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Abstract

We study the evolution of geometric quantum discord (GMQD) of a two qubits system coupled

with two independent bosonic reservoirs. We consider sub-ohmic, ohmic and super-ohmic. A special

attention is devoled to Dicke states and their superpositions.
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1 Introduction

Multipartite entanglement is one of the important areas in the field of quantum information that has

many applications including quantum secret sharing. In this paper, we focus on the Dicke states [?],

which are useful building blocks in realizing multipartite entanglement. The n-qubit weight w Dicke

state, |Dn
w⟩, is the equal superposition of all n-qubit states of weight w. We refer to [?, ?, ?, ?, ?, ?, ?]

and the references therein for detailed discussion.

After the invention of quantum information, many experimental setups have been proposed and

tested to verify some theoretical properties. Most of experiments have been focused on the test of

multipartite entanglement such as EPR, GHZ, and W states. Since the result of experimental tests

depends on the steps for preparing, processing, and measuring, all steps should be refined as much as

possible. Among them, the first priority is to prepare the target state with very high fidelity and with

efficiency. In this work, therefore, we also focus on the efficient way to prepare certain multipartite

quantum state.

In line of GHZ and W states, we have the Dicke state, |Dn
w⟩, which an equal superposition state

of all n-qubit states of weight w. Actually, Dicke state is more general state than GHZ and W states

since W state is |Dn
1 ⟩ and GHZ state is the superposition of |Dn

0 ⟩ and |Dn
n⟩. Therefore, the preparation

method for Dicke state can be utilized for other general case as well. At the same time, similar to

the above reason, Dicke state can be utilized for many applications such as secret sharing [?] and

quantum networking [?]. Related to this, some previous works have been done that focussed on the

experimental ways to prepare six-qubit Dicke state [?, ?] with fidelity 0.654 ± 0.024 and 0.56 ± 0.02,

respectively.

While the main focus from the viewpoint of experimental physics is to actually provide the imple-

mentation of specific Dicke states, our focus is from theoretical algorithmic angle and the only result

presented in this direction appeared in [?]. In this work, we show how one can efficiently construct

Dicke states by using the combinatorial properties of symmetric Boolean functions, two well-known

quantum algorithms, and the generalized parity measurement. By efficient, we mean that the resource

requirements in terms of quantum circuits and number of execution steps is poly(n) to obtain |Dn
w⟩.

Let us consider n-qubit states in the computational basis {0, 1}n that can be written in the form∑
x∈{0,1}n ax|x⟩, where

∑
x∈{0,1}n |ax|2 = 1. Thus, x can also be interpreted as a binary string and the

number of 1’s in the string is called the (Hamming) weight of x and denoted as wt(x). Based on this

an arbitrary Dicke state can be expressed as follows:

|Dn
w⟩ =

∑
x∈{0,1}n,wt(x)=w

1√(
n
w

) |x⟩.
Let us also define a symmetric n-qubit state as

|Sn⟩ =
∑

x∈{0,1}n
awt(x)|x⟩, where

n∑
i=0

(
n

i

)
|ai|2 = 1.
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First, we show how one can prepare a symmetric n-qubit state with the property that
(
n
w

)
|aw|2 is

Ω( 1√
n
) by using Deutsch-Jozsa algorithm [?]. This requires certain novel combinatorial observations

related to symmetric Boolean functions. Then the quantum state out of Deutsch-Jozsa algorithm is

measured using the parity measurement technique [?] to obtain |Dn
w⟩ with a probability Ω( 1√

n
). Thus,

O(
√
n) runs are sufficient to obtain the required Dicke state. Note that a direct approach to construct

a symmetric state has been presented in [?] using biased Hadamard transform. While the order of

probability to obtain Dicke state by ours and that of [?] are the same, enumeration results show that

the exact probability values are better in our case than that of [?].

Further, motivated by the idea in [?], we improve our algorithm further with a modified Deutsch-

Jozsa operator that involves the biased Hadamard transform. Since biased Hadamard transform also

helps to generate the target symmetric state, the overall probability to obtain the Dicke state increases.

