḡρσ(∂µδgνσ + ∂νδgµσ − ∂σδgµν)−

1

2
ḡραḡσβδgαβ(∂µḡνσ + ∂ν ḡµσ − ∂σ ḡµν).(5.156)

1The minus sign in the second term is due to our ”bad” definition: −δgµν = gµν − ḡµν .
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δGµν = δRµν −
1

2
ḡµνδR− 3

a2
(∂0(

ȧ

a
) +

ȧ2

a2
)δgµν . (5.157)

We will work in the Conformal-Newtonian gauge E = B = 0 in which the metric takes the

form

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj = a2

[

− (1 + 2Φ)dη2 + (1− 2Ψ)δijdx
idxj

]

.

(5.158)

We have

δg00 = −2a2Φ , δgij = −2a2Ψδij. (5.159)

δg00 = − 2

a2
Φ , δgij = − 2

a2
Ψδij . (5.160)

We compute immediately

δΓ0
µν = − 1

2a2
(∂µδgν0 + ∂νδgµ0 − ∂0δgµν)−

1

2a4
δg00(∂µḡν0 + ∂ν ḡµ0 − ∂0ḡµν). (5.161)

δΓi
µν =

1

2a2
(∂µδgνi + ∂νδgµi − ∂iδgµν)−

1

2a4
δgik(∂µḡνk + ∂ν ḡµk − ∂kḡµν). (5.162)

Step 1: We set a = 1. In this case we compute

δΓ0
00 = ∂0Φ , δΓ0

0i = ∂iΦ , δΓ0
ij = −∂0Ψδij (5.163)

δΓi
00 = ∂iΦ , δΓi

0j = −∂0Ψδij , δΓi
jl = ∂iΨδjl − ∂jΨδli − ∂lΨδij. (5.164)

Thus

δR00 = ∂2i Φ + 3∂20Ψ. (5.165)

δR0i = 2∂0∂iΨ. (5.166)

δRij = δij

(

− ∂20Ψ+ ∂2kΨ

)

− ∂i∂j(Φ−Ψ). (5.167)

And

δR = −δR00 + δRii. (5.168)

Thus

δG00 =
1

2
(δR00 + δRii) = 2∂2i Ψ. (5.169)

δG0i = δR0i = 2∂i∂0Ψ. (5.170)

δGij = δRij +
1

2
δij(δR00 − δRkk) = 2δij

(

∂20Ψ+
1

2
∂2i (Φ−Ψ)

)

− ∂i∂j(Φ−Ψ). (5.171)
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Step 2: The next step we perform the conformal transformation

gµν −→ g̃µν = Fgµν , F = a2. (5.172)

Under this transformation we have

Γρ
µν −→ Γ̃ρ

µν = Γρ
µν +

1

2
(∂µ lnF.g

ρ
ν + ∂ν lnF.g

ρ
µ − ∂ρ lnF.gµν). (5.173)

Also (by using also the fact that the metric is covariantly constant)

Rµν −→ R̃µν = Rµν −
1

F
∇µ∇νF − 1

2F
gµν∇α∇αF +

3

2F 2
∇µF∇νF. (5.174)

Thus

R −→ R̃ =
1

F
R− 3

F 2
∇µ∇µF +

3

2F 3
∇µF∇µF. (5.175)

Gµν −→ G̃µν = Gµν −
1

F
∇µ∇νF +

1

F
gµν∇α∇αF +

3

2F 2
∇µF∇νF − 3

4F 2
gµν∇αF∇αF.(5.176)

For our case we need

δ

(

− 1

F
∇µ∇νF

)

= 2
ȧ

a
δΓ0

µν . (5.177)

δ

(

1

F
gµν∇α∇αF

)

= δ

(

1

F
gµνg

αβ∇α∂βF

)

= δ

(

1

F
gµνg

αβ
(

∂α∂βF − Γρ
αβ∂ρF

)

=

(

− 2
ä

a
− 2

ȧ2

a2

)

δgµν +

(

4
ä

a
Φ + 4

ȧ2

a2
Φ + 2

ȧ

a
∂0Φ+ 6

ȧ

a
∂0Ψ

)

ḡµν .

(5.178)

δ

(

− 3

4F 2
gµν∇αF∇αF

)

= 3
ȧ2

a2
δgµν − 6

ȧ2

a2
Φḡµν . (5.179)

δG̃µν = δGµν + 2
ȧ

a
δΓ0

µν +

(

− 2
ä

a
+
ȧ2

a2

)

δgµν +

(

4
ä

a
Φ− 2

ȧ2

a2
Φ+ 2

ȧ

a
∂0Φ + 6

ȧ

a
∂0Ψ

)

ḡµν .

(5.180)

Explicitly we have

δG̃00 = δG00 − 6
ȧ

a
∂0Ψ. (5.181)
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δG̃0i = δG0i + 2
ȧ

a
∂iΦ. (5.182)

δG̃ij = δGij +

(

4
ȧ

a
∂0Ψ+ 2

ȧ

a
∂0Φ+

(

4
ä

a
− 2

ȧ2

a2
)

Φ+
(

4
ä

a
− 2

ȧ2

a2
)

Ψ

)

δij. (5.183)

We rewrite these as

−a2δG̃0
0 = δG00 − 6

ȧ2

a2
Φ = 2∂2i Ψ− 6

ȧ

a
∂0Ψ− 6

ȧ2

a2
Φ. (5.184)

−a2δG̃0
i = δG̃0i = 2∂i

(

∂0Ψ+
ȧ

a
Φ
)

. (5.185)

a2δG̃0
0 = δGij +

(

− 4
ä

a
+ 2

ȧ2

a2
)

Ψδij

= 2δij
(

∂20Ψ+
1

2
∂2i (Φ−Ψ)

)

− ∂i∂j(Φ−Ψ) +

(

4
ȧ

a
∂0Ψ+ 2

ȧ

a
∂0Φ+

(

4
ä

a
− 2

ȧ2

a2
)

Φ

)

δij

= 2δij

(

∂20Ψ+
1

2
∂2i (Φ−Ψ) + 2

ȧ

a
∂0Ψ+

ȧ

a
∂0Φ +

(

2∂0(
ȧ

a
) +

ȧ2

a2
)

Φ

)

− ∂i∂j(Φ−Ψ).

(5.186)

The linearized Einstein’s equations are therefore given by

∂2i Ψ− 3
ȧ

a
∂0Ψ− 3

ȧ2

a2
Φ = −4πGa2δT 0

0 . (5.187)

∂i
(

∂0Ψ+
ȧ

a
Φ
)

= −4πGa2δT 0
i . (5.188)

δij

(

∂20Ψ+
1

2
∂2i (Φ−Ψ) + 2

ȧ

a
∂0Ψ+

ȧ

a
∂0Φ+

(

2∂0(
ȧ

a
) +

ȧ2

a2
)

Φ

)

− 1

2
∂i∂j(Φ−Ψ) = 4πGa2δT i

j .

(5.189)

The gauge invariant objects are obtained by replacing Φ and Ψ by the Bardeen potentials ΦB

and ΨB respectively.

5.4.4 Matter Perturbations

Now we discuss matter perturbations. The stress-energy-momentum tensor T µν of a perfect

fluid is given by

T µν = (ρ+ P )UµUν + Pgµν , gµνU
µUν = −1. (5.190)
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Again we will work with the conformal time denoted by 0 for simplicity. The unperturbed veloc-

ity satisfies ḡµνŪ
µŪν = −1 and thus Ūµ = (1/a, 0, 0, 0). We compute then from 2ḡµνŪ

µδUν +

δgµνŪ
µŪν = 0 the result δU0 = δU0/a

2 = δg00/2a
3 while δU i is an independent dynamical

variable. We have then U0 = (1−Φ)/a, U0 = −a−aΦ and U i = giµUµ ⇒ δU i = δUi/a
2−Bi/a.

We will use the notation δUi = avi and thus δU i = (vi −Bi)/a. The first order perturbation of

the stress-energy-momentum tensor is

δTµν = (δρ+ δP )ŪµŪν + (ρ̄+ P̄ )δUµŪν + (ρ̄+ P̄ )ŪµδUν + δP ḡµν + P̄ δgµν . (5.191)

Explicitly we have (using δgµ
ν = 0)

δT00 = a2(δρ+ 2Φρ̄) ⇔ δT0
0 = −δρ. (5.192)

δTi0 = −a2(ρ̄+ P̄ )vi + a2P̄Bi ⇔ δT 0
i = (ρ̄+ P̄ )vi , δT

i
0 = −(ρ̄+ P̄ )(vi − Bi). (5.193)

δTij = a2δijδP + P̄ δgij ⇔ δT j
i = δijδP. (5.194)

There is an extra contribution to the stress-energy-momentum tensor Tµν which is the anisotropic

stress tensor Σµν which vanishes in the unperturbed theory. This tensor is therefore a first order

perturbation which is constrained to satisfy ΣµνU
ν = 0 and Σµ

µ = 0 and as a consequence

Σ00 = Σi0 = 0 and Σi
i = 0. The anisotropic stress tensor is therefore a traceless symmetric

3−tensor Σij . In other words we need to change equation (5.194) as follows

δTij = a2δijδP + P̄ δgij + Σij ⇔ δT j
i = δji δP + Σi

j . (5.195)

It is obvious that the tensor δTµν must transform under gauge transformations in the same

way as the tensor δgµν . These have been already computed in (5.148), (5.149) and (5.149). In

conformal time we need to make the replacements X̄0
0 −→ X̄0

0 ,X̄
0
i −→ X̄0

i /a,X̄
i
j −→ X̄ i

j where

0 stands now for conformal time. The gauge invariant quantities are given by

∆δX̂0
0 = 0 , δX̂0

0 = δX0
0 + (B − E

′

)(X̄0
0 )

′

. (5.196)

∆δX̂0
i = 0 , δX̂0

i = δX0
i + ∂i(B −E

′

)(X̄0
0 −

1

3
X̄k

k ). (5.197)

∆δX̂ i
j = 0 , δX̂ i

j = δX i
j + (B −E

′

)(X̄ i
j)

′

. (5.198)

The gauge invariant linearized Einstein’s equations becomes given by

∂2i ΨB − 3HΨ
′

B − 3H2ΦB = 4πGa2δρ̂. (5.199)
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∂i
(

Ψ
′

B +HΦB

)

= −4πGa2(ρ̄+ P̄ )
δÛi

a
. (5.200)

δij

(

Ψ
′′

B +
1

2
∂2i (ΦB −ΨB) + 2HΨ

′

B +HΦ
′

B +
(

2H′

+H2
)

ΦB

)

− 1

2
∂i∂j(ΦB −ΨB) = 4πGa2δP̂ δij .

(5.201)

δT̂ 0
0 = −δρ̂ = −δρ− ρ̄

′

(B −E
′

). (5.202)

δT̂ 0
i = (ρ̄+ P̄ )

(

δUi

a
− ∂i(B −E

′

)

)

= (ρ̄+ P̄ )
δÛi

a
. (5.203)

δT̂ i
j = δij

(

δP + P̄ (B −E
′

)
)

= δijδP̂ . (5.204)

In the above second equation δÛi is the gauge invariant velocity perturbation. As before

only the parallel part of this velocity, which is of the form a2∂iγ for some scalar function γ,

will contribute to scalar perturbation. Remember that we are neglecting vector perturbations

throughout.

5.5 Matter-Radiation Equality

We recall the two Friedmann equations and the energy conservation law

H2 =
8πGa2

3
ρ̄ , H2 −H′

= 4πGa2(ρ̄+ P̄ ) , ρ̄
′

= −3H(ρ̄+ P̄ ). (5.205)

By combining the two Friedmann equations as H2 − (H2 −H′

) we obtain

a
′′

=
4πGa3

3
(ρ̄− 3P̄ ). (5.206)

We have already shown that the density of radiation falls off as 1/a4 whereas the density of

matter falls off as 1/a3 and thus in a universe filled with matter and radiation we have the

energy density

ρ̄ = ρ̄m + ρ̄r

=
ρ̄eq
2

(a3eq
a3

+
a4eq
a4

)

. (5.207)

The ρeq is the energy density at the time of equality ηeq at which matter and radiation densities

become equal and aeq = a(ηeq) is the corresponding scale factor. We also recall that the pressure

of matter (dust) is 0 whereas the pressure of radiation is P̄r = ρ̄r/3 and thus

P̄ = P̄m + P̄r =
ρ̄r
3
. (5.208)
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By using these last two equations in the Friedmann equation (5.206) we obtain

a
′′

=
2πGa3eqρ̄eq

3
= 2C0. (5.209)

The solution is immediately given by

a = C0η
2 + C1η + C2. (5.210)

We find C2 = 0 from the boundary condition a(0) = 0. By substituting this solution in the

Friedmann equation H2 = 8πGa2ρ̄/3 or equivalently

a
′2 =

4πG

3
ρ̄eq(a

3
eqa+ a4eq), (5.211)

we obtain C1 =
√

4C0aeq. The scale factor is therefore given by

a = aeq(
η2

η2∗
+ 2

η

η∗
). (5.212)

The time η∗ is related to the time of equality ηeq by ηeq = (
√
2−1)η∗. In the radiation dominated

universe corresponding to η << ηeq we have a ∝ η whereas in the matter dominated universe

corresponding to η >> ηeq we have a ∝ η2.

5.6 Hydrodynamical Adiabatic Scalar Perturbations

The Einstein’s equation (5.201) for i 6= j gives ∂i∂j(Φ−Ψ) = 0. The only solutions consistent

with Φ and Ψ being perturbations are Φ = Ψ. The remaining Einstein’s equations simplify

therefore to

∂2i ΦB − 3HΦ
′

B − 3H2ΦB = 4πGa2δρ̂. (5.213)

∂i(aΦB)
′

= −4πGa2(ρ̄+ P̄ )δÛi. (5.214)

Φ
′′

B + 3HΦ
′

B +
(

2H′

+H2
)

ΦB = 4πGa2δP̂ . (5.215)

The first equation is the generalization of Poisson’s equation for the Newtonian gravitational

potential which is identified here with the Bardeen potential ΦB. Recall that the sub-Hubble

or sub-horizon scales correspond to comoving Fourier scales k−1 such that k > H = aH . The

second and third terms in (5.213) can be rewritten as −3H(aΦB)
′

/a, i.e. they are suppressed

by a factor 1/H on sub-Hubble scales and thus can be neglected compared to the first term.

Equation (5.213) reduces therefore to the usual Poisson’s equation for the Newtonian gravita-

tional potential in this limit. The combination (aΦB)
′

is precisely the velocity potential which

is given by equation (5.214).
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Now we will split the pressure perturbation into an adiabatic (curvature) piece and an

entropy (isocurvature) piece as follows

δP̂ = c2sδρ̂+ τδS. (5.216)

The first component δP̂ = c2sδρ̂ is the adiabatic perturbation and it corresponds to fluctuations

in the energy density and thus induce inhomogeneities in the spatial curvature. The second

component δP̂ = τδS is the entropy perturbation and it corresponds to fluctuations in the form

of the local equation of state of the system, i.e. fluctuations in the relative number densities of

the different particle types present in the system. The two perturbations are orthogonal since

any other perturbation can be written as a linear combination of the two. The coefficients c2s
and τ are given by

c2s = (
∂P

∂ρ
)S , τ = (

∂p

∂S
)ρ. (5.217)

In particular c2s is the speed of sound as we now show. We combine the two Einstein’s equations

(5.213) and (5.215) as follows

c2s

(

∂2i ΦB − 3HΦ
′

B − 3H2ΦB

)

−
(

Φ
′′

B + 3HΦ
′

B +
(

2H′

+H2
)

ΦB

)

= 4πGa2(c2sδρ̂− δP̂ ).

(5.218)

We get then the general relativistic Poisson’s equation for the Newtonian gravitational potential

given by

Φ
′′

B + 3H(1 + c2s)Φ
′

B − c2s∂
2
i ΦB +

(

2H′

+H2(1 + 3c2s)
)

ΦB = 4πGa2τδS. (5.219)

Adiabatic Perturbations: We will only concentrate here on adiabatic perturbations. The

case of entropy perturbations is treated in the excellent book [2].

In this case we set

δS = 0. (5.220)

Equivalently

c2s =
δP̂

δρ̂
= (

∂P

∂ρ
)S

= (
∂η

∂ρ

∂P

∂η
)S

=
P̄

′

ρ̄′
. (5.221)



GR, B.Ydri 147

The above general relativistic Poisson’s equation equation can be simplified by introducing the

variable u defined by

u = exp

(

3

2

∫

(1 + c2s)Hdη
)

ΦB

= exp

(

− 1

2

∫

(1 +
P̄

′

ρ̄′
)

ρ̄
′

ρ̄+ P̄
dη

)

ΦB

=
1

√

ρ̄+ P̄
ΦB. (5.222)

We rewrite this as

u =
a√
ρ̄
θΦB , θ =

1

a
√

1 + P̄
ρ̄

. (5.223)

We remark that

θ =
1

a
√

2
3
(1− H′

H2 )
. (5.224)

We compute immediately

Φ
′′

B + 3H(1 + c2s)Φ
′

B = exp
(

− 3
2

∫

(1 + c2s)Hdη
)

[

u
′′ −

[

− 3
2
(1 + c2s)H

]2
u+

[

− 3
2
(1 + c2s)H

]′

u

]

.

(5.225)

We observe that the friction term cancels exactly. Also

(

2H′

+H2(1 + 3c2s)
)

ΦB = exp
(

− 3

2

∫

(1 + c2s)Hdη
)

[

− 3H2

a2θ2
+ 3(1 + c2s)H2

]

u.

(5.226)

We use

1− H′

H2
=

3

2a2θ2
. (5.227)

1 + c2s =
1

a2θ2
+

2

3
+

2

3H
θ
′

θ
. (5.228)

Thus

(

2H′

+H2(1 + 3c2s)
)

ΦB = exp
(

− 3

2

∫

(1 + c2s)Hdη
)

[

2H2 + 2Hθ
′

θ

]

u.

(5.229)



GR, B.Ydri 148

After some calculation we get

(

2H′

+H2(1 + 3c2s) +
(

2H′

+H2(1 + 3c2s)
)

)

ΦB = exp
(

− 3

2

∫

(1 + c2s)Hdη
)

×
[

u
′′

+

(

− 3H′

2a2θ2
−H′

+H2 − 9H2

4a4θ4
− θ

′′

θ

)

u

]

.

(5.230)

After some inspection we get

(

2H′

+H2(1 + 3c2s) +
(

2H′

+H2(1 + 3c2s)
)

)

ΦB = exp
(

− 3

2

∫

(1 + c2s)Hdη
)

×
[

u
′′ − θ

′′

θ
u

]

. (5.231)

Poisson’s equation reduces therefore to

u
′′ − c2s∂

2
i u−

θ
′′

θ
u = 0. (5.232)

We look for plane wave solutions of the form

u = u~k(~x, η) = exp(i~k~x)χ~k(η). (5.233)

We need to solve

χ
′′

~k
+ (c2s

~k2 − θ
′′

θ
)χ~k = 0. (5.234)

Let us first assume that θ
′′

/θ is a constant, viz

θ
′′

θ
= σ2. (5.235)

The above differential equation becomes

χ
′′

~k
+ ω2

~k
χ~k = 0 , ω~k =

√

c2s
~k2 − σ2. (5.236)

We define the so-called Jeans length by

λJ =
2π

kJ
, kJ =

σ

cs
. (5.237)

In other words,

ω~k = cs

√

~k2 − ~k2J . (5.238)
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The behavior of the perturbation depends therefore crucially on its spatial size given by the

Jeans length. Two interesting limiting cases emerge immediately:

• Large scales corresponding to long-wavelengths where gravity dominates given by k <<

kJ , λ >> λJ : In this case we get the solutions

χ~k ∼ exp(±|ω~k|η). (5.239)

The plus sign describes exponentially fast growth of inhomogeneities whereas the negative

sign describes a decaying solution. We have when k −→ 0 the behavior

|ω~k|η −→ cskJη =
η

ηgr
, ηgr =

1

σ
. (5.240)

From this we can deduce that gravity is very efficient in amplifying adiabatic perturba-

tions. As an example, if the initial adiabatic perturbation is extremely small of the order

of 10−100, gravity will only need η = 230ηgr to amplify it to order 1.

We remark that this limit k << kJ corresponds to cskη << η/ηgr = λ/λJ where the Jeans

length λJ = cstgr is the sound communication scale, i.e. the scale over which pressure can

react to changes in the energy density due to gravity. Thus this limit can be characterized

simply by cskη << 1.

• Small scales corresponding to short-wavelengths where gravity is negligible compared to

pressure given by k >> kJ , λ << λJ : In this case we get the solutions

χ~k ∼ exp(±iω~kη). (5.241)

These are sound waves with phase velocity given by

cphase =
ω~k

k
= cs

√

1− k2J
k2

−→ cs. (5.242)

We solve now the differential equation (5.234) more rigorously in these two limiting cases.

Large scales or long-wavelengths (cskη << 1): In this case we can neglect the spatial

derivative in (5.234) and the equation reduces to

χ
′′

~k
− θ

′′

θ
χ~k = 0. (5.243)

The first solution is obviously χ~k = C1θ. The second linearly independent solution is

χ~k = C2θ

∫ η

η0

dη
′

θ2(η′)
. (5.244)
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This can be checked using the Wronskian. The most general solution is a linear combination

which is also of the above form (5.244) with a different η0. It is straightforward to compute

∫ η

η0

dη
′

θ2(η′)
=

2

3

(

a2

H −
∫

a2dη

)

. (5.245)

The gravitational potential is therefore given by

ΦB =

√
ρ̄

aθ
u

=
√

ρ̄+ P̄ exp(i~k~x)χ~k

= C2 exp(i~k~x)

√
ρ̄

a

∫ η

η0

dη
′

θ2(η′)

=
2

3
C2

√

3

8πG
exp(i~k~x)

(

1− H
a2

∫

a2dη

)

=
2

3
C2

√

3

8πG
exp(i~k~x)

(

1− ȧ

a2

∫

adt

)

=
2

3
C2

√

3

8πG
exp(i~k~x)

d

dt

(

1

a

∫

adt

)

. (5.246)

Since we are interested in long-wavelengths, i.e. k −→ 0, we can set the plane wave equal 1.

The result is then

ΦB = A
d

dt

(

1

a

∫

adt

)

. (5.247)

We assume now that the universe is a mixture of radiation and matter in the form of say cold

baryons. The scale factor is then given by (5.248), viz

a = aeq(
η2

η2∗
+ 2

η

η∗
). (5.248)

We compute immediately (with ξ = η/η∗)

ΦB =
A

ξ(ξ + 2)

d

dξ

(

1

ξ + 2

(

1

5
ξ4 + ξ3 +

4

3
ξ2
)

+
A

′

ξ(ξ + 2)

)

=
A(ξ + 1)

(ξ + 2)3

(

3

5
ξ2 + 3ξ +

13

3
+

1

ξ + 1

)

+
B(ξ + 1)

ξ3(ξ + 2)3
. (5.249)

The A term is the term corresponding to the growth of inhomogeneities whereas the B term is

the decaying mode which we can neglect.

By using the Friedmann equation H2 = 8πGa2ρ̄/3 and the Einstein equation (5.213) we

obtain an expression for the energy density perturbation given by

δρ̂

ρ̄
= −2ΦB − 2

HΦ
′

B +
2

3H2
∂2i ΦB. (5.250)
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We use the results

H =
2(ξ + 1)

η∗ξ(ξ + 2)
,
dΦB

dξ
= − 4A(ξ + 5)

15(ξ + 2)4
. (5.251)

Thus

δρ̂

ρ̄
= −2ΦB +

4Aξ(ξ + 5)

15(ξ + 1)(ξ + 2)3
−
~k2η2(ξ + 2)2

6(ξ + 1)2
ΦB. (5.252)

The last term is of course negligible for long-wavelengths k −→ 0. At early times compared to

ηeq ∼ η∗ we have ξ −→ 0 and ΦB −→ 2A/3, δρ̂/ρ̄ −→ −4A/3, whereas at late times compared

to ηeq ∼ η∗ we have ξ −→ ∞ and ΦB −→ 3A/5, δρ̂/ρ̄ −→ −6A/5. Thus ΦB and δρ̂/ρ̄ are both

constants during radiation-dominated (early times) and matter-dominated (late times) epochs

with the amplitude decreasing by a factor of 9/10 at the time of radiation-matter equality.

In the matter dominated epoch the gravitational potential remains always a constant whereas

the energy density fluctuation starts to increase as η2 at the time of horizon crossing around

η ∼ k−1.

Small scales or short-wavelengths (cskη >> 1): In this case we can neglect the last term

(gravity effect) in (5.234) and the equation reduces to

χ
′′

~k
+ c2s

~k2χ~k = 0. (5.253)

This is a wave equation for sound perturbations with time-dependent amplitude which can be

solved explicitly in the WKB approximation for slowly varying speed of sound.

5.7 Quantum Cosmological Scalar Perturbations

5.7.1 Slow-Roll Revisited

We consider a flat universe filled with a scalar field φ with an action

S =

∫ √−gd4xP(X, φ) , X = −1

2
gαβ∇αφ∇βφ. (5.254)

A canonical scalar field is given by

P(X, φ) = X − V (φ). (5.255)

The energy-momentum tensor is defined by

Tµν = − 2√−g
δS

δgµν

= 2X
∂P
∂X

uµuν + Pgµν , uµ = − 1√
2X

∇µφ. (5.256)
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We observe that gµνuµuν = −1. Since T00 = ρa2 we deduce

ρ = 2X
∂P
∂X

−P. (5.257)

Thus

Tµν = (ρ+ P)uµuν + Pgµν . (5.258)

In other words, P plays the role of pressure.

The unperturbed system consists of the usual scale factor a(η) and a homogeneous field

φ0(η). The equations of motion of the scale factor are the Friedmann equations

H2 =
8πGa2

3
ρ , H2 −H′

= 4πGa2(ρ+ P). (5.259)

Also we note the continuity equation

ρ
′

= −3H(ρ+ P) =
∂ρ

∂φ
φ

′

0 +
∂ρ

∂X
X

′

0. (5.260)

The equation of motion of a canonical scalar field φ is given by

δS

δφ
=

1√−g∂α
(√−ggαβ ∂P

∂X
∂βφ

)

+
∂P
∂φ

=
1√−g∂α

(√−ggαβ∂βφ
)

− ∂V

∂φ

= 0. (5.261)

For the background φ0 this reads explicitly

φ
′′

0 + 2Hφ′

0 + a2
∂V

∂φ
= 0 , φ̈0 + 3Hφ̇0 +

∂V

∂φ
= 0. (5.262)

We consider scalar perturbation of the form

φ = φ0 + δφ. (5.263)

The gauge transformation of the scalar perturbation is computed as follows

∆δφ = φ
′

(x
′ − ǫ)− φ(x)

= −ǫλ ∂

∂xλ
φ0

= −αφ̇0. (5.264)

Thus the gauge invariant scalar perturbation is given by

δφ̂ = δφ− (E
′ − B)φ0

′ , ∆δφ̂ = 0. (5.265)
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The above scalar perturbation induces scalar metric perturbation of the form

ds2 = a2
(

− (1 + 2Φ)dη2 + 2a∂iBdηdx
i + a2[2∂i∂jE + (1− 2Ψ)δij]dx

idxj
)

. (5.266)

Again we will work in the longitudinal (conformal-Newtonian) gauge, viz

ds2 = a2
(

− (1 + 2Φ)dη2 + (1− 2Ψ)δijdx
idxj

)

. (5.267)

To linear order the equation of motion of the scalar field perturbation δφ reads

∂α

(

− a4δgαβ∂βφ0 + a4(Φ− 3Ψ)ḡαβ∂βφ0 + a4ḡαβ∂βδφ

)

− (Φ− 3Ψ)∂α(a
4ḡαβ∂βφ0)− a4δφ

∂2V

∂φ2
= 0.

(5.268)

Or equivalently

δφ
′′

+ 2Hδφ′ − (Φ
′

+ 3Ψ
′

)φ
′

0 + 2a2Φ
∂V

∂φ
+ a2δφ

∂2V

∂φ2
− ∂2i δφ = 0. (5.269)

The gauge invariant version of this equation is obtained by making the replacements δφ −→ δφ̂,

Φ −→ ΦB and Ψ −→ ΨB, viz

δφ̂
′′

+ 2Hδφ̂′ − (Φ
′

B + 3Ψ
′

B)φ
′

0 + 2a2ΦB
∂V

∂φ
+ a2δφ̂

∂2V

∂φ2
− ∂2i δφ̂ = 0. (5.270)

Small scales or short-wavelengths: This corresponds to wavelengths λ << 1/H or equiv-

alently wavenumbers k >> aH where gravity can be neglected. Remember that 1/H is the

Hubble distance and 1/aH is the Hubble length or radius. During inflation since a ∼ exp(Ht)

we have aH = −1/η. Thus this limit corresponds to kη >> 1. The last term in the above

equation therefore dominates and we end up with a solution of the form δφ̂ ∼ exp(±ikη). By

using equations (5.257) and (5.306) (see below) we find that the gravitational potential solves

the equations

Ψ
′

B +HΦB = 4πGφ
′

0δφ̂. (5.271)

We must also have ΦB = ΨB (see below). The gravitational potential therefore oscillates as

ΨB = ΦB ∼ 4πG

k
φ

′

0δφ̂. (5.272)

The third and fourth terms can therefore be neglected. The fifth term can also be neglected

since during inflation ∂2V/∂φ2 << V ∼ H2(ηV << 1). The equation (5.270) reduces therefore

with δφ̂ = exp(i~k~x)δφ̂k to

δφ̂
′′

k + 2Hδφ̂′

k +
~k2δφ̂k = 0. (5.273)
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In terms of uk = aδφ̂k this reads

u
′′

k + (~k2 − a
′′

a
)uk = 0. (5.274)

Since kη >> 1 the solution is of the form

δφ̂k ≃
Ck

a
exp(±ikη). (5.275)

We fix the constant of integration Ck by requiring that the initial scalar mode arises as vacuum

quantum fluctuation.

