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1 Introduction

2 Fisher information for a non-full rank density matrix

Abstract

We provide a new expression of the quantum Fisher information(QFI) for a general system. Utilizing

this expression, the QFI for a non-full rank density matrix is only determined by its support. This

expression can bring convenience for a infinite dimensional density matrix with a finite support. Be-

sides, a matrix representation of the QFI is also given.

Quantum metrology is a field that utilizes the character of quantum mechanics to improve the

precision of a parameter under detection [1]. For the past few years, this field has drawn a lot of

attention and has been developing rapidly [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Quantum

Fisher information(QFI) is a central concept in quantum metrology because it depicts the lower bound

on the variance of the estimator θ̂ for the parameter θ due to the Cramér-Rao theorem [18, 19, 20]

var(θ̂) ≥ 1

νF
, (1)

where var(·) is the variance, ν is the number of repeated experiments and F is the QFI. However, the

QFI is not just limited in the field of quantum metrology. It has been widely applied in other aspects

of quantum physics [21, 22, 103, 24, 25, 26, 27, 28, 95, 30, 31, 32, 33], like quantum information and

open quantum systems. Thus, it is necessary and meaningful to study the quantum Fisher information

as well as its properties and dynamical behaviors under various circumstances.

Quantum Fisher information is a local quantity, which can be intuitively interpreted as the “ve-

locity” at which the density matrix moves for a given parameter value. This physical interpretation

comes from the fact that the QFI is dependent on the parameterized density matrix ρθ and its first

derivative ∂θρθ. Utilizing the spectral decomposition, when the eigenstates of ρθ as projectors, act on

ρθ and its first derivative, the value is only related to the spectral decomposition within the support,

which strongly hints that the QFI may be expressed in the representation of the density matrix’s

support. To find such an expression is the major motivation of this paper.

In this paper, we provide a new expression of the quantum Fisher information in the representation

of the density matrix’s support. With this expression, for a non-full rank density matrix, especially

for a infinite dimension one, the QFI may be solved in a finite support space without realizing the

knowledge out of the support. Recently, it is found [32, 31] that the QFI can be written in the

form of the convex roof of variance. To obtain the QFI, one should take the minimum value running

over all the possible pure-state ensembles. Utilizing the new expression, we give the condition when

the ensemble from the spectral decomposition is the optimal ensemble in which the minimum value

attains. Besides, we also provide a matrix representation form of the QFI and give two examples of

it.
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In the following we consider a N-dimensional system (N can be infinite) with the density operator

ρθ, which is dependent on the parameter θ. Assume that the spectral decomposition of the density

operator is given by

ρθ =

s∑
i=1

pi|ψi⟩⟨ψi|, (2)

where pi is a eigenvalue and |ψi⟩ is a eigenstate. s is the dimension of the support set of ρθ, denoted

as supp(ρθ), i.e., s = dim[supp(ρθ)].

For a parameterized quantum state ρθ, the quantum Fisher information F is defined as below [19,

20]

F := tr(ρθL
2), (3)

where L is the so-called symmetric logarithmic derivative operator and determined by

∂θρθ =
1

2
(Lρθ + ρθL) . (4)

In the eigenbasis of ρθ, above equation reads

⟨ψi|∂θρθ|ψj⟩ =
1

2
(pi + pj)Lij , (5)

where Lij := ⟨ψi|L|ψj⟩. From above equation, one can find that Lij is in principle supported by the

full space, but the value of Lij for i, j > s is arbitrary because above equation is always established

for any value of Lij when i, j > s. Nevertheless, the quantum Fisher information is still a determinate

quantity because the calculation of it does not use those values of Lij for i, j > s, which we will show

below. Thus, one can set Lij = 0 for i, j > s as a matter of convenience.

By substituting Eq. (2) and the normalization relation I =
∑N

j=1 |ψj⟩⟨ψj | into Eq. (3), one can

obtain the quantum Fisher information as

F =

s∑
i=1

N∑
j=1

piLijLji. (6)

Here I is the identity operator. All pi here is greater than zero because the index i ≤ s and satisfies∑s
i=1 pi = 1. From this equation we see that the randomicity of Lij for i, j > s does not affect the

certainty of the quantum Fisher information. As pi > 0, Eq. (5) can be rewritten into

Lij =
2(∂θρθ)ij
pi + pj

, (7)

where (∂θρθ)ij := ⟨ψi|∂θρθ|ψj⟩. Utilizing this expression, Eq. (6) can be written in the form

Fθ =

s∑
i=1

N∑
j=1

4pi
(pi + pj)2

|(∂θρθ)ij |2, (8)

where the Hermiticity of the operator ∂θρθ was used. Next, from the spectral decomposition of ρθ,

one can find that

(∂θρθ)ij = ∂θpiδij + (pj − pi)⟨ψi|∂θψj⟩, (9)
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where we have used the equation

⟨ψi|∂θψj⟩ = −⟨∂θψi|ψj⟩, (10)

resulted from the orthogonality ⟨ψi|ψj⟩ = δij . For i ∈ [1, s] and j ∈ [s+1,N], the expression of (∂θρθ)ij

reduces to −pi⟨ψi|∂θψj⟩. Substituting Eq. (9) into Eq. (8), we have

Fθ =

s∑
i=1

1

pi
(∂θpi)

2 +

s∑
i=1

N∑
j=1

4pi(pi − pj)
2

(pi + pj)2
|⟨ψi|∂θψj⟩|2. (11)

