
Remarques: Dans cette les numeros des references sont les memes que dans la version

corrigee. Je n’ai pas change l’ordre.

Remarques: Tu lis tres tres attentivement cette section. J’ai trouve beaucoup d’eureurs

dans l’ancienne version et des mauvaises tournures de phrases

1 System and Hamiltonian

1.1 The model

The optomechanical system depicted in Fig.1 comprises two Fabry-Perot cavities where each cavity

is composed by two mirrors. The first mirror is fixed and partially transmitting, while the second

is movable and perfectly reflecting. The jth cavity is pumped by coherent laser field with an input

power ℘j , a phase φj and a frequency ωLj . In addition, the two cavities are also pumped by two-mode

squeezed light which can be for instance produced by spontaneous parametric down-conversion source

(SPDC) [?]. The first (respectively, the second) squeezed mode is sent towards the first (respectively,

second) cavity. The mirrors are represented by harmonic oscillators [?] with an effective mass mµj ,

a mechanical damping rate γj and a frequency ωµj . The starting point of all subsequent discussions

will be the Hamiltonian governing the dynamics of optical and mechanical modes of the system. This

Hamiltonian reads, in the rotating frame at the lasers frequencies, as [?]

H =

2∑
j=1

[(
ωcj − ωLj

)
a†jaj + ωµjb

†
jbj + gja

†
jaj(b

†
j + bj) + εj(e

iφja†j + e−iφjaj)
]
. (1)

where bj , b
†
j are the annihilation and creation operators associated with the mechanical mode describing

the mirror j (for j = 1, 2). They satisfy the usual commutation relations [bj , b
†
k] = δjk. As we shall

mainly concerned in Sec. 3 with the quantum correlations between the mechanical modes, we will

refer to the mode 1 as Alice and to the mode 2 as Bob. In equation (1), the objects aj and a†j (for

j = 1, 2) denote the annihilation and creation operators of the optical modes. They satisfy also the

commutation rules [aj , a
†
k] = δjk. The quantity gj in the equation (1) is the optomechanical single-

photon coupling rate between the jth mechanical mode and the jth optical mode. It is given by

gj =
(
ωcj/lj

)√
~/mµjωµj where lj is the jth cavity length. The coupling strength between the jth

external laser and its corresponding cavity field is defined by εj =
√

2κj℘j/~ωLj ; κj being the energy

decay rate of the jth cavity.



1.2 Quantum Langevin equation

In the Heisenberg picture, the nonlinear quantum Langevin equations for optical and mechanical

modes are given by

∂tbj = −
(
γj/2 + iωµj

)
bj − igja

†
jaj +

√
γjb

in
j , (2)

∂taj = − (κj/2− i∆j) aj − igjaj(b
†
j + bj)− iεje

iφj +
√
κja

in
j , (3)

where ∆j = ωLj − ωcj for ) is the jth laser detuning [?] with j = 1, 2. In equation (3) binj is the jth

random Brownian operator with zero mean value (⟨binj ⟩ = 0) which describes the noise induced by the

vacuum fluctuations of the continuum of modes outside the cavity. We assume that the mechanical

baths are Markovian so that the noise operators binj have the following nonzero time-domain correlation

functions [?, ?]

⟨bin†j (t)binj (t′)⟩ = nth,jδ(t− t′), (4)

⟨binj (t)bin†j (t′)⟩ = (nth,j + 1)δ(t− t′), (5)

where nth,j =
[
exp(~ωµj/kBTj)− 1

]−1
is the mean thermal photons number, Tj is the temperature

of the jth mirror environment and kB is the Boltzmann constant. Another kind of noise affecting the

system is the jth input squeezed vacuum noise operator ainj with zero mean value. They have the

following non zero correlation properties [?]

⟨ain†
j (t)ainj (t′)⟩ = Nδ(t− t′) for j = 1, 2, (6)

⟨ainj (t)ain
†

j (t′)⟩ = (N + 1)δ(t− t′) for j = 1, 2, (7)

⟨ainj (t)aink (t′)⟩ = Me−iωµ(t+t′)δ(t− t′) for j ̸= k = 1, 2, (8)

⟨ain†
j (t)ain

†
k (t′)⟩ = Meiωµ(t+t′)δ(t− t′) for j ̸= k = 1, 2, (9)

where N = sinh2r, M = sinhrcoshr; r being the squeezing parameter (we have assumed that ωµ1 =

ωµ2 = ωµ).