The minimal vacuum fluctuations must satisfy Heisenberg uncertainty principle ∆X∆P ∼ 1.

From (5.254) the action of the perturbation δφ starts as

S =

∫

dt

∫

dV
[1

2
˙δφ
2
+ ...]. (5.276)

Obviously dV = a3d3x. Thus in a finite volume V = L3 the canonical field is X = L3/2δφ

while the conjugate field is P = L3/2 ˙δφ. For a massless field we have the estimate P = L1/2δφ

and as a consequence the Heisenberg uncertainty principle yields ∆δφ = 1/L. In other words,

minimal quantum fluctuations of the scalar perturbation are of the order of 1/L. However,

quantum fluctuations of the Fourier mode δφk are related to quantum fluctuations of the scalar

perturbations δφ by (see below for a derivation)

δφ ∼ δφkk
3/2. (5.277)

Since k ∼ a/L we conclude that δφk ∼ L1/2/a3/2 or equivalently δφk ∼ 1/a
√
k. Hence

δφ̂k ≃
1√
ka
. (5.278)

In other words, Ck = 1/
√
k. The evolution of the mode in this region is such that the vacuum

spectrum is preserved. We observe that the amplitude of fluctuation is such that

δφ ∼ δφkk
3/2 =

k

a
>> H. (5.279)

Thus every mode will eventually be stretched to very large scales while new modes will be

generated. The moment ηk ∼ 1/k at which the mode k leaves the horizon is called horizon

crossing and is defined by

δφ ∼ δφkk
3/2 =

k

ak
= Hk∼Ha. (5.280)

If this mode was classical it will be completely washed out, i.e. becomes very small, after it is

stretched out to galactic scales.
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Large scales or long-wavelengths: In the slow-roll approximation the equation of motion

(5.262) becomes

3Hφ̇0 +
∂V

∂φ
= 0. (5.281)

The equations of motion (5.270) and (5.271) in terms of the physical time read

¨
δφ̂+ 3H

˙
δφ̂− 4Φ̇Bφ̇0 + 2ΦB

∂V

∂φ
+ δφ̂

∂2V

∂φ2
− 1

a2
∂2i δφ̂ = 0. (5.282)

Φ̇B +HΦB = 4πGφ̇0δφ̂. (5.283)

For long-wavelengths k << aH we can drop the Laplacian term. As we will see the terms
¨
δφ̂

and Φ̇B are also negligible in this limit. The equations become

3H
˙
δφ̂+ 2ΦB

∂V

∂φ
+ δφ̂

∂2V

∂φ2
= 0. (5.284)

HΦB = 4πGφ̇0δφ̂. (5.285)

We introduce the variable

y =
δφ̂
∂V
∂φ

= − δφ̂

3Hφ̇0

. (5.286)

Thus

HΦB = 4πGy(−3Hφ̇2
0) = 4πGyV̇ . (5.287)

Also (by neglecting φ̈0 and ∂2V/∂φ2 and Ḣ during inflation)

3Hẏ + 2ΦB = 0. (5.288)

By using also 3H2 = 8πGV during inflation we have

d

dt
(yV ) =

H

8πG
(3Hẏ + 2ΦB) = 0. (5.289)

The solutions are immediately given by

δφk = Ck
1

V

∂V

∂φ
. (5.290)

ΦB =
4πGCk

H

V̇

V

= −1

2
Ck

( 1

V

∂V

∂φ

)2
. (5.291)
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We fix the constant of integration Ck by comparing with (5.280) at the instant of horizon

crossing. We obtain

Ck =
k−1/2

ak

(

V
∂V
∂φ

)

k∼Ha

. (5.292)

The solutions (5.275) and (5.290) are sketched on figure 2COS, 1. After horizon crossing the

short-wavelengths modes are stretched to galactic scales in such a way that they do not lose

their amplitudes. Remember that inside the horizon gravity is negligible. Thus perturbations

which are initially inside the horizon, will eventually exit the horizon, and then start feeling

the curvature effects of gravity preserving therefore their amplitudes from decay. We say that

the perturbation is frozen after horizon crossing. This is how we get the required amplitude

Φ ∼ 10−5 on large scales from initial quantum fluctuations.

At the end of inflation the slow-roll condition is violated since V/(∂V /∂φ) becomes of order

1 and the amplitude of fluctuations is

δφ(k)tf ∼ Ckk
3/2

∼
(

H
V
∂V
∂φ

)

k∼Ha

∼
(

V 3/2

∂V
∂φ

)

k∼Ha

. (5.293)

This depends only on quantities evaluated at the moment of horizon crossing. For a power-low

potential V = λφn/n we get

δφ(k)tf ∼ λ1/2
(

φ2
k∼Ha

)
n+2

4

. (5.294)

By using (5.74) we have

φ2
k∼Ha ∼ ln

a(tf )

a(tk)

∼ ln
1

(aH)k
Hka(tf)

∼ lnλphHk. (5.295)

The physical wavelength is λph = a(tf )/k. Thus the amplitude of fluctuations at the end of

inflation is

δφ(k)tf ∼ λ1/2
(

lnλphHk

)
n+2

4

. (5.296)

We can further make the approximation Hk ∼ Hf since curvature scale does not change very

much during inflation which is essentially the defining property of inflation. We get finally the
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amplitude

δφ(k)tf ∼ λ1/2
(

lnλphHf

)
n+2

4

. (5.297)

Inside the horizon λph < 1/Hf or equivalently k > Hfaf the logarithm becomes negative

and thus we should instead make the replacment φ2
k∼Ha = φ2

f , i.e. the amplitude comes out

proportional to λ1/2 in this regime. This is the flat space result since gravity is neglected inside

the horizon. This is sketched on figure 2COS, 2.

For a quadratic potential V = m2φ2/2 we get the amplitude δφ = m lnλphHf . Galactic scales

correspond to L = 1025cm or equivalently lnλphHf ∼ 50 and thus in order to get an amplitude

of the gravitational potential around 10−5 the mass of the inflaton scalar field should be around

10−6 in Planck units, viz m = 10−6.mpl = 10−6
√
~c/

√
8πG = 10−61018GeV = 1012GeV. At the

end of inflation the scalar field is around 1 in Planck units, viz φ = 1.1/lpl =
√
c3/

√
~G. The

energy density at the end of inflation is therefore ρ ∼ m2φ2 ∼ 10−12.ρpl.

5.7.2 Mukhanov Action

The equation (5.270) contains three unknown variables ΦB, ΨB and δφ̂ which should also

satisfy Einstein’s equations. Thus we need to compute the energy-momentum tensor explicitly.

We will drop in the following the subscript B and the hat for ease of notation.

We compute (with u0|φ0
= −a, ui|φ0

= 0, X0 = (φ
′

0)
2/2a2, etc)

δT i
j = 2P̄Ψδij +

1

a2
δTij

= δPδij . (5.298)

Thus from the Einstein’s equation with i 6= j we conclude, as before, that ΦB = ΨB. The other

two Einstein’s equations are therefore sufficient to determine ΦB and δφ̂. We compute then

δT 0
i = − 1

a2
δT0i

= (ρ̄+ P̄)u0|φ0
δui. (5.299)

δT 0
0 = 2ρ̄Φ− 1

a2
δT00

= 2(ρ̄+ P̄)Φ +
2

a
(ρ̄+ P̄)δu0 − δρ

= −δρ. (5.300)

In the above two equations we have used

δuµ = − a

φ
′

0

∂µδφ+ (Φ− δφ
′

φ
′

0

)uµ|φ0
. (5.301)
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Further we compute

−δT 0
0 = δρ

=
∂ρ

∂X
δX +

∂ρ

∂φ
δφ

=
∂ρ

∂X

(

− Φφ
′2
0

a2
+
φ

′

0δφ
′

a2

)

+

(

− ∂ρ

∂X

X
′

0

φ
′

0

− 3H(ρ̄+ P̄)

φ
′

0

)

δφ

=
∂ρ

∂X

(

− Φφ
′2
0

a2
+
φ

′

0δφ
′

a2
− X

′

0

φ
′

0

δφ

)

+

(

− 3H(ρ̄+ P̄)

φ
′

0

)

δφ

=
∂ρ

∂X

(

− Φφ
′2
0

a2
+
φ

′

0δφ
′

a2
− φ

′′

0

a2
δφ+

φ
′

0H
a2

δφ

)

+

(

− 3H(ρ̄+ P̄)

φ
′

0

)

δφ

= 2X0
∂ρ

∂X

(

− Φ+
(δφ

φ
′

0

)′

+
H
φ

′

0

δφ

)

+

(

− 3H(ρ̄+ P̄)

φ
′

0

)

δφ

=
ρ̄+ P̄
c2s

(

− Φ+
(δφ

φ
′

0

)′

+
H
φ

′

0

δφ

)

+

(

− 3H(ρ̄+ P̄)

φ
′

0

)

δφ. (5.302)

In the last equation we have introduced the speed of sound by the relation

c2s =
∂P
∂X

∂X

∂ρ
=
ρ+ P
2X

∂X

∂ρ
. (5.303)

Also

δT 0
i = − ρ̄+ P̄

φ
′

0

∂iδφ. (5.304)

The relevant Einstein’s equations are now given explicitly by

∂2i Ψ− 3H(Ψ
′

+HΦ) = 4πGa2(ρ̄+ P̄)

[

1

c2s

(

− Φ +
(δφ

φ
′

0

)′

+
H
φ

′

0

δφ
)

− 3H
φ

′

0

δφ

]

.

(5.305)

(

Ψ
′

+HΦ
)

= 4πGa2(ρ̄+ P̄)
δφ

φ
′

0

. (5.306)

By substituting this last equation into the previous one we obtain

∂2i Ψ =
4πGa2

Hc2s
(ρ̄+ P̄)

[

Ψ
′ − 4πGa2(ρ̄+ P̄)

δφ

φ
′

0

+H
(δφ

φ
′

0

)′

+
H2

φ
′

0

δφ

]

=
4πGa2

Hc2s
(ρ̄+ P̄)

(

Ψ+Hδφ

φ
′

0

)′

. (5.307)

Further

(a2
Ψ

H)
′

= a2
(Ψ

′

H +Ψ+ 4πGa2
ρ̄+ P̄
H2

Ψ
)

. (5.308)
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We have then the two equations

∂2i Ψ =
4πGa2

Hc2s
(ρ̄+ P̄)

(

Ψ+Hδφ

φ
′

0

)′

. (5.309)

(a2
Ψ

H)
′

=
4πGa4

H2
(ρ̄+ P̄)

(

Ψ+Hδφ

φ
′

0

)

. (5.310)

We introduce the variables u and v and the parameters z and θ by

u =
Ψ

4πG
√

ρ̄+ P̄
, v =

√

∂ρ

∂X
a(δφ+

φ
′

0

HΨ). (5.311)

z =
a2
√

ρ̄+ P̄
csH

, θ =
1

csz
=

√

8πG

3

1

a

1
√

1 + P̄
ρ̄

. (5.312)

The Einstein’s equations in terms of these new variables take the simpler form

∂2i u =
1

cs
z
(

Ψ+Hδφ

φ
′

0

)′

=
1

cs
z
(v

z

)′

. (5.313)

(4πG
u

θ
)
′

=
4πGa4

H2
(ρ̄+ P̄)

v

z
⇒ (

u

θ
)
′

= cs
v

θ
. (5.314)

By substituting one of the equations into the other one we find the second order differential

equation

u
′′ − c2s∂

2
i u−

θ
′′

θ
u = 0. (5.315)

This is precisely the Poisson equation (5.232). In fact the definitions of u and θ used here for

the scalar field are essentially those used in the hydrodynamical fluid. A similar equation for v

holds, viz

v
′′ − c2s∂

2
i v −

z
′′

z
v = 0. (5.316)

Since we are interested in quantizing the scalar metric perturbation we will have to quantize

the fields u and v. Thus one must start from an appropriate action which gives as equations of

motion of the fields u and v precisely the above Poisson equations. This is straightforward and

one finds for the field v the action

S =

∫

dηd3x L =
1

2

∫

dηd3x

(

v
′2 + c2sv∂

2
i v +

z
′′

z
v2
)

. (5.317)

From this result we see that metric scalar perturbations are given by a massless scalar field

in a de Sitter spacetime (see the chapter on QFT on curved backgrounds). This is the most

fundamental result in our view and a direct derivation of this action using ADM formalism,

which is a very complex calculation, is included in the next section for completeness.
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Small scales or short-wavelengths: For a plane wave perturbation with a wavenumber k

such that c2sk
2 >> |θ′′

/θ| we have the WKB (slowly varying speed of sound cs) solution

u =
C√
cs

exp
(

± ik

∫

csdη
)

. (5.318)

The gravitational potential is immediately given

Φ = 4πGφ̇0C

√

∂P
∂x

cs
exp

(

± ik

∫

csdη
)

. (5.319)

On the other hand, we can determine the perturbation of the scalar field from (5.306). We get

δφ = C
1

√

cs
∂P
∂x

(

± ics
k

a
+H + ...

)

exp
(

± ik

∫

csdη
)

. (5.320)

The most important observation here is that both the gravitational potential and the scalar per-

turbation oscillate in this regime. The amplitude of the gravitational potential is proportional

to φ̇0 and thus will grow at the end of inflation while the amplitude of the scalar perturbation

decays as 1/a.

Large scales or long-wavelengths: These are characterized by c2sk
2 << |θ′′

/θ|. The solu-

tion was found in previous sections and it is given by

Φ = A
d

dt

(

1

a

∫

adt

)

= A

(

1− H

a

∫

adt

)

. (5.321)

The perturbation of the scalar field from (5.306) is given by

4πGa2(ρ̄+ P̄)
δφ

φ
′

0

=
d

dt

(

aΦ
)

= −AḢ
∫

adt

= A4πG(ρ̄+ P̄)

∫

adt. (5.322)

Thus

δφ = Aφ̇0
1

a

∫

adt. (5.323)

During slow-roll inflation we can make the approximation

H

a

∫

adt = 1− d

dt
(
1

H
) +

H

a

∫

da

H

d

dt

( 1

H

d

dt
(
1

H
)
)

≃ 1− d

dt
(
1

H
) + ... (5.324)
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Our results reduce therefore during inflation to

Φ = − A

H2
Ḣ ∼ A(

1

V

∂V

∂φ
)2. (5.325)

δφ =
Aφ̇0

H
∼ A

1

V

∂V

∂φ
. (5.326)

These are precisely the equations (5.291) and (5.290) respectively. At the end of inflation

V/(∂V /∂φ) becomes of order 1 and thus

Φ = A =

(

H
δφ

φ̇0

)

csk∼Ha

. (5.327)

We evaluated the different quantities at the instant of horizon crossing.

After inflation the scale factor behaves as a ∝ tp. In this case we get the results

Φ =
A

p+ 1
. (5.328)

δφ =
Aφ̇0

p+ 1
t. (5.329)

Hence the amplitude of the gravitational field freezes out after inflation. In the radiation-

dominated phase corresponding to p = 1/2 we get then

Φ =
2A

3

=
2

3

(

H
δφ

φ̇0

)

csk∼Ha

. (5.330)

Thus the amplitudes at the end of inflation and in the radiation-dominated phase differ only

by a numerical coefficient.

5.7.3 Quantization and Inflationary Spectrum

The canonical momentum is defined by the usual formula

π =
∂L
∂v′

= v
′

. (5.331)

In the quantum theory we replace v and π with operators v̂ and π̂ satisfying the equal-time

commutation relations given by

[v̂(η, ~x), π̂(η, ~y)] = iδ3(~x− ~y). (5.332)
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[v̂(η, ~x), v̂(η, ~y)] = [π̂(η, ~x), π̂(η, ~y)] = 0. (5.333)

We expand the field as

v̂(η, ~x) =
1√
2

∫

d3k

(2π)3/2

(

âkv
∗
k(η)e

i~k~x + â+k vk(η)e
−i~k~x

)

. (5.334)

Thus

π̂(η, ~x) =
1√
2

∫

d3k

(2π)3/2

(

âkv
∗′

k (η)e
i~k~x + â+k v

′

k(η)e
−i~k~x

)

. (5.335)

This field obeys the equation of motion

v̂
′′ − c2s∂

2
i v̂ −

z
′′

z
v̂ = 0. (5.336)

Equivalently

vk
′′ + ω2

k(η)vk = 0 , ω2
k(η) = c2s

~k2 − z
′′

z
. (5.337)

The creation and annihilation operators are expected to satisfy the commutation relations

[âk, â
+
p ] = δ3(~k − ~p). (5.338)

[âk, âp] = [â+k , â
+
p ] = 0. (5.339)

We compute then

[v̂(η, ~x), π̂(η, ~y)] =
1

2

∫

d3k

(2π)3
ei
~k(~x−~y)

(

v∗kv
′

k − vkv
∗′

k )
)

. (5.340)

Thus we must have

v∗kv
′

k − vkv
∗′

k = 2i. (5.341)

This is the condition for vk to be a positive norm solution (see later for more detail). The

negative norm solution is immediately given by v∗k. Alternatively, the above condition is the

Wronskian which expresses the linear independence of these two solutions.

The Hamiltonian is given by

Ĥ =

∫

d3x(π̂v̂
′ −L)

=
1

2

∫

d3x(π̂2 − c2sv̂∂
2
i v̂ −

z
′′

z
v̂2)

=

∫

d3k

(

Ek(âkâ
+
k + â+k ak) + Fkâ

+
k â

+
−k + F ∗

k âkâ−k

)

, (5.342)
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where

Ek =
1

2
(|vk′|2 + ω2

k|vk|2) , Fk =
1

2
((vk

′)2 + ω2
k(vk)

2). (5.343)

The choice of the vacuum state is a very subtle issue in a curved spacetime (see the chapter

on QFT on curved backgrounds). Here, we will simply define the vacuum state as the state

annihilated by all the âk, viz

âk|0 >= 0. (5.344)

Then

< 0|Ĥ|0 > =

∫

d3kEk

=
1

2

∫

d3k(|vk ′|2 + ω2
k|vk|2). (5.345)

We consider now the ansatz for vk given by

vk = rk exp(iαk). (5.346)

The Wronskian condition becomes

r2kα
′

k = 1. (5.347)

The energy of the vacuum in this vacuum becomes

< 0|Ĥ|0 > =
1

2

∫

d3k(r
′2
k +

1

r2k
+ ω2

kr
2
k). (5.348)

This energy is minimized when r
′

k(η) = 0 and rk(η) = 1/
√

ωk(η). Thus at a given initial time

η0 the energy in the vacuum |0 > is minimum iff

vk(η0) =
1

√

ωk(η0)
exp(iαk(η0)) , v

′

k(η0) = i
√

ωk(η0) exp(iαk(η0)). (5.349)

The phases η(η0) can clearly be set to zero. These are the initial conditions for vk and v
′

k.

These considerations are well defined for modes with ω2
k > 0 or equivalently c2sk

2 > (z
′′

/z)η0 .

This is the sub-horizon or sub-Hubble regime. By allowing cs to change only adiabatically the

modes c2sk
2 > (z

′′

/z)η0 remain not exited and the above minimal fluctuations are well defined.

In the case that ωk is independent of time the vacuum state |0 > coincides precisely with the

Minkowski vacuum and minimal fluctuations are obviously well defined.

On the other hand, the super-horizon or super-Hubble modes c2sk
2 < (z

′′

/z)η0 can not be

well determined in the same way but fortunately they will be stretched to extreme unobservable

distances subsequent to inflation.
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We compute now the 2−point function

< 0|Φ̂(η, ~x)Φ̂(η, ~y)|0 > = (4πG)2(ρ̄+ P̄) < 0|û(η, ~x)û(η, ~y)|0 > . (5.350)

The expansion of the field operator û is similarly given by

û(η, ~x) =
1√
2

∫

d3k

(2π)3/2

(

âku
∗
k(η)e

i~k~x + â+k uk(η)e
−i~k~x

)

. (5.351)

Thus

< 0|Φ̂(η, ~x)Φ̂(η, ~y)|0 > =
1

2
(4πG)2(ρ̄+ P̄) < 0|

∫

d3p

(2π)3/2

(

âpu
∗
p(η)e

i~p~x

)

.

∫

d3k

(2π)3/2

(

â+k uk(η)e
−i~k~y

)

|0 >

=
1

2
(4πG)2(ρ̄+ P̄)

∫

d3k

(2π)3
|uk(η)|2ei~k(~x−~y)

= 4G2(ρ̄+ P̄)

∫

k3|uk(η)|2
sin kr

kr

dk

k
. (5.352)

In this equation r = |~x−~y|. This can be related to the variance σ2
k of the gravitational potential

Φ as follows. First we write the gravitational potential in the form

Φ̂(η, ~x) =

∫

d3k

(2π)3/2
Φ̂(η,~k)ei

~k~x , Φ̂(η,~k) =
4πG

√

ρ̄+ P̄√
2

(

âku
∗
k(η) + â+−ku−k(η)

)

. (5.353)

Then we have

< 0|Φ̂(η, ~x)Φ̂(η, ~y)|0 > =

∫

d3k

(2π)3/2

∫

d3p

(2π)3/2
< 0|Φ̂(η,~k)Φ̂(η, ~p)|0 > ei

~k~xei~p~y

=

∫

d3k

(2π)3/2

∫

d3p

(2π)3/2
σ2
kδ

3(~k + ~p)ei
~k~xei~p~y

=

∫

k3σ2
k

2π2

sin kr

kr

dk

k
. (5.354)

σ2
k is precisely the variance of the gravitational potential Φ given by

σ2
k = 8π2G2(ρ̄+ P̄)|uk(η)|2. (5.355)

The dimensionless variance or power spectrum is defined by

δ2Φ(k) =
k3σ2

k

2π2
. (5.356)

Short-wavelengths: From the equations of motion cs∂
2
i u = z(v/z)

′

and (u/θ)
′

= csv/θ we

find

uk = − 1

cs|~k|2
(vk

′ − z
′

z
vk) ⇒ uk(η0) = − i

√
cs|~k|

3

2

[

1− 1

c2s|~k|2
z
′′

z

]
1

4 +
z
′

z

1

c
3

2
s |~k| 52

[

1− 1

c2s|~k|2
z
′′

z

]− 1

4 .

(5.357)
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u
′

k = csvk − (
c
′

s

cs
+
z
′

z
)uk ⇒ u

′

k(η0) =

√
cs

|~k| 12
[

1− 1

c2s|~k|2
z
′′

z

]− 1

4 − (
c
′

s

cs
+
z
′

z
)uk(η0). (5.358)

All functions are of course evaluated at the initial time η = η0. In the relevant regime of

short-wavelengths where c2s|~k|2 >> (z
′′

/z)η0 or equivalently c2s|~k|2 >> (θ
′′

/θ)η0 we can neglect

the gravity terms in equations (5.315) and (5.316) and we obtain the initial conditions

uk(η0) = − i
√
cs|~k|

3

2

. (5.359)

u
′

k(η0) =

√
cs

|~k| 12
. (5.360)

In this regime, the WKB solution of equation (5.315) is therefore given by

uk(η) = − i
√
cs|~k|

3

2

exp
(

ik

∫ η

η0

cs(η
′)dη′

)

. (5.361)

During inflation |Ḣ/H2| << 1 and thus in this regime θ behaves as θ ∼ 1/a while a behaves

as a ∼ −1/ηH . Thus |θ′′/θ| ∼ |Ḣ/η2H2| << 1/η2. The short-wavelengths regime is given by

c2s|~k|2 >> (θ
′′

/θ)η or equivalently, with cs << 1 during inflation, by

|η| >> 1

k

√

| Ḣ
H2

|. (5.362)

Remember that at the end of inflation Ḣ/H2 becomes of order 1. Equivalently short-wavelengths

regime is given by |η| >> 1/csk which is much larger than the previous estimate. On the

other hand, horizon crossing is given by csk|η| ∼ 1 and long-wavelengths regime is given by

|η| << 1/csk. Hence there is a short time interval outside the horizon given by

1

csk
> |η| > 1

k

√

| Ḣ
H2

|, (5.363)

in which the solution (5.361) is still valid. Since the above time interval is very narrow the

solution (5.361) in this range is effectively a constant, i.e. the gravitational potential freezes at

horizon crossing.

In this case the power spectrum is given by

σ2
k = 8π2G2(ρ̄+ P̄)

1

csk3
⇒ δ2Φ(k, t) = 4G2 ρ̄+ P̄

cs
, csk >> Ha. (5.364)
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Long-wavelengths: In this case the solution is given by (5.321), viz

uk =
Φk

4πG
√

ρ̄+ P̄
=

Ak

4πG
√

ρ̄+ P̄

(

1− H

a

∫

adt

)

. (5.365)

During inflation, and using Ḣ/4πG = −(ρ̄+ P̄), we have

uk =
Ak

4πG
√

ρ̄+ P̄
d

dt
(
1

H
)

= Ak

√

ρ̄+ P̄
H2

. (5.366)

This is constant in the time interval (5.363). This should be compared with the solution (5.361)

which holds in the time interval (5.363). Since both η0 and η0 are in this short time interval

they can be taken both to be equal to the moment of horizon crossing. This allows us to fix Ak

as

Ak = − i

k
3

2

(

H2

√

cs(ρ̄+ P̄)

)

csk∼Ha

. (5.367)

In this case the power spectrum is given by

σ2
k =

1

2k3

(

H4

cs(ρ̄+ P̄)

)

csk∼Ha

(

1− H

a

∫

adt

)2

⇒ δ2Φ(k, t) =
16

9
G2

(

ρ̄

cs(1 +
P̄
ρ̄
)

)

csk∼Ha

(

1− H

a

∫

adt

)2

, (Ha/cs)i < k << Ha/cs.

(5.368)

This formula gives the time evolution of long-wavelength perturbations even after inflation.

After inflation the universe is radiation-dominated (where CMB originated) and hence a ∼ t1/2.

In this case we get the power spectrum

δ2Φ =
64

81
G2

(

ρ̄

cs(1 +
P̄
ρ̄
)

)

csk∼Ha

, (Ha/cs)i < k < (Ha/cs)f . (5.369)

This results applies for large scales which includes the whole universe. This depends on the

energy density ρ̄ and the deviation of the equation of state from the vacuum given by ∆w =

1 + P̄/ρ̄ at the instant of horizon crossing. We know that δΦ ∼ 10−5 on galactic scales while

∆w is estimated as 10−2 thus the energy density at horizon crossing must be of the order of

10−12G−2, i.e. 10−12 of the Planck density. This is the same estimate obtained previously.

The above spectrum depends on the scale slightly. The requirement that inflation must

have a graceful exist means that the energy density decreases slowly while the deviation of the

equation of state from the vacuum increases slowly at the end of inflation, and as a consequence,
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the perturbations which cross the horizon earlier have larger amplitudes than those which cross

the horizon later. A flat (scale-invariant) spectrum is characterized by a spectral index ns = 1

where ns is defined through the power law

δ2Φ ∼ kns−1. (5.370)

Obviously

ns − 1 =
d ln δ2Φ
d ln k

. (5.371)

On the other hand,

ns − 1 =
1

H

˙̄ρ

ρ̄
− 1

H

d

dt

(

ln cs + ln(1 +
P̄
ρ̄
)
)

= 2
Ḣ

H2
− 1

H

d

dt

(

ln cs + ln(1 +
P̄
ρ̄
)
)

= −3(1 +
P̄
ρ̄
)− 1

H

d

dt

(

ln cs + ln(1 +
P̄
ρ̄
)
)

. (5.372)

In the above equation we have used the approximation d ln k = d ln ak = Hdt. Since all

correction terms are negative we have ns < 1 and thus the amplitude increases slightly for

small k corresponding to larger scales. We say that the spectrum is red-tilted. This tilt can be

traced to the requirement that inflation must have a graceful exit.

An estimation for ns can be given as follows. Galactic scales cross the horizon at 50 e-folds

before the end of inflation. At this time the deviation of the equation of state from the vacuum

is around 10−2 and the second term in (5.372) is also around 10−2 and hence ns = 0.96. This

should be compared with the 2013 Planck result ns = 0.9603± 0.0073.

For inflation with a potential V the above formula becomes

ns − 1 = − 1

8πG

( 1

V

∂V

∂φ

)2 − 2

H

d

dt
ln

1

V

∂V

∂φ

= − 1

8πG

( 1

V

∂V

∂φ

)2
+

1

4πG

(

1

V

∂2V

∂φ2
−

( 1

V

∂V

∂φ

)2
)

= − 3

8πG

( 1

V

∂V

∂φ

)2
+

1

4πG

1

V

∂2V

∂φ2

= −6ǫV + 2ηV . (5.373)

5.8 Rederivation of the Mukhanov Action

5.8.1 Mukhanov Action from ADM

The action of interest here is of course
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S =
1

2

∫

d4x
√

−detg

[

R− gµν∇µφ∇νφ− 2V (φ)

]

. (5.374)

By going now through the steps of the famous ADM (Arnowitt, Deser and Misner) formalism

we can express this action in terms of 3−dimensional quantities which is very useful if one is

interested in canonical quantization. The ADM formalism starts with the metric put in the

form

ds2 = −N2dt2 + γij(dx
i +N idt)(dxj +N jdt). (5.375)

In other words we slice spacetime into 3−dimensional spatial hypersurfaces. Indeed γij is the

metric on the spatial 3−dimensional slices of constant t. The function N and the vector Ni are

called lapse function and shift vector. We have

g00 = γijN
iN j −N2 , g0j = γijN

i , gi0 = γijN
j , gij = γij . (5.376)

A straightforward calculation shows that

√

−detg = N
√

detγ. (5.377)

g00 = − 1

N2
, g0j =

1

N2
N j , gi0 =

1

N2
N i , gij = γij − 1

N2
N iN j . (5.378)

The variables γij , Ni and N contain the same information as the original spacetime metric gµν .