Furthermore, with the knowledge that
∑N

j=1 =
∑s

j=1 +
∑N

j=s+1, the second item of above expres-

sion can be separated into two parts F1 and F2. The first part F1 reads

F1 =
s∑

i,j=1

4pi(pi − pj)
2

(pi + pj)2
|⟨ψi|∂θψj⟩|2, (12)

and the second part F2 reads

F2 =
s∑
i=1

N∑
j=s+1

4pi|⟨ψj |∂θψi⟩|2. (13)

Based on the normalization relation, it is easy to find that

N∑
j=s+1

|ψj⟩⟨ψj | = I−
s∑

j=1

|ψj⟩⟨ψj |. (14)

Substituting this equation into the expression of F2, one can obtain

F2 =
s∑
i=1

4pi⟨∂θψi|∂θψi⟩ −
s∑

i,j=1

4pi|⟨ψj |∂θψi⟩|2. (15)

Then, the quantum Fisher information can be expressed by

Fθ =

s∑
i=1

1

pi
(∂θpi)

2 +

s∑
i=1

4pi⟨∂θψi|∂θψi⟩

−
s∑

i,j=1

8pipj
pi + pj

|⟨ψi|∂θψj⟩|2. (16)

From this equation one can find that the quantum Fisher information for a non-full rank density

matrix is determined by its support. The information of eigenstates out of the support is not necessary

for the calculation of the QFI. This advantage would bring some convenience for the calculation in

some cases, especially when N is infinite and s is finite.

According the theory of the classical Fisher information [18, 19, 20], it is natural to treat the

first item of Eq. (16) as the classical contribution of quantum Fisher information [103] because∑s
i=1

1
pi

(∂θpi)
2 = 4

∑s
i=1

(
∂θ
√
pi
)2

. Then the quantum Fisher information for a quantum system

can be separated into two parts, the classical contribution and quantum contribution, namely,

Fθ = Fct + Fqt, (17)
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where the classical contribution reads

Fct =
s∑
i=1

4 (∂θ
√
pi)

2 , (18)

and the quantum contribution reads

Fqt =

s∑
i=1

4pi⟨∂θψi|∂θψi⟩ −
s∑

i,j=1

8pipj
pi + pj

|⟨ψi|∂θψj⟩|2. (19)

The separation of the quantum Fisher information is not just in form. From the equations above,

one can find that the classical contribution of the quantum Fisher information is a special case of the

classical Fisher information. It can be treated as the classical Fisher information obtained through

the measurement {|ψi⟩} in the eigenspace of ρθ: EN. The eigenspace EN is spanned by the basis

{|ψi⟩}, and {pi} is a classical distribution in this space. From Eq. (18), it is not difficult to find that

the classical contribution Fct is only related to the derivative of the eigenvalues, which indicates that

this part of information is coming from the classical distribution in EN. Moreover, we find that the

classical contribution has the following properties: (1) it vanishes for pure states; (2) it vanishes for

the unitary parametrization; (3) it is invariant under unitary transformation of density matrix, no

matter the transformation is parameter-dependent or not.

In the mean time, with some transformation, Eq. (19) can be rewritten as

Fqt =

s∑
i=1

piFQ(|ψi⟩) −
s∑
i ̸=j

8pipj
pi + pj

|⟨ψi|∂θψj⟩|2, (20)

where

FQ(|ψi⟩) = 4
(
⟨∂θψi|∂θψi⟩ − |⟨ψi|∂θψi⟩|2

)
(21)

is the quantum Fisher information of the eigenstate |ψi⟩. From this equation, it is clear that Fqt is

related to the basis of EN. In EN, Fqt is determined by the weighted average of all the quantum

Fisher information FQ(|ψi⟩) of the basis vector |ψi⟩ and the coupling between these vectors. This

manifests that this part of information originates from the quantum structure of space EN. These are

the geometric meanings of the classical and quantum contribution as well as the intrinsic reason for

the separation.

We know the classical contribution of the QFI always vanishes for the unitary parametrization. But

for a non-unitary parametrization procedure, including the channel estimation [34, 35, 36, 37, 38, 39]

and the noise estimation [40, 41], the classical contribution does have an influence on the precision.

However, only improving the classical contribution without enhancing the quantum counterpart, the

precision is not available to surpass the shot-noise limit, the lower limit for a total classical scenario.

The estimation of the decoherence strength [41], in which the classical contribution plays the leading

role, is an example of this scenario.

The quantum Fisher information is a local quantity, which can be intuitively interpreted as the

“velocity” at which the matrix moves for a given parameter value. In mathematics, this means that the
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quantum Fisher information depends on the density matrix ρθ and its first derivative ∂θρθ. Utilizing

the spectral decomposition, there exists items such as |ψi⟩⟨∂θψj | and |∂θψi⟩⟨ψj |. When these items

are traced with the eigenstates out of the support, the values turn out to be zero. This is the intuitive

reason that the QFI can be expressed in the representation of the support. If the QFI is related to the

higher order derivatives, like the second one ∂2θρθ, then there would exist the item like |∂θψi⟩⟨∂θψj |.
As |∂θψi⟩ is not always orthogonal with |ψj⟩, when this item is traced with the projectors out of the

support, the value cannot always be zero, then the quantum Fisher information has to be related to

the whole Hilbert space, rather than the support only.

