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Abstract

We investigate the influence of photon excitations on quantum correlations in tripartite Glauber

coherent states of Greenberger-Horne-Zeilinger type. The pairwise correlations are measured by means

of the entropy-based quantum discord. We analyze the monogamy property of quantum discord in this

class of tripartite states in terms of the strength of Glauber coherent states and the photon excitation

order.
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1 Introduction

2 Introduction

Increasingly in the field of quantum information, aspects of entanglement [1], and of other quantum

correlations such as, for instance, “quantum discord” [2], between two qubits have been described for

a class of pure and mixed states that have come to be called “X-states” [3]. Although their use goes

back further [4], they were so named in [3] because of the visual appearance of the density matrix,

that it looks like the letter in the alphabet:

ρ =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

 . (1)

Non-zero entries occur only along the diagonal and anti-diagonal. Many calculations of entan-

glement and other properties [4, 5], and their evolution under unitary or dissipative processes [6],

can be carried out analytically for such states which make them appealing objects for study. Many

other states of interest, such as the maximally entangled Bell states [1] and “Werner” states [7], are a

sub-class of X-states, lending further importance to their study.

Yet, no firmer definition has been given of what makes a pure or mixed system an X-state. This

Letter provides such a definition in terms of their invariance properties, that a particular symmetry

group or algebra underlies them. Such an identification of an underlying symmetry helps to explain

the analytical results while at the same time providing a well defined procedure for their preparation.

Recognizing the symmetry also makes computations involving such states, such as unitary operations

on them or evaluating concurrence or other measures of entanglement, straightforward and easily

tractable. And, finally, the symmetry also opens the way for constructing other density matrices

which may not visually appear as X but are nevertheless similar, states of a different rendering of the

same algebraic symmetry. Since they differ in entanglement and separability considerations, they may

prove useful for study.

3 The subalgebra of X-states

Positivity and other standard requirements of any density matrix make the X-states shown in Eq. (1)

a seven-parameter family. The diagonal elements of the density matrix are real so that, along with the

trace being fixed at 1, three real parameters describe those diagonal entries. Hermiticity to guarantee

real eigenvalues reduces the off-diagonal entries to two complex (say ρ14 and ρ23, with ρ41 and ρ32

their respective complex conjugates) or four real parameters for the total of seven real parameters.

The full two qubit system has the symmetry of the SU(4) group and its algebra su(4). Fifteen

operators, most conveniently rendered as fifteen linearly independent 4 × 4 matrices or as Pauli
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spinors/matrices of the two spins, together with the unit matrix, provide a complete description of

the general system. There are, however, several subalgebras of su(4). A series of recent papers have

provided a geometrical description of their states and operators [8, 9, 10, 11]. In particular, one

subalgebra, su(2) × su(2) × u(1), of seven operators or matrices occurs in many physical systems in

quantum optics and quantum information [8, 9]. This Letter presents them as the invariance set of

the X-states.

Inspection of the explicit 4 × 4 matrices in a standard basis for two spins, (| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩),
is instructive [8, 9, 12, 13] and points immediately to sets of seven of them with the same structure

of eight zeroes in the same positions as in Eq. (1). That is, these are operators that do not mix the

1-4 and 2-3 subspaces of the density matrix. Combined with the observation that such a set of seven

matrices closes under multiplication, it is immediate that they will carry X-states into each other, that

they preserve the X structure. For this purpose, both the Lie algebra aspect that the seven operators

close under commutation and their Clifford algebraic structure that they close under multiplication

are important. Indeed, explicit rendering of the fifteen operators in terms of two Pauli spinors called

σ⃗ and τ⃗ , together with the familiar multiplication rule σiσj = δij + iϵijkσk, i, j, k = 1− 3, where ϵijk is

the completely antisymmetric symbol and repeated indices are summed, is very useful for operations

with them.

There are many such sets of seven operators/matrices constituting the su(2)× su(2)× u(1) subal-

gebra [8, 9, 11]. In each of them, one operator, the u(1) element, commutes with all six of the others

which themselves can be further subdivided as shown in [8] into two sets of “pseudospins”, two sets of

three which obey commutation relations of angular momentum within each set while all three of one

set commute with all three of the other. Any one of the fifteen operators can serve as the commuting

element because, as shown in a table in [9], each row has six zeroes so that each identifies such a

su(2)× su(2)× u(1) set. There are, therefore, fifteen non-equivalent such subalgebras.