As it turns out N and Ni are only Lagrange multipliers.

We get after some calculation the action

S =
1

2

∫

d4x
√

detγ

[

NR(3) +N−1(EijE
ij −E2) +N−1(∂tφ−N i∂iφ)

2 −Nγij∂iφ∂jφ− 2NV

]

.

(5.379)

The extrinsic curvature of the three-dimensional spatial slices is Kij = N−1Eij where

Eij =
1

2
(∂tγij −∇iNj −∇jNi) , E = γijEij . (5.380)

Recall that

∇iNj = ∂iNj − Γk
ijNk , Γ

k
ij =

1

2
γkl(∂iγlj + ∂jγli − ∂lγij). (5.381)

By varying the above action with respect to N and N i we obtain the equations of motion

R(3) −N−2(EijE
ij −E2)−N−2(∂tφ−N i∂iφ)

2 − γij∂iφ∂jφ− 2V = 0. (5.382)
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−N−1∂iφ(∂tφ−N i∂iφ) +∇j

(

N−1(Ej
i − γjiE)

)

= 0. (5.383)

These are constraints equations for the lapse function N and the shift vector N i. In the

comoving gauge we will choose δφ = 0 and hence φ = φ̄ where the unperturbed configuration

φ̄ is uniform. Hence the above equations of motion reduce to

R(3) −N−2(EijE
ij − E2)−N−2(∂tφ̄)

2 − 2V̄ = 0. (5.384)

∇j

(

N−1(Ej
i − γjiE)

)

= 0. (5.385)

In the comoving gauge we also choose

γij = a2(1− 2R)δij + hij , h
i
i = ∂ihij = 0. (5.386)

In most of the following we will set h = 0. Then

R(3) =
4

a2
~∇2R. (5.387)

We resolve the shift vector Ni into the sum of a total derivative (irrotational scalar) and a

divergenceless vector (incompressible vector) as

Ni = ∂iψ + Ñi , ∂
iÑi = 0. (5.388)

We also introduce the lapse perturbation α as

N = 1 + α. (5.389)

We expand ψ, Ñi and α in powers of R as follows

ψ = ψ1 + ψ2 + ... (5.390)

α = α1 + α2 + ... (5.391)

Ñi = Ñ
(1)
i + Ñ

(2)
i + ... (5.392)

We have

γij =
1

a2(1− 2R)
δij. (5.393)

Since we are only going to keep the first order in powers of R we can approximate Eij by

Eij =
1

2
(∂tγij − ∂iNj − ∂jNi)

= a2H [1− 2R− Ṙ
H
]δij −

1

2
(∂iNj + ∂jNi). (5.394)
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Thus we compute

EijE
ij =

1

a4(1− 2R)2
EijEij

≃ 3H2[1− 2
Ṙ
H
]− 2H

a2
∂iNi. (5.395)

E ≃ 3H [1− Ṙ
H
]− 1

a2
∂iNi ⇒ E2 ≃ 9H2[1− 2

Ṙ
H
]− 6H

a2
∂iNi. (5.396)

The constraints become (by using the first Friedmann equation in the form 6H2 = (∂tφ̄)
2 +2V̄

and 8πG = 1)

4

a2
~∇2R− 12HṘ − 4H

a2
∂iNi − 12αH2 + 2α(∂tφ̄)

2 = 0. (5.397)

∂j

(

− 2H [1− α− Ṙ
H
]δij +

1

a2
∂kNkδij −

1

2a2
(∂iNj + ∂jNi)

)

= 0. (5.398)

Equivalently (with ~∇2
i = ∂i∂i)

4

a2
~∇2R− 12HṘ − 4H~∇2ψ1 − 4α1V̄ = 0. (5.399)

2H∂i(α1 +
Ṙ
H
)− 1

2
~∇2Ñ

(1)
i = 0. (5.400)

From the second constraint we obtain

α1 = −Ṙ
H

, Ñ
(1)
i = 0. (5.401)

The first constraint gives then

~∇2ψ1 =
~∇2R
a2H

+ Ṙ(
V̄

H2
− 3). (5.402)

Recall that the slow-roll parameter ǫ is given by

ǫ =
(∂tφ̄)

2

2H2
= 3− V̄

H2
. (5.403)

Hence we obtain

ψ1 =
R
a2H

− ǫ(~∇2)−1Ṙ. (5.404)
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We compute

√

detγ = a3
√

detγ(3)

= a3[1− 3R+
3

2
R2 + ...]. (5.405)

L = NR(3) +N−1(EijE
ij − E2) +N−1(∂tφ−N i∂iφ)

2 −Nγij∂iφ∂jφ− 2NV

= L0 + L1 + L2 + ... (5.406)

L0 = (∂tφ̄)
2 − 2V̄ + (EijE

ij − E2)(0). (5.407)

L1 = R(3) − α1(∂tφ̄)
2 − 2α1V̄ + (EijE

ij − E2)(1) − α1(EijE
ij − E2)(0). (5.408)

L2 = α1R(3) + (−α2 + α2
1)(∂tφ̄)

2 − 2α2V̄ + (EijE
ij − E2)(2) − α1(EijE

ij − E2)(1)

+ (−α2 + α2
1)(EijE

ij − E2)(0). (5.409)

A more precise formula for EijE
ij − E2 is

EijE
ij − E2 = −6H2

[

1− 2Ṙ
H

+
Ṙ2

H2
− 4RṘ

H

]

+
4H

a2
[

1− Ṙ
H

+ 2R
]

∇iNi

+
1

4a4
(∇iNj +∇jNi)

2 − 1

a4
(∇iNi)

2. (5.410)

The last term is already of order 2 and thus we can set ∇iNj = ∂iNj . By partial integration

we can see that this term actually cancels. Further we compute

∇iNj = ∂iNj + ∂iR.Nj + ∂jR.Ni − δij∂kR.Nk. (5.411)

By using the equation of motion (∂tφ̄)
2 + 2V̄ + (EijE

ij −E2)(0) = 0 we obtain

L0 = −4V̄ . (5.412)

L1 = R(3) + (EijE
ij − E2)(1)

=
8

a2
~∇2R+ 12HṘ − 4ǫHṘ. (5.413)

L2 = α1R(3) + α2
1(∂tφ̄)

2 + (EijE
ij − E2)(2) − α1(EijE

ij − E2)(1) + α2
1(EijE

ij − E2)(0)

= − 4

a2H
Ṙ~∇2R+

Ṙ2

H2
(∂tφ̄)

2 + 24HRṘ+
12

a2
R~∇2R− 12ǫHRṘ. (5.414)
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The first term in L1 is a boundary term by Stokes theorem and thus it will be neglected, viz
∫

d4x
√

detγ
8

a2
~∇2R = 8

∫

dt a(t)

∫

d3x
√

detγ(3) ∂
i∂iR

= 8

∫

dt a(t)

∫

d2x
√

detγ(2) n
i∂iR

= 0. (5.415)

The quadratic contribution coming from L0 is

(
3

2
R2)L0 = −6R2V̄ . (5.416)

The quadratic contribution coming from L1 is

(−3R)L1 = −36HRṘ+ 12ǫHRṘ. (5.417)

Thus

(
3

2
R2)L0 + (−3R)L1 + L2 = − 4

a2H
Ṙ~∇2R+

Ṙ2

H2
(∂tφ̄)

2 − 12HRṘ+
12

a2
R~∇2R− 6R2V̄ .

(5.418)

This must be multiplied by a3. Integration by parts gives

(
3

2
R2)L0 + (−3R)L1 + L2 = − 4

a2H
Ṙ~∇2R+

Ṙ2

H2
(∂tφ̄)

2 +
12

a2
R~∇2R

=
(∂tφ̄)

2

H2

(

Ṙ2 − 1

a2
∂iR∂iR

)

+
14

a2
R~∇2R. (5.419)

Since we are only keeping quadratic terms in the curvature perturbation R the last term in the

above equation vanishes by (5.415). Indeed we have

14

∫

dt a(t)

∫

d3xR~∇2R ≃ −14

3

∫

dt a(t)

∫

d3x
√

detγ(3) ∂
i∂iR

= 0 (5.420)

We obtain the final action

S =
1

2

∫

d4xa3
(∂tφ̄)

2

H2

(

Ṙ2 − 1

a2
∂iR∂iR

)

. (5.421)

There is also a linear term in R which we must discuss. This is given by

(−3R)L0 + (1)L1 =
4V̄

H
(Ṙ+ 3HR). (5.422)

Again this must be multiplied by a3. After integration by parts we obtain

(−3R)L0 + (1)L1 = −4ǫR(V̄ + 2H
δV̄

δφ̄
). (5.423)
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This can be neglected in the slow-roll limit ǫ −→ 0.

The conformal time is defined by dt = adη. We introduce also Mukhanov variables

v = zR , z = a
∂tφ̄

H
. (5.424)

Now a really straightforward calculation gives the action

S =
1

2

∫

dηd3x

(

(v
′

)2 +
z
′′

z
v2 − ∂iv∂iv

)

. (5.425)

5.8.2 Power Spectra and Tensor Perturbations

The equation of motion derived from the above action reads

v
′′ − ∂i∂

iv − z
′′

z
v = 0. (5.426)

A solution is given by uk = exp(i~k~x)χk (with ~k~x = kixi) provided

χ
′′

k + (k2 − z
′′

z
)χk = 0. (5.427)

These solutions are positive norm solutions, viz (uk, ul) = δkl if and only if

iV (χ∗
kχ̇k − χkχ̇

∗
k) = 1. (5.428)

The negative norm solutions are u∗k. As before we will choose χk = v∗k/
√
2. The field v can

then be expanded as

v =

∫

d3k

(2π)3
1√
2

[

akv
∗
k(η)e

i~k~x + a∗kvk(η)e
−i~k~x

]

. (5.429)

In the quantum theory ak and a+k become operators âk and â+k satisfying [âk, â
+
l ] = V δkl. The

field operator is

v̂ =

∫

d3k

(2π)3
1√
2

[

âkv
∗
k(η)e

i~k~x + â+k vk(η)e
−i~k~x

]

. (5.430)

We are interested in the 2−point function

< R̂(x1)R̂(x2) > =
H2

a2(∂tφ̄)2
< v̂(t1)v̂(t2) >

=
H2

2a2(∂tφ̄)2

∫

d3k

(2π)3
v∗k(t1)vk(t2). (5.431)

We define the Fourier transform of R̂(x) by

R̂(x) =

∫

d3k

(2π)3
R̂k(t)e

i~k~x. (5.432)
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We define the power spectrum PR(k) of the curvature perturbation R by

< R̂k1(t1)R̂k2(t2) > = (2π)3δ3(k1 + k2)PR(k1). (5.433)

We compute then

< R̂(x1)R̂(x2) > =

∫

d3k

(2π)3
PR(k1)e

i~k1(~x1−~x2). (5.434)

Let us now consider the de Sitter limit ǫ −→ 0 in which H can be treated as a constant and

a ≃ eHt or equivalently a ≃ −1/(Hη). We compute

z
′′

z
= aȧ

ż

z
+ a2

z̈

z
. (5.435)

ż = ȧ
∂tφ̄

H
− a

∂tφ̄

H2
Ḣ + a

ä

H
. (5.436)

In the de Sitter limit case we can make the approximations

ż ≃ ȧ
∂tφ̄

H
⇒ ż

z
≃ ȧ

a
,
z̈

z
≃ ä

a
. (5.437)

Thus

z
′′

z
≃ a

′′

a

≃ 2

η2
. (5.438)

The equation of motion becomes

χ
′′

k + (k2 − 2

η2
)χk = 0. (5.439)

In the limit η −→ −∞ the frequency approaches the flat space result and hence we can choose

the vacuum state to be given by the Minkowski vacuum. This is the Bunch-Davies vacuum

given by equation (6.128). We have then

vk = −e
ikη

√
k
(1 +

i

kη
). (5.440)

We can then compute in the de Sitter limit the real space variance

< R̂(x)R̂(x) >=

∫ ∞

0

d ln k∆2
R(k). (5.441)

The dimensionless power spectrum ∆2
R(k) is given by

∆2
R(k) =

H2

(2π)2
H2

(∂tφ̄)2
(1 + k2η2). (5.442)
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For super-horizon scales (|kη| << 1 or equivalently k << aH) this dimensionless power spec-

trum becomes constant. This is precisely the statement that R remains constant outside the

horizon. We may then restrict the calculation to the instant of horizon crossing given by

|kη∗| = 1 ⇔ k = a(t∗)H(t∗). (5.443)

The dimensionless power spectrum ∆2
R(k) and the power spectrum PR(k) at horizon crossing

are given respectively by 2

∆2
R(k) =

H2
∗

2π2

H2
∗

(∂tφ̄)2∗
. (5.444)

PR(k) =
2π2

k3
∆2

R(k)

=
H2

∗

k3
H2

∗

(∂tφ̄)2∗
. (5.445)

In summary the primordial power spectrum of comoving curvature perturbation R at horizon

crossing is found to be given by

PR(k) =
H2

∗

k3
H2

∗

(∂tφ̄)2∗
⇔ ∆2

R(k) =
H2

∗

2π2

H2
∗

(∂tφ̄)2∗
. (5.446)

This is the scalar power spectrum, viz

Ps(k) ≡ PR(k) ⇔ ∆2
s(k) ≡ ∆2

R(k) =
1

4π2

H2

M2
pl

1

ǫ
|k=aH. (5.447)

As seen from the gauge fixing condition (5.386) there is extra degrees of freedom (2 polar-

izations) encoded in the symmetric traceless and divergenceless tensor hij which we have not

considered at all until now. These degrees of freedom correspond to gravitational waves. In or-

der to determine the primordial power spectrum ∆2
t (k) of the tensor perturbation h at horizon

crossing k = aH we go back to (5.386) and set R = 0 and then go through some very similar

calculations to those which led to ∆2
s(k). We find at the end the result

∆2
t (k) ≡ 2∆2

h(k) =
2

π2

H2

M2
pl

|k=aH . (5.448)

The scalar-to-tensor ratio is defined by

r ≡ ∆2
t (k)

∆2
s(k)

= 8ǫ∗. (5.449)

2These two formulas differ by a factor of 1/2 compared with reference [8].
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The scale-dependence of the power spectrum ∆2
s(k) can be given by the so-called spectral index

ns defined by

ns = 1 +
d ln∆2

s

d ln k
. (5.450)

Obviously scale invariance corresponds to ns = 1. We may approximate ∆2
s(k) by a power law

as follows

∆2
s(k) = As(k∗)(

k

k∗
)ns(k∗)−1+ 1

2
αs(k∗) ln

k
k∗ , αs(k) =

dns

d ln k
. (5.451)

Similarly we define

nt =
d ln∆2

s

d ln k
. (5.452)

In terms of the Hubble slow-roll parameters ǫ and η the indices ns and nt are given by

ns = 1 + 2η∗ − 4ǫ∗. (5.453)

nt = −2ǫ∗. (5.454)

In the slow-roll limit with m2φ2 potential we obtain the predictions

ns = 0.96 , r = 0.05. (5.455)

Let us summarize our results so far. During inflation the comoving horizon 1/(aH) decreases

while after inflation it increases. In this inflationary universe fluctuation are created quantum

mechanically on all scales with a spectrum of wave numbers k. The comoving scales k−1 are

constant during and after inflation. The physically relevant fluctuations are created at sub-

horizon scales k > aH . Any given fluctuation with a wave number k starts thus inside the

horizon and at some point it will exit the horizon (during inflation) and then it will re-enter

again the horizon at a later time (after inflation during the hot big bang). All fluctuations after

they exit the horizon (corresponding to super-horizon scales k < aH) are frozen until they re-

enter the horizon in the sense that they are not affected by and they can not affect the physics

inside the horizon. This is the statement that the curvature perturbation R is constant outside

the horizon which allows us to concentrate on the value of R at the time of exit (crossing) since

that value will not change until re-entry. See figure 3COS.

5.8.3 CMB Temperature Anisotropies

The remaining question we would like to discuss is how to relate the power spectrum Ps

to CMB temperature anisotropies. The CMB temperature fluctuations ∆T (n̂) relative to the

background temperature T = 2.7K is given by
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∆T (~n)

T
=

∑

lm

almŶlm(n̂). (5.456)

alm =

∫

dΩY ∗
lm(~n)

∆T (~n)

T
. (5.457)

The two-point correlator < al1m1
al2m2

> must behave (by rotational invariance) as

< a∗l1m1
al2m2

>= CTT
l δl1l2δm1m2

. (5.458)

The rotationally invariant angular power spectrum CTT
l is given by

CTT
l =

1

2l + 1

∑

m

< a∗l1m1
al2m2

> . (5.459)

For values of the tensor-to-scalar ratio r < 0.3 the CMB temperature fluctuations are dominated

by the scalar curvature perturbation R. We have already computed the curvature perturbation

at horizon crossing (exit) which then remains constant (freeze at a constant value) until the

time of re-entry. From the time of re-entry until the time of CMB recombination the curvature

perturbation will evolve in time causing a temperature fluctuation. The temperature fluctuation

we observe today as a remnant of last scattering (CMB recombination) is encoded in the

multipole moments alm and is related to the scalar curvature perturbation Rk at the time of

horizon crossing k = a(t∗)H(t∗) through a transfer function ∆T l(k) as follows
3

alm = 4π(−i)l
∫

d3k

(2π)3
∆T l(k)RkYlm(~k). (5.460)

In the quantum theory Rk become operators and hence alm become operators. We compute

immediately (with R∗
k = R−k)

∑

m

< â+lmâlm > = (4π)2
∑

m

∫

d3k

(2π)3
∆T l(k)Y

∗
lm(
~k)

∫

d3k
′

(2π)3
∆T l(k

′

)Ylm(~k
′

) < R̂+
k R̂k′ >

= (4π)2
∫

d3k

(2π)3
∆2

T l(k)PR(k)
∑

m

Y ∗
lm(
~k)Ylm(~k)

= (4π)2
∫

d3k

(2π)3
∆2

T l(k)PR(k)
2l + 1

4π
Pl(k̂

2)

=
2

π
(2l + 1)

∫

k2dk∆2
T l(k)PR(k). (5.461)

Hence

CTT
l =

2

π

∫

k2dk∆2
T l(k)PR(k). (5.462)

3Exercise: Derive this equation. Very difficult. A considerable amount of reading is required.



GR, B.Ydri 178

The term ∆2
T l(k) is the anisotropies term.

For large scales, i.e. large k−1 we can safely assume that the modes were still outside the

horizon at the time of recombination. As a consequence the large scale CMB spectrum is only

affected by the geometric projection from recombination to our current epoch and is not affected

by sub-horizon evolution. This is the so-called Sachs-Wolf regime in which the transfer function

is a Bessel function, viz 4

∆2
T l(k) =

1

3
jl(k(η0 − ηrec)) + .... (5.463)

This term is the monopole contribution to the transfer function. We have neglected a dipole

term and the so-called integrated Sachs-Wolfe (ISW) terms.

The Bessel function essentially projects the linear scales with wavenumber k onto angular

scales with angular wavenumber l. The angular power spectrum CTT
l on large scale (corre-

sponding to small l or large angles) is therefore

CTT
l =

2

9π

∫

k2dkj2l (k(η0 − ηrec))Ps(k)

=
4π

9

∫

dk

k
j2l (k(η0 − ηrec))∆

2
s(k). (5.464)

The Bessel function for large l acts effectively as a delta function since it is peaked around

l = k(η0 − ηrec). (5.465)

We approximate the dimensionless power spectrum ∆2
s(k) by the following power law (where

ns is the spectral index evaluated at some reference point k∗)

∆2
s(k) = Ask

ns−1. (5.466)

We obtain then

CTT
l =

4π

9
As

∫

dk

k2−ns
j2l (k(η0 − ηrec))

=
4π

9
As(η0 − ηrec)

1−ns

∫

dx

x2−ns
j2l (x)

= 2ns−44π
2

9
As(η0 − ηrec)

1−ns
Γ(l + ns

2
− 1

2
)

Γ(l − ns

2
+ 5

2
)

Γ(3− ns)

Γ2(2− ns

2
)
. (5.467)

For a scale-invariant spectrum we have ns = 1. In this case

Cl ≡ l(l + 1)

2π
CTT

l

=
As

9
. (5.468)

4Exercise: Derive this equation. This is related to the previous question.
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The modified power spectrum Cl is therefore independent of l for small values of l corresponding

to the largest scales (largest angles). This is what is observed in the real world. See figure 8.12

of [12]. Thus we conclude that ns must be indeed very close to 1.

The situation is more involved for intermediate scales where acoustic peaks dominate and for

small scales where damping dominates which is an effect due to photon diffusion. The acoustic

peaks arise because the early universe was a plasma of photons and baryons forming a single

fluid which can oscillate due to the competing forces of radiation pressure and gravitational

compression. This struggle between gravity and radiation pressure is what sets up longitudinal

acoustic oscillations in the photon-baryon fluid. At recombination the pattern of acoustic

oscillations became frozen into the CMB which is what we see today as peaks and troughs in

the power spectrum of temperature fluctuations. A proper study of the acoustic peaks seen at

intermediate scales and also of the damping seen at small scales is beyond our means at this

point.

In conclusion the predictions of cosmological scalar perturbation theory for the angular

power spectrum of CMB temperature anisotropies agrees very well with observations. See for

example figure 10 of [21].



Chapter 6

QFT on Curved Backgrounds and

Vacuum Energy

6.1 Dark Energy

It is generally accepted now that there is a positive dark energy in the universe which affects

in measurable ways the physics of the expansion. The characteristic feature of dark energy is

that it has a negative pressure (tension) smoothly distributed in spacetime so it was proposed

that a name like ”smooth tension” is more appropriate to describe it (see reference [11]). The

most dramatic consequence of a non zero value of ΩΛ is the observation that the universe

appears to be accelerating.

From an observational point of view astronomical evidence for dark energy comes from

various measurements. Here we concentrate, and only briefly, on the the two measurements of

CMB anisotropies and type Ia supernovae.

• CMB Anisotropies: This point will be discussed in more detail later from a theoretical

point of view. The main point is as follows. The temperature anisotropies are given

by the power spectrum Cl. At intermediate scales (angular scales subtended by H−1
CMB

where HCMB is the Hubble radius at the time of the formation of the cosmic microwave

background (decoupling, recombination, last scattering)) we observe peaks in Cl due to

acoustic oscillations in the early universe. The first peak is tied directly to the geometry

of the universe. In a negatively curved universe photon paths diverge leading to a larger

apparent angular size compared to flat space whereas in a positively curved universe

photon paths converge leading to a smaller apparent angular size compared to flat space.

The spatial curvature as measured by Ω is related to the first peak in the CMB power

spectrum by

lpeak ∼
220√
Ω
. (6.1)

The observation indicates that the first peak occurs around lpeak ∼ 200 which means

that the universe is spatially flat. The Boomerang experiment gives (at the 68 per cent
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confidence level) the measurement

0.85 ≤ Ω ≤ 1.25. (6.2)

Since Ω = ΩM +ΩΛ this is a constraint on the sum of ΩM and ΩΛ. The constraints from

the CMB in the ΩM −ΩΛ plane using models with different values of ΩM and ΩΛ is shown

on figure 3 of reference [26]. The best fit is a marginally closed model with

ΩCDM = 0.26 , ΩB = 0.05 , ΩΛ = 0.75. (6.3)

• Type Ia Supernovae: This relies on the measurement of the distance modulus m−M

of type Ia supernovae where m is the apparent magnitude of the source and M is the

absolute magnitude defined by

m−M = 5 log10[(1 + z)dM(Mpc)] + 25. (6.4)

The dM is the proper distance which is given between any two sources at redshifts z1 and

z2 by the formula

dM(z1, z2) =
1

H0

√

|Ωk0|
Sk

(

H0

√

|Ωk0|
∫ 1/(1+z2)

1/(1+z1)

da

a2H(a)

)

. (6.5)

Type Ia supernovae are rare events which thought of as standard candles. They are very

bright events with almost uniform intrinsic luminosity with absolute brightness compa-

rable to the host galaxies. They result from exploding white dwarfs when they cross the

Chandrasekhar limit.

Constraints from type Ia supernovae in the ΩM −ΩΛ plane are consistent with the results

obtained from the CMB measurements although the data used is completely independent.

In particular these observations strongly favors a positive cosmological constant.

6.2 The Cosmological Constant

The cosmological constant was introduce by Einstein in 1917 in order to produce a static

universe. To see this explicitly let us rewrite the Friedmann equations (??) and (??) as

H2 =
8πGρ

3
− κ

a2
. (6.6)

ä

a
= −4πG

3
(ρ+ 3P ). (6.7)

The first equation is consistent with a static universe (ȧ = 0) if κ > 0 and ρ = 3κ/(8πGa2)

whereas the second equation can not be consistent with a static universe (ä = 0) containing

only ordinary matter and energy which have non negative pressure.
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Einstein solved this problem by modifying his equations as follows

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (6.8)

The new free parameter Λ is precisely the cosmological constant. This new equations of motion

will entail a modification of the Friedmann equations. To find the modified Friedmann equations

we rewrite the modified Einstein’s equations as

Rµν −
1

2
gµνR = 8πG(Tµν + TΛ

µν). (6.9)

TΛ
µν = −ρΛgµν , ρΛ =

Λ

8πG
. (6.10)

The modified Friedmann equations are then given by (with the substitution ρ −→ ρ + ρΛ,

P −→ P − ρΛ in the original Friedmann equations)

H2 =
8πG(ρ+ ρΛ)

3
− κ

a2
=

8πGρ

3
− κ

a2
+

Λ

3
. (6.11)

ä

a
= −4πG

3
(ρ− 2ρΛ + 3P ) = −4πG

3
(ρ+ 3P ) +

Λ

3
. (6.12)

The Einstein static universe corresponds to κ > 0 (a 3−sphere S3) and Λ > 0 (in the range

κ/a2 ≤ Λ ≤ 3κ/a2) with positive mass density and pressure given by

ρ =
3κ

8πGa2
− Λ

8πG
> 0 , P =

Λ

8πG
− κ

8πGa2
> 0. (6.13)

The universe is in fact expanding and thus this solution is of no physical interest. The cosmo-

logical constant is however of fundamental importance to cosmology as it might be relevant to

dark energy.

It is not difficult to verify that the modified Einstein’s equations (6.8) can be derived from

the action

S =
1

16πG

∫

d4x
√

−detg (R − 2Λ) +

∫

d4x
√

−detg L̂M . (6.14)

Thus the cosmological constant Λ is just a constant term in the Lagrangian density. We call

Λ the bare cosmological constant. The effective cosmological constant Λeff will in general be

different from Λ due to possible contribution from matter. Consider for example a scalar field

with Lagrangian density

L̂M = −1

2
gµν∇µφ∇νφ− V (φ). (6.15)
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The stress-energy-momentum tensor is calculated to be given by

Tµν = ∇µφ∇νφ− 1

2
gµνg

ρσ∇ρφ∇σφ− gµνV (φ). (6.16)

The configuration φ0 with lowest energy density (the vacuum) is the contribution which mini-

mizes separately the kinetic and potential terms and as a consequence ∂µφ0 = 0 and V
′

(φ0) = 0.

The corresponding stress-energy-momentum tensor is therefore T
(φ)
µν = −gµνV (φ0). In other

words the stress-energy-momentum tensor of the vacuum acts precisely like the stress-energy-

momentum tensor of a cosmological constant. We write (with T
(φ0)
µν ≡ T vac

µν , V (φ0) ≡ ρvac)

T vac
µν = −ρvacgµν . (6.17)

The vacuum φ0 is therefore a perfect fluid with pressure given by

Pvac = −ρvac. (6.18)

Thus the vacuum energy acts like a cosmological constant Λφ given by

Λφ = 8πGρvac. (6.19)

In other words the cosmological constant and the vacuum energy are completely equivalent.

We will use the two terms ”cosmological constant” and ”vacuum energy” interchangeably.

The effective cosmological constant Λeff is therefore given by

Λeff = Λ + Λφ. (6.20)

In other words

Λeff = Λ + 8πGρvac. (6.21)

This calculation is purely classical.

Quantum mechanics will naturally modify this result. We follow a semi-classical approach in

which the gravitational field is treated classically and the scalar field (matter fields in general)

are treated quantum mechanically. Thus we need to quantize the scalar field in a background

metric gµν which is here the Robertson-Walker metric. In the quantum vacuum state of the

scalar field (assuming that it exists) the expectation value of the stress-energy-momentum tensor

Tµν must be, by Lorentz invariance, of the form

< Tµν >vac= − < ρ >vac gµν . (6.22)

The Einstein’s equations in the vacuum state of the scalar field are

Rµν −
1

2
gµνR + Λgµν = 8πG < Tµν >vac . (6.23)



GR, B.Ydri 184

The effective cosmological constant Λeff must therefore be given by

Λeff = Λ + 8πG < ρ >vac . (6.24)

The energy density of empty space < ρ >vac is the sum of zero-point energies associated with

vacuum fluctuations together with other contributions resulting from virtual particles (higher

order vacuum fluctuations) and vacuum condensates.