For the unitary parametrization exp(iθH), the classical contribution vanishes, and the quantum

Fisher information reduces to

FQ =

s∑
i=1

piFQ(|ψi⟩) −
s∑
i̸=j

8pipj
pi + pj

|⟨ψi|H|ψj⟩|2. (22)

In the mean time, FQ(|ψi⟩) reduces to the form that is proportional to the variance of operator H on

the eigenstates, i.e.,

FQ(|ψi⟩) = 4(∆H)2|ψi⟩, (23)

where (∆H)2|ψi⟩ := ⟨ψi|H2|ψi⟩ − |⟨ψi|H|ψi⟩|2 is the variance. Recently, Tóth and Petz [32] found that

for a rank-2 system the quantum Fisher information can be treated as the convex roof of the variance,

then Yu [31] proves that this theorem is also established for a general system, namely,

Fθ = min
{qk,|Ψk⟩}

4
∑
k

qk(∆H)2|Ψk⟩. (24)

Here {qk, |Ψk⟩} refers to a set of pure-state ensembles, which satisfies

ρθ =
∑
k

qk|Ψk⟩⟨Ψk|. (25)

One should notice that the ensemble of the eigenvalues and eigenstates {pi, |ψi⟩} is one of these

ensembles, but not the only one. Comparing Eq. (22) with Eq. (24), one can find that the condition

for the ensemble {pi, |ψi⟩} being the optimal ensemble is that the transition item

⟨ψi|H|ψj⟩ = 0, for any i ̸= j. (26)

For example, in some Mach-Zehnder interferometer, H = 1
2i(a

†b−ab†), where a, b are the annihilation

operators of two modes, and a†, b† are the creation operators respectively. Choosing an appropriate

input state, like an even state [33] or a Fock state [30] in one port, the item ⟨ψi|H|ψj⟩ vanishes

for any i ̸= j, then the ensemble {pi, |ψi⟩} is the optimal ensemble and the QFI reduces to Fθ =

4
∑s

i=1 pi(∆H)2|ψi⟩.

This condition can be checked through another way. Based on Ref. [31], we introduce an observable

Y =
∑
i,j

2
√
pipj

pi + pj
Hij |ψi⟩⟨ψj |, (27)
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where Hij = ⟨ψi|H|ψj⟩. Denote the spectral decomposition Y =
∑

k αk|yk⟩⟨yk|, then the optimal pure

state can be constructed as

|Uk⟩ =
1

√
uk

∑
i

Uki
√
pi|ψi⟩, (28)

with uk =
∑

i |Uki|2pi and Uki = ⟨ψi|yk⟩. When |Uk⟩ = |ψk⟩, there must be |yk⟩ = |ψk⟩. As |yk⟩
is the eigenstate of observable Y, then one can see that the condition for |yk⟩ = |ψk⟩ is that all the

off-diagonal elements of observable Y have to vanish, i.e., Hij = 0 for any i ̸= j, which coincides with

our result.

2.1 Matrix representation

In this section we show a matrix representation of the quantum Fisher information. We consider the

classical contribution first. Define a N-dimensional diagonal matrix D with elements Dii = pi, then

the classical contribution can be rewritten in the form

Fct = 4Tr
(
∂θ
√
D
)2
. (29)

This equation is equivalent to Eq. (18) as pi = 0 for i ∈ [s + 1,N].

Define a N-dimensional matrix P with the elements Pij := |⟨ψi|∂θψj⟩|2. It is easy to see that the

matrix P is real and symmetric. The symmetry can be proved by using Eq. (10) into the definition

above. Denote a constant N-dimensional matrix I whose elements are 1, i.e., Iij = 1 for any i and

j, and define a N-dimensional block diagonal matrix G, which is G = diag[Hs×s, 0(N−s)×(N−s)], where

Hs×s is a s-dimensional real symmetric matrix. The elements of H are the harmonic mean values,

Hij = 2pipj/(pi + pj). With the help of above matrices, as well as the symmetry of P, i.e., Pij = Pji,
the quantum contribution can be written in the form

Fqt = 4Tr [(DI − G)P] . (30)

This is the matrix representation of quantum contribution of the QFI. It is easy to see that the

coefficient matrix DI − G is traceless.

The matrix P can be treated as the “transfer” matrix between the vector of the eigenstates

(|ψ1⟩, · · · , |ψi⟩, · · · , |ψN⟩)T and its derivative vector. For a unitary parametrization, the element of

P reads Pij = |⟨ϕi|H|ϕj⟩|2. In this case, the diagonal element of P is the survive probability of

the eigenstate |ϕi⟩ under the evolution H and the non-diagonal element is the transition probability

between |ϕi⟩ and |ϕj⟩ under H.

Compared with Eqs. (18) and (19), the matrix representation of the quantum Fisher information

is related to the entire N-dimensional space. However, the coefficient matrix D, G and the “transfer”

matrix P are all real and symmetric. For a unitary parametrization, in the matrix representation,

one does not need to calculate the average value of H2, but the transition item ⟨ψi|H|ψj⟩ has to

be calculated through the entire space, not only those in the support. In the mean time, using the

expression of Eq. (19), one has to calculate the average value of H2 under the eigenstates, but the
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transition item needn’t to be calculated out of the support. These two representations have their own

merits and will bring convenience if being used properly.