Finally, we can also apply the Grover operator [?] before the measurement. Since Grover algorithm

amplifies the amplitude of target symmetric state, this helps to reduce the necessary number of steps

into O( 4
√
n).

2 Majorana Representation

The permutation symmetric subspace of n qubits is spanned by the Dicke states

|S(n, k)⟩ := 1√(
n
k

)( ∑
PERM

| 00...0︸ ︷︷ ︸
n−k

11..1︸︷︷︸
k

⟩), (1)

which can be understood as the symmetric states with k excitations. Thus any permutation symmetric

state can be written as

|ψ⟩ =
∑

ak|S(n, k)⟩. (2)

Alternatively all symmetric states can be written in the Majorana representation [?]

|ψ⟩ = eiα√
K

∑
PERM

|η1⟩|η2⟩...|ηn⟩, (3)

where the sum is over all permutations and K is a normalisation constant.

To find the Majorana representation (3) we consider the overlap with product state |ϕ⟩⊗n,|ϕ⟩ =
cos

(
θ
2

)
|0⟩ + eiφ sin

(
θ
2

)
|1⟩. It is clear by comparison to equation (3) that |ϕ⟩ orthoganol to the MP

|ηi⟩ will give zero overlap. This is exactly how we find the MPs. For simplicity we take a multiple of

the overlap, sometimes called the characteristic polynomial, Majorana polynomial, amplitude function

or coherent state decomposition

f(ψ) := cos−n

(
θ

2

)
⟨ϕ|⊗n|ψ⟩ =

n∑
k=0

√(
n

k

)
akα

k, (4)
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which is a complex polynomial in α := e−iφ tan
(
θ
2

)
. By the fundamental theorem of algebra this has

unique zeros up to multiplication by some complex. Hence the zeros αj = e−iφj tan
(
θj
2

)
define the

state |ψ⟩ up to a global phase. The corresponding MPs are at position θ′j = θj + π, φ′
j = φj + π.

Note that we can understand the state |ϕ⟩⊗n as a kind of generalized coherent state [?, ?], defined

by the action of a group on some chosen fiducial state (so that certain properties apply such as

overcompleteness). For our case the group is SU(2) as represented by U⊗n, with U a rotation through

θ, φ and the fiducial state |0⟩⊗n, that is

|ϕ⟩⊗n = U⊗n|0⟩⊗n. (5)

When viewing the symmetric subspace as one spin S = n/2 system, these are equivalent to spin

coherent states [?, ?]. In this sense the Majorana representation is a kind of condensed coherent state

representation of states (since it is only concerned with the zeros of the coherent state decomposition

(4)).

The Majorana representation then allows us to identify symmetries to show equality of the entan-

glement measures for many new sets of states. The complete set of all the possible subgroups of SO(3)

are the continuous groups, orthogonal O(2) and special orthogonal SO(2), and discrete groups Cyclic

Cm, Dihedral Dm, Tetrahedral T , Octehedral O and Isocahedral Y . One can then systematically go

through all of these groups to find these special states, as done in [?] in the context of inert states.

For the subgroup of arbitrary rotations about a fixed axis SO(2), we see that states with MPs only at

either pole of the rotation axis satisfy our condition. If the rotations are around the Z-axis, these are

the states

|S(n, k)⟩ := 1√(
n
k

)( ∑
PERM

| 00...0︸ ︷︷ ︸
n−k

11..1︸︷︷︸
k

⟩),

also known as Dicke states, and we can see here pictorially the proof of equivalence for these states

reported in [?]. Note that for even n and k = n/2, these states also satisfy our condition for the group

O(2) (arbitrary rotations around the Z-axis, and a flip on some axis in the X−Y plane). In such cases

we associate the state with the smallest subgroup. The cyclic group Cn has no truly invariant states

- since if all points are moved together up and down the axis of rotation the symmetry is not lost.