We will assume from simplicity that the bare cosmological constant Λ is zero. Thus the

effective cosmological constant is entirely given by vacuum energy, viz

Λeff = 8πG < ρ >vac . (6.25)

We drop now the subscript ”eff” without fear of confusion. The relation between the density

ρΛ of the cosmological constant and the density < ρ >vac of the vacuum is then simply

ρΛ =< ρ >vac . (6.26)

From the concordance model we know that the favorite estimate for the value of the density

parameter of dark energy at this epoch is ΩΛ = 0.7. We recall G = 6.67× 10−11m3kg−1s−2 and

H0 = 70 kms−1Mpc−1 with Mpc = 3.09× 1024cm. We compute then the density

ρΛ =
3H2

0

8πG
ΩΛ

= 9.19× 10−27ΩΛkg/m
3. (6.27)

We convert to natural units (1GeV = 1.8 × 10−27kg, 1GeV −1 = 0.197 × 10−15m, 1GeV −1 =

6.58× 10−25s) to obtain

ρΛ = 39ΩΛ(10
−12GeV )4. (6.28)

To get a theoretical order-of-magnitude estimate of < ρ >vac we use the flat space Hamilto-

nian operator of a free scalar field given by

Ĥ =

∫

d3p

(2π)3
ω(~p)

[

â(~p)+â(~p) +
1

2
(2π)3δ3(0)

]

. (6.29)

The vacuum state is defined in this case unambiguously by â(~p)|0 >= 0. We get then in the

vacuum state the energy Evac =< 0|Ĥ|0 > where

Evac =
1

2
(2π)3δ3(0)

∫

d3p

(2π)3
ω(~p). (6.30)

If we use box normalization then (2π)3δ3(~p−~q) will be replaced with V δ~p,~q where V is spacetime

volume. The vacuum energy density is therefore given by (using also ω(~p) =
√

~p2 +m2)
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< ρ >vac =
1

2

∫

d3p

(2π)3

√

~p2 +m2. (6.31)

This is clearly divergent. We introduce a cutoff λ and compute

< ρ >vac =
1

4π2

∫ λ

0

dpp2
√

p2 +m2

=
1

4π2

[(

1

4
λ3 +

m2

8
λ

)√
λ2 +m2 − m4

8
ln

(

λ

m
+

√

1 +
λ2

m2

)]

. (6.32)

In the massless limit (the mass is in any case much smaller than the cutoff λ) we obtain the

estimate

< ρ >vac =
λ4

16π2
. (6.33)

By assuming that quantum field theory calculations are valid up to the Planck scale Mpl =

1/
√
8πG = 2.42× 1018GeV then we can take λ =Mpl and get the estimate

< ρ >vac = 0.22(1018GeV )4. (6.34)

By taking the ratio of the value (6.28) obtained from cosmological observations and the theo-

retical value (6.34) we get

( ρΛ
< ρ >vac

)1/4
= 3.65× Ω

1/4
Λ × 1030. (6.35)

For the observed value ΩΛ = 0.7 we see that there is a discrepancy of 30 orders of magnitude

between the theoretical and observational mass scales of the vacuum energy which is the famous

cosmological constant problem.

Let us note that in flat spacetime we can make the vacuum energy vanishes by the usual

normal ordering procedure which reflects the fact that only differences in energy have experi-

mental consequences in this case. In curved spacetime this is not however possible since general

relativity is sensitive to the absolute value of the vacuum energy. In other words the gravita-

tional effect of vacuum energy will curve spacetime and the above problem of the cosmological

constant is certainly genuine.

6.3 Calculation of Vacuum Energy in Curved Backgrounds

6.3.1 Elements of Quantum Field Theory in Curved Spacetime

Let us start by writing Friedmann equations with a cosmological constant Λ which are given

by (with H = ȧ/a)
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H2 =
8πGρ

3
− κ

a2
+

Λ

3
. (6.36)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (6.37)

We will assume that ρ and P are those of a real scalar field coupled to the metric minimally

with action given by

SM =

∫

d4x
√

−detg

(

− 1

2
gµν∇µφ∇νφ− V (φ)

)

. (6.38)

If we are interested in an action which is at most quadratic in the scalar field then we

must choose V (φ) = m2φ2/2. In curved spacetime there is another term we can add which is

quadratic in φ namely Rφ2 where R is the Ricci scalar. The full action should then read (in

arbitrary dimension n)

SM =

∫

dnx
√

−detg

(

− 1

2
gµν∇µφ∇νφ− 1

2
m2φ2 − 1

2
ξRφ2

)

. (6.39)

The choice ξ = (n − 2)/(4(n− 1)) is called conformal coupling. At this value the action with

m2 = 0 is invariant under conformal transformations defined by 1

gµν −→ ḡµν = Ω2(x)gµν(x) , φ −→ φ̄ = Ω
2−n
2 (x)φ(x). (6.40)

The equation of motion derived from this action are (we will keep in the following the metric

arbitrary as long as possible)

(

∇µ∇µ −m2 − ξR
)

φ = 0. (6.41)

Let φ1 and φ2 be two solutions of this equation of motion. We define their inner product by

(φ1, φ2) = −i
∫

Σ

(

φ1∂µφ
∗
2 − ∂µφ1.φ

∗
2

)

dΣnµ. (6.42)

dΣ is the volume element in the space like hypersurface Σ and nµ is the time like unit vector

which is normal to this hypersurface. This inner product is independent of the hypersurface

Σ. Indeed let Σ1 and Σ2 be two non intersecting hypersurfaces and let V be the four-volume

bounded by Σ1, Σ2 and (if necessary) time like boundaries on which φ1 = φ2 = 0. We have

from one hand

i

∫

V

∇µ
(

φ1∂µφ
∗
2 − ∂µφ1.φ

∗
2

)

dV = i

∮

∂V

(

φ1∂µφ
∗
2 − ∂µφ1.φ

∗
2

)

dΣµ

= (φ1, φ2)Σ1
− (φ1, φ2)Σ2

. (6.43)

1Exercise: Show this result.
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From the other hand

i

∫

V

∇µ
(

φ1∂µφ
∗
2 − ∂µφ1.φ

∗
2

)

dV = i

∫

V

(

φ1∇µ∂µφ
∗
2 −∇µ∂µφ1.φ

∗
2

)

dV

= i

∫

V

(

φ1(m
2 + ξR)φ∗

2 − (m2 + ξR)φ1.φ
∗
2

)

dV

= 0. (6.44)

Hence

(φ1, φ2)Σ1
− (φ1, φ2)Σ2

= 0. (6.45)

There is always a complete set of solutions ui and u∗i of the equation of motion (6.41) which

are orthonormal in the inner product (6.42), i.e. satisfying

(ui, uj) = δij , (u
∗
i , u

∗
j) = −δij , (ui, u∗j) = 0. (6.46)

We can then expand the field as

φ =
∑

i

(aiui + a∗iu
∗
i ). (6.47)

We now canonically quantize this system. We choose a foliation of spacetime into space like

hypersurfaces. Let Σ be a particular hypersurface with unit normal vector nµ corresponding to

a fixed value of the time coordinate x0 = t and with induced metric hij . We write the action as

SM =
∫

dx0LM where LM =
∫

dn−1x
√−detg LM . The canonical momentum π is defined by 2

π =
δLM

δ(∂0φ)
= −

√

−detg gµ0∂µφ

= −
√
−deth nµ∂µφ. (6.48)

We promote φ and π to hermitian operators φ̂ and π̂ and then impose the equal time canonical

commutation relations

[φ̂(x0, xi), π̂(x0, yi)] = iδn−1(xi − yi). (6.49)

The delta function satisfies the property
∫

δn−1(xi − yi)dn−1y = 1. (6.50)

The coefficients ai and a
∗
i become annihilation and creation operators âi and â

+
i satisfying the

commutation relations 3

[âi, â
+
j ] = δij , [âi, âj ] = [â+i , â

+
j ] = 0. (6.51)

2Exercise: Show the second line of this equation.
3Exercise: Show this explicitly.
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The vacuum state is given by a state |0 >u defined by

âi|0u >= 0. (6.52)

The entire Fock basis of the Hilbert space can be constructed from the vacuum state by repeated

application of the creation operators â+i .

The solutions ui, u
∗
i are not unique and as a consequence the vacuum state |0 >u is not

unique. Let us consider another complete set of solutions vi and v
∗
i of the equation of motion

(6.41) which are orthonormal in the inner product (6.42). We can then expand the field as

φ =
∑

i

(bivi + b∗i v
∗
i ). (6.53)

After canonical quantization the coefficients bi and b
∗
i become annihilation and creation oper-

ators b̂i and b̂+i satisfying the standard commutation relations with a vacuum state given by

|0 >v defined by

b̂i|0v >= 0. (6.54)

We introduce the so-called Bogolubov transformation as the transformation from the set {ui, u∗i}
(which are the set of modes seen by some observer) to the set {vi, v∗i } (which are the set of

modes seen by another observer) as

vi =
∑

j

(αijuj + βiju
∗
j). (6.55)

By using orthonormality conditions we find that

αij = (vi, uj) , βij = −(vi, u
∗
j). (6.56)

We can also write

ui =
∑

j

(α∗
jivj + βjiv

∗
j ). (6.57)

The Bogolubov coefficients α and β satisfy the normalization conditions
∑

k

(αikαjk − βikβjk) = δij ,
∑

k

(αikβ
∗
jk − βikα

∗
jk) = 0. (6.58)

The Bogolubov coefficients α and β transform also between the creation and annihilation op-

erators â, â+ and b̂, b̂+. We find

âk =
∑

i

(αikb̂i + β∗
ik b̂

+
i ) , b̂k =

∑

i

(α∗
kiâi + β∗

kiâ
+
i ). (6.59)

Let Nu be the number operator with respect to the u-observer, viz Nu =
∑

k â
+
k âk. Clearly

< 0u|Nu|0u >= 0. (6.60)
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We compute

< 0v|â+k âk|0v >=
∑

i

βikβ
∗
ik. (6.61)

Thus

< 0v|Nu|0v >= trββ+. (6.62)

In other words with respect to the v-observer the vacuum state |0u > is not empty but filled

with particles. This opens the door to the possibility of particle creation by a gravitational

field.

6.3.2 Quantization in FLRW Universes

We go back to the equation of motion (6.41), viz

(

∇µ∇µ −m2 − ξR
)

φ = 0. (6.63)

The flat FLRW universes are given by

ds2 = −dt2 + a2(t)(dρ2 + ρ2dΩ2). (6.64)

The conformal time is denoted here by

η =

∫ t dt1
a(t1)

. (6.65)

In terms of η the FLRW universes are manifestly conformally flat, viz

ds2 = a2(η)(−dη2 + dρ2 + ρ2dΩ2). (6.66)

The d’Alembertian in FLRW universes is

∇µ∇µφ =
1√−detg

∂µ(
√

−detg∂µφ)

= ∂µ∂
µφ+

1

2
gαβ∂µgαβ∂

µφ

= −φ̈ +
1

a2
∂2i φ− 3

ȧ

a
φ̇. (6.67)

The Klein-Gordon equation of motion becomes

φ̈+ 3
ȧ

a
φ̇− 1

a2
∂2i φ+ (m2 + ξR)φ = 0. (6.68)

In terms of the conformal time this reads (where d/dη is denoted by primes)

φ
′′

+ 2
a

′

a
φ

′ − ∂2i φ+ a2(m2 + ξR)φ = 0. (6.69)
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The positive norm solutions are given by

uk(η, x
i) =

ei
~k~x

a(η)
χk(η). (6.70)

Indeed we check that φ ≡ uk(η, x
i) is a solution of the Klein-Gordon equation of motion provided

that χk is a solution of the equation of motion (using also R = 6(ä/a+ ȧ2/a2) = 6a
′′

/a3)

χ
′′

k + ω2
k(η)χk = 0. (6.71)

ω2
k(η) = k2 +m2a2 − (1− 6ξ)

a
′′

a
. (6.72)

In the case of conformal coupling m = 0 and ξ = 1/6 this reduces to a time independent

harmonic oscillator. This is similar to flat spacetime and all effects of the curvature are included

in the factor a(η) in equation (6.70). Thus calculation in a conformally invariant world is very

easy.

The condition (uk, ul) = δkl becomes (with nµ = (1, 0, 0, 0), dΣ =
√
−deth d3x and using

box normalization (2π)3δ3(~k − ~p) −→ V δ~k,~p the Wronskian condition

iV (χ∗
kχ

′

k − χ∗′

k χk) = 1. (6.73)

The negative norm solutions correspond obviously to u∗k. Indeed we can check that (u∗k, ūl) =

−δkl and (u∗k, ul) = 0.

The modes uk and ūk provide a Fock space representation for field operators. The quantum

field operator φ̂ can be expanded in terms of creation and annhiliation operators as

φ̂ =
∑

k

(âkuk + â+k u
∗
k). (6.74)

Alternatively the mode functions satisfy the differential equations (with χk = v∗k/
√
2V )

v
′′

k + ω2
k(η)vk = 0 (6.75)

They must satisfy the normalization condition

1

2i
(v

′

kv
∗
k − vkv

∗′

k ) = 1. (6.76)

The scalar field operator is given by φ̂ = χ̂/a(η) where (with [āk, ā
+

k′
] = V δk,k′ , etc)

χ̂ =
1

V

∑

k

1√
2

(

ākv
∗
ke

i~k~x + ā+k vke
−i~k~x

)

. (6.77)
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The stress-energy-momentum tensor in minimal coupling ξ = 0 is given by

Tµν = ∇µφ∇νφ− 1

2
gµνg

ρσ∇ρφ∇σφ− gµνV (φ). (6.78)

We compute immediately in the conformal metric ds2 = a2(−dη2 + dxidxi) the component

T00 =
1

2
(∂ηφ)

2 +
1

2
(∂iφ)

2 +
1

2
a2m2φ2

=
1

2a2
[

χ
′2 − 2

a
′

a
χχ

′

+
a

′2

a2
χ2

]

+
1

2a2
(∂iχ)

2 +
1

2
m2χ2. (6.79)

The conjugate momentum (6.48) in our case is π = a2∂ηφ. The Hamiltonian is therefore

H =

∫

dn−1x π∂0φ− LM

=

∫

dn−1x
√

−detg
1

a2
T00

= −
∫

dn−1x
√

−detg T0
0. (6.80)

In the quantum theory the stress-energy-momentum tensor in minimal coupling ξ = 0 is given

by

T̂00 =
1

2a2
[

χ̂
′2 − a

′

a
(χ̂χ̂

′

+ χ̂
′

χ̂) +
a

′2

a2
χ̂2

]

+
1

2a2
(∂iχ̂)

2 +
1

2
m2χ̂2. (6.81)

We assume the existence of a vacuum state |0 > with the properties a|0 >= 0, < 0|a+ = 0 and

< 0|0 >= 1. We compute

< χ̂
′2 > =

1

2V 2

∑

k

∑

p

v∗
′

k v
′

pe
i~k~xe−i~p~x < 0|ākā+p |0 >

=
1

2V

∑

k

|v′

k|2. (6.82)

< χ̂2 > =
1

2V 2

∑

k

∑

p

v∗kvpe
i~k~xe−i~p~x < 0|ākā+p |0 >

=
1

2V

∑

k

|vk|2. (6.83)

< (∂iχ̂)
2 > =

1

2V 2

∑

k

∑

p

v∗kvp(kipi)e
i~k~xe−i~p~x < 0|ākā+p |0 >

=
1

2V

∑

k

k2|vk|2. (6.84)
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We get then

< T̂00 > =
1

2a2
1

2V

∑

k

[

|v′

k|2 −
a

′

a
(v∗kv

′

k + v
′∗
k vk) +

a
′2

a2
|vk|2 + k2|vk|2 + a2m2|vk|2

]

=
1

4a2
1

V

∑

k

[

|v′

k|2 + (k2 +
a

′′

a
+ a2m2)|vk|2 − ∂η(

a
′

a
|vk|2)

]

. (6.85)

The mass density is therefore given by

ρ =
1

a2
< T̂00 > =

1

4a4

∫

d3k

(2π)3

[

|v′

k|2 + (k2 +
a

′′

a
+ a2m2)|vk|2 − ∂η(

a
′

a
|vk|2)

]

. (6.86)

6.3.3 Instantaneous Vacuum

Let us do the calculation in a slightly different way. The comoving scalar field χ = aφ

satisfies the equation of motion

χ
′′

+m2
effχ− ∂2i χ = 0 , m2

eff = a2m2 − a
′′

a
. (6.87)

This can be derived from the action

S =
1

2

∫

dηd3x
[

χ
′2 − (∂iχ)

2 −m2
effχ

2
]

. (6.88)

We quantize this system now. The conjugate momentum is π = χ
′

. The Hamiltonian is

H =
1

2

∫

d3x
[

χ
′2 + (∂iχ)

2 +m2
effχ

2
]

. (6.89)

This is different from the Hamiltonian written down in the previous section. The rest is now

the same. For example the field operator can be expanded as (with [āk, ā
+

k
′ ] = V δk,k′ , etc and

v
′

kv
∗
k − vkv

∗′

k = 2i)

χ̂ =
1

V

∑

k

1√
2

(

ākv
∗
ke

i~k~x + ā+k vke
−i~k~x

)

. (6.90)

We compute the Hamiltonian operator (assuming isotropic mode functions,viz vk = v−k)

Ĥ =
1

4V

∑

k

[

F ∗
k ākā−k + Fkā

+
k ā

+
−k + Ek(ākā

+
k + ā+k āk)

]

. (6.91)

Fk = (v
′

k)
2 + ω2

kv
2
k , Ek = |v′

k|2 + ω2
k|vk|2. (6.92)

Let |0v > be the vacuum state corresponding to the mode functions vk. Then

< 0v|Ĥ|0v > =
1

4

∑

k

Ek

=
V

4

∫

d3k

(2π)3

[

|v′

k|2 + ω2
k|vk|2

]

. (6.93)
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The vacuum energy density is

ρ =
1

4

∫

d3k

(2π)3

[

|v′

k|2 + ω2
k|vk|2

]

. (6.94)

This clearly depends on the conformal time η. The instantaneous vacuum at a conformal time

η = η0 is the state |0η0 > which is the lowest energy eigenstate of the instantaneous Hamiltonian

H(η0). Equivalently the instantaneous vacuum at a conformal time η = η0 is the state in which

the vacuum expectation value < 0v|Ĥ(η0)|0v > is minimized with respect to all possible choices

of vk = vk(η0). The minimization of the energy density ρ corresponds to the minimization of

each mode vk separately. For a given value of ~k we choose vk(η) by imposing at η = η0 the

initial conditions

vk(η0) = q , v
′

k(η0) = p. (6.95)

The normalization condition v
′

kv
∗
k − vkv

∗′

k = 2i reads therefore

q∗p− p∗q = 2i. (6.96)

The corresponding energy is Ek = |p|2 + ω2
k(η0)|q|2. By using the symmetry q −→ eiλq and

p −→ eiλp we can choose q real. If we write p = p1 + ip2 then the above condition gives

immediately q = 1/p2. The energy becomes

Ek(η0) = p21 + p22 +
ω2
k(η0)

p22
. (6.97)

The minimum of this energy with respect to p1 is p1 = 0 whereas its minimum with respect to

p2 is p2 =
√

ωk(η0). The initial conditions become

vk(η0) =
1

√

ωk(η0)
, v

′

k(η0) = iωk(η0)vk(η0). (6.98)

In Minkowski spacetime we have a = 1 and thus ωk =
√
k2 +m2. We obtain (with η0 = 0) the

usual result vk(η) = eiωkη/
√
ωk.

The energy in this minimum reads

Ek(η0) = 2ωk(η0). (6.99)

The vacuum energy density is therefore

ρ =
1

2

∫

d3k

(2π)3
ωk(η0). (6.100)

This is the usual formula which is clearly divergent so we may proceed in the usual way to

perform regularization and renormalization. The problem (which is actually quite severe) is

that this energy density is time dependent.
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6.3.4 Quantization in de Sitter Spacetime and Bunch-Davies Vac-

uum

During inflation and also in the limit a −→ ∞ (the future) it is believed that vacuum

dominates and thus spacetime is approximately de Sitter spacetime.

An interesting solution of the Friedmann equations (6.36) and (6.37) is precisley the max-

imally symmetric de Sitter space with positive curvature κ > 0 and positive cosmological

constant Λ > 0 and no matter content ρ = P = 0 given by the scale factor

a(t) =
α

R0

cosh
t

α
. (6.101)

α =

√

3

Λ
, R0 =

1√
κ
. (6.102)

At large times the Hubble parameter becomes a constant

H ≃ 1

α
=

√

Λ

3
. (6.103)

The behavior of the scale factor at large times becomes thus

a(t) ≃ a0e
Ht a0 =

α

2R0
. (6.104)

Thus the scale factor on de Sitter space can be given by a(t) ≃ a0 exp(Ht). In this case the

curvature is computed to be zero and thus the coordinates t, x, y and z are incomplete in the

past. The metric is given explicitly by

ds2 = −dt2 + a20e
2Htdxidxi. (6.105)

In this flat patch (upper half of) de Sitter space is asymptotically static with respect to confor-

mal time η in the past. This can be seen as follows. First we can compute in closed form that

η = −e−Ht/(a0H) and a(t) = a(η) = −1/(Hη) and thus η is in the interval ]−∞, 0] (and hence

the coordinates t, x, y and z are incomplete). We then observe that Hη = a
′

/a = −1/η −→ 0

when η −→ −∞ which means that de Sitter is asymptotically static.

de Sitter space is characterized by the existence of horizons. As usual null radial geodesics

are characterized by a2(t)ṙ2 = 1. The solution is explicitly given by

r(t)− r(t0) =
1

a0H
(e−Ht0 − e−Ht). (6.106)

Thus photons emitted at the origin r(t0) = 0 at time t0 will reach the sphere rh = e−Ht0/(a0H)

at time t −→ ∞ (asymptotically). This sphere is precisely the horizon for the observer at the

origin in the sense that signal emitted at the origin can not reach any point beyond the horizon
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and similarly any signal emitted at time t0 at a point r > rh can not reach the observer at the

origin.

The horizon scale at time t0 is defined as the proper distance of the horizon from the observer

at the origin, viz a2(t0)rh = 1/H . This is clearly the same at all times.

The effective frequencies of oscillation in de Sitter space are

ω2
k(η) = k2 +m2a2 − (1− 6ξ)

a
′′

a

= k2 +
[m2

H2
− 2(1− 6ξ)

] 1

η2
. (6.107)

These may become imaginary. For example ω2
0(η) < 0 if m2 < 2(1− 6ξ)H2. We will take ξ = 0

and assume that m << H .

From the previous section we know that the mode functions must satisfy the differential

equations (with χk = v∗k/
√
2V )

v
′′

k +

(

k2 +
[m2

H2
− 2

] 1

η2

)

vk = 0 (6.108)

The solution of this equation is given in terms of Bessel functions Jn and Yn by 4

vk =
√

k|η|
[

AJn(k|η|) +BYn(k|η|)
]

, n =

√

9

4
− m2

H2
. (6.109)

The normalization condition (6.76) becomes (with s = k|η|)

ks(A∗B − AB∗)(
d

ds
Jn(s).Yn(s)−

d

ds
Yn(s).Jn(s)) = 2i. (6.110)

We use the result 5

d

ds
Jn(s).Yn(s)−

d

ds
Yn(s).Jn(s) = − 2

πs
. (6.111)

We obtain the constraint

AB∗ − A∗B =
iπ

k
. (6.112)

We consider now two limits of interest.

The early time regime η −→ −∞: This corresponds to ω2
k −→ k2 or equivalently

k2 >> (2− m2

H2
)
1

η2
. (6.113)

This is a high energy (short distance) limit. The effect of gravity on the modes vk is therefore

negligible and we obtain the Minkowski solutions

vk =
1√
k
eikη , k|η| >> 1. (6.114)

The normalization is chosen in accordance with (6.76).

4Exercise: Verify this result. See for example [15].
5Exercise: Show this result.
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The late time regime η −→ 0: In this limit ω2
k −→ (m2/H2 − 2)1/η2 < 0 or equivalently

k2 << (2− m2

H2
)
1

η2
. (6.115)

The differential equation becomes

v
′′

k − (2− m2

H2
)
1

η2
vk = 0. (6.116)

The solution is immediately given by vk = A|η|n1 + B|η|n2 with n1,2 = ±n + 1/2. In the limit

η −→ 0 the dominant solution is obviously associated with the exponent −n + 1/2. We have

then

vk ∼ |η| 12−n , k|η| << 1. (6.117)

Any mode with momentum k is a wave with a comoving wave length L ∼ 1/k and a physical

wave length Lp = a(η)L and hence

k|η| = H−1

Lp
. (6.118)

Thus modes with k|η| >> 1 corresponds to modes with Lp << H−1. These are the sub-

horizon modes with physical wave lengths much shorter than the horizon scale and which are

unaffected by gravity. Similarly the modes with k|η| << 1 or equivalently Lp >> H−1 are the

super-horizon modes with physical wave lengths much larger than the horizon scale. These are

the modes which are affected by gravity.

A mode with momentum k which is sub-horizon at early times will become super-horizon

at a later time ηk defined by the requirement that Lp = H−1 or equivalently k|ηk| = 1. The

time ηk is called the time of horizon crossing of the mode with momentum k.

The behavior a(η) −→ 0 when η −→ −∞ allows us to pick a particular vacuum state

known as the Bunch-Davies or the Euclidean vacuum. The Bunch-Davies vacuum is a de Sitter

invariant state and is the initial state used in cosmology.

In the limit η −→ −∞ the frequency approaches the flat space result, i.e. ωk(η) −→ k and

hence we can choose the vacuum state to be given by the Minkowski vacuum. More precisely

the frequency ωk(η) is a slowly-varying function for some range of the conformal time η in the

limit η −→ −∞. This is called the adiabatic regime of ωk(η) where it is also assumed that

ωk(η) > 0. By applying the Minkowski vacuum prescription in the limit η −→ −∞ we must

have

vk =
N√
k
eikη , η −→ −∞. (6.119)

From the other hand by using Jn(s) =
√

2/(πs) cosλ, Yn(s) =
√

2/(πs) sin λ with λ = s −
nπ/2− π/4 we can compute the asymptotic behavior

vk =

√

2

π
[A cosλ+B sinλ] , η −→ −∞. (6.120)
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By choosing B = −iA and employing the normalization condition (6.112) we obtain

B = −iA , A =

√

π

2k
. (6.121)

Thus we have the solution

vk =
1√
k
ei(kη+

nπ
2
+π

4
) , η −→ −∞. (6.122)

The Bunch-Davies vacuum corresponds to the choice N = exp(inπ
2
+ iπ

4
). The full solution

using this choice becomes

vk =

√

π|η|
2

[

Jn(k|η|)− iYn(k|η|)
]

, n =

√

9

4
− m2

H2
. (6.123)

The mass density in FLRW spacetime was already computed in equation (6.86). We have

ρ =
1

4a4

∫

d3k

(2π)3

[

|v′

k|2 + (k2 +
a

′′

a
+ a2m2)|vk|2 − ∂η(

a
′

a
|vk|2)

]

. (6.124)

For de Sitter space we have a = −1/(ηH) and thus

ρ =
η4H4

4

∫

d3k

(2π)3

[

|v′

k|2 + (k2 +
2

η2
+

m2

H2η2
)|vk|2 + ∂η(

1

η
|vk|2)

]

. (6.125)

For m = 0 we have the solutions

vk =

√

π|η|
2

[

J 3

2

(k|η|)− iY 3

2

(k|η|)
]

. (6.126)

We use the results (x = k|η|)

J3/2(x) =

√

2

πx

(

sin x

x
− cosx

)

, Y3/2(x) =

√

2

πx

(

− cosx

x
− sin x

)

. (6.127)

We obtain then

vk = − i

k
3

2

eikη

η
− 1

k
1

2

eikη. (6.128)

In other words

|vk|2 =
1

k3
1

η2
+

1

k
, |v′

k|2 = −1

k

1

η2
+

1

k3
1

η4
+ k. (6.129)

We obtain then (using also a hard cutoff Λ)

ρ =
η4H4

4

∫

d3k

(2π)3
[

2k +
1

kη2
]

=
η4H4

16π2
(Λ4 +

Λ2

η2
). (6.130)
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This goes to zero in the limit η −→ 0. However if we take Λ = Λ0a where Λ0 is a proper

momentum cutoff then the energy density becomes independent of time and we are back to the

same problem. We get

ρ =
1

16π2
(Λ4

0 +H2Λ2
0). (6.131)

We observe that

ρdeSitter − ρMinkowski =
H2

Λ2
0

Λ4
0

16π2

=
H2

Λ2
0

ρMinkowski. (6.132)

We take the value of the Hubble parameter at the current epoch as the value of the Hubble

parameter of de Sitter space, viz

H = H0 =
7× 6.58

3.09
10−43GeV. (6.133)

We get then

ρdeSitter − ρMinkowski = 0.38(10−30)4.0.22(1018GeV )4

= 0.084(10−12GeV )4. (6.134)

6.3.5 QFT on Curved Background with a Cutoff

In [30] a proposal for quantum field theories on curved backgrounds with a plausible cutoff

is put forward.

6.3.6 The Conformal Limit ξ −→ 1/6

The mode functions χk satisfy

χ
′′

k + ω2
k(η)χk = 0 , ω2

k = k2 +m2a2 − (1− 6ξ)
a

′′

a
. (6.135)

V (χkχ
∗′

k − χ∗
kχ

′

k) = i. (6.136)

We will consider in this section m2 = 0. We assume now that the universe is Minkowski in the

past η −→ −∞. In other words in the limit η −→ −∞ the frequency ωk tends to ω̄k =
√
k2.