In the following we give two examples utilizing this matrix representation. First we apply it

in the qubit case. In this case, the parameterized density matrix ρθ can be decomposed as ρθ =∑2
i=1 pi(θ)|ψi(θ)⟩⟨ψi(θ)|. Then the coefficient matrix reads

DI − G =

(
0 p1 − 2 det ρθ

p2 − 2 det ρθ 0

)
, (31)

where the equation p1p2 = det ρθ has been used. Thus, it is easy to obtain the quantum contribution

as

Fqt = 4 (1 − 4 det ρθ)P12, (32)

where P12 = |⟨ψ1|∂θψ2⟩|2.
When the state is a pure state, for instance p1 = 1 and p2 = 0, there is det ρθ = 0, then the

quantum contribution reduces to

Fqt = 4P12 = 4|⟨ψ1|∂θψ2⟩|2. (33)

This form coincides with the traditional quantum Fisher information form for pure state: FQ =

⟨∂θψ1|∂θψ1⟩ − |⟨ψ1|∂θψ1⟩|2, which can be proved by substituting the normalization relation I =

|ψ1⟩⟨ψ1| + |ψ2⟩⟨ψ2| into the item ⟨∂θψ1|∂θψ1⟩. The classical contribution can also be obtained in

this case, which reads

Fct =
(∂θp1,2)

2

det ρθ
=

det ρθ
1 − 4 det ρθ

[∂θ (ln det ρθ)]
2 (34)

for mixed states and Fct = 0 for pure states. For a unitary parametrization, the quantum contribution

reads

Fqt = 4 (1 − 4 det ρ0) |⟨ϕ1|H|ϕ2⟩|2, (35)

with |ϕi⟩ a eigenstate of ρ0. As D is independent of θ, the classical contribution vanishes for both

mixed and pure states.

Next we give another example. Consider a density matrix with the following form [111]

ρθ =
∞∑
n=0

Qnρ
(n)
θ , (36)

where Qn is a real number and independent of θ. ρ
(n)
θ is a state of n particles in the entire Hilbert space.

This form is representative for an optical system taking into account the superselection rules [111].

For a unitary parametrization, the spectral decomposition of ρθ reads

ρθ =

∞∑
n=0

n∑
i=0

Qnq
(n)
i |ψ(n)

i ⟩⟨ψ(n)
i |, (37)

where |ψ(n)
i ⟩ = e−iHθ|ϕ(n)i ⟩. In this case, the classical contribution vanishes. If the transition between

the eigenstates in different particle spaces through the Hamiltonian H is forbidden, which is feasible in
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some cases [43], namely, ⟨ϕ(n)i |H|ϕ(n
′)

j ⟩ = 0 when n ̸= n′, then the “transfer” matrix P can be written

in a block diagonal form P =
∑∞

n=0 P(n), where P(n) is the corresponding “transfer” matrix for fixed

n particles. According to the feature of trace operation, only the corresponding block diagonal part

of the coefficient matrices D, I and G matters in the calculation of the quantum contribution. If we

define D(n), I(n) and G(n) as the coefficient matrices for fixed n particles, then the block diagonal

parts of D, I and G can be expressed as
∑

nQnD
(n),

∑
n I(n) and

∑
nQnG(n). Thus, the quantum

Fisher information reads

FQ = 4

∞∑
n=0

QnTr
[(
D(n)I(n) − G(n)

)
P(n)

]
. (38)

Also, one can find that the quantum Fisher information F (n) in the subspace of fixed n particles can

be written as

F
(n)
Q = 4Tr

[(
D(n)I(n) − G(n)

)
P(n)

]
. (39)

Thus, one can write the total quantum Fisher information in the form

FQ =

∞∑
n=0

QnF
(n)
Q . (40)

This total quantum Fisher information is the weighted average of all the quantum Fisher information

for fixed n particles. This form of the QFI has been widely used in the optical interferometry devices

when no external global phase reference is present [44].

More generally, taking into account the transition between the eigenstates in different particle

subspaces, P can still be separated into blocks according to the particle number. Denote the sub-

block in the upper and lower triangular of P between n and n′ particle subspaces as P(nn′) and P(n′n),

respectively. The diagonal block P(n) is the same as above. Then, P can be expressed in the form

P =
∑

n P(n) +
∑

n̸=n′ P(nn′), so as I and G. Here all the elements of P(nn′) is non-negative based on

the property of P. Thus, the total quantum Fisher information can be written as

FQ =
∑
n

QnF
(n)
Q +

∑
n ̸=n′

4Tr
[
C(nn′)P(n′n)

]
, (41)

where C(nn′) = QnD
(n)I(nn′) − G(nn′).

From this equation one can find that when all the elements of C(nn′) is non-negative, the transition

between the eigenstates in different particle subspaces, i.e., the second item of Eq. (41), can enhance

the total QFI. Apart from this condition, the effect has to be discussed case by case.

2.2 Conclusion

In this paper, we provide a new analytic expression of the quantum Fisher information. For a non-full

rank density matrix, this new expression is only determined by the support of the density matrix.

With this new expression, the QFI for some infinite systems can be solved in a finite support space.

This would bring significant advantage during the calculation in some scenarios. Besides, we also

provide a matrix representation form of the quantum Fisher information and give two examples
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3 Fidelity susceptibility and quantum Fisher information for density

operators with arbitrary ranks

abstract

Taking into account the density matrices with non-full ranks, we show that the fidelity susceptibility

is determined by the support of the density matrix. Combining with the corresponding expression of

the quantum Fisher information, we rigorously prove that the fidelity susceptibility is proportional to

the quantum Fisher information. As this proof can be naturally extended to the full rank case, this

proportional relation is generally established for density matrices with arbitrary ranks. Furthermore,

we give an analytical expression of the quantum Fisher information matrix, and show that the quantum

Fisher information matrix can also be represented in the density matrix’s support.