We will designate such a set by {Xi}, i = 1, 2, . . . , 7, with X1 the commuting element. One such

is (X1 = σzτz, X2 = σyτx, X3 = τz, X4 = −σyτy, X5 = σxτy, X6 = σz, X7 = σxτx). This is the same

set that occurs in the CNOT quantum logic gate constructed out of two Josephson junctions and was

extensively studied in that context [8]. It was also pointed out that it occurs in nuclear magnetic

resonance when each spin is in an external magnetic field in the z-direction while being coupled to

each other through scalar coupling σ⃗ · τ⃗ and “cross-coherences” σxτy and σyτx. But a different choice

for the commuting element X1 gives another such subalgebra, and we will return to this in section

IV. Each Xi is traceless, Hermitian, and unitary, and its square is unity so that the eigenvalues are

(±1,±1).

With any such set, {Xi}, the density matrix that remains invariant under their operations can be

rendered as a linear superposition of them,

ρ = (I +ΣigiXi)/4, (2)

in analogy to that for a single spin, (I+Σigiσi)/2. The seven real coefficients gi in Eq. (2) parametrize
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X-states and are equivalent to the seven parameters in the density matrix in Eq. (1):

g1 = (ρ11 + ρ44)− (ρ22 + ρ33),

g2 = 2i(ρ14 − ρ41 + ρ32 − ρ23),

g3 = (ρ11 − ρ44)− (ρ22 − ρ33),

g4 = 2(ρ14 + ρ41 − ρ32 − ρ23),

g5 = 2i(ρ14 − ρ41 − ρ32 + ρ23),

g6 = (ρ11 − ρ44) + (ρ22 − ρ33),

g7 = 2(ρ14 + ρ41 + ρ32 + ρ23). (3)

The algebra of the seven {Xi} is most conveniently captured by Fig. 1 as has recently been

pointed out [11]. This figure occurs in projective geometry as the “Fano Plane” [14] and also is

used to represent the multiplication table for octonions [15]. Arranging the seven operators at the

vertices, mid-points of sides and in-center of an equilateral triangle, the seven lines shown (including

the inscribed circle) each carry three points, providing the multiplication rule for those {Xi}. The

notation of arrows is also borrowed from octonions except that unlike them which have all seven lines

arrowed, the three internal verticals are not in Fig. 1. On those lines, all three operators mutually

commute, so that the product of two gives the third regardless of order. On the four arrowed lines,

the operators mutually anticommute so that the product of two gives (±i) times the third, with plus

(minus) signs along (against) the sense of the arrow. For this purpose, each line is regarded as a closed

loop with a continuously circulating arrow. The central element commutes with all six of the others.

For each of those, there is one “conjugate” element with which it commutes and four with which it

anticommutes. All of this can be read off by merely glancing at Fig. 1 and will provide simple rules

for their manipulation in the next section.

4 Concluding remarks

In multipartite quantum systems, the monogamy is probably one of the most important relation which

imposes severe restriction on the structure of entanglement distributed among many parties. In this

context, the main interest of this paper was the monogamy property of quantum discord in three qubit

systems where the information is encoded in even and odd Glauber coherent states. In particular, we

investigated the influence of photon excitations on the shareability of quantum discord between the

three optical modes of a quantum of GHZ-type. We derived the quantum discord deficit by evaluat-

ing analytically the pairwise correlations in terms of the photon excitation number and the optical

strength of Glauber coherent states. The symmetric quasi-GHZ coherent states follow the monogamy

property for any photon excitation order. We have also shown that the photon excitation of antisym-

metric quasi-GHZ coherent states reduces the violation of the monogamy property especially in states
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involving Glauber coherent states with small amplitudes.

Finally, the investigation of the influence of photon excitations on the monogamy of quantum corre-

lations in the states of GHZ-type using geometric based quantifiers such as Hilbert-Schmidt norm or

trace distance would be interesting. In the other hand, another significant issue which deserves to be

examined concerns the evolution of quantum discord under the effect of subtracting photons on the

pairwise correlations in multipartite coherent states.
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