The corresponding mode function is therefore

χk = χ
(in)
k =

1√
2V ω̄k

e−iω̄kη. (6.137)
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We will also assume that the universe is Minkowski in the future η −→ +∞. The frequency in

the limit η −→ +∞ is again given by ω̄k =
√
k2. The corresponding mode function is therefore

χk = χ
(out)
k =

αk√
2V ω̄k

e−iω̄kη +
βk√
2V ω̄k

eiω̄kη. (6.138)

We determine αk and βk from solving the equation of motion (6.135) with the initial condition

(6.137). We remark that

χ
(out)
k = αkχ

(in)
k + βkχ

(in)∗
k . (6.139)

We imagine that the out state is the limit η −→ +∞ of some v mode function while the in

state is the limit η −→ −∞ of some u mode function. More precisely we are assuming that

ui −→ χ
(in)
i , η −→ −∞

vi −→ χ
(out)
i , η −→ +∞. (6.140)

The relation between the u and the v mode functions is given in terms of Bogolubov coefficients

by equation (6.55). By comparing with the above relation (6.139) we deduce that

αij = αiδij , βij = βiδij . (6.141)

Let Nu =
∑

k â
+
k âk be the number operator corresponding to the u modes. If |0u > is the

vacuum state corresponding to the u modes then < 0u|Nu|0u >= 0. The number of particles

created by the gravitational field in the limit η −→ +∞ is precisely < 0v|Nu|0v > where |0v >
is the vacuum state corresponding to the v modes. The number density of created particles is

then given by

N =
< 0v|Nu|0v >

V
=

∫

d3k

(2π)3
|βk|2. (6.142)

The corresponding energy density is

ρ =

∫

d3k

(2π)3
ω̄k|βk|2. (6.143)

The initial differential equation (6.135) can be rewritten as

χ
′′

k + ω̄2
kχk = jk(η) , jk(η) = (1− 6ξ)

a
′′

a
χk. (6.144)

We can write down immediately the solution as

χk = χ
(in)
k +

1

ω̄k

∫ η

−∞

dη
′

sin ω̄k(η − η
′

)jk(η
′

)

= χ
(in)
k +

1− 6ξ

ω̄k

∫ η

−∞

dη
′ a

′′

(η
′

)

a(η′)
sin ω̄k(η − η

′

)χk(η
′

). (6.145)
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To lowest order in 1− 6ξ this solution becomes

χk = χ
(in)
k +

1− 6ξ

ω̄k

∫ η

−∞

dη
′ a

′′

(η
′

)

a(η′)
sin ω̄k(η − η

′

)χ
(in)
k (η

′

). (6.146)

From this formula we obtain immediately

χ
(out)
k = χ

(in)
k +

1− 6ξ

ω̄k

∫ +∞

−∞

dη
′ a

′′

(η
′

)

a(η′)
sin ω̄k(η − η

′

)χ
(in)
k (η

′

). (6.147)

By comparing with (6.139) and using (6.137) we get after few more lines (with a2R = 6a
′′

/a)

αk = 1 +
i

2ω̄k
(
1

6
− ξ)

∫ +∞

−∞

dη
′

a2(η
′

)R(η
′

) , βk = − i

2ω̄k
(
1

6
− ξ)

∫ +∞

−∞

dη
′

a2(η
′

)R(η
′

)e−2iω̄kη
′

.

(6.148)

The number density is given by

N =
1

4
(
1

6
− ξ)2

∫ +∞

−∞

dη1

∫ +∞

−∞

dη2a
2(η1)R(η1)a

2(η2)R(η2)

∫

d3k

(2π)3
1

ω̄2
k

e−2iω̄k(η1−η2)

=
1

4
(
1

6
− ξ)2

∫ +∞

−∞

dη1

∫ +∞

−∞

dη2a
2(η1)R(η1)a

2(η2)R(η2)
1

2π

∫ ∞

0

dk

2π
e−ik(η1−η2)

=
1

4
(
1

6
− ξ)2

∫ +∞

−∞

dη1

∫ +∞

−∞

dη2a
2(η1)R(η1)a

2(η2)R(η2)
1

4π

∫ ∞

0

dk

2π
e−ik(η1−η2)

=
1

16π
(
1

6
− ξ)2

∫ +∞

−∞

dηa4(η)R2(η). (6.149)

The energy density is given by (with the assumption that a2(η)R(η) −→ 0 when η −→ ±∞)

ρ =
1

4
(
1

6
− ξ)2

∫ +∞

−∞

dη1

∫ +∞

−∞

dη2a
2(η1)R(η1)a

2(η2)R(η2)

∫

d3k

(2π)3
1

ω̄k

e−2iω̄k(η1−η2)

=
1

4
(
1

6
− ξ)2

∫ +∞

−∞

dη1

∫ +∞

−∞

dη2a
2(η1)R(η1)a

2(η2)R(η2)
1

8π2

∫ ∞

0

kdke−ik(η1−η2)

=
1

4
(
1

6
− ξ)2

∫ +∞

−∞

dη1

∫ +∞

−∞

dη2a
2(η1)R(η1)a

2(η2)R(η2)
1

8π2

d2

dη1dη2

∫ ∞

0

dk

k
e−ik(η1−η2)

=
1

4
(
1

6
− ξ)2

∫ +∞

−∞

dη1

∫ +∞

−∞

dη2
d

dη1
(a2(η1)R(η1))

d

dη2
(a2(η2)R(η2))

1

2π

∫ ∞

0

dk

2π

1

2k
e−ik(η1−η2).

(6.150)

The last factor is precisley one half the Feynamn propagator in 1 + 1 dimension for r = 0 (see

equation (4) of [24]). We have then

ρ =
1

4
(
1

6
− ξ)2

∫ +∞

−∞

dη1

∫ +∞

−∞

dη2
d

dη1
(a2(η1)R(η1))

d

dη2
(a2(η2)R(η2))

1

2π

−1

4π
ln |η1 − η2|

= − 1

32π2
(
1

6
− ξ)2

∫ +∞

−∞

dη1

∫ +∞

−∞

dη2
d

dη1
(a2(η1)R(η1))

d

dη2
(a2(η2)R(η2)) ln |η1 − η2|.

(6.151)
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At the end of inflation the universe transits from a de Sitter spacetime (which is asymptoti-

cally static in the infinite past) to a radiation dominated Robertson-Walker universe (which is

asymptotically flat in the infinite future) in a very short time interval. Let us assume that the

transition occurs abruptly at a time η0 < 0. In de Sitter space (η < η0) we have a = −1/(ηH)

and R = 12H2. In the radiation dominated phase (η > η0) we may assume that R = 0. We get

immediately

N =
1

16π
(
1

6
− ξ)2

∫ η0

−∞

dηa4(η)R2(η)

=
H3

12π
(1− 6ξ)2a3(η0). (6.152)

This is the number density of created particles (via gravitational interaction) just after the

transition, i.e. during reheating.

To compute the energy density we will assume that the transition from de sitter spacetime

to radiation dominated spacetime is smother given by the scale factor

a2(η) = f(ηH). (6.153)

f =
1

η2H2
, η < −H−1

= a0 + a1Hη + a2H
2η2 + a3H

3η3 , −H−1 < η < (x0 − 1)H−1

= b0(Hη + b1)
2 , η > (x0 − 1)H−1. (6.154)

In this model the time η = −H−1 corresponding to t = 0 marks the end of the inflationary (de

Sitter) phase and the transition to radiation dominated phase occurs on a time scale given by

∆η = H−1x0. By requiring that f , f
′

and f
′′

are continuous at η = −H−1 and η = (x0−1)H−1

we can determine the coefficients ai and bi uniquely. We compute immediately

a2R = 3H2V , V = f−2

[

f
′′

f − 1

2
(f

′

)2
]

. (6.155)

We can then compute in a straightforward manner 6

V =
4

x2
, x < −1

≃ − 4

x0
, −1 < x < x0 − 1 , x0 << 1

= 0 , x > x0 − 1. (6.156)

6Exercise: Show this result explicitly.
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The energy density is then given by 7

ρ = − H4

128π2
(1− 6ξ)2

∫ x0−1

−∞

dx1

∫ x0−1

−∞

dx2V
′

(x1)V
′

(x2) ln
|x1 − x2|

H

= − H4

128π2
(1− 6ξ)2.16 lnx0

= −H4

8π2
(1− 6ξ)2 ln x0. (6.157)

In the above model we have chosen the transition time to be η = −H−1 and thus a = −1/(ηH) =

+1 and as a consequence ∆η = −Hη∆t = ∆t. From the other hand the transition from de

Sitter spacetime to radiation dominated phase occurs on a time scale given by ∆η = H−1x0.

From these two facts we obtain x0 = H∆t and hence the energy density becomes

ρ = −H4

8π2
(1− 6ξ)2 lnH∆t. (6.158)

This is the energy density of the created particles after the end of inflation. The factor 1−6ξ is

small whereas the factor lnH∆t is large and it is not obvious how they should balance without

an extra input.

6.4 Is Vacuum Energy Real?

6.4.1 The Casimir Force

We consider two large and perfectly conducting plates of surface area A at a distance L

apart with
√
A >> L so that we can ignore edge contributions. The plates are in the xy plane

at x = 0 and x = L. In the volume AL the electromagnetic standing waves take the form

ψn(t, x, y, z) = e−iωnteikxx+ikyy sin knz. (6.159)

They satisfy the Dirichlet boundary conditions

ψn|z=0 = ψn|z=L = 0. (6.160)

Thus we must have

kn =
nπ

L
, n = 1, 2, .... (6.161)

ωn =

√

k2x + k2y +
n2π2

L2
. (6.162)

7Exercise: Derive the second line.
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These modes are transverse and thus each value of n is associated with two degrees of freedom.

There is also the possibility of

kn = 0. (6.163)

In this case there is a corresponding single degree of freedom.

The zero point energy of the electromagnetic field between the plates is

E =
1

2

∑

n

ωn

=
1

2
A

∫

d2k

(2π)2

[

k + 2
∞
∑

n=1

(k2 +
n2π2

L2
)1/2

]

. (6.164)

The zero point energy of the electromagnetic field in the same volume in the absence of the

plates is

E0 =
1

2

∑

n

ωn

=
1

2
A

∫

d2k

(2π)2

[

2L

∫

dkn
2π

(k2 + k2n)
1/2

]

. (6.165)

After the change of variable k = nπ/L we obtain

E0 =
1

2
A

∫

d2k

(2π)2

[

2

∫ ∞

0

dn(k2 +
n2π2

L2
)1/2

]

. (6.166)

We have then

E =
E − E0

A
=

∫

d2k

(2π)2

[

1

2
k +

∞
∑

n=1

(k2 +
n2π2

L2
)1/2 −

∫ ∞

0

dn(k2 +
n2π2

L2
)1/2

]

. (6.167)

This is obvioulsy a UV divergent quantity. We regularize this energy density by introducing a

cutoff function fΛ(k) which is equal to 1 for k << Λ and 0 for k >> Λ. We have then (with

the change of variables k = πx/L and x2 = t)

EΛ =

∫

d2k

(2π)2

[

1

2
fΛ(k)k +

∞
∑

n=1

fΛ(

√

k2 +
n2π2

L2
)(k2 +

n2π2

L2
)1/2 −

∫ ∞

0

dnfΛ(

√

k2 +
n2π2

L2
)(k2 +

n2π2

L2
)1/2

]

=
π2

4L3

∫

dt

[

1

2
fΛ(

π

L

√
t)t1/2 +

∞
∑

n=1

fΛ(
π

L

√
t+ n2)(t+ n2)1/2 −

∫ ∞

0

dnfΛ(
π

L

√
t+ n2)(t+ n2)1/2

]

.(6.168)

This is an absolutely convergent quantity and thus we can exchange the sums and the integrals.

We obtain

EΛ =
π2

4L3

[

1

2
F (0) + F (1) + F (2)....−

∫ ∞

0

dnF (n)

]

. (6.169)



GR, B.Ydri 204

The function F (n) is defined by

F (n) =

∫ ∞

0

dtfΛ(
π

L

√
t + n2)(t+ n2)1/2. (6.170)

Since f(k) −→ 0 when k −→ ∞ we have F (n) −→ 0 when n −→ ∞.

We use the Euler-MacLaurin formula

1

2
F (0) + F (1) + F (2)....−

∫ ∞

0

dnF (n) = − 1

2!
B2F

′

(0)− 1

4!
B4F

′′′

(0) + .... (6.171)

The Bernoulli numbers Bi are defined by

y

ey − 1
=

∞
∑

i=0

Bi
yi

i!
. (6.172)

For example

B0 =
1

6
, B4 = − 1

30
, etc. (6.173)

Thus

EΛ =
π2

4L3

[

− 1

12
F

′

(0) +
1

720
F

′′′

(0) + ....

]

. (6.174)

We can write

F (n) =

∫ ∞

n2

dtfΛ(
π

L

√
t)(t)1/2. (6.175)

We assume that f(0) = 1 while all its derivatives are zero at n = 0. Thus

F
′

(n) = −
∫ n2+2nδn

n2

dtfΛ(
π

L

√
t)(t)1/2 = −2n2fΛ(

π

L
n) ⇒ F

′

(0) = 0. (6.176)

F
′′

(n) = −4nfΛ(
π

L
n)− 2π

L
n2f

′

Λ(
π

L
n) ⇒ F

′′

(0) = 0. (6.177)

F
′′′

(n) = −4fΛ(
π

L
n)− 8π

L
nf

′

Λ(
π

L
n)− 2π2

L2
n2f

′′

Λ(
π

L
n) ⇒ F

′′′

(0) = −4. (6.178)

We can check that all higher derivatives of F are actually 08. Hence

EΛ =
π2

4L3

[

− 4

720

]

= − π2

720L3
. (6.179)

This is the Casimir energy. It corresponds to an attractive force which is the famous Casimir

force.

8Exercise: Convince yourself of this fact.
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6.4.2 The Dirichlet Propagator

We define the propagator by

DF (x, x
′

) =< 0|T φ̂(x)φ̂(x′

)|0 > . (6.180)

It satisfies the inhomogeneous Klein-Gordon equation

(∂2t − ∂2i )DF (x, x
′

) = iδ4(x− x
′

). (6.181)

We introduce Fourier transform in the time direction by

DF (ω, ~x, ~x
′

) =

∫

dte−iω(t−t
′

)DF (x, x
′

) , DF (x, x
′

) =

∫

dω

2π
eiω(t−t

′

)DF (ω, ~x, ~x
′

).

(6.182)

We have

(∂2i + ω2)DF (ω, ~x, ~x
′

) = −iδ3(~x− ~x
′

). (6.183)

We expand the reduced Green’s function DF (ω, ~x, ~x
′

) as

DF (ω, ~x, ~x
′

) = −i
∑

n

φn(~x)φ
∗
n(~x

′

)

ω2 − k2n
. (6.184)

The eigenfunctions φn(~x) satisfy

∂2i φn(~x) = −k2nφn(~x)

δ3(~x− ~x
′

) =
∑

n

φn(~x)φ
∗
n(~x

′

). (6.185)

In infinite space we have

φi(~x) −→ φ~k(~x) = e−i~k~x ,
∑

i

−→
∫

d3k

(2π)3
. (6.186)

Thus

DF (ω, ~x, ~x
′

) = i

∫

d3k

(2π)3
e−i~k(~x−~x

′

)

~k2 − ω2
. (6.187)

We can compute the closed form 9

DF (ω, ~x, ~x
′

) =
i

4π

eiω|~x−~x
′

|

|~x− ~x′ | . (6.188)

9Exercise: derive this result.
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Equivalently we have

DF (x, x
′

) = i

∫

d4k

(2π)4
e−ik(x−x

′

)

k2
. (6.189)

Let us remind ourselves with few more results. We have (with ωk = |~k|)

DF (x, x
′

) =

∫

d3k

(2π)3
1

2ωk
e−ik(x−x

′

). (6.190)

Recall that k(x − x
′

) = −k0(x0 − x0
′

) + ~k(~x − ~x
′

). After Wick rotation in which x0 −→ −ix4
and k0 −→ −ik4 we obtain k(x − x

′

) = k4(x4 − x
′

4) +
~k(~x − ~x

′

). The above integral becomes

then 10

DF (x, x
′

) =

∫

d3k

(2π)3
1

2ωk
e−i

(

k4(x4−x
′

4)−
~k(~x−~x

′

)
)

)

=
1

4π2

1

(x− x′)2
. (6.191)

We consider now the case of parallel plates separated by a distance L. The plates are in the

xy plane. We impose now different boundary conditions on the field by assuming that φ̂ is

confined in the z direction between the two plates at z = 0 and z = L. Thus the field must

vanishes at these two plates, viz

φ̂|z=0 = φ̂|z=L = 0. (6.192)

As a consequence the plane wave eik3z will be replaced with the standing wave sin k3z where

the momentum in the z direction is quantized as

k3 =
nπ

L
, n ∈ Z+. (6.193)

Thus the frequency ωk becomes

ωn =

√

k21 + k22 + (
nπ

L
)2. (6.194)

We will think of the propagator (6.191) as the electrostatic potential (in 4 dimensions) generated

at point y from a unit charge at point x, viz

V ≡ DF (x, x
′

) =
1

4π2

1

(x− x′)2
. (6.195)

We will find the propagator between parallel plates starting from this potential using the method

of images. It is obvious that this propagator must satisfy

DF (x, x
′

) = 0 , z = 0, L and z
′

= 0, L. (6.196)

10Exercise: derive the second line of this equation.
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Instead of the two plates at x = 0 and x = L we consider image charges (always with respect

to the two plates) placed such that the two plates remain grounded. First we place an image

charge −1 at (x, y,−z) which makes the potential at the plate z = 0 zero. The image of the

charge at (x, y,−z) with respect to the plane at z = L is a charge +1 at (x, y, z + 2L). This

last charge has an image with respect to z = 0 equal −1 at (x, y,−z − 2L) which in turn has

an image with respect to z = L equal +1 at (x, y, z + 4L). This process is to be continued

indefinitely. We have then added the following image charges

q = +1 , (x, y, z + 2nL) , n = 0, 1, 2, ... (6.197)

q = −1 , (x, y,−z − 2nL) , n = 0, 1, 2, ... (6.198)

The way we did this we are guaranteed that the total potential at z = 0 is 0. The contribution

of the added image charges to the plate z = L is also zero but this plate is still not balanced

properly precisely because of the original charge at (x, y, z).

The image charge of the original charge with respect to the plate at z = L is a charge −1

at (x, y, 2L− z) which has an image with respect to z = 0 equal +1 at (x, y,−2L + z). This

last image has an image with respect to z = L equal −1 at (x, y, 4L− z). This process is to be

continued indefinitely with added charges given by

q = +1 , (x, y, z + 2nL) , n = −1,−2, ... (6.199)

q = −1 , (x, y,−z − 2nL) , n = −1,−2, ... (6.200)

By the superposition principle the total potential is the sum of the individual potentials. We

get immediately

V ≡ DF (x, x
′

) =
1

4π2

+∞
∑

n=−∞

[

1

(x− x′ − 2nLe3)2
− 1

(x− x′ − 2(nL+ z)e3)2

]

.

(6.201)

This satisfies the boundary conditions (6.196). By the uniqueness theorem this solution must

therefore be the desired propagator. At this point we can undo the Wick rotation and return

to Minkowski spacetime.

6.4.3 Another Derivation Using The Energy-Momentum Tensor

The stress-energy-momentum tensor in flat space with minimal coupling ξ = 0 and m = 0

is given by

Tµν = ∂µφ∂νφ− 1

2
ηµν∂αφ∂

αφ. (6.202)
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The stress-energy-momentum tensor in flat space with conformal coupling ξ = 1/6 and m = 0

is given by 11

Tµν =
2

3
∂µφ∂νφ+

1

6
ηµν∂αφ∂

αφ+
1

3
φ∂µ∂νφ. (6.203)

This tensor is traceless, i.e Tµ
µ = 0 which reflects the fact that the theory is conformal. This

tensor is known as the new improved stress-energy-momentum tensor.

In the quantum theory Tµν becomes an operator T̂µν and we are interested in the expectation

value of T̂µν in the vacuum state < 0|T̂µν |0 >. We are of course interested in the energy density

which is equal to < 0|T̂00|0 > in flat spacetime. We compute (using the Klein-Gordon equation

∂µ∂
µφ̂ = 0)

< 0|T̂00|0 > =
2

3
< 0|∂0φ̂∂0φ̂|0 > −1

6
< 0|∂αφ̂∂αφ̂|0 > +

1

3
< 0|φ̂∂µ∂νφ̂|0 >

=
5

6
< 0|∂0φ̂∂0φ̂|0 > −1

6
< 0|∂iφ̂∂iφ̂|0 > +

1

3
< 0|φ̂∂20 φ̂|0 >

=
5

6
< 0|∂0φ̂∂0φ̂|0 > −1

6
< 0|∂iφ̂∂iφ̂|0 > +

1

3
< 0|φ̂∂2i φ̂|0 >

=
5

6
< 0|∂0φ̂∂0φ̂|0 > +

1

6
< 0|∂iφ̂∂iφ̂|0 > . (6.204)

We regularize this object by putting the two fields at different points x and y as follows

< 0|T̂00|0 > =
5

6
< 0|∂0φ̂(x)∂0φ̂(y)|0 > +

1

6
< 0|∂iφ̂(x)∂iφ̂(y)|0 >

=

[

5

6
∂x0∂

y
0 +

1

6
∂xi ∂

y
i

]

< 0|φ̂(x)φ̂(y)|0 > . (6.205)

Similarly we obtain with minimal coupling the result

< 0|T̂00|0 > =

[

1

2
∂x0∂

y
0 +

1

2
∂xi ∂

y
i

]

< 0|φ̂(x)φ̂(y)|0 > . (6.206)

In infinite space the scalar field operator has the expansion (with wk = |k|, [āk, ā+k′ ] = V δk,k′ ,

etc)

φ̂ =

∫

d3k

(2π)3
1√
2ωk

(

āke
−iωkt+i~k~x + ā+k e

iωkt−i~k~x

)

. (6.207)

In the space between parallel plates the field can then be expanded as

φ̂ =

√

2

L

∑

n

∫

d2k

(2π)2
1√
2ωn

sin
nπ

L
z

(

āk,ne
−iωnt+i~k~x + ā+k,ne

iωnt−i~k~x

)

. (6.208)

11Exercise: derive this result.
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The creation and annihilation operators satisfy the commutation relations [āk,n, ā
+
p,m] = δnm(2π)

2δ2(k−
p), etc.

We use the result

DF (x− y) = < 0|T φ̂(x)φ̂(y)|0 >

=
1

4π2

+∞
∑

n=−∞

[

1

(x− y − 2nLe3)2
− 1

(x− y − 2(nL+ x3)e3)2

]

. (6.209)

We introduce (with a = −nL,−(nL + x3))

Da = (x− y + 2ae3)
2 = −(x0 − y0)2 + (x1 − y1)2 + (x2 − y2)2 + (x3 − y3 + 2a)2. (6.210)

We then compute

∂x0∂
y
0

1

Da
= − 2

D2
a

− 8(x0 − y0)2
1

D3
a

. (6.211)

∂xi ∂
y
i

1

Da
=

2

D2
a

− 8(xi − yi)2
1

D3
a

, i = 1, 2. (6.212)

∂x3∂
y
3

1

D−nL

=
2

D2
−nL

− 8(x3 − y3 + 2nL)2
1

D3
−nL

. (6.213)

∂x3∂
y
3

1

D−(nL+x3)

= − 2

D2
−(nL+x3)

+ 8(x3 + y3 + 2nL)2
1

D3
−(nL+x3)

. (6.214)

We can immediately compute

< 0|T̂00|0 >L
ξ=0 =

1

4π2

+∞
∑

n=−∞

[

2

D2
−nL

− 4(x3 − y3 + 2nL)2
1

D3
−nL

− 4(x3 + y3 + 2nL)2
1

D3
−(nL+x3)

]

−→ − 1

32π2

+∞
∑

n=−∞

1

(nL)4
− 1

16π2

+∞
∑

n=−∞

1

(nL+ x3)4
. (6.215)

This is still divergent. The divergence comes from the original charge corresponding to n = 0

in the first two terms in the limit x −→ y. All other terms coming from image charges are

finite.

The same quantity evaluated in infinite space is

< 0|T̂00|0 >∞
ξ=0 =

∫

d3k

(2π)3
ωk

2
e−ik(x−y). (6.216)
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This is divergent and the divergence must be the same divergence as in the case of parallel

plates in the limit L −→ ∞, viz

< 0|T̂00|0 >∞
ξ=0 = − 1

32π2

1

(nL)4
|n=0. (6.217)

Hence the normal ordered vacuum expectation value of the energy-momentum-tensor is given

by

< 0|T̂00|0 >L
ξ=0 − < 0|T̂00|0 >∞

ξ=0 = − 1

32π2

∑

n 6=0

1

(nL)4
− 1

16π2

+∞
∑

n=−∞

1

(nL+ x3)4
.(6.218)

This is still divergent at the boundaries x3 −→ 0, L.

In the conformal case we compute in a similar way the vacuum expectation value of the

energy-momentum-tensor

< 0|T̂00|0 >L
ξ= 1

6

=
1

12π2

+∞
∑

n=−∞

[

− 2

D2
−nL

+
4

D2
−(nL+x3)

− 4(x3 − y3 + 2nL)2
1

D3
−nL

− 4(x3 + y3 + 2nL)2
1

D3
−(nL+x3)

]

−→ − 1

32π2

+∞
∑

n=−∞

1

(nL)4
. (6.219)

The normal ordered expression is

< 0|T̂00|0 >L
ξ= 1

6

− < 0|T̂00|0 >∞
ξ= 1

6

= − 1

32π2

∑

n 6=0

1

(nL)4

= − 1

16π2L4

∞
∑

n=1

1

n4

= − 1

16π2L4
ζ(4). (6.220)

The zeta function is given by

ζ(4) =
∞
∑

n=1

1

n4
=
π4

90
. (6.221)

Thus

< 0|T̂00|0 >L
ξ= 1

6

− < 0|T̂00|0 >∞
ξ= 1

6

= − π2

1440L4
. (6.222)

This is precisely the vacuum energy density of the conformal scalar field. The electromagnetic

field is also a conformal field with two degrees of freedom and thus the corresponding vacuum

energy density is

ρem = − π2

720L4
. (6.223)
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This corresponds to the attractive Casimir force. The energy between the two plates (where A

is the surface area of the plates) is

Eem = − π2

720L4
AL. (6.224)

The force is defined by

Fem = −dEem

dL

= − π2

240L4
A. (6.225)

The Casimir force is the force per unit area given by

Fem

A
= − π2

240L4
. (6.226)

6.4.4 From Renormalizable Field Theory

We consider the Lagrangian density (recall the metric is taken to be of signature −+++...+

and we will consider mostly 1 + 2 dimensions)

L = −1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

2
λφ2σ. (6.227)

The static background field σ for parallel plates separated by a distance 2L will be chosen to

be given by

σ =
1

∆

(

θ(|z| − L+
∆

2
)− θ(|z| − L− ∆

2
)

)

. (6.228)

∆ is the width of the plates and thus we are naturally interested in the sharp limit ∆ −→ 0.

Obviously we have the normalization

∆

∫

dzσ(z) = 2

∫ 0

−L+∆/2

dzθ(z) − 2

∫ 0

−L−∆/2

dzθ(z)

= 2.∆. (6.229)

We compute the Fourier transform

σ̃(q) =

∫

dzeiqzσ(z)

=
1

∆

∫ −L+∆/2

−L−∆/2

dzeiqz +
1

∆

∫ L+∆/2

L−∆/2

dzeiqz

=
4

q∆
cos qL sin

q∆

2
. (6.230)
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In the limit ∆ −→ 0 we obtain

σ̃(q) = 2 cos qL→ σ(z) = δ(z − L) + δ(z + L). (6.231)

The boundary condition limit φ(±L) = 0 is obtained by letting λ −→ ∞. This is the Dirichlet

limit.

Before we continue let us give the Casimir force for parallel plates (σ = δ(z− a) + δ(z+ a))

in the case of 1 + 1 dimensions. This is given by

F (L, λ,m) = −λ
2

π

∫ ∞

m

t2dt√
t2 −m2

e−4Lt

4t2 − 4λt+ λ2(1− e−4Lt)
. (6.232)

It vanishes quadratically in λ when λ −→ 0 as it should be since it is a force induced by the

coupling of the scalar field φ to the background σ. In the boundary condition limit λ −→ ∞
we obtain

F (L,∞, m) = −1

π

∫ ∞

m

t2dt√
t2 −m2

e−4Lt

1− e−4Lt
. (6.233)

This is independent of the material. Furthermore it reduces in the massless limit to the usual

result, viz (with a = 2L)

F (L,∞, 0) = − π

24a2
. (6.234)

The vacuum polarization energy of the field φ in the background σ is the Casimir energy.

More precisely the Casimir energy is the vacuum energy in the presence of the boundary minus

the vacuum energy without the boundary, viz

E[σ] =
1

2

∑

n

ωn[σ]−
1

2

∑

n

ωn[σ = 0]. (6.235)

The path integral is given by

Z =

∫

Dφei
∫
dDxL. (6.236)

The vacuum energy is given formally by

W [σ] =
1

i
lnZ

=
i

2
Tr ln

[

∂µ∂
µ −m2 − λσ

]

+ constant. (6.237)

Thus

W [σ]−W [σ = 0] =
i

2
Tr ln

[

1− 1

∂µ∂µ −m2
λσ

]

. (6.238)
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The diagrammatic expansion of this term is given by the sum of all one-loop Feynman diagrams

shown in figure 1 of reference [31]. The two-point function is obtained fromW by differentiating

with respect to an appropriate source twice, viz

G(x, y) =
δ2W [σ, J ]

∂J(x)∂J(y)
. (6.239)

The two-point function is then what controls the Casimir energy. From the previous section we

have for a massless theory the result

E[σ] =

∫

d3x < T̂ 00 >ξ=0

=
1

2

∫

d3x(∂0x∂
0
y − ~∇2

x)DFσ(x, y)|x=y

=

∫

dω

2π
ω2

∫

d3xDFσ(ω, ~x, ~x) + constant. (6.240)

In other words

E[σ]−E[σ = 0] =

∫

dω

2π
ω2

∫

d3x

[

DFσ(ω, ~x, ~x)−DF0(ω, ~x, ~x)

]

. (6.241)

As it turns the density of states created by the background is precisely 12

dN

dω
=

ω

π

[

DFσ(ω, ~x, ~x)−DF0(ω, ~x, ~x)

]

. (6.242)

Using this last equation in the previous one gives precisely (6.235).