3.1 Introduction

Quantum Fisher information (QFI) is the central concept in quantum metrology [45, 46, 47, 48, 49,

50, 51, 53, 54, 55, 52, 56]. It depicts the theoretical bound for the variance of an estimator [93, 94]

Var(θ̂) ≥ 1

F
. (42)

Here θ̂ is the estimator for the parameter θ, Var(·) describes the variance, and F is the so-called

quantum Fisher information. A related concept widely used in quantum physics is fidelity, which was

first introduced by Uhlmann in 1976 [59]. For a parameterized state ρ(θ) and its neighbor state in

parameter space ρ(θ + δθ), where δθ is a small change of θ, the fidelity is defined as

f(θ, θ + δθ) := Tr

√√
ρ(θ)ρ(θ + δθ)

√
ρ(θ). (43)

The form of fidelity is not unique, several alternative forms of fidelity have been proposed and dis-

cussed [60, 61, 62]. However, the Uhlmann fidelity is the most well-used form because it has a natural

relation with Bures distance. The fidelity only refers to the Uhlmann fidelity in this paper. The

fidelity in Eq. (43) reveals the distinguishability between state ρ(θ) and state ρ(θ+ δθ). It depends on

the small change parameter δθ. To avoid this dependence, the concept of fidelity susceptibility (FS) is

introduced [63]. It is generally believed that the first-order term of δθ in fidelity is zero [64, 65], thus

FS is determined by the second-order term with the definition

χf := −∂
2f(θ, θ + δθ)

∂(δθ)2
. (44)

FS is a more effective tool than fidelity itself in quantum physics, especially in detecting the quantum

phase transitions [63, 66, 67].

Interestingly, the above two seemingly irrelevant concepts are in fact closely related to each other.

Generally, people vaguely believe that for a given state, the first-order term in fidelity equals to zero

and the expression of FS is proportional to that of QFI [64, 65, 68, 69]. This is certainly inarguable

10



for the cases with pure states or full-rank density matrices [64, 65]. However, for density matrices with

non-full ranks, a clear and rigorous proof is still lacking. In this work, we will resolve this problem.

Recently, we have obtained the expression of the QFI for a non-full rank density matrix, which

is determined by the support of the density matrix [70]. This makes us wonder that if the FS can

be written in a similar way and still proportional to the QFI, just like the cases with pure states or

full-rank density matrices. In this paper, we give a detailed calculation of the fidelity for a non-full

rank density matrix. We find that its first-order term still equals to zero and FS is also determined

by the support of the density matrix. The whole calculation is rigorous and the expression of FS

is proportional to that of QFI. Our proof can be easily extended to the full-rank case. In addition,

inspired by this result, we further study the quantum Fisher information matrix (QFIM), which is the

counterpart of the QFI for the multiple-parameter estimations. Through the calculation, we find that

the QFIM is also determined by the support of the density matrix.

The paper is organized as follows. In Sec. 3.2, for a non-full rank density matrix, we give the

detailed calculation of the fidelity. We show that its first-order term also vanishes as the case with full

rank. In this way, we get the expression of the FS, which is only determined by the density matrix’s

support, and proportional to the expression of QFI. In addition, we apply the expression of QFI (or

FS) to a non-full rank X state. In Sec. 3.3, we give the calculation of the QFIM and show that like

QFI, QFIM is also determined by the support of the density matrix. We also apply this expression to

a multiple parametrized X state with non-full rank. Section 3.4 is the conclusion of this work.

3.2 Proportional Relationship between FS and QFI

In the following, we derive the expression of fidelity for a non-full rank density matrix. From which,

we find the first-order term of fidelity vanishes. Then we get the expression of the FS, which is

determined by the support of the density matrix. With the corresponding expression of the QFI,

we prove the proportional relationship between FS and QFI. Although our proof concentrates on the

density matrices with non-full ranks, it could be extended to the ones with full ranks as well.

3.2.1 Proof the Proportional Relationship

We will first obtain the expression of FS from the definition of fidelity in Eq. (43). For brevity, we

rewrite the expression of fidelity as f = Tr
√
M with M :=

√
ρ(θ)ρ(θ + δθ)

√
ρ(θ). We start our

calculation by expanding ρ(θ + δθ) up to the second order of the small change δθ as ρ(θ + δθ) =

ρ(θ) + ∂θρδθ + 1
2∂

2
θρδ

2θ with ∂θρ := ∂ρ/∂θ and ∂2θρ := ∂2ρ/∂θ2. Then the matrix M takes the form

M = ρ2(θ) + Aδθ +
1

2
Bδ2θ. (45)

where A =
√
ρ(θ)∂θρ

√
ρ(θ) and B =

√
ρ(θ)∂2θρ

√
ρ(θ). This allows us to assume the square root of

M in the form like
√
M = ρ(θ) + X δθ + Yδ2θ, (46)
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which is also up to the second-order term of δθ. As a result, taking square of both sides of Eq. (46),

one can find the relations

A = ρX + Xρ, (47)

1

2
B = ρY + Yρ+ X 2. (48)

Once the matrices A and B are obtained, the information of the matrices X and Y will be extracted

from these two relationships.

Consequently, the expression of fidelity could be achieved from Eq. (46) as

f = 1 + Tr(X )δθ + Tr(Y)δ2θ. (49)

Here Tr(X ) and Tr(Y) are the first and second order terms of the fidelity, respectively. It is generally

believed that the first-order term disappears in fidelity, i.e., Tr(X ) = 0. However, this conclusion is

only well established for pure states or full rank density matrices [64, 65]. Below we will show that it

also holds for density matrices with non-full ranks. This provides a precondition to get the expression

of FS, which is determined by the second-term of fidelity

χf = −2TrY. (50)

Up to this point, the density matrix ρ(θ) is still arbitrary, which could be either full rank or non-full

rank. Next, to explicitly see the expression of fidelity for non-full rank density matrices, we denote

the spectral decomposition of ρ(θ) as

ρ(θ) =

M∑
i=1

λi(θ)|ψi(θ)⟩⟨ψi(θ)|. (51)

Here λi(θ) and |ψi(θ)⟩ are the ith eigenvalue and eigenstate of the density matrix, respectively. M is

the rank of the density matrix ρ(θ), which equals to the dimension of the support of ρ(θ). We also

denote the total dimension of the density matrix as N , which implies that M ≤ N . In the following,

we will use λi, |ψi⟩ instead of λi(θ) and |ψi(θ)⟩ for convenience.