1.3 Linearization of quantum Langevin equations

Due to the nonlinear nature of the radiation pressure, the exact solution coupled nonlinear quantum

Langevin equations (2)-(3) is in general very challenging. To overcome this difficulty, we adopt the

linearization scheme discussed in [?, ?]. In this scheme, the optical and mechanical operators aj and

bj are decomposed as the sum of their mean value of the steady state plus fluctuation with zero mean

value so that Oj = ⟨Oj⟩ + δOj = Ojs + δOj where Oj ≡ aj , bj . The mean values bjs and ajs are

obtained by solving the equations (2) and (3) in the steady state

⟨aj⟩ = ajs =
−iεje

iφj

κj/2− i∆′
j

and ⟨bj⟩ = bjs =
−igj |ajs|2

γj/2 + iωµj

(10)

where ∆′
j = ∆j −gj(b

∗
js + bjs) is the jth effective cavity detuning including the radiation pressure

effects [?, ?]. To simplify further our purpose, we assume that the double-cavity system is intensely
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driven (|ajs| ≫ 1, for j = 1, 2). This assumption can be realized considering lasers with a large input

power ℘j [?]. Therefore, the contributions arising from the nonlinear terms δa†jδaj , δajδbj and δajδb
†
j

can be ignored. As result, one gets the following linearized Langevin equations

δḃj = −
(
γj/2 + iωµj

)
δbj +Gj

(
δaj − δa†j

)
+

√
γjb

in
j , (11)

δȧj = −
(
κj/2− i∆′

j

)
δaj −Gj

(
δb†j + δbj

)
+

√
κja

in
i , (12)

where the parameter Gj , defined by Gj = gj |ajs| = gj
√

n̄j
cav, is the jth light-enhanced optomechanical

coupling for the linearized regime [?]. The quantity n̄j
cav is the number of photons circulating inside

the jth cavity [?]. We notice that the Eqs. (11) and (12) have been obtained by setting ajs = −i |ajs|
or equivalently by taking the phase φj of the jth input laser field equal to φj = − arctan(2∆′

j/κj).

Introducing the operators δb̃j and δãj defined respectively by δbj = δb̃je
−iωµt and δaj = δãje

i∆′
jt, the

equations (11) and (12) rewrite

δ
˙̃
bj = −γj

2
δb̃j +Gj

(
δãje

i(∆′
j+ωµ)t − δã†je

−i(∆′
j−ωµ)t

)
+

√
γj b̃

in
j , (13)

δ ˙̃aj = −κj
2
δãj −Gj

(
δb̃je

−i(∆′
j+ωµ)t + δb̃†je

−i(∆′
j−ωµ)t

)
+

√
κj ã

in
i . (14)

Next, we assume that the two cavities are driven at the red sideband (∆′
j = −ωµ for j = 1, 2) which

corresponds to quantum states transfer regime [?, ?]. We note also that, in the resolved-sideband

regime where the mechanical frequency ωµ of the movable mirror is larger than the jth cavity decay

rate κj (ωµ ≫ κ1, κ2), one can use the rotating wave approximation (RWA) [?, ?]. Therefore in a

frame rotating with frequency ±2ωµ , the equations (13) and (14) give

δ
˙̃
bj = −γj

2
δb̃j +Gjδãj +

√
γj b̃

in
j , (15)

δ ˙̃aj = −κj
2
δãj −Gjδb̃j +

√
κj ã

in
j , (16)

when the the fast oscillating terms are neglected.

1.4 The adiabatic elimination of the optical modes

Being interested only in the quantum correlations between mechanical modes, the ideal configuration

is the adiabatic regime which corresponds to the situation where the mirrors have a large mechanical

quality factor and weak effective optomechanical coupling (κj ≫ Gj , γj) [?]. In this limiting configu-

ration, by inserting the steady state solution of (16) into (15), one shows that the jth mirror dynamics

reduces to

δ
˙̃
bj = −Γj

2
δb̃j +

√
γj b̃

in
j +

√
Γaj ã

in
j = −Γj

2
δb̃j + F̃ in

j , (17)

where Γaj = 4G2
j/κj is the effective relaxation rate induced by radiation pressure [?], Γj = Γaj + γj

and F̃ in
j =

√
γj b̃

in
j +

√
Γaj ã

in
j . In terms of the quadratures

δq̃j = (δb̃†j + δb̃j)/
√
2, δp̃j = i(δb̃†j − δb̃j)/

√
2, (18)