Alternatively we can rewrite the Casimir energy as

E[σ]− E[σ = 0] =
1

2

∫

d3x(∂0x∂
0
y − ~∇2

x)

[

DFσ(x, y)−DF0(x, y)

]

|x=y

=
1

2

∫

d3x(∂0x∂
0
y − ~∇2

x)
1

∂µ∂µ

[

1

∂µ∂µ
λσ +

1

∂µ∂µ
λσ

1

∂µ∂µ
λσ + ...

]

|x=y

= −1

2

∫

d3x

[

1

∂µ∂µ
λσ +

1

∂µ∂µ
λσ

1

∂µ∂µ
λσ + ...

]

|x=y. (6.243)

This term is again given by the sum of all one-loop Feynman diagrams shown in figure 1 of

reference [31]. We observe that

E[σ]− E[σ = 0] = −iλ ∂

∂λ

[

W [σ]−W [σ = 0]

]

. (6.244)

Both the one-point function (tadpole) and the two-point function (the self-energy) of the sigma

field are superficially divergent for D ≤ 3 and thus require renormalization. We introduce a

counterterm given by

L = c1σ + c2σ
2. (6.245)

12Exercise: Construct an explicit argument.
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The coefficients c1 and c2 are determined from the renormalization conditions

< σ >= 0. (6.246)

< σσ > |p2=−µ2 = 0. (6.247)

The < σ > and < σσ > stand for proper vertices and not Green’s functions of the field σ.

The total Casimir energy for a smooth background is finite. It can become divergent when

the background becomes sharp (∆ −→ 0) and strong (λ −→ ∞). The tadpole is always 0 by

the renormalization condition. The two-point function of the sigma field diverges as we remove

∆ and as a consequence the renormalized Casimir energy diverges in the Dirichlet limit. The

three-point function also diverges (logarithmically) in the sharp limit whereas all higher orders

in λ are finite.

Any further study of these issues and a detailed study of the competing perspective of

Milton [22, 32, 33] is beyond the scope of these lectures.

6.4.5 Is Vacuum Energy Really Real?

The main point of [29] is that experimental confirmation of the Casimir effect does not really

establish the reality of zero point fluctuations in quantum field theory. We leave the reader to

go through the very sensible argumentation presented in that article.



Chapter 7

Horava-Lifshitz Gravity

7.1 The ADM Formulation

In this section we follow [1, 45].

We consider a fixed spacetime manifold M of dimension D + 1. Let gab be the four-

dimensional metric of the spacetime manifold M. We consider a codimension-one foliation of

the spacetime manifold M given by the spatial hypersurface (Cauchy surfaces) Σt of constant

time t. Let na be the unit normal vector field to the hypersurfaces Σt. This induces a three-

dimensional metric hab on each Σt given by the formula

hab = gab + nanb. (7.1)

The time flow in this spacetime will be given by a time flow vector field ta which satisfies ta∇at =

1. We decompose ta into its normal and tangential parts with respect to the hypersurface Σt.

The normal and tangential parts are given by the so-called lapse function N and shift vector

Na respectively defined by

N = −gabtanb. (7.2)

Na = ha bt
b. (7.3)

Let us make all this more explicit. Let t = t(xµ) be a scalar function on the four-dimensional

spacetime manifold M defined such that constant t gives a family of non-intersecting spacelike

hypersurfaces Σt. Let y
i be the coordinates on the hypersurfaces Σt. We introduce a congruence

of curves parameterized by t which connect the hypersurfaces Σt in such a way that points on

each of the hypersurfaces intersected by the same curve are given the same spatial coordinates

yi. We have then

xµ −→ yµ = (t, yi). (7.4)
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The tangent vectors to the hypersurface Σt are

eµi =
∂xµ

∂yi
. (7.5)

The tangent vectors to the congruence of curves is

tµ =
∂xµ

∂t
. (7.6)

The vector tµ satisfies trivially tµ∇µt = 1, i.e. tµ gives the direction of flow of time. The normal

vector to the hypersurface Σt is defined by

nµ = −N ∂t

∂xµ
. (7.7)

The normalization N is the lapse function. It is given precisely by (7.2), viz N = −nµt
µ. Clearly

then N is the normal part of the vector tµ with respect to the hypersurface Σt. Obviously we

have nµe
µ
i = 0 and from the normalization nµn

µ = −1 we must also have

N2 ∂t

∂xµ
∂xµ
∂t

= −1 , N = (nµ∇µt)
−1. (7.8)

We can decompose tµ as

tµ = Nnµ +N ieµi . (7.9)

The three functions N i define the components of the shift (spatial) vector. We compute imme-

diately that

dxµ =
∂xµ

∂t
dt+

∂xµ

∂yi
dyi

= tµdt+ eµi dy
i

= (Ndt)nµ + (dyi +N idt)eµi . (7.10)

Also

ds2 = gµνdx
µdxν

= gµν

[

N2dt2nµnν + (dyi +N idt)(dyj +N jdt)eµi e
ν
j

]

= −N2dt2 + hij(dy
i +N idt)(dyj +N jdt). (7.11)

The three-dimensional metric hij is the induced metric on the hypersurface Σt. It is given

explicitly by

hij = gµνe
µ
i e

ν
j . (7.12)
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From the other hand in the coordinate system yµ we have

ds2 = γµνdy
µdyν

= γ00dt
2 + 2γ0jdtdy

j + γijdy
idyj. (7.13)

By comparing (7.11) and (7.13) we obtain

γµν =

(

γ00 γ0j
γi0 γij

)

=

( −N2 + hijN
iN j hijN

i

hijN
j hij

)

=

( −N2 +N iNi Nj

Ni hij

)

. (7.14)

The condition γµνγ
νλ = δλµ reads explicitly

(−N2 +N iNi)γ
00 +Niγ

i0 = 1

(−N2 +N iNi)γ
0j +Niγ

ij = 0

Njγ
00 + hijγ

i0 = 0

Njγ
0k + hijγ

ik = δkj . (7.15)

We define hij in the usual way, viz hijh
jk = δki . We get immediately the solution

γµν =

(

γ00 γ0j

γi0 γij

)

=

( − 1
N2

1
N2N

j

1
N2N

i hij − 1
N2N

iN j

)

. (7.16)

We also compute (we work in 1 + 2 for simplicity)

detγ = det





−N2 +N iNi N1 N2

N1 h11 h12
N2 h21 h22





= (−N2 +N iNi)deth−N1(N1h22 −N2h12) +N2(N1h21 −N2h11). (7.17)

By using Ni = hijN
j we find

detγ = −N2deth (7.18)

We have then the result

√−gd4x =
√−γd4y = N

√
hd4y. (7.19)

We conclude that all information about the original four-dimensional metric gµν is contained

in the lapse function N , the shift vector N i and the three-dimensional metric hij .

The three-dimensional metric hij can also be understood in terms of projectors as follows.

The projector normal to the hypersurface Σt is defined by

PN
µν = −nµnν . (7.20)
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This satisfies (PN)2 = PN and PNn = n as it should. The normal component of any vector V µ

with respect to the hypersurface Σt is given by V µnµ. The projector P
N
µν can also be understood

as the metric along the normal direction. Indeed we have

PN
µνdx

µdxν = −nµnνdx
µdxν = −N2dt2. (7.21)

The tangent projector is then obviously given by

P T
µν = gµν − PN

µν

= gµν + nµnν . (7.22)

This should be understood as the metric along the tangent directions since

P T
µνdx

µdxν = ds2 +N2dt2 = hij(dy
i +N idt)(dyj +N jdt). (7.23)

The three-dimensional metric is therefore given by

hµν ≡ P T
µν = gµν + nµnν . (7.24)

Indeed we have

hµν
∂xµ

∂yα
∂xν

∂yβ
dyαdyβ = hij(dy

i +N idt)(dyj +N jdt). (7.25)

Or equivalently

hµνe
µ
i e

ν
j = hij ⇔ gµνe

µ
i e

ν
j = hij

Ni = hµνt
µeνi ⇔ Ni = hijN

j

NiN
i ≡ hµνt

µtν . (7.26)

We compute also

hµν t
ν = gµαhανt

ν = N ieµi ≡ Nµ. (7.27)

This should be compared with (7.3).

It is a theorem that the three-dimensional metric hµν will uniquely determine a covariant

derivative operator on Σt. This will be denoted Dµ and defined in an obvious way by

DµXν = hαµh
β
ν∇αXβ. (7.28)

In other words Dµ is the projection of the four-dimensional covariant derivative ∇µ onto Σt.

A central object in the discussion of how the hypersurfaces Σt are embedded in the four-

dimensional spacetime manifold M is the extrinsic curvature Kµν . This is given essentially by

1) comparing the normal vector nµ at a point p and the parallel transport of the normal vector

nµ at a nearby point q along a geodesic connecting q to p on the hypersurface Σt and then 2)

projecting the result onto the hypersurface Σt. The first part is clearly given by the covariant
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derivative whereas the projection is done through the three-dimensional metric tensor. Hence

the extrinsic curvature must be defined by

Kµν = −hαµhβν∇αnβ

= −hαµ∇αnν . (7.29)

In the second line of the above equation we have used nβ∇αnβ = 0 and ∇αgµν = 0. We can

check that Kµν is symmetric and tangent, viz 1

Kµν = Kνµ , h
α
µKαν = Kµν . (7.30)

We recall the definition of the curvature tensor in four dimensions which is given by

(∇α∇β −∇β∇α)ωµ = Rαβµ
νων . (7.31)

By analogy the curvature tensor of Σt can be defined by

(DαDβ −DβDα)ωµ =(3) Rαβµ
νων . (7.32)

We compute

DαDβωµ = Dα(h
ρ
βh

ν
µ∇ρων)

= hδαh
θ
βh

γ
µ∇δ(h

ρ
θh

ν
γ∇ρων)

= hδαh
ρ
βh

ν
µ∇δ∇ρων − hνµKαβn

ρ∇ρων − hρβKαµn
ν∇ρων . (7.33)

In the last line of the above equation we have used the result

hδαh
θ
β∇δh

ρ
θ = −Kαβn

ρ. (7.34)

We also compute

hρβn
ν∇ρων = hρβ∇ρ(n

νων) +Kν
βων

= Dρ(n
νων) +Kν

βων

= Kν
βων . (7.35)

Thus

DαDβωµ = hδαh
ρ
βh

ν
µ∇δ∇ρων − hνµKαβn

ρ∇ρων −KαµK
ν
βων . (7.36)

Similar calculation gives

DβDαωµ = hδαh
ρ
βh

ν
µ∇ρ∇δων − hνµKαβn

ρ∇ρων −KβµK
ν
αων . (7.37)

1Exercise: Verify these results.
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Hence we obtain the first Gauss-Codacci relation given by

(3)Rαβµ
νων = hδαh

ρ
βh

θ
µRδρθ

κωκ −KαµK
ν
βων +KβµK

ν
αων . (7.38)

In other words

(3)Rαβµ
ν = hδαh

ρ
βh

θ
µRδρθ

κhνκ −KαµK
ν
β +KβµK

ν
α. (7.39)

The first term represents the intrinsic part of the three-dimensional curvature obtained by

simply projecting out the four-dimensional curvature onto the hypersurface Σt whereas the

second term represents the extrinsic part of the three-dimensional curvature which arises from

the embedding of Σt into the spacetime manifold.

The second Gauss-Codacci relation is given by

DµK
µ
ν −DνK

µ
µ = −hανRακn

κ. (7.40)

The proof goes as follows. We use hνµh
λ
ν = hλµ and Kλ

µ = gλνKµν = −hαµ∇αn
λ to find

DµK
µ
ν −DνK

µ
µ = hρµh

µ
σh

λ
ν∇ρK

σ
λ − hρνh

µ
σh

λ
µ∇ρK

σ
λ

= hρσh
λ
ν∇ρK

σ
λ − hρσh

λ
ν∇λK

σ
ρ

= −hρσhλν∇ρ(h
α
λ∇αn

σ) + hρσh
λ
ν∇λ(h

α
ρ∇αn

σ)

= −hρσhλν
(

∇ρh
α
λ .∇αn

σ + hαλ∇ρ∇αn
σ −∇λh

α
ρ .∇αn

σ − hαρ∇λ∇αn
σ

)

.

(7.41)

The first and third terms are zero. Explicitly we have (using ∇αgµν = 0 and nµhνµ = 0)

−hρσhλν
(

∇ρh
α
λ .∇αn

σ −∇λh
α
ρ .∇αn

σ

)

= hλνKσλn
α∇αn

σ − hρσKνρn
α∇αn

σ

= 0. (7.42)

We have then

DµK
µ
ν −DνK

µ
µ = −hρσhλν

(

hαλ∇ρ∇αn
σ − hαρ∇λ∇αn

σ
)

= −hρσhαν
(

∇ρ∇α −∇α∇ρ

)

nσ

= −hρσhανRρασκn
κ

= hρσhανRρακσn
κ

= gρσhανRρακσn
κ

= hανRρακ
ρnκ

= −hανRαρκ
ρnκ

= −hανRακn
κ. (7.43)
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The goal now is to compute in terms of three-dimensional quantities the scalar curvature R.

We start from

R = −Rgµνnµnν

= −2(Rµν −Gµν)n
µnν

= −2Rµνn
µnν +Rµναβh

µαhνβ . (7.44)

We compute

Rµναβh
µαhνβ = hβρRµνα

ρhµαhνβ

= gβηgκσ
(

hµκh
ν
ηh

α
σRµνα

ρhθρ
)

hβθ

= gβηgκσ
((3)

Rκησ
θ +KκσK

θ
η −KησK

θ
κ

)

hβθ

= gκσ
((3)

Rκησ
θ +KκσK

θ
η −KησK

θ
κ

)

= (3)R +K2 −KµνK
µν . (7.45)

Next we compute

Rµνn
µnν = Rµαν

αnµnν

= −gαρnνRνραµn
µ

= nν∇µ∇µn
µ − nν∇ν∇µn

µ

= ∇µ(n
ν∇νn

µ)−∇ν(n
ν∇µn

µ)−∇µn
ν .∇νn

µ +∇νn
ν .∇µn

µ. (7.46)

The rate of change of the normal vector along the normal direction is expressed by the quantity

aµ = nν∇νn
µ. (7.47)

We have

K = Kµ
µ = −hαµ∇αn

µ

= −gαµ∇αn
µ

= −∇µn
µ. (7.48)

By using now Kµν = −hαµ∇αnν = −hαν∇αnµ and hνβKµν = Kβ
µ we can show that

KµνK
µν = −Kµνh

νβ∇βn
µ

= −Kβ
µ∇βn

µ

= hρµ∇ρn
β∇βn

µ

= ∇µn
β.∇βn

µ. (7.49)

We obtain then the result

Rµνn
µnν = ∇µ(Kn

µ + aµ)−KµνK
µν +K2. (7.50)
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The end result is given by

R = LADM − 2∇µ(Kn
µ + aµ). (7.51)

The so-called ADM (Arnowitt, Deser and Misner) Lagrangian is given by

LADM =(3) R−K2 +KµνK
µν . (7.52)

In other words
√−gLADM =

√
hN((3)R−K2 +KµνK

µν). (7.53)

The extrinsic curvature Kµν is the covariant analogue of the time derivative of the metric as we

will now show. First we recall the definition of the Lie derivative of a tensor T along a vector V .

For a function we have obviously LV f = V (f) = V µ∂µf whereas for a vector the Lie derivative

is defined by LV U
µ = [V, U ]µ. This is essentially the commutator which is the reason why the

commutator is called sometimes the Lie bracket. The Lie derivative of an arbitrary tensor is

given by

LV T
µ1...µk
ν1...νl

= V σ∇σT
µ1...µk
ν1...νl

−∇λV
µ1T λµ2...µk

ν1...νl
− ... +∇ν1V

λT µ1...µk

λν2...νl
+ ... (7.54)

A very important example is the Lie derivative of the metric given by

LV gµν = ∇µVν +∇νVµ. (7.55)

Let us now go back to the extrinsic curvature Kµν . We have (using nchcb = 0, tc = Nnc +N c)

Kab = −hαa∇αnb

= −1

2
hαah

β
b (∇αnβ +∇βnα)

= −1

2
hαah

β
bLnhαβ

= −1

2
hαah

β
b

(

nc∇chαβ +∇αn
c.hcβ +∇βn

c.hαc
)

= − 1

2N
hαah

β
b

(

Nnc∇chαβ +∇α(Nn
c).hcβ +∇β(Nn

c).hαc

)

= − 1

2N
hαah

β
b

(

Lthαβ −LNhαβ
)

. (7.56)

However we have (using N c = hcdt
d)

hαah
β
bLNhαβ = hαah

β
b

(

N c∇chαβ +∇αN
c.hcβ +∇βN

c.hcα

)

= tdDdhab +DaNb +DbNa

= DaNb +DbNa. (7.57)

The time derivative of the metric is defined by

ḣab = hαah
β
bLthαβ . (7.58)

Hence

Kab = − 1

2N

(

ḣab −DaNb −DbNa

)

. (7.59)
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7.2 Introducing Horava-Lifshitz Gravity

In this section we follow [46–48] but also [49–52].

We will consider a fixed spacetime manifold M of dimension D+1 with an extra structure

given by a codimension-one foliation F . Each leaf of the foliation is a spatial hypersurface

Σt of constant time t with local coordinates given by xi. Obviously general diffeomorphisms,

including Lorentz transformations, do not respect the foliation F . Instead we have invariance

under the foliation preserving diffeomorphism group DiffF(M) consisting of space-independent

time reparametrizations and time-dependent spatial diffeomorphisms given by

t −→ t
′

(t) , ~x −→ ~x
′

(t, ~x). (7.60)

The infinitesimal generators are clearly given by

δt = f(t) , δxi = ξi(t, ~x). (7.61)

The time-dependent spatial diffeomorphisms allow us arbitrary changes of the spatial coor-

dinates xi on each constant time hypersurfaces Σt. The fact that time reparametrization is

space-independent means that the foliation of the spacetime manifold M by the constant time

hypersurfaces Σt is not a choice of coordinate, as in general relativity, but it is a physical

property of spacetime itself.

This property of spacetime is implemented explicitly by positing that spacetime is anisotropic

in the sense that time and space do not scale in the same way, viz

xi −→ bxi , t −→ bzt. (7.62)

The exponent z is called the dynamical critical exponent and it measures the degree of anisotropy

postulated to exist between space and time. This exponent is a dynamical quantity in the theory

which is not determined by the gauge transformations corresponding to the foliation preserving

diffeomorphisms. The above scaling rules (7.62) are not invariant under foliation preserving

diffeomorphisms and they should only be understood as the scaling properties of the theory at

the UV free field fixed point.

7.2.1 Lifshitz Scalar Field Theory

We start by explaining the above point a little further in terms of so-called Lifshitz field

theory. Lifshitz scalar field theory describes a tricritical triple point at which three different

phases (disorder, uniform (homogeneous) and non-uniform (spatially modulated)) meet. A

Lifshitz scalar field is given by the action

S =
1

2

∫

dt

∫

dDx
(

Φ̇2 − 1

4
(∆Φ)2

)

. (7.63)
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This action defines a Gaussian (free) RG fixed point with anisotropic scaling rules (7.62) with

z = 2. The two terms in the above action must have the same mass dimension and as a

consequence we obtain [t] = [x]2. By choosing ~ = 1 the mass dimension of x is P−1 where P

is some typical momentum and hence the mass dimension of t is P−2. We have then

[x] = P−1 , [t] = P−2. (7.64)

The mass dimension of the scalar field is therefore given by

[Φ] = P
D−2

2 . (7.65)

The values z = 2 and (D − 2)/2 should be compared with the relativistic values z = 1 and

(D − 1)/2. The lower critical dimension of the Lifshitz scalar at which the two-point function

becomes logarithmically divergent is 2 + 1 instead of the usual 1 + 1 of the relativistic scalar

field.

We can add at the UV free fixed point a relevant perturbation given by

W = −c
2

2

∫

dt

∫

dDx∂iΦ∂iΦ. (7.66)

By using the various mass dimensions at the UV free fixed point the coupling constant c has

mass dimension P . The theory will flow in the infrared to the value z = 1 since this perturbation

dominates the second term of (7.63) at low energies. In other words at large distances Lorentz

symmetry emerges accidentally.

This crucial result is also equivalent to the statement that the ground state wave function

of the system (7.63) is given essentially by the above relevant perturbation. This can be shown

as follows. The Hamiltonian derived from (7.63) is trivially given by

H =
1

2

∫

dDx
(

P 2 +
1

4
(∆Φ)2

)

. (7.67)

The term (∆Φ)2 appears therefore as the potential. The momentum P can be realized as

P = −i δ
δΦ

. (7.68)

The Hamiltonian can then be rewritten as

H =
1

2

∫

dDxQ+Q , Q = iP − 1

2
∆Φ. (7.69)

The ground state wave function is a functional of the scalar field Φ which satisfies HΨ0[Φ] = 0

or equivalently

QΨ0 = 0 ⇒
( δ

δΦ
− 1

2
∆Φ

)

Ψ0[Φ] = 0. (7.70)
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A simple solution is given by

Ψ0[Φ] = exp
(

− 1

4

∫

dDx∂iΦ∂iΦ
)

. (7.71)

The theory given by the action (7.63) satisfy the so-called detailed balance condition in the

sense that the potential part can be derived from a variational principle given precisely by the

action (7.66), viz

δW

δΦ
= c2∆Φ. (7.72)

7.2.2 Foliation Preserving Diffeomorphisms and Kinetic Action

We will assume for simplicity that the global topology of spacetime is given by

M = R× Σ. (7.73)

Σ is a compact D−dimensional space with trivial tangent bundle. This is equivalent to the

statement that all global topological effects will be ignored and all total derivative and boundary

terms are dropped in the action.

The Riemannian structure on the foliation F is given by the three dimensional metric gij,

the shift vector Ni and the lapse function N as in the ADM decomposition of general relativity.

The lapse function can be either projectable or non-projectable depending on whether or not

it depends on time only and thus it is constant on the spatial leafs or it depends on spacetime.

As it turns out projectable Horava-Lifshitz gravity contains an extra degree of freedom known

as the scalar graviton.

We want here to demonstrate some of the above results. We first write down the metric in

the ADM decomposition as

ds2 = −N2c2dt2 + gij(dx
i +N idt)(dxj +N jdt)

= (−N2 + gijN
iN j/c2)(dx0)2 + (gijN

j/c)dxidx0 + (gijN
i/c)dxjdx0 + gijdx

idxj.

(7.74)

Now we consider the general diffeomorphism transformation

x
′0 = x0 + cf(t, xi) +O(

1

c
)

x
′i = xi + ξi(t, xj) +O(

1

c
). (7.75)

This is an expansion in powers of 1/c. For simplicity we will also assume that the generators f

and ξi are small. We compute immediately

gij =
∂x

′µ

∂xi
∂x

′ν

∂xj
g

′

µν

= gki g
l
jg

′

kl + gki
∂ξl

∂xj
g

′

kl + glj
∂ξk

∂xi
g

′

kl + c
∂f

∂xj
gki g

′

k0 + c
∂f

∂xi
gkj g

′

k0... (7.76)
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In the limit c −→ ∞ the last two terms diverge and thus one must choose the generator of time

reparametrization f such that f = f(t). In this case the above diffeomorphism (7.75) becomes

precisely a foliation preserving diffeomorphism. We obtain in this case

g
′

ij = gij − gki
∂ξl

∂xj
gkl − glj

∂ξk

∂xi
gkl. (7.77)

Equivalently the gauge transformation of the three dimensional metric corresponding to a foli-

ation preserving diffeomorphism is

δgij = g
′

ij(x
′

)− gij(x)

= g
′

ij(x)− gij(x) + f
∂gij
∂t

+ ξk
∂gij
∂xk

= − ∂ξl

∂xj
gil −

∂ξk

∂xi
gkj + f

∂gij
∂t

+ ξk
∂gij
∂xk

. (7.78)

Similarly we compute the gauge transformation of the shift vector corresponding to a foliation

preserving diffeomorphism as follows. We have

gi0 =
∂x

′µ

∂xi
∂x

′ν

∂x0
g

′

µν

= g
′

i0 +
∂f

∂t
g

′

i0 +
1

c

∂ξk

∂t
g

′

ik +
∂ξk

∂xi
g

′

k0. (7.79)

Equivalently we have

g
′

ijN
′j = gijN

j − ∂f

∂t
Ni −

∂ξk

∂t
gik −

∂ξk

∂xi
Nk. (7.80)

We rewrite this as

gij(N
′j −N j) = −∂f

∂t
Ni −

∂ξk

∂t
gik +

∂ξl

∂xj
gilN

j . (7.81)

We have then

δNi = g
′

ij(x
′

)N
′j(x

′

)− gij(x)N
j(x)

= −∂f
∂t
Ni + f

∂Ni

∂t
− ∂ξk

∂t
gik + ξk

∂Ni

∂xk
− ∂ξk

∂xi
Nk. (7.82)

A similar calculation for the lapse function goes as follows. We have

g00 =
∂x

′µ

∂x0
∂x

′ν

∂x0
g

′

µν

= g
′

00 + 2
∂f

∂t
g

′

00 +
2

c

∂ξi

∂t
g

′

i0. (7.83)

Explicitly we find from this equation after some calculation (recalling that gijN
j = Ni)

N
′

(x)−N(x) = −∂f
∂t
N. (7.84)
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Thus

δN = N
′

(x
′

)−N(x)

= f
∂N

∂t
+ ξk

∂N

∂xk
− ∂f

∂t
N. (7.85)

We can use the above gauge transformations to make the choice

N = 1 , Ni = 0. (7.86)

These are called the Gaussian coordinates.

Now we want to write an action principle for this theory. It will be given by the difference

of a kinetic term and a potential term as follows

S = SK − SV . (7.87)

The kinetic term is formed from the most general scalar term compatible with foliation preserv-

ing diffeomorphisms which must be quadratic in the time derivative of the three dimensional

metric in order to maintain unitarity. It must be of the canonical form
∫

dtdDxΦ̇2. Explicitly

we may write

SK =
1

2κ2

∫

dtdDxN
√
g
∂gij
∂t

Gijkl∂gkl
∂t

. (7.88)

The time derivative of the three dimensional metric in the above action (7.88) must in fact

be replaced by Kij while the metric Gijkl on the space of metrics can be determined from the

requirement of invariance under foliation preserving diffeomorphisms as we will show in the

following.

We know from our study of the ADM decomposition of general relativity that the covariant

time derivative of the three dimensional metric is given by the extrinsic curvature, viz

Kij = − 1

2N

(

ġij −∇iNj −∇jNi

)

, ġij = gai g
b
jLtgab. (7.89)

In this section we have decided to denote the three dimensional covariant derivative by ∇i

in the same way that we have decided to denote the three dimensional metric by gij. We

may choose the local coordinates such that the vector field ta has components (c, 0, ..., 0) and

as a consequence the diffeomorphism corresponding to time evolution is precisely given by

(x0, x1, ..., xD) −→ (x0 + δx0, x1, ..., xD) and hence ġij = ∂gij/∂t.

From the ADM decomposition (7.53) we see that the combination KijK
ij − K2 where

K = gijKij is the only combination which is invariant under four dimensional diffeomorphisms.

Under the three dimensional (foliation preserving) diffeomorphisms it is obvious that both terms

KijK
ij and K2 are, by construction, separately invariant. We are led therefore to consider the

kinetic action

SK =
1

2κ2

∫

dtdDxN
√
g(KijK

ij − λK2). (7.90)



GR, B.Ydri 228

Let us determine the mass dimension of the different objects. Let us set ~ = 1. From the

Heisenberg uncertainty principle we know that the mass dimension of x is precisely P−1 where

P is some typical momentum. In order to reflect the properties of the fixed point we will set a

scale Z of dimension [Z] = [x]z/[t] to be dimensionless, i.e. [c] = P z−1. This choice is consistent

with the scaling rules (7.62). The mass dimension of t is therefore given by P−z. The volume

element is hence of mass dimension

[dtdDx] = P−z−D. (7.91)

Now from the line element (7.74) we see that dxi and N idt have the same mass dimension and

hence the mass dimension of N i is P z−1. The mass dimension of the line element ds2 must

be the same as the mass dimension of dx2, i.e. [ds] = P−1 and as a consequence [gij] = P 0.

Similarly we can conclude that the mass dimension of N is P 0. In summary we have

[gij] = [N ] = P 0 , [N i] = P z−1. (7.92)

From the above results we conclude that the mass dimension of the extrinsic curvature is given

by

[Kij] = P z. (7.93)

We can now derive the mass dimension of the coupling constant κ. We have

[SK ] ≡ P 0 =
1

[κ]2
P−z−DP 2z =⇒ [κ] = P

z−D
2 . (7.94)

Thus in D = 3 spatial dimensions we must have z = 3 in order for κ to be dimensionless and

hence the theory power-counting renormalizable.

The second coupling constant λ is also dimensionless. It only appears because the two

terms KijK
ij and K2 are separately invariant under the three dimensional (foliation preserving)

diffeomorphisms.