It is known that for the density matrix with rank M = 1 (pure state) or M = N (full-rank),

the first order term of fidelity TrX = 0 [64, 65]. This is a precondition to get the expression of the

well-known expression of FS, determined by the second order of fidelity [64, 65]. However, if one

straightforwardly substitutes Eq. (51) into Eq. (47) to get the value of Tr(X ), one can find the fact

that ⟨ψi|X |ψj⟩ is arbitrary for i > M and j > M , which will result in the arbitrariness of the value

of Tr(X ). That is, Tr(X ) may become undeterminable for density matrices with non-full ranks. This

may bring a different expression of fidelity susceptibility. In fact, this is not true. Below we will show

how to avoid this nondeterminacy.

First, we discuss the structure of A and B. Substituting Eq. (51) into A and B, and denote

⟨ψi|O|ψj⟩ = Oij , one find that

Aij =
[√

ρ(θ)∂θρ
√
ρ(θ)

]
ij

=
√
λiλj (∂θρ)ij ,

Bij = [
√
ρ(θ)∂2θρ

√
ρ(θ)]ij =

√
λiλj

(
∂2θρ
)
ij
. (52)
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Here the first and second derivatives of the density matrix are

(∂θρ)ij = λi∂θλiδij +
√
λiλj (λi − λj) ⟨∂θψi|ψj⟩, (53)

(
∂2θρ
)
ij

= ∂2θλiδij + 2 (∂θλi − ∂θλj) ⟨∂θψi|ψj⟩

+λj⟨ψi|∂2θψj⟩ + λi⟨∂2θψi|ψj⟩ +
∑
k

2λk⟨ψi|∂θψk⟩⟨∂θψk|ψj⟩, (54)

with δij the Kronecker delta function. From these expressions, one find that when i > M or j > M ,

(∂θρ)ij = (∂θ
2ρ)ij = 0. That is, both the matrices [∂θρ] and [∂2θρ] are block diagonal with the support

dimension of M , as well as the density matrix ρ. Thus the matrices A and B are also block-diagonal

ones, with the elements within the support (i ≤ M and j ≤ M) are nonzero. As a result, denoting

the M -dimensional non-zero block of ρ2, A and B as ρ2s, As and Bs, we have

M =

(
ρ2s + Asδθ + 1

2Bsδ
2θ 0(N−M)×M

0M×(N−M) 0(N−M)×(N−M)

)
. (55)

Since the square root operation on a block diagonal matrix can be manipulated on each block sepa-

rately, the square root of M becomes

√
M =

( √
ρ2s + Asδθ + 1

2Bsδ2θ 0(N−M)×M

0M×(N−M) 0(N−M)×(N−M)

)
. (56)

Comparing the above equation with Eq. (46), one can find that the matrix X and Y must be block-

diagonal matrices, of which only the elements within the support are nonzero. Therefore, according

to Eqs. (46) and (47), one gets the matrix X as

Xij =

 1
2∂θλiδij +

√
λiλj(λi−λj)
λi+λj

⟨∂θψi|ψj⟩, i, j ∈ [1,M ];

0, others.
(57)

Then it is easily found that

Tr(X ) =
1

2

M∑
i=1

∂θλi =
1

2
∂θTrρ = 0. (58)

Namely, the first order expansion of fidelity vanishes. In this way, the problem of the nondeterminacy

of Tr(X ) is settled. This guarantees that the definition of FS is determined by the second order of

fidelity, as shown in Eq. (50).

Next, to obtain the second order of fidelity, one should know the explicit form of the diagonal

elements of Y. From Eq. (54), it is easy to get the diagonal elements of B

Bii = λi∂
2
θλi − 2λ2i ⟨∂θψi|∂θψi⟩ +

∑
k

2λiλk|⟨ψi|∂θψk⟩|2. (59)

where the identity ⟨∂2θψi|ψi⟩ + ⟨ψi|∂2θψi⟩ = −2⟨∂θψi|∂θψi⟩ has been used. Then according to the

relation (48) and the expressions (57) and (59), one can obtain the diagonal element of Y within the

13



support as

Yii =
1

4
∂2θλi −

1

8λi
(∂θλi)

2 − 1

2
λi⟨∂θψi|∂θψi⟩ +

M∑
k=1

2λiλ
2
k

(λi + λk)2
|⟨ψi|∂θψk⟩|2.

(60)

Considering the fact that
∑M

i=1
1
4∂

2
θλi = 1

4∂
2
θTrρ = 0 and

M∑
i,k=1

2λiλ
2
k

(λi + λk)2
|⟨ψi|∂θψk⟩|2 =

M∑
i,k=1

λiλk
λi + λk

|⟨ψi|∂θψk⟩|2, (61)

the FS is finally obtained from (50) as

χf = −2TrY =
1

4
F, (62)

where F is exactly the expression of QFI for a non-full rank density matrix [70]

F =
M∑
i=1

(∂θλi)
2

λi
+

M∑
i=1

4λi⟨∂θψi|∂θψi⟩ −
M∑

i,k=1

8λiλk
λi + λk

|⟨ψi|∂θψk⟩|2. (63)

From this result one can find that for non-full rank density matrices, the proportional relation between

QFI and fidelity susceptibility is still valid. One should notice that the calculation above also covers

the full rank case when choosing M = N . Therefore, we can reach the final conclusion that fidelity

susceptibility is proportional to the quantum Fisher information for a general density matrix.