The dihedral group Dm (consisting of rotations through 2π/m and a flip on the axis of rotation) has

m totally invariant states for each value m (see Fig. ??). T , O and Y only have truly invariant states

for certain n. For the tetrahedral group T truly invariant states are made up of tetrahedrons, their

antipode tetrahedrons, and octagons with at most 2 MPs on any tetrahedron point and 3 MPs at any

octahedron point, so that there are only truly invariant states for n ≤ 34. For the octahhedral group O

truly invariant states have MPs at the points of the cube and the octahedron with at most 3 and 2 MPs

at each respectively, so that they only exist for n ≤ 34. All truly invariant states of the Isocahedral

group Y are made up of combinations of isocahedrons (with 12 vertices) and dodecahedrons (with 20

vertices) with at most 3 and 2 MPs at each respectively, hence they exist only for n ≤ 88. For four
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qubits there are four entangled states satisfying the condition, |T ⟩ = 1/
√
3|S(4, 0)⟩ +

√
2/3|S(4, 3)⟩,

|GHZ4⟩, |S(4, 2)⟩ and |W4⟩ = |S(4, 1)⟩ as shown in Fig. ??.

3 Symmetric multi-qubit systems

The multi-qubit symmetric states were shown relevant for different purposes in quantum information

science [?, ?, ?, ?, ?, ?, ?, ?]. In this paper, we shall mainly focus on an ensemble of n spin-1/2

prepared in even and odd spin coherent states.

3.1 Spin coherent as symmetric multi-qubit systems

We consider n identical qubits. Each qubit lives in a 2-dimensional Hilbert space H = span{|0⟩, |1⟩}.
The Hilbert space of the n-qubit system is given by n tensored copies of H

Hn := H⊗n.

Among the multi-partite states in Hn, multi-qubit states obeying exchange symmetry are of special

interest from experimental as well as mathematical point of views. An arbitrary symmetric n-qubit

state is commonly represented in either Majorana [?] or Dicke [?] representation. Any multi-qubit

state, invariant under the exchange symmetry, is specified in the Majorana description by the state

(up to a normalization factor)

|ψs⟩ =
1

n!

∑
σ∈Sn

|ησ(1), . . . , ησ(n)⟩, (6)

where each single qubit state is |ηi⟩ ≡ (1 + ηiη̄i)
− 1

2 (|0⟩ + ηi|1⟩) (i = 1, . . . , n) and the sum is over

the elements of the permutation group Sn of n objects. In Equation (6), the vector |ησ(1), . . . , ησ(n)⟩
stands for the tensor product |ησ(1)⟩ ⊗ . . .⊗ |ησ(n)⟩. The totally symmetric n-qubit states can be also

formulated in Dike representation. The symmetric Dicke states with k excitations are defined by [?]

|n, k⟩ =
√
k!(n− k)!

n!

∑
σ∈Sn

|0, . . . , 0︸ ︷︷ ︸
n−k

, 1, . . . , 1︸ ︷︷ ︸
k

⟩, (7)

which generate an orthonormal basis of the symmetric Hilbert subspace of dimension (n+1). Therefore,

permutation invariance, in symmetric multi-qubit states, implies a restriction to n + 1 dimensional

subspace from the entire 2n dimensional Hilbert space. The Dicke states (7) constitute a special subset

of the symmetric multi-qubit states (6) corresponding to the situation where the first k-qubit are such

that ηi = 0 for i = 0, 1, . . . k and the remaining qubits are in the states |ηi = 1⟩ with i = k + 1, . . . , n.

Any symmetric state |ψs⟩ (6) can be expanded in terms of Dicke states (7) as follows

|ψs⟩ =
1

n!

n∑
k=0

ck |n, k⟩, (8)
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where the ck (k = 0, . . . , n) stand for the complex expansion coefficients. In particular, when the qubit

are all identical (ηi = η for all qubits), it is simply verified that the coefficients ck are given by

ck = n!

√
n!

k!(n− k)!