The kinetic action (7.90) can be rewritten in a trivial way as

SK =
1

2κ2

∫

dtdDxN
√
gKijG

ijklKkl. (7.95)

The metric on the space of metrics Gijkl is a generalized version of the so-called Wheeler-DeWitt

metric given explicitly by

Gijkl =
1

2
(gikgjl + gilgjk)− λgijgkl. (7.96)

This is the only form consistent with three dimensional (foliation preserving) diffeomorphisms.

Full spacetime diffeomorphism invariance corresponding to general relativity fixes the value of

λ as λ = 1. The inverse of G is defined by

GijmnG
mnkl =

1

2
(gki g

l
j + glig

k
j ). (7.97)



GR, B.Ydri 229

We find explicitly

Gijkl =
1

2
(gikgjl − gilgjk)−

λ

Dλ− 1
gijgkl. (7.98)

We will always assume for D = 3 that λ 6= 1/3 for obvious reasons. The precise role of λ is still

not very clear and we will try to study it more carefully in the following.

7.2.3 Potential Action and Detail Balance

The total action of Horava-Lifshitz gravity is a difference between the kinetic action con-

structed above and a potential action, viz

S = SK − SV . (7.99)

The potential term, in the spirit of effective field theory, must contain all terms consistent with

the foliation preserving diffeomorphisms which are of mass dimension less or equal than the

kinetic action. These potential terms will contain in general spatial derivatives but not time

derivatives which are already taken into account in the kinetic action. These potential terms

must be obviously scalars under foliation preserving diffeomorphisms.

The mass dimension of the kinetic term is [KijKij] = P 2z = P 6. Thus the potential action

must contain all covariant scalars which are of mass dimensions less or equal than 6. These terms

are built from gij and N and their spatial derivatives. Because gij and N are both dimensionless

the scalar term of mass dimension n must contain n spatial derivatives since [xi] = P−1. For

projectable Horava-Lifshitz gravity the lapse function does not depend on space and hence all

terms can only depend on the metric gij and its spatial derivatives. Obviously terms with odd

number of spatial derivatives are not covariant. There remains terms with mass dimensions 0,

2, 4 and 6.

The term of mass dimension 0 is precisely the cosmological constant while the term of mass

dimension 2 is the Ricci scalar, viz.

mass dimension = 0 , R0

mass dimension = 2 , R. (7.100)

The terms of mass dimensions 4 and 6 are given by the lists

mass dimension = 4 , R2, RijR
ij

mass dimension = 6 , R3, RRj
iR

i
j, R

i
jR

j
kR

k
i , R∇2R,∇iRjk∇iRjk. (7.101)

The operators of mass dimensions 0, 2 and 4 are relevant (super renormalizable) while the

operators of dimension 6 are marginal (renormalizable). The quadratic terms modify the prop-

agator and add interactions while cubic terms in the curvature provide only interaction terms.
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The term ∇iRjk∇jRik is not included in the list because it is given by a linear combination of

the above terms up to a total derivative. The potential action of projectable Horava-Lifshitz

gravity is then given by

SV =

∫

dtdDx
√
gNV [gij]. (7.102)

V [gij] = g0 + g1R + g2R
2 + g3RijR

ij + g4R
3 + g5RRijR

ij + g6R
j
iR

k
jR

i
k + g7R∇2R + g8∇iRjk∇iRjk.

(7.103)

The lowest order potential coincides with general relativity. In general relativity the projectabil-

ity condition can always be chosen at least locally as a gauge choice which is not the case for

Horava-Lifshitz gravity.

A remark now on non-projectable Horava-Lifshitz gravity is in order. In this case the

lapse function depend on time and space which matches the spacetime-dependence of the lapse

function in general relativity. Furthermore it can be shown that ai = ∂i lnN transforms as a

vector under the diffeomorphism group DiffF(M) and as a consequence more terms such as

aia
i, ∇ia

i must be included in the potential action. The lowest order potential in this case is

found to be given by

V [gij] = g0 + g1R + αaia
i + β∇ia

i. (7.104)

It is very hard to see whether or not the RG flow of the coupling constants α and β goes to zero

in the infrared in order to recover general relativity. In [53] it was shown that the non-vanishing

of α and β in the IR leads to the existence of a scalar mode.

Alternatively we can rewrite the total action as follows. The first part is the Hilbert-Einstein

action given by

SEH =
1

2κ2

∫

dt

∫

dDxN
√
g

[

KijK
ij −K2 − 2κ2g1R− 2κ2g0

]

. (7.105)

Recall that [t] = P−3 and [x] = P−1. We scale time as t
′

= ζ2t where ζ is of mass dimension

P . It is clear that [t
′

] = P−1 = [x] and thus in the new system of coordinates (t
′

, xi) we can

choose as usual c = 1. We have then

SEH =
1

2(κζ)2

∫

dt
′

∫

dDxN
√
g

[

KijK
ij −K2 − 2(κζ)2g1R− 2(κζ)2g0

]

. (7.106)

The coupling constant g1 is of mass dimension P 4. Thus we may choose g1 or equivalently ζ

such that

−2(κζ)2g1 = 1. (7.107)

We can now make the identification

1

2(κζ)2
=

1

2
M2

Planck =
1

16πGNewton
, (κζ)2g0 = Λ. (7.108)
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Thus the Hilbert-Einstein action is given by

SEH =
1

2
M2

Planck

∫

dt
′

∫

dDxN
√
g

[

KijK
ij −K2 +R− 2Λ

]

. (7.109)

To obtain the Horava-Lifshitz action we need to add 8 Lorentz-violating terms given by (with

ξ = 1− λ and g2 = ĝ2ζ
2, g3 = ĝ3ζ

2 since g2 and g3 are of mass dimensions P 2)

SLV =
1

2κ2

∫

dt

∫

dDxN
√
gξK2 +

∫

dt

∫

dDxN
√
g

[

− ĝ2ζ
2R2 − ĝ3ζ

2RijR
ij − g4R

3 − g5RRijR
ij

− g6R
j
iR

k
jR

i
k − g7R∇2R− g8∇iRjk∇iRjk

]

. (7.110)

Equivalently

SLV =
1

2(κξ)2

∫

dt
′

∫

dDxN
√
g

[

ξK2 − 2ĝ2(κζ)
2R2 − 2ĝ3(κζ)

2RijR
ij − 2g4κ

2R3 − 2g5κ
2RRijR

ij

− 2g6κ
2Rj

iR
k
jR

i
k − 2g7κ

2R∇2R− 2g8κ
2∇iRjk∇iRjk

]

. (7.111)

We may set κ = 1 for simplicity. These Lorentz-violating terms lead to a scalar mode for the

graviton with mass of order O(ξ). Furthermore these terms are not small since they become

comparable to the Einstein-Hilbert action for momenta of the order Mi = MPl/gi
0.5, i = 2, 3

and Mi =MPl/gi
0.25, i = 4, 5, 6, 7. The Planck scale MPl is independent of the various Lorentz-

violating scales Mi which can be driven arbitrarily high by fine tuning of the dimensionless

coupling constants gi.

We will now impose the condition of detailed balance on the potential action. Thus we

require that the potential action is of the special form

SV =
κ2

8

∫

dtdDx
√
gNEijGijklE

kl. (7.112)

The tensor E is derived from some Euclidean D−dimensional action W as follows

√
gEij =

δW

δgij
. (7.113)

It is clearly that with the detailed balance condition the potential is a perfect square. As

it turns out detailed balance lead to a cosmological constant of the wrong sign and parity

violation. However it remains true that renormalization with detailed balance condition of the

(D + 1)−dimensional theory is equivalent to the renormalization of the D−dimensional action

W together with the renormalization of the relative couplings between kinetic and scalar terms

which is clearly much simpler than renormalization of a generic theory in (D+1)−dimensions.

For theories which are spatially isotropic we can choose the action W to be precisely the

Hilbert-Einstein action in D dimensions. This is a relativistic theory with Euclidean signature

given by the action

W =
1

κ2W

∫

dDx
√
g(R − 2ΛW ). (7.114)
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A standard calculation gives

δW =
1

κ2W

∫

dDx
√
gδgij

(

Rij −
1

2
gijR + gijΛW

)

. (7.115)

Equivalently

δW

δgij
=

1

κ2W

√
g
(

Rij −
1

2
gijR + gijΛW

)

. (7.116)

Thus

Eij =
1

κ2W

(

Rij −
1

2
gijR + gijΛW

)

. (7.117)

The potential action becomes therefore

SV =
κ2

8κ4W

∫

dtdDx
√
gN

(

Rij − 1

2
gijR + gijΛW

)

Gijkl

(

Rkl − 1

2
gklR + gklΛW

)

. (7.118)

For very short distances (UV) the curvature is clearly the dominant term in W and thus the

potential action SV is dominated by terms quadratic in the curvature. In this case the mass

dimension of the potential action P 4−z−D[κ]2/[κW ]4 must be equal to the mass dimension of

the kinetic action P z−D/[κ]2. This leads to the results

[κ]2 = P z−D ,
[κ]2

[κW ]2
= P z−2. (7.119)

We have then anisotropic scaling with z = 2 and power counting renormalizability in 1 + 2

dimensions. In a spacetime with 1 + 3 dimensions we have [κ]2 = P z−3 and [κW ]2 = P−1. The

fact that the coupling constant κW is dimensionfull means the above theory in 1+3 dimensions

can only work as an effective field theory valid which is up to energies set by the energy scale

1/[κW ]2.

At large distances (IR) the dominant term in W is the cosmological constant ΛW and thus

the potential action is dominated by linear and quadratic terms in ΛW . This is essentially

equivalent to the Einstein-Hilbert gravity theory given by the combination R − 2Λ and thus

effectively the anisotropic scaling becomes the usual value z = 1. In other words in 1 + 3

dimensions, the above Horava-Lifshitz gravity has a z = 2 fixed point in the UV and flows to

a z = 1 fixed point in the IR.

However we really need to construct a Horava-Lifshitz gravity with a z = 3 fixed point in

the UV and flows to a z = 1 fixed point in the IR. As explained before the z = 3 anisotropic

scaling in 1+3 dimensions is exactly what is needed for power counting renormalizability. The

theory must satisfy detailed balance and thus one must look for a tensor Eij which is such that

it gives a z = 3 scaling. It is easy to convince ourselves that Eij must be third order in spatial

derivatives so that the dominant term in the potential action SV contains six spatial derivatives
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and hence will balance the two time derivatives in the kinetic action. With such an Eij we will

have

[κ]2 = P z−D ,
[κ]2

[κW ]2
= P z−3. (7.120)

There is a unique candidate for Eij which is known as the Cotton tensor. This is a tensor which

is third order in spatial derivatives given explicitly by

C ij = ǫikl∇k(R
j
l −

1

4
Rgjl ). (7.121)

We now state some results concerning the Cotton tensor without any proof. This is a symmetric

tensor C ij = Cji, traceless gijC
ij = 0, conserved ∇iC

ij = 0 which transforms under Weyl

transformations of the metric gij −→ exp(2Ω)gij as C ij −→ exp(−5Ω)C ij , i.e. it is conformal

with weight −5/2.

In dimensions D > 3 conformal flatness of a Riemannian metric is equivalent to the vanishing

of the Weyl tensor defined by

Cijkl = Rijkl −
1

D − 2

(

gikRjl − gilRjk − gjkRil + gjlRik

)

+
1

(D − 1)(D − 2)
(gikgjl − gilgjk)R.

(7.122)

We can verify that the Weyl tensor is the completely traceless part of the Riemann tensor. In

D = 3 the Weyl tensor vanishes identically and conformal flatness becomes equivalent to the

vanishing of the Cotton tensor.

The Cotton tensor can be derived from an action principle given precisely by the Chern-

Simon gravitational action defined by

W =
1

w2

∫

Σ

ω3(Γ). (7.123)

ω3(Γ) = Tr
(

Γ ∧ dΓ +
2

3
Γ ∧ Γ ∧ Γ

)

= ǫijk
(

Γm
il ∂jΓ

l
km +

2

3
Γn
ilΓ

l
jmΓ

m
kn

)

d3x. (7.124)



Chapter 8

Note on References

The personal choice of references, used in these notes, includes: 1) Wald (general relativity

and differential geometry), 2) Hartle (elementary exposition of cosmology and observational

cosmology), 3) Carroll (black holes and advanced cosmology), 4) Mukhanov (inflationary cos-

mology: maybe the best book on cosmology especially for a theoretical physicist), 5) Birrell

and Davies (QFT on curved backgrounds: one of the best QFT books I have ever seen). For a

successful treatment of the problem of quantizing gravity we think that Horava-Lifshitz gravity

is the only serious candidate which adhere to the tradition of QFT. The references on this

topic are the original papers by Horava. These are the primary references followed here but

more references can be found in the listing at the end of these lecture notes. However, we

stress that the list of references included in these lectures only reflect the choice, preference and

prejudice of the author and is not intended to be complete, exhaustive and thorough in any

sense whatsoever.



Appendix A

Differential Geometry Primer

A.1 Manifolds

A.1.1 Maps, Open Set and Charts

Definition 1: A map φ between two sets M and N , viz φ : M −→ N is a rule which takes

every element of M to exactly one element of N , i.e it takes M into N .

This is a generalization of the notion of a function. The set M is the domain of M while

the subset of N that M gets mapped into the image of φ. We have the following properties:

• An injective (one-to-one) map is a map in which every element of N has at most one

element of M mapped into it. Example: f = ex is injective.

• A surjective (onto) map is a map in which every element of N has at least one element

of M mapped into it. Example: f = x3 − x is surjective.

• A bijective (and therefore invertible) map is a map which is both injective and surjective.

• A map from Rm to Rn is a collection of n functions φi of m variables xi given by

φi(x1, ..., xm) = yi , i = 1, ..., n. (A.1)

• The map φ : Rm −→ Rn is a Cp map if every component φi is at least a Cp function, i.e.

if the pth derivative exists and is continuous. A C∞ map is called a smooth map.

• A diffeomorphism is a bijective map φ : M −→ N which is smooth and with an inverse

φ−1 : N −→ M which is also smooth. The two setsM and N are said to be diffeomorphic

which means essentially that they are identical.

Definition 2: An open ball centered around a point y ∈ Rn is the set of all points x ∈ Rn

such that |x− y| < r for some r ∈ R where |x− y|2 = ∑n
i=1(xi − yi)

2. This is clearly the inside

of a sphere Sn−1 in Rn of radius r centered around the point y.
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Definition 3: An open set V ⊂ Rn is a set in which every point y ∈ V is the center of an

open ball which is inside V . Clearly an open set is a union of open balls. Also it is obvious

that an open set is the inside of a (n− 1)−dimensional surface in Rn.

Definition 4: A chart (coordinate system) is a subset U of a setM together with a one-to-one

map φ : U −→ Rn such that the image V = φ(U) is an open set in Rn. We say that U is an

open set in M . The map φ : U −→ φ(U) is clearly invertible. See figure 1.a.

Definition 5: A C∞ atals is a collection of charts {(Uα, φα)} which must satisfy the 2 condi-

tions:

• The union is M , viz ∪αUα =M .

• If two charts Uα and Uβ intersects then we can consider the maps φα ◦ φ−1
β and φβ ◦ φ−1

α

defined as

φα ◦ φ−1
β : φβ(Uα ∩ Uβ) −→ φα(Uα ∩ Uβ) , φβ ◦ φ−1

α : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ).

(A.2)

Clearly φα(Uα ∩ Uβ) ⊂ Rn and φβ(Uα ∩ Uβ) ⊂ Rn. See figure 1.b. These two maps are

required to be C∞, i.e. smooth.

It is clear that definition 4 provides a precise formulation of the notion that a manifold ”will

locally look like Rn” whereas definition 5 provides a precise formulation of the statement that

a manifold ”will be constructed from pieces of Rn (in fact the open sets Uα) which are sewn

together smoothly”.

A.1.2 Manifold: Definition and Examples

Definition 6: A C∞ n−dimensional manifold M is a set M together with a maximal atlas,

i.e. an atlas which contains every chart that is compatible with the conditions of definition

5. This requirement means in particular that two identical manifolds defined by two different

atlases will not be counted as different manifolds.

Example 1: The Euclidean spaces Rn, the spheres Sn and the tori T n are manifolds.

Example 2: Riemann surfaces are two-dimensional manifolds. A Riemann surface of genus

g is a kind of two-dimensional torus with a g holes. The two-dimensional torus has genus g = 1

whereas the sphere is a two-dimensional torus with genus g = 0.

Example 3: Every compact orientable two-dimensional surface without boundary is a Rie-

mann surface and thus is a manifold.
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Example 4: The group of rotations in Rn (which is denoted by SO(n)) is a manifold. Any

Lie group is a manifold.

Example 5: The product of two manifolds M and M
′

of dimensions n and n
′

respectively is

a manifold M ×M
′

of dimension n+ n
′

.

Example 6: We display on figure 2 few spaces which are not manifolds. The spaces displayed

on figure 3 are manifolds but they are either ”not differentiable” (the cone) or ”with boundary”

(the line segment).

Example 7: Let us consider the circle S1. Let us try to cover the circle with a single chart

(S1, θ) where θ : S1 −→ R. The image θ(S1) is not open in R if we include both θ = 0 and

θ = 2π since clearly θ(0) = θ(2π) (the map is not bijective). If we do not include both points

then the chart does not cover the whole space. The solution is to use (at least) two charts as

shown on figure 4.

Example 8: We consider a sphere S2 in R3 defined by the equation x2 + y2 + z2 = 1. First

let us recall the stereographic projection from the north pole onto the plane z = −1. For any

point P on the sphere (excluding the north pole) there is a unique line through the north pole

N = (0, 0, 1) and P = (x, y, z) which intersects the z = −1 plane at the point p
′

= (X, Y ).

From the cross sections shown on figure 5 we have immediately

X =
2x

1− z
, Y =

2y

1− z
. (A.3)

The first chart will be therefore given by the subset U1 = S2 − {N} and the map

φ1(x, y, z) = (X, Y ) = (
2x

1− z
,

2y

1− z
). (A.4)

The stereographic projection from the south pole onto the plane z = 1. Again for any point

P on the sphere (excluding the south pole) there is a unique line through the south pole

N
′

= (0, 0,−1) and P = (x, y, z) which intersects the z = 1 plane at the point p
′

= (X
′

, Y
′

).

Now we have

X
′

=
2x

1 + z
, Y

′

=
2y

1 + z
. (A.5)

The second chart will be therefore given by the subset U2 = S2 − {N ′} and the map

φ2(x, y, z) = (X
′

, Y
′

) = (
2x

1 + z
,

2y

1 + z
). (A.6)

The two charts (U1, φ1) and (U2, φ2) cover the whole sphere. They overlap in the region −1 <

z < +1. In this overlap region we have the map

(X
′

, Y
′

) = φ2 ◦ φ−1
1 (X, Y ). (A.7)
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We compute first the inverse map φ−1
1 as

x =
4

4 +X2 + Y 2
X , y =

4

4 +X2 + Y 2
Y , z = −4−X2 − Y 2

4 +X2 + Y 2
. (A.8)

Next by substituting in the formulas of X
′

and Y
′

we obtain

X
′

=
4X

X2 + Y 2
, Y

′

=
4Y

X2 + Y 2
. (A.9)

This is simply a change of coordinates.

A.1.3 Vectors and Directional Derivative

In special relativity Minkowski spacetime is also a vector space. In general relativity space-

time is a curved manifold and is not necessarily a vector space. For example the sphere is not a

vector space because we do not know how to add two points on the sphere to get another point

on the sphere. The sphere which is naturally embedded in R3 admits at each point P a tangent

plane. The notion of a ”tangent vector space” can be constructed for any manifold which is

embedded in Rn. As it turns out manifolds are generally defined in intrinsic terms and not as

surfaces embedded in Rn (although they can: Whitney’s embedding theorem) and as such the

notion of a ”tangent vector space” should also be defined in intrinsic terms,i.e. with reference

only to the manifold in question.

Directional Derivative: There is a one-to-one correspondence between vectors and direc-

tional derivatives in Rn. Indeed the vector v = (v1, ..., vn) inRn defines the directional derivative
∑

µ v
µ∂µ which acts on functions on Rn. These derivatives are clearly linear and satisfy the

Leibniz rule. We will therefore define tangent vectors on a general manifold as directional

derivatives which satisfy linearity and the Leibniz rule. Remark that the directional derivative
∑

µ v
µ∂µ is a map from the set of all smooth functions into R.

Definition 7: Let now F be the set of all smooth functions f on a manifoldM , viz f :M −→
R. We define a tangent vector v at the point p ∈M as the map v : F −→ R which is required

to satisfy linearity and the Leibniz rule, viz

v(af + bg) = av(f) + bv(g) , v(fg) = f(p)v(g) + g(p)v(f) , a, b ∈ R , f, g ∈ F . (A.10)

We have the following results:

• For a constant function (h(p) = c) we have from linearity v(c2) = cv(c) whereas the

Leibniz rule gives v(c2) = 2cv(c) and thus v(c) = 0.

• The set Vp of all tangents vectors v at p form a vector space since (v1 + v2)(f) = v1(f) +

v2(f) and (av)(f) = av(f) where a ∈ R.
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• The dimension of Vp is precisely the dimension n of the manifold M . The proof goes as

follows. Let φ : O ⊂ M −→ U ⊂ Rn be a chart which includes the point p. Clearly for

any f ∈ F the map f ◦ φ−1 : U −→ R is smooth since both f and φ are smooth maps.

We define the maps Xµ : F −→ R, µ = 1, ..., n by

Xµ(f) =
∂

∂xµ
(f ◦ φ−1)|φ(p). (A.11)

Given a smooth function F : Rn −→ R and a point a = (a1, ..., an) ∈ Rn then there exists

smooth functions Hµ such that for any x = (x1, ..., xn) ∈ Rn we have the result

F (x) = F (a) +
n

∑

µ=1

(xµ − aµ)Hµ(x) , Hµ(a) =
∂F

∂xµ
|x=a. (A.12)

We choose F = f ◦ φ−1, x ∈ U and a = φ(p) ∈ U we have

f ◦ φ−1(x) = f ◦ φ−1(a) +

n
∑

µ=1

(xµ − aµ)Hµ(x). (A.13)

Clearly φ−1(x) = q ∈ O and thus

f(q) = f(p) +

n
∑

µ=1

(xµ − aµ)Hµ(φ(q)). (A.14)

We think of each coordinate xµ as a smooth function from U into R, viz xµ : U −→ R.

Thus the map xµ ◦ φ : O −→ R is such that xµ(φ(q)) = xµ and xµ(φ(p)) = aµ. In other

words

f(q) = f(p) +
n

∑

µ=1

(xµ ◦ φ(q)− xµ ◦ φ(p))Hµ(φ(q)). (A.15)

Let now v be an arbitrary tangent vector in Vp. We have immediately

v(f) = v(f(p)) +
n

∑

µ=1

v(xµ ◦ φ− xµ ◦ φ(p))Hµ ◦ φ(q)|q=p +
n

∑

µ=1

(xµ ◦ φ(q)− xµ ◦ φ(p))|q=pv(Hµ ◦ φ)

=
n

∑

µ=1

v(xµ ◦ φ)Hµ ◦ φ(p). (A.16)

But

Hµ ◦ φ(p) = Hµ(a) =
∂

∂xµ
(f ◦ φ−1)|x=a = Xµ(f). (A.17)

Thus

v(f) =
n

∑

µ=1

v(xµ ◦ φ)Xµ(f) ⇒ v =
n

∑

µ=1

vµXµ , v
µ = v(xµ ◦ φ). (A.18)
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This shows explicitly that the Xµ satisfy linearity and the Leibniz rule and thus they are

indeed tangent vectors to the manifold M at p. The fact that an arbitrary tangent vector

v can be expressed as a linear combination of the n vectors Xµ shows that the vectors Xµ

are linearly independent, span the vector space Vp and that the dimension of Vp is exactly

n.

Coordinate Basis: The basis {Xµ} is called a coordinate basis. We may pretend that

Xµ ≡ ∂

∂xµ
. (A.19)

Indeed if we work in a different chart φ
′

we will have

X
′

µ(f) =
∂

∂x′µ
(f ◦ φ′−1)|x′=φ′ (p). (A.20)

We compute

Xµ(f) =
∂

∂xµ
(f ◦ φ−1)|x=φ(p)

=
∂

∂xµ
f ◦ φ′−1(φ

′ ◦ φ−1)|x=φ(p)

=
n

∑

ν=1

∂x
′ν

∂xµ
∂

∂x′ν
(f ◦ φ′−1(x

′

))|x′=φ′(p)

=
n

∑

ν=1

∂x
′ν

∂xµ
X

′

ν(f). (A.21)

The tangent vector v can be rewritten as

v =
n

∑

µ=1

vµXµ =
n

∑

µ=1

v
′µX

′

µ. (A.22)

We conclude immediately that

v
′ν =

n
∑

ν=1

∂x
′ν

∂xµ
vµ. (A.23)

This is the vector transformation law under the coordinate transformation xµ −→ x
′µ.

Vectors as Directional Derivatives: A smooth curve on a manifold M is a smooth map

from R into M , viz γ : R −→ M . A tangent vector at a point p can be thought of as a

directional derivative operator along a curve which goes through p. Indeed a tangent vector T

at p = γ(t) ∈M can be defined by

T (f) =
d

dt
(f ◦ γ(t))|p. (A.24)
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The function f is ∈ F and thus f ◦ γ : R −→ R. Given a chart φ the point p will be given by

p = φ−1(x) where x = (x1, ..., xn) ∈ Rn. Hence

γ(t) = φ−1(x). (A.25)

In other words the map γ is mapped into a curve x(t) in Rn. We have immediately

T (f) =
d

dt
(f ◦ φ−1(x))|p =

n
∑

µ=1

∂

∂xµ
(f ◦ φ−1(x))

dxµ

dt
|p =

n
∑

µ=1

Xµ(f)
dxµ

dt
|p. (A.26)

The components T µ of the vector T are therefore given by

T µ =
dxµ

dt
|p. (A.27)

A.1.4 Dual Vectors and Tensors

Definition 8: Let Vp be the tangent vector space at a point p of a manifold M . Let V ∗
p be

the space of all linear maps ω∗ from Vp into R, viz ω
∗ : Vp −→ R. The space V ∗

p is the so-called

dual vector space to Vp where addition and multiplication by scalars are defined in an obvious

way. The elements of V ∗
p are called dual vectors.

The dual vector space V ∗
p is also called the cotangent dual vector space at p (also the vector

space of one-forms at p). The elements of V ∗
p are then called cotangent dual vectors. Another

nomenclature is to refer to the elements of V ∗
p as covariant vectors whereas the elements of Vp

are referred to as contravariant vectors.

Dual Basis: Let Xµ, µ = 1, ..., n be a basis of Vp. The basis elements of V ∗
p are given by

vectors Xµ∗, µ = 1, ..., n which are defined by

Xµ∗(Xν) = δµν . (A.28)

The Kronecker delta is defined in the usual way. The proof that {Xµ∗} is a basis is straight-

forward. The basis {Xµ∗} of V ∗
p is called the dual basis to the basis {Xµ} of Vp. The basis

elements Xµ may be thought of as the partial derivative operators ∂/∂xµ since they transform

under a change of coordinate systems (corresponding to a change of charts φ −→ φ
′

) as

Xµ =
n

∑

ν=1

∂x
′ν

∂xµ
X

′

ν . (A.29)

We immediately deduce that we must have the transformation law

Xµ∗ =

n
∑

ν=1

∂xµ

∂x′ν
Xν∗′ . (A.30)

Indeed we have in the transformed basis

Xµ∗′(X
′

ν) = δµν . (A.31)
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From this result we can think of the basis elements Xµ∗ as the gradients dxµ, viz

Xµ∗′ ≡ dxµ. (A.32)

Let v =
∑

µ v
µXµ be an arbitrary tangent vector in Vp, then the action of the dual basis

elements Xµ∗ on v is given by

Xµ∗(v) = vµ. (A.33)

The action of a general element ω∗ =
∑

µ ωµX
µ∗ of V ∗

p on v is given by

ω∗(v) =
∑

µ

ωµv
µ. (A.34)

Recall the transformation law

v
′ν =

n
∑

ν=1

∂x
′ν

∂xµ
vµ. (A.35)

Again we conclude the transformation law

ω
′

ν =
n

∑

ν=1

∂xµ

∂x′ν
ωµ. (A.36)

Indeed we confirm that

ω∗(v) =
∑

µ

ω
′

µv
′µ. (A.37)

Double Dual Vector Space: Let now V ∗∗
p be the space of all linear maps v∗∗ from V ∗

p into

R, viz v∗∗ : V ∗
p −→ R. The vector space V ∗∗

p is naturally isomorphic (an isomorphism is one-

to-one and onto map) to the vector space Vp since to each vector v ∈ Vp we can associate the

vector v∗∗ ∈ V ∗∗
p by the rule

v∗∗(ω∗) = ω∗(v) , ω∗ ∈ V ∗
p . (A.38)

If we choose ω∗ = Xµ∗ and v = Xν we get v∗∗(Xµ∗) = δµν . We should think of v∗∗ in this case

as v = Xν .

Definition 9: A tensor T of type (k, l) over the tangent vector space Vp is a multilinear map

form (V ∗
p × V ∗

p × ...× V ∗
p )× (Vp × Vp × ...× Vp) (with k cotangent dual vector space V ∗

p and l

tangent vector space Vp) into R, viz

T : V ∗
p × V ∗

p × ...× V ∗
p × Vp × Vp × ...× Vp −→ R. (A.39)

The vectors v ∈ Vp are therefore tensors of type (1, 0) whereas the cotangent dual vectors

v ∈ V ∗
p are tensors of type (0, 1). The space T (k, l) of all tensors of type (k, l) is a vector space

(obviously) of dimension nk.nl since dimVp = dimV ∗
p = n.
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Contraction: The contraction of a tensor T with respect to its ith cotangent dual vector and

jth tangent vector positions is a map C : T (k, l) −→ T (k − 1, l − 1) defined by

CT =

n
∑

µ=1

T (..., Xµ∗, ...; ..., Xµ, ...). (A.40)

The basis vector Xµ∗ of the cotangent dual vector space V ∗
p is inserted into the ith position

whereas the basis vector Xµ of the tangent vector space Vp is inserted into the jth position.