3.2.2 Application to X states

To see how to calculate the QFI or FS, we take the X state as an example, which is defined as [71, 72,

73, 74, 75]

ρX =


a 0 0 w∗

0 b z∗ 0

0 z c 0

w 0 0 d

 . (64)

This type of states include maximally entangled Bell states and Werner states. The properties of

this state have been widely discussed [71, 72, 73, 74, 75]. Here we set z = z∗ =
√
bc. Then the four

eigenvalues of (64) become

λ1 = b+ c, λ2 = 0, λ± =
1

2

[
a+ d±

√
∆
]
, (65)

where ∆ = (a − d)2 + 4|w|2. Obviously, the dimension of the support is M = 3. In addition, the

eigenstates corresponding to λ1 and λ± are

|ψ1⟩ = ϵ1

(
0,

√
b

c
, 1, 0

)T

, |ψ±⟩ = ϵ±

(
a− d±

√
∆

2w
, 0, 0, 1

)T

, (66)
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where ϵ1 =
√
c/(b+ c) and ϵ± =

√
2|w|√

∆±(a−d)
√
∆

.

We consider an estimation of the parameter θ introduced by the following unitary operation

U = exp (−iασαz ) , (67)

where σαz = σz ⊗ I. Here I is the 2 × 2 identity matrix and σz is a Pauli matrix, which reads

σz = diag(1,−1). In this case, the QFI reduces to

F = 4λ±⟨∆2σαz ⟩± + 4λ1⟨∆2σαz ⟩1

− 16λ+λ−
λ+ + λ−

|⟨ψ+|σαz |ψ−⟩|2 −
∑
i=±

16λiλ1
λi + λ1

|⟨ψi|σαz |ψ1⟩|2, (68)

where ⟨∆2σαz ⟩i = ⟨ψi| (σαz )2 |ψi⟩ − ⟨ψi|σαz |ψi⟩2. It is obvious that QFI is only constituted by the

nonzero eigenvalues and the corresponding eigenstates of the density matrix (64), namely, QFI is only

determined by the support of (64).

Substituting the values of λ±,1 and |ψ±,1⟩ into above expression, the QFI can be finally simplified

as

F = 16

(
|w|2

a+ d
+

bc

b+ c

)
. (69)

To guarantee the positivity of the density matrix ρX, it requires that all the diagonal elements of ρX

are positive and ad ≥ |w|2. In the mean time, we know that b + c ≥ 2
√
bc and a + d ≥ 2

√
ad, then

one can find that

F ≤ 8
(
|w| +

√
bc
)
. (70)

Namely, the maximum QFI is Fmax = 8(|ω|+
√
bc), which is satisfied under the condition a = d = |w|

and b = c. This indicates that by suitably choosing the input state, one could get the maximum QFI,

which gives the minimum uncertainty of the unknown parameter α from Eq. (42). One of the optimal

X state in this case is the bell state |Φ+⟩ = (|00⟩ + |11⟩)/
√

2. Explicitly, it is

|Φ+⟩⟨Φ+| =
1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 . (71)

Thus, the maximum value of the QFI is Fmax = 4.

3.3 Extention to QFIM

Quantum Fisher information matrix (QFIM) is the counterpart of QFI in multiple-parameter esti-

mations. Since QFI for a non-full rank density matrix ρ is determined by the support of ρ, then

it is reasonable to speculate that QFIM could also be expressed similarly. In the following, we will

calculate the specific form of the QFIM for a density matrix with arbitrary rank and show that it is

indeed determined by the support of density matrix.
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3.3.1 Expression of QFIM

We start from the definition of QFIM, whose elements read [93, 94]

Fαβ =
1

2
Tr [ρ {Lα, Lβ}] , (72)

where the symmetric logarithmic derivative (SLD) Lm for the parameter θm is determined by

∂ρ

∂θm
=

1

2
(ρLm + Lmρ) . (73)

As the same as the above section, we denote the dimension of the density matrix’s support as M , and

the total dimension of it is N . And we define [Lm]ij := ⟨ψi|Lm|ψj⟩. From the spectral decomposition

of density matrix ρ in (51), one can obtain the mth SLD as

[Lm]ij =

{
2δij∂θmλi
λi+λj

+
2(λj−λi)
λi+λj

⟨ψi|∂θmψj⟩, i, j ∈ [1,M ];

arbitrary value, others.
(74)

Here [Lm]ij could be an arbitrary value out of the support of the density matrix. However, this

arbitrariness has no influence on the determinacy of QFIM. This is because these random values are

not involved in the calculation, which will be shown below.

Based on the definition (72), the elements of QFIM can be expressed by

Fαβ =
1

2

M∑
i=1

N∑
j=1

λi ([Lα]ij [Lβ]ji + [Lβ]ij [Lα]ji) , (75)

where the identity
∑N

i=1 |ψi⟩⟨ψi| = I has been used. From Eq. (74), one find that when i ∈ [1,M ] and

j ∈ [1, N ],

[Lα]ij [Lβ]ji =
4 (λi − λj)

2

(λi + λj)
2 ⟨∂αψi|ψj⟩⟨ψj |∂βψi⟩ +

4 (∂αλi) (∂βλj) δij

(λi + λj)
2 , (76)

with ∂α,β the logogram of ∂θα,β
. For a fixed i satisfying i ≤M , there is

N∑
j=M+1

[Lα]ij [Lβ]ji = 4⟨∂αψi|∂βψi⟩ −
M∑
j=1

4⟨∂αψi|ψj⟩⟨ψj |∂βψi⟩. (77)

Then substituting above equation into Eq. (75), one can obtain the final expression of the element of

QFIM.