F̃ in
qj = (F̃ in,†

j + F̃ in
j )/

√
2, F̃ in

pj = i(F̃ in,†
j − F̃ in

j )/
√
2, (19)
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the linear quantum Langevin equations (17) can be cast in matricial form [?]

u̇(t) = Su(t) + n(t), (20)

where S = diag(−Γ1
2 ,−Γ1

2 ,−Γ2
2 ,−Γ2

2 ), u(t)T = (δq̃1, δp̃1, δq̃2, δp̃2) and n(t)T = (F̃ in
q1 , F̃

in
p1 , F̃

in
q2 , F̃

in
p2 ).

Needless to say, the form of the matrix S guarantees the full stability of the system and in this case

the use of the Routh-Hurwitz criterion [?] is not necessary. Thus, we end up with linear evolution

equations for the mechanical modes with zero-mean Gaussian noises. We notice that the mechanical

fluctuations in the stable regime will also evolve to an asymptotic zero-mean Gaussian state. It follows

that the state of the system is completely described by the correlation matrix V (t) whose elements

are given by

Vii′(t) =
1

2
(⟨ui(t)ui′(t) + ui′(t)ui(t)⟩). (21)

Using Eqs. (20) and (21), it is simple to check that the matrix V (t) satisfies the following evolution

equation [?]
d

dt
V (t) = SV (t) + V (t)ST +D, (22)

where D is the noise correlation matrix defined by Dkk′δ(t − t′) = (⟨nk(t)nk′(t
′) + nk′(t

′)nk(t)⟩)/2.
Using the correlation properties of the noise operators given by the set of equations (4)-(9), one shows

that the matrix D takes the form

D =


D11 0 D13 0

0 D22 0 D24

D13 0 D33 0

0 D24 0 D44

 , (23)

where D11 = D22 = Γa1 (N + 1/2) + γ1 (nth,1 + 1/2), D33 = D44 = Γa2 (N + 1/2) + γ2 (nth,2 + 1/2)

and D13 = −D24 = M
√

Γa1Γa2 . The equation (22) is easily solvable and the solution writes as

V (t) =


v11(t) 0 v13(t) 0

0 v22(t) 0 v24(t)

v13(t) 0 v33(t) 0

0 v24(t) 0 v44(t)

 ≡

(
V1(t) V3(t)

V T
3 (t) V2(t)

)
, (24)

with V1(t) = diag(v11(t), v22(t)), V2(t) = diag(v33(t), v44(t)) and V3(t) = diag(v13(t), v24(t)). Notice

that V (t) is a real, symmetric and positive definite matrix. The 2×2 matrices V1(t) and V2(t) represent

the first and second mechanical modes respectively, while the information about the correlations

between them is encoded in the sub-matrix V3(t). Considering identical damping rates (γ1 = γ2 = γ),

the explicit expressions of the covariance matrix elements are given by

v11(t) = v22(t) =
(2N + 1)C1 + 2nth,1 + 1

2(C1 + 1)
+

(−2N + 1)C1 − 2nth,1 + 1

2(C1 + 1)
e−γ(C1+1)t, (25)

v33(t) = v44(t) =
(2N + 1)C2 + 2nth,2 + 1

2(C2 + 1)
+

(−2N + 1)C2 − 2nth,2 + 1

2(C2 + 1)
e−γ(C2+1)t, (26)

v13(t) = −v24(t) =
2M

√
C1C2

C1 + C2 + 2

(
1− e−

γ
2
(C1+C2+2)t

)
, (27)
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in terms of the jth optomechanical cooperativity Cj defined by [?]

Cj = Γaj/γ = 4G2
j/γκj =

8ω2
cj

γmµjωµωLj l
2
j

℘j[(κj

2

)2
+ ω2

µ

] . (28)

Remak that for r = 0, the equation (27) gives v13(t) = v24(t) = 0. Accordingly, without squeezed

light, the two mechanical modes are separable and they are not steerable in any direction [?]. Hence,

to detect the steerability in the adiabatic regime, the squeezing parameter must take non vanishing

values. In fact, if r ̸= 0, we have detV3(t) < 0 which is a necessary condition for two-mode Gaussian

state to be entangled [?]. This reflects the crucial role of the squeezed light in the transfer quantum

correlations from light to mechanical modes.
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