A tensor of type (1, 1) can be viewed as a linear map from Vp into Vp since for a fixed v ∈ Vp
the map T (., v) is an element of V ∗∗

p which is the same as Vp, i.e. T (., v) is a map from Vp into

Vp. From this result it is obvious that the contraction of a tensor of the type (1, 1) is essentially

the trace and as such it must be independent of the basis {Xµ} and its dual {Xµ∗}. Contraction
is therefore a well defined operation on tensors.

Outer Product: Let T be a tensor of type (k, l) and ”components” T (X1∗, ..., Xk∗; Y1, ..., Yl)

and T
′

be a tensor of type (k
′

, l
′

) and components T
′

(Xk+1∗, ..., Xk+k
′

∗; Yl+1, ..., Yl+l′ ). The

outer product of these two tensors which we denote T ⊗ T
′

is a tensor of type (k + k
′

, l + l
′

)

defined by the ”components” T (X1∗, ..., Xk∗; Y1, ..., Yl)T
′

(Xk+1∗, ..., Xk+k
′

∗; Yl+1, ..., Yl+l
′).

Simple Tensors: Simple tensors are tensors obtained by taking the outer product of cotan-

gent dual vectors and tangent vectors. The nk.nl simple tensors Xµ1
⊗...⊗Xµk

⊗Xν1∗⊗...⊗Xνl∗

form a basis of the vector space T (k, l). In other words any tensor T of type (k, l) can be ex-

panded as

T =
∑

µi

∑

νi

T µ1...µk
ν1...νlXµ1

⊗ ...⊗Xµk
⊗Xν1∗ ⊗ ...⊗Xνl∗. (A.41)

By using Xµ∗(Xν) = δµν and Xµ(X
ν∗) = δµν we calculate

T µ1...µk
ν1...νl = T (Xµ1∗ ⊗ ...⊗Xµk∗ ⊗Xν1 ⊗ ...⊗Xνl). (A.42)

These are the components of the tensor T in the basis {Xµ}. The contraction of the tensor T

is now explicitly given by

(CT )µ1...µk−1
ν1...νl−1

=
n

∑

µ=1

T µ1...µ...µk−1
ν1...µ...νl−1

(A.43)

The outer product of two tensors can also be given now explicitly in the basis {Xµ} in a quite

obvious way.

We conclude by writing down the transformation law of a tensor under a change of coordinate

systems. The transformation law of Xµ1
⊗ ...⊗Xµk

⊗Xν1∗ ⊗ ...⊗Xνl∗ is obviously given by
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Xµ1
⊗ ...⊗Xµk

⊗Xν1∗ ⊗ ...⊗Xνl∗ =
∑

µ
′

i

∑

ν
′

i

∂x
′µ

′

1

∂xµ1
...
∂x

′µ
′

k

∂xµk

∂xν1

∂x
′ν

′

1

...
∂xνl

∂x
′ν

′

l

Xµ
′

1

⊗ ...⊗Xµ
′

k
⊗Xν

′

1
∗ ⊗ ...⊗Xν

′

l
∗.

(A.44)

Thus we must have

T =
∑

µi

∑

νi

T
′µ1...µk

ν1...νlXµ
′

1

⊗ ...⊗Xµ
′

k
⊗Xν

′

1
∗ ⊗ ...⊗Xν

′

l
∗. (A.45)

The transformed components T
′µ1...µk

ν1...νl are defined by

T
′µ

′

1...µ
′

k
ν
′

1
...ν

′

l
=

∑

µi

∑

νi

∂x
′µ

′

1

∂xµ1
...
∂x

′µ
′

k

∂xµk

∂xν1

∂x
′ν

′

1

...
∂xνl

∂x
′ν

′

l

T µ1...µk
ν1...νl. (A.46)

A.1.5 Metric Tensor

A metric g is a tensor of type (0, 2), i.e. a linear map from Vp×Vp into R with the following

properties:

• The map g : Vp × Vp −→ R is symmetric in the sense that g(v1, v2) = g(v2, v1) for any

v1, v2 ∈ Vp.

• The map g is nondegenerate in the sense that if g(v, v1) = 0 for all v ∈ Vp then one must

have v1 = 0.

• In a coordinate basis where the components of the metric are denoted by gµν we can

expand the metric as

g =
∑

µ,ν

gµνdx
µ ⊗ dxν . (A.47)

This can also be rewritten symbolically as

ds2 =
∑

µ,ν

gµνdx
µdxν . (A.48)

• The map g provides an inner product on the tangent space Vp which is not necessarily

positive definite. Indeed given two vectors v and w of Vp, their inner product is given by

g(v, w) =
∑

µ,ν

gµνv
µwν. (A.49)

By choosing v = w = δx = xf − xi we see that g(δx, δx) is an infinitesimal squared

distance between the points f and i. Hence the use of the name ”metric” for the tensor g.

In fact g(δx, δx) is the generalization of the interval (also called line element) of special

relativity ds2 = ηµνdx
µdxν and the components gµν are the generalization of ηµν .
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• There exists a (non-unique) orthonormal basis {Xµ} of Vp in which

g(Xµ, Xν) = 0 , if µ 6= ν and g(Xµ, Xν) = ±1 , if µ = ν. (A.50)

The number of plus and minus signs is called the signature of the metric and is independent

of choice of basis. In fact the number of plus signs and the number of minus signs are

separately independent of choice of basis.

A manifold with a metric which is positive definite is called Euclidean or Riemannian

whereas a manifold with a metric which is indefinite is called Lorentzian or Pseudo-

Riemannian. Spacetime in special and general relativity is a Lorentzian manifold.

• The map g(., v) can be thought of as an element of V ∗
p . Thus the metric can be thought

of as a map from Vp into V ∗
p given by v −→ g(., v). Because of the nondegeneracy of g,

the map v −→ g(., v) is one-to-one and onto and as a consequence it is invertible. The

metric provides thus an isomorphism between Vp and V ∗
p .

• The nondegeneracy of g can also be expressed by the statement that the determinant

g = det(gµν) 6= 0. The components of the inverse metric will be denoted by gµν = gνµ

and thus

gµρgρν = δµν , gµρg
ρν = δνµ. (A.51)

The metric gµν and its inverse gµν can be used to raise and lower indices on tensors as in

special relativity.

A.2 Curvature

A.2.1 Covariant Derivative

Definition 10: A covariant derivative operator ∇ on a manifold M is a map which takes a

differentiable tensor of type (k, l) to a differentiable tensor of type (k, l+ 1) which satisfies the

following properties:

• Linearity:

∇(αT + βS) = α∇T + β∇S , α, β ∈ R , T, S ∈ T (k, l). (A.52)

• Leibniz rule:

∇(T ⊗ S) = ∇T ⊗ S + T ⊗∇S , T ∈ T (k, l) , S ∈ T (k
′

, l
′

). (A.53)

• Commutativity with contraction: In the so-called index notation a tensor T ∈ T (k, l)

will be denoted by T a1...ak
b1...bl while the tensor ∇T ∈ T (k, l + 1) will be denoted by
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∇cT
a1...ak

b1...bl. The almost obvious requirement of commutativity with contraction means

that for all T ∈ T (k, l) we must have

∇d(T
a1...c...ak

b1...c...bl) = ∇dT
a1...c...ak

b1...c...bl. (A.54)

• The covariant derivative acting on scalars must be consistent with tangent vectors being

directional derivatives. Indeed for all f ∈ F and ta ∈ Vp we must have

ta∇af = t(f). (A.55)

• Torsion free: For all f ∈ F we have

∇a∇bf = ∇b∇af. (A.56)

Ordinary Derivative: Let {∂/∂xµ} and {dxµ} be the coordinate bases of the tangent vector

space and the cotangent vector space respectively in some coordinate system ψ. An ordinary

derivative operator ∂ can be defined in the region covered by the coordinate system ψ as follows.

If T µ1...µk
ν1...νl are the components of the tensor T a1...ak

b1...bl in the coordinate system ψ, then

∂σT
µ1...µk

ν1...νl are the components of the tensor ∂cT
a1...ak

b1...blin the coordinate system ψ. The

ordinary derivative operator ∂ satisfies all the above five requirements as a consequence of the

properties of partial derivatives. However it is quite clear that the ordinary derivative operator

∂ is coordinate dependent.

Action of Covariant Derivative on Tensors: Let ∇ and ∇̃ be two covariant derivative

operators. By condition 4 of definition 10 their action on scalar functions must coincide, viz

ta∇af = ta∇̃af = t(f). (A.57)

We compute now the difference ∇̃a(fωb)−∇a(fωb) where ω is some cotangent dual vector. We

have

∇̃a(fωb)−∇a(fωb) = ∇̃af.ωb + f∇̃aωb −∇af.ωb − f∇aωb

= f(∇̃aωb −∇aωb). (A.58)

The difference ∇̃aωb−∇aωb depends only on the value of ωb at the point p although both ∇̃aωb

and ∇aωb depend on how ωb changes as we go away from the point p since they are derivatives.

The proof goes as follows. Let ω
′

b be the value of the cotangent dual vector ωb at a nearby point

p
′

, i.e. ω
′

b − ωb is zero at p. Thus by equation (A.12) there must exist smooth functions f(α)

which vanish at the point p and cotangent dual vectors µ
(α)
b such that

ω
′

b − ωb =
∑

α

f(α)µ
(α)
b . (A.59)
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We compute immediately

∇̃(ω
′

b − ωb)−∇(ω
′

b − ωb) =
∑

α

f(α)(∇̃aµ
(α)
b −∇aµ

(α)
b ). (A.60)

This is 0 since by assumption f(α) vanishes at p. Hence we get the desired result

∇̃aω
′

b −∇aω
′

b = ∇̃aωb −∇aωb. (A.61)

In other words ∇̃aωb − ∇aωb depends only on the value of ωb at the point p. Putting this

differently we say that the operator ∇̃a −∇a is a map which takes cotangent dual vectors at a

point p into tensors of type (0, 2) at p (not tensor fields defined in a neighborhood of p) which

is clearly a linear map by condition 1 of definition 10. We write

∇aωb = ∇̃aωb − Cc
abωc. (A.62)

The tensor Cc
ab stands for the map ∇̃a−∇a and it is clearly a tensor of type (1, 2). By setting

ωa = ∇af = ∇̃af we get

∇a∇bf = ∇̃a∇̃b − Cc
ab∇cf. (A.63)

By employing now condition 5 of definition 10 we get immediately

Cc
ab = Cc

ba. (A.64)

Let us consider now the difference ∇̃a(ωbt
b)−∇a(ωbt

b) where tb is a tangent vector. Since ωbt
b

is a function we have

∇̃a(ωbt
b)−∇a(ωbt

b) = 0. (A.65)

From the other hand we compute

∇̃a(ωbt
b)−∇a(ωbt

b) = ωb(∇̃at
b −∇at

b + Cb
act

c). (A.66)

Hence we must have

∇at
b = ∇̃at

b + Cb
act

c. (A.67)

For a general tensor T b1...bk
c1...cl of type (k, l) the action of the covariant derivative operator

will be given by the expression

∇aT
b1...bk

c1...cl = ∇̃aT
b1...bk

c1...cl +
∑

i

Cbi
adT

b1...d...bk
c1...cl −

∑

j

Cd
acjT

b1...bk
c1...d...cl.

(A.68)

The most important case corresponds to the choice ∇̃a = ∂a. In this case Cc
ab is denoted

Γc
ab and is called Christoffel symbol. This is a tensor associated with the covariant derivative

operator ∇a and the coordinate system ψ in which the ordinary partial derivative ∂a is defined.

By passing to a different coordinate system ψ
′

the ordinary partial derivative changes from ∂a
to ∂

′

a and hence the Christoffel symbol changes from Γc
ab to Γ

′c
ab. The components of Γc

ab

in the coordinate system ψ will not be related to the components of Γ
′c

ab in the coordinate

system ψ
′

by the tensor transformation law since both the coordinate system and the tensor

have changed.
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A.2.2 Parallel Transport

Definition 11: Let C be a curve with a tangent vector ta. Let va be some tangent vector

defined at each point on the curve. The vector va is parallelly transported along the curve C if

and only if

ta∇av
b|curve = 0. (A.69)

We have the following consequences and remarks:

• We know that

∇av
b = ∂av

b + Γb
acv

c. (A.70)

Thus

ta(∂av
b + Γb

acv
c) = 0. (A.71)

Let t be the parameter along the curve C. The components of the vector ta in a coordinate

basis are given by

tµ =
dxµ

dt
. (A.72)

In other words

dvν

dt
+ Γν

µλt
µvλ = 0. (A.73)

From the properties of ordinary differential equations we know that this last equation has

a unique solution. In other words we can map tangent vector spaces Vp and Vq at points

p and q of the manifold if we are given a curve C connecting p and q and a derivative

operator. The corresponding mathematical structure is called connection. In some usage

the derivative operator itself is called a connection.

• By demanding that the inner product of two vectors va and wa is invariant under parallel

transport we obtain the condition

ta∇a(gbcv
bwc) = 0 ⇒ ta∇agbc.v

bwc + gbcw
c.ta∇av

b + gbcv
b.ta∇aw

c = 0. (A.74)

By using the fact that va and wa are parallelly transported along the curve C we obtain

the condition

ta∇agbc.v
bwc = 0. (A.75)

This condition holds for all curves and all vectors and thus we get

∇agbc = 0. (A.76)

Thus given a metric gab on a manifold M the most natural covariant derivative operator

is the one under which the metric is covariantly constant.
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• It is a theorem that given a metric gab on a manifold M , there exists a unique covariant

derivative operator ∇a which satisfies ∇agbc = 0. The proof goes as follows. We know

that ∇agbc is given by

∇agbc = ∇̃agbc − Cd
abgdc − Cd

acgbd. (A.77)

By imposing ∇agbc = 0 we get

∇̃agbc = Cd
abgdc + Cd

acgbd. (A.78)

Equivalently

∇̃bgac = Cd
abgdc + Cd

bcgad. (A.79)

∇̃cgab = Cd
acgdb + Cd

bcgad. (A.80)

Immediately we conclude that

∇̃agbc + ∇̃bgac − ∇̃cgab = 2Cd
abgdc. (A.81)

In other words

Cd
ab =

1

2
gdc(∇̃agbc + ∇̃bgac − ∇̃cgab). (A.82)

This choice of Cd
ab which solves ∇agbc = 0 is unique. In other words the corresponding

covariant derivative operator is unique.

• Generally a tensor T b1...bk
c1...cl is parallelly transported along the curve C if and only if

ta∇aT
b1...bk

c1...cl|curve = 0. (A.83)

A.2.3 The Riemann Curvature

Riemann Curvature Tensor: The so-called Riemann curvature tensor can be defined in

terms of the failure of successive operations of differentiation to commute. Let us start with an

arbitrary tangent dual vector ωa and an arbitrary function f . We want to calculate (∇a∇b −
∇b∇a)ωc. First we have

∇a∇b(fωc) = ∇a∇bf.ωc +∇bf∇aωc +∇af∇bωc + f∇a∇bωc. (A.84)

Similarly

∇b∇a(fωc) = ∇b∇af.ωc +∇af∇bωc +∇bf∇aωc + f∇b∇aωc. (A.85)

Thus

(∇a∇b −∇b∇a)(fωc) = f(∇a∇b −∇b∇a)ωc. (A.86)
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We can follow the same set of arguments which led from (A.58) to (A.62) to conclude that

the tensor (∇a∇b − ∇b∇a)ωc depends only on the value of ωc at the point p. In other words

∇a∇b − ∇b∇a is a linear map which takes tangent dual vectors into tensors of type (0, 3).

Equivalently we can say that the action of ∇a∇b −∇b∇a on tangent dual vectors is equivalent

to the action of a tensor of type (1, 3). Thus we can write

(∇a∇b −∇b∇a)ωc = Rabc
dωd. (A.87)

The tensor Rabc
d is precisely the Riemann curvature tensor.

Action on Tangent Vectors: Let now ta be an arbitrary tangent vector. The scalar product

taωa is a function on the manifold and thus

(∇a∇b −∇b∇a)(t
cωc) = 0. (A.88)

But

(∇a∇b −∇b∇a)(t
cωc) = (∇a∇b −∇b∇a)t

c.ωc + tc.(∇a∇b −∇b∇a)ωc. (A.89)

In other words

(∇a∇b −∇b∇a)t
d = −Rabc

dtc (A.90)

Generalization of this result and the previous one to higher tensors is given by

(∇a∇b −∇b∇a)T
d1...dk

c1...cl = −
k

∑

i=1

Rabe
diT d1...e...dk

c1...cl +

l
∑

i=1

Rabci
eT d1...dk

c1...e...cl.

(A.91)

Properties of the Curvature Tensor: We state without proof the following properties of

the curvature tensor 1:

• Anti-symmetry in the first two indices:

Rabc
d = −Rbac

d. (A.92)

• Anti-symmetrization of the first three indices yields 0:

R[abc]
d = 0 , R[abc]

d =
1

3
(Rabc

d +Rcab
d +Rbca

d). (A.93)

• Anti-symmetry in the last two indices:

Rabcd = −Rabdc , Rabcd = Rabc
eged. (A.94)

1Exercise: Verify these properties explicitly.
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• Symmetry if the pair consisting of the first two indices is exchanged with the pair con-

sisting of the last two indices:

Rabcd = Rcdab. (A.95)

• Bianchi identity:

∇[aRbc]d
e = 0 , ∇[aRbc]d

e =
1

3
(∇aRbcd

e +∇cRabd
e +∇bRcad

e). (A.96)

Ricci and Einstein Tensors: The Ricci tensor is defined by

Rac = Rabc
b. (A.97)

It is not difficult to show that Rac = Rca. This is the trace part of the Riemann curvature

tensor. The so-called scalar curvature is defined by

R = Ra
a. (A.98)

By contracting the Bianchi identity and using ∇agbc = 0 we get

ge
c(∇aRbcd

e +∇cRabd
e +∇bRcad

e) = 0 ⇒ ∇aRbd +∇eRabd
e −∇bRad = 0. (A.99)

By contracting now the two indices b and d we get

gbd(∇aRbd +∇eRabd
e −∇bRad) = 0 ⇒ ∇aR− 2∇bRa

b = 0. (A.100)

This can be put in the form

∇aGab = 0. (A.101)

The tensor Gab is called Einstein tensor and is given by

Gab = Rab −
1

2
gabR. (A.102)

Geometrical Meaning of the Curvature: The parallel transport of a vector from point

p to point q is actually path-dependent. This path-dependence is directly measured by the

curvature tensor as we will now show.

We consider a tangent vector va and a tangent dual vector ωa at a point p of a manifold M .

We also consider a curve C consisting of a small closed loop on a two-dimensional surface S

parameterized by two real numbers s and t with the point p at the origin, viz (t, s)|p = (0, 0).

The first leg of this closed loop extends from p to the point (∆t, 0), the second leg extends from

(∆t, 0) to (∆t,∆s), the third leg extends from (∆t,∆s) to (0,∆s) and the last leg from (0,∆s)

to the point p. We parallel transport the vector va but not the tangent dual vector ωa around

this loop.
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We form the scalar product ωav
a and compute how it changes under the above parallel

transport. Along the first stretch between p = (0, 0) and (∆t, 0) we have the change

δ1 = ∆t
∂

∂t
(vaωa)|(∆t/2,0). (A.103)

This is obviously accurate upto correction of the order ∆t3. Let T a be the tangent vector to

the line segment connecting p = (0, 0) and (∆t, 0). It is clear that T a is also the tangent vector

to all the curves of constant s. The above change can then be rewritten as

δ1 = ∆tT b∇b(v
aωa)|(∆t/2,0). (A.104)

Since va is parallelly transported we have T b∇bv
a = 0. We have then

δ1 = ∆tvaT b∇bωa|(∆t/2,0). (A.105)

The variation δ3 corresponding to the third line segment between (∆t,∆s) and (0,∆s) must be

given by

δ3 = −∆tvaT b∇bωa|(∆t/2,∆s). (A.106)

We have then

δ1 + δ3 = ∆t

[

vaT b∇bωa|(∆t/2,0) − vaT b∇bωa|(∆t/2,∆s)

]

. (A.107)

This is clearly 0 when ∆s −→ 0 and as a consequence parallel transport is path-independent at

first order. The vector va at (∆t/2,∆s) can be thought of as the parallel transport of the vector

va at (∆t/2, 0) along the curve connecting these two points, i.e. the line segment connecting

(∆t/2, 0) and (∆t/2,∆s). By the previous remark parallel transport is path-independent at

first order which means that va at (∆t/2,∆s) is equal to va at (∆t/2, 0) upto corrections of the

order of ∆s2, ∆t2 and ∆s∆t. Thus

δ1 + δ3 = ∆tva
[

T b∇bωa|(∆t/2,0) − T b∇bωa|(∆t/2,∆s)

]

. (A.108)

Similarly T b∇bωa at (∆t/2,∆s) is the parallel transport of T
b∇bωa at (∆t/2, 0) and hence upto

first order we must have

T b∇bωa|(∆t/2,0) − T b∇bωa|(∆t/2,∆s) = −∆sSc∇c(T
b∇bωa). (A.109)

The vector Sa is the tangent vector to the line segment connecting (∆t/2, 0) and (∆t/2,∆s)

which is the same as the tangent vector to all the curves of constant t. Hence

δ1 + δ3 = −∆t∆svaSc∇c(T
b∇bωa). (A.110)
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The final result is therefore

δ(vaωa) = δ1 + δ3 + δ2 + δ4

= ∆t∆sva[T c∇c(S
b∇bωa)− Sc∇c(T

b∇bωa)]

= ∆t∆sva[(T c∇cS
b − Sc∇cT

b)∇bωa + T cSb(∇c∇b −∇b∇c)ωa]

= ∆t∆svaT cSbRcba
dωd. (A.111)

In the third line we have used the fact that Sa and T a commute. Indeed the commutator of

the vectors T a and Sa is given by the vector [T, S]a where [T, S]a = T c∇cS
a − Sc∇cT

a. This

must vanish since T a and Sa are tangent vectors to linearly independent curves. Since ωa is

not parallelly transported we have δ(vaωa) = δva.ωa and thus one can finally conclude that

δvd = ∆t∆svaT cSbRcba
d. (A.112)

The Riemann curvature tensor measures therefore the path-dependence of parallelly transported

vectors.

Components of the Curvature Tensor: We know that

(∇a∇b −∇b∇a)ωc = Rabc
dωd. (A.113)

We know also

∇aωb = ∂aωb − Γc
abωc. (A.114)

We compute then

∇a∇bωc = ∇a(∂bωc − Γd
bcωd)

= ∂a(∂bωc − Γd
bcωd)− Γe

ab(∂eωc − Γd
ecωd)− Γe

ac(∂bωe − Γd
beωd)

= ∂a∂bωc − ∂aΓ
d

bc.ωd − Γd
bc∂aωd − Γe

ab∂eωc + Γe
abΓ

d
ecωd − Γe

ac∂bωe + Γe
acΓ

d
beωd.

(A.115)

And

(∇a∇b −∇b∇a)ωc =

(

∂bΓ
d

ac − ∂aΓ
d

bc + Γe
acΓ

d
be − Γa

bcΓ
d

ae

)

ωd. (A.116)

We get then the components

Rabc
d = ∂bΓ

d
ac − ∂aΓ

d
bc + Γe

acΓ
d

be − Γe
bcΓ

d
ae. (A.117)
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A.2.4 Geodesics

Parallel Transport of a Curve along Itself: Geodesics are the straightest possible lines

on a curved manifold. Let us recall that a tangent vector va is parallelly transported along a

curve C with a tangent vector T a if and only if T a∇av
b = 0. A geodesics is a curve whose

tangent vector T a is parallelly transported along itself, viz

T a∇aT
b = 0. (A.118)

This reads in a coordinate basis as

dT ν

dt
+ Γν

µλT
µT λ = 0. (A.119)

In a given chart φ the curve C is mapped into a curve x(t) in Rn. The components T µ are

given in terms of xµ(t) by

T µ =
dxµ

dt
. (A.120)

Hence

d2xν

dt2
+ Γν

µλ
dxµ

dt

dxλ

dt
= 0. (A.121)

This is a set of n coupled second order ordinary differential equations with n unknown xµ(t).

Given appropriate initial conditions xµ(t0) and dxµ/dt|t=t0 we know that there must exist a

unique solution. Conversely given a tangent vector Tp at a point p of a manifold M there exists

a unique geodesics which goes through p and is tangent to Tp.

Length of a Curve: The length l of a smooth curve C with tangent T a on a manifold M

with Riemannian metric gab is obviously given by

l =

∫

dt
√

gabT aT b. (A.122)

The length is parametrization independent. Indeed we can show that 2

l =

∫

dt
√

gabT aT b =

∫

ds
√

gabSaSb , Sa = T a dt

ds
. (A.123)

In a Lorentzian manifold, the length of a spacelike curve is also given by this expression. For

a timelike curve for which gabT
aT b < 0 the length is replaced with the proper time τ which is

given by cτ =
∫

dt
√

−gabT aT b. For a lightlike (or null) curve for which gabT
aT b = 0 the length

is always 0. Geodesics in a Lorentzian manifold can not change from timelike to spacelike or

null and vice versa since the norm is conserved in a parallel transport. The length of a curve

which changes from spacelike to timelike or vice versa is not defined.

2Exercise: Verify this equation explicitly.
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Geodesics extremize the length as we will now show. We consider the length of a curve

C connecting two points p = C(t0) and q = C(t1). In a coordinate basis the length is given

explicitly by

l =

∫ t1

t0

dt

√

gµν
dxµ

dt

dxν

dt
. (A.124)

The variation in l under an arbitrary smooth deformation of the curve C which keeps the two

points p and q fixed is given by

δl =
1

2

∫ t1

t0

dt
(

gµν
dxµ

dt

dxν

dt
)−

1

2

(

1

2
δgµν

dxµ

dt

dxν

dt
+ gµν

dxµ

dt

dδxν

dt

)

=
1

2

∫ t1

t0

dt
(

gµν
dxµ

dt

dxν

dt

)− 1

2

(

1

2

∂gµν
∂xσ

δxσ
dxµ

dt

dxν

dt
+ gµν

dxµ

dt

dδxν

dt

)

=
1

2

∫ t1

t0

dt
(

gµν
dxµ

dt

dxν

dt

)− 1

2

(

1

2

∂gµν
∂xσ

δxσ
dxµ

dt

dxν

dt
− d

dt
(gµν

dxµ

dt
)δxν +

d

dt
(gµν

dxµ

dt
δxν)

)

.

(A.125)

We can assume without any loss of generality that the parametrization of the curve C satisfies

gµν(dx
µ/dt)(dxν/dt) = 1. In other words choose dt2 to be precisely the line element (interval)

and thus T µ = dxµ/dt is the 4−velocity. The last term in the above equation becomes obviously

a total derivative which vanishes by the fact that the considered deformation keeps the two end

points p and q fixed. We get then

δl =
1

2

∫ t1

t0

dtδxσ
(

1

2

∂gµν
∂xσ

dxµ

dt

dxν

dt
− d

dt
(gµσ

dxµ

dt
)

)

=
1

2

∫ t1

t0

dtδxσ
(

1

2

∂gµν
∂xσ

dxµ

dt

dxν

dt
− ∂gµσ

∂xν
dxν

dt

dxµ

dt
− gµσ

d2xµ

dt2

)

=
1

2

∫ t1

t0

dtδxσ
(

1

2

(∂gµν
∂xσ

− ∂gµσ
∂xν

− ∂gνσ
∂xµ

)dxµ

dt

dxν

dt
− gµσ

d2xµ

dt2

)

=
1

2

∫ t1

t0

dtδxρ

(

1

2
gρσ

(∂gµν
∂xσ

− ∂gµσ
∂xν

− ∂gνσ
∂xµ

)dxµ

dt

dxν

dt
− d2xρ

dt2

)

=
1

2

∫ t1

t0

dtδxρ

(

− Γρ
µν
dxµ

dt

dxν

dt
− d2xρ

dt2

)

. (A.126)

The curve C extremizes the length between the two points p and a if and only if δl = 0. This

leads immediately to the equation

Γρ
µν
dxµ

dt

dxν

dt
+
d2xρ

dt2
= 0. (A.127)

In other words the curve C must be a geodesic. Since the length between any two points on

a Riemannian manifold (and between any two points which can be connected by a spacelike

curve on a Lorentzian manifold) can be arbitrarily long we conclude that the shortest curve
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connecting the two points must be a geodesic as it is an extremum of length. Hence the shortest

curve is the straightest possible curve. The converse is not true. A geodesic connecting two

points is not necessarily the shortest path.

The proper time between any two points which can be connected by a timelike curve on a

Lorentzian manifold can be arbitrarily small and thus the curve with greatest proper time (if

it exists) must be a timelike geodesic as it is an extremum of proper time. However, a timelike

geodesic connecting two points is not necessarily the path with maximum proper time.

Lagrangian: It is not difficult to convince ourselves that the geodesic equation can also be

derived as the Euler-Lagrange equation of motion corresponding to the Lagrangian

L =
1

2
gµν

dxµ

dt

dxν

dt
. (A.128)

In fact given the metric tensor gµν we can write explicitly the above Lagrangian and from

the corresponding Euler-Lagrange equation of motion we can read off directly the Christoffel

symbols Γρ
µν .
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