ηk

(1 + ηη̄)
n
2

(9)

and the symmetric multi-qubit states (6) write

|ψs⟩ := |n, η⟩ = (1 + ηη̄)−
n
2

n∑
k=0

√
n!

k!(n− k)!
ηk |n, k⟩, (10)

which are exactly the j = n
2 -spin coherent states (for more details see for instance [?]). In particular,

the state |n, η⟩ can be identified for n = 1 with spin-12 coherent state with |0⟩ ≡ |12 ,−
1
2⟩ and |1⟩ ≡

|12 ,+
1
2⟩)

3.2 Multi-qubit ”Shroödinger cat” states

The prototypical multi-qubit ”Shrödinger cat” states, we consider in this work, are defined as a

balanced superpositions of the n-qubit states |n, η⟩ and |n,−η⟩ given by (10). They write

|η, n,m⟩ = N (|n, η⟩+ eimπ|n,−η⟩) (11)

where

|n,±η⟩ = | ± η⟩ ⊗ | ± η⟩ · · · ⊗ | ± η⟩,

and the integer m ∈ Z takes the values m = 0 (mod 2) and m = 1 (mod 2). The normalization factor

N is

N =
[
2 + 2pn cosmπ

]−1/2

where p denotes the overlap between the states |η⟩ and | − η⟩. It is given by

p = ⟨η| − η⟩ = 1− η̄η

1 + η̄η
. (12)

Experimental creation of cat states comprising multiple particles was reported in the literature [?, ?].

Due to their experimental implementation, ”Shrödinger cat” states are expected to be an useful re-

source for quantum computing as well as quantum communications. Also, in view of their mathemati-

cal elegance, multi-qubit states obeying exchange symmetry offer drastic simplification in investigating

various aspects of quantum correlations in particular the geometric measure of quantum discord as

we shall discuss in the present work. Furthermore, the multi-qubit symmetric states (11) include

Greenberger-Horne-Zeilinger(GHZ) [?], W [?] and Dicke states [?]. The multi-qubits states |n, η, 0⟩
(m = 0 mod 2) and |n, η, 1⟩ (m = 1 mod 2) behave like a multipartite state of Greenberger-Horne-

Zeilinger (GHZ) type [?] in the limiting case p → 0. Indeed, the states |η⟩ and | − η⟩ approach

orthogonality and an orthogonal basis can be defined such that |0⟩ ≡ |η⟩ and |1⟩ ≡ | − η⟩. Thus, the
state |n, η,m⟩ becomes of GHZ-type:

|η, n,m⟩ ∼ |GHZ⟩n =
1√
2
(|0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩+ eimπ|1⟩ ⊗ |1⟩ ⊗ · · · ⊗ |1⟩). (13)
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Also, in the special situation where the overlap p tends to unity (p → 1 or η → 0 ), the state

|η, n,m = 0 (mod 2)⟩ (11) reduces to ground state of a collection of n qubits

|0, n, 0 (mod 2)⟩ ∼ |0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩, (14)

and it is simple to check that the state |η, 0, 1 (mod 2)⟩ becomes a multipartite state of W type [?]

|0, n, 1 (mod 2)⟩ ∼ |W⟩n =
1√
n
(|1⟩⊗|0⟩⊗· · ·⊗|0⟩+ |0⟩⊗|1⟩⊗ . . .⊗|0⟩+ · · ·+ |0⟩⊗|0⟩⊗· · ·⊗|1⟩) . (15)

It is clear that the Shrödinger cat states |η, n,m = 0 (mod 2)⟩ include the GHZn states (p → 0). In

other hand, the states |η, n,m = 1 (mod 2)⟩, constitute an interpolation between two special classes

of multi-qubits states: |GHZ⟩n type corresponding to p → 0 and states of |W⟩n type obtained in the

special case where p→ 1.

4 Conclusion

In this paper, in order to investigate the pairwise quantum correlations, we have studied the dynamics

of GMQD The model under consideration consists of two qubits coupled with two independent bosonic

reservoirs described by Ohmic-like spectral densities. The Hamiltonian of the model is described

as Eq (??), and the two-qubit system is initially in the X states decoupled from the environments,

described by Eq (??). We examine the evolution of GMQD for the three types of reservoirs, sub-ohmic,

ohmic, and super-ohmic particularly the Dicke states and their superpositions. DG is a monotonic

decreasing function of time t or a poiecewise monotonic decreasing function with one turning point

before becoming frozen phenomenon.
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