As a result, the QFIM can be splitted into the summation of two parts, i.e.,

Fαβ = Fct + Fqt, (78)

where

Fct =
M∑
i=1

(∂αλi)(∂βλi)

λi
(79)

is the classical contribution, which is determined by the eigenvalues of the density matrix, and

Fqt =

M∑
i=1

4λiRe(⟨∂αψi|∂βψi⟩) −
M∑
i,j=1

8λiλj
λi + λj

Re(⟨∂αψi|ψj⟩⟨ψj |∂βψi⟩) (80)
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is the quantum contribution, determined by eigenvalues and eigenstates simultaneously. This divi-

sion between the classical and quantum contribution is similar to the case of the single-parameter

estimations [70, 76].

From Eqs. (79) and (80), one see that there are several properties for QFIM. First, it is a real

symmetric matrix, i.e., Fαβ ∈ R and Fαβ = Fβα. Second, like the QFI in Sec. 2, the QFIM is

determined by the support of the density matrix. Moreover, the diagonal term of QFIM reads

Fαα =

M∑
i=1

(∂αλi)
2

λi
+

M∑
i=1

4λi⟨∂αψi|∂αψi⟩ −
M∑
i,j=1

8λiλj
λi + λj

|⟨∂αψi|ψj⟩|2, (81)

which is exactly the QFI expression for the single parameter θα. In addition, for a pure state |ψ⟩⟨ψ|,
the expression of QFIM reduces to the well-known result [93, 94]

Fαβ = 4Re (⟨∂αψ|∂βψ⟩ − ⟨∂αψ|ψ⟩⟨ψ|∂βψ⟩) . (82)

3.3.2 Application to X state

We again take the X state (64) as an example. Assume that the parametrization process is described

by

Um = exp
[
−i
(
ασαz + βσβz

)]
, (83)

here σαz = σz ⊗ I and σβz = I⊗ σz. We set z = z∗ =
√
bc. In this case, the element of QFIM are

Fαβ =
∑
i=±,1

4λiRe
(
⟨ψi|σαz σβz |ψi⟩

)
−
∑

i,j=±,1

8λiλj
λi + λj

Re
(
⟨ψi|σαz |ψj⟩⟨ψj |σβz |ψi⟩

)
. (84)

As expected, it is only determined by the nonzero eigenvalues and the corresponding eigenstates of

the density matrix.

After some calculations, the explicit form of QFIM for X state can be simplified as

F = 16

[(
|w|2

a+ d
+

bc

b+ c

)
I +

(
|w|2

a+ d
− bc

b+ c

)
σx

]
, (85)

Here σx is a Pauli matrix. From Eq. (85), one can see that its diagonal element Fαα is exactly the

expression of QFI for single-parameter estimation shown in (69).

3.4 Conclusion

In this paper, we study the relationship between the fidelity susceptibility and quantum Fisher infor-

mation. We give a rigorous proof that the fidelity susceptibility is determined by the support of the

density matrices, and it is proportional to the quantum Fisher information. Particularly, this proof

is focused on the density matrices with non-full ranks. However, the proof can be easily extended to

the full rank case. Then we apply the result to a X state. Furthermore, we show that, similar to

the quantum Fisher information, for a non-full rank density matrix, the quantum Fisher information

matrix is also determined by the support of the density matrix. We also take the X state as an example

to apply this expression.
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4 Quantum Fisher information and symmetric logarithmic deriva-

tive via anti-commutators

abstract Symmetric logarithmic derivative (SLD) is a key quantity to obtain quantum Fisher infor-

mation (QFI) and to construct the corresponding optimal measurements. Here we develop a method

to calculate the SLD and QFI via anti-commutators. This method is originated from the Lyapunov

representation and would be very useful for cases that the anti-commutators among the state and its

partial derivative exhibits periodic properties. As an application, we discuss a class of states, whose

squares linearly depend on the states themselves, and give the corresponding analytical expressions of

SLD and QFI. A noisy scenario of this class of states is also considered and discussed. Finally, we

readily apply the method to the block-diagonal states and the multi-parameter estimation problems.

Quantum metrology has been going through a great development in recent years [77, 78, 79, 80,

81, 82, 83, 84, 85, 86, 87, 88, 92, 89, 90, 91]. Quantum Fisher information (QFI) is a crucial concept

in quantum metrology as it depicts the lower bound on the variance of an unbiased estimator for the

parameter under estimation, according to the quantum Cramér-Rao theorem [93, 94]. The definition

of QFI is F := ⟨L2⟩ = Tr(ρL2) [93, 94], where L is so-called symmetric logarithmic derivative (SLD).

Denoting the parameter under estimation as θ, the SLD operator is determined by the equation

∂θρ =
1

2
(ρL+ Lρ) . (86)

Taking the trace on both sides of this equation, one can see that ⟨L⟩ = 0. Therefore, the QFI is

actually the variance of SLD operator, i.e., F = ⟨∆2L⟩, with ∆2L := (L− ⟨L⟩)2.
The SLD operator is important for two reasons. First, it is obvious that the QFI can be directly

obtained when the SLD operator is known. Second, the achievement of quantum Cramér-Rao bound

strongly depends on the measurement, namely, it can only be achieved for some optimal measurements.

The eigenbasis of SLD operator is such theoretical optimal measurements [95, 96, 97]. Thus, the study

of SLD operator could help us to construct or find optimal measurements for the achievement of the

highest precision.

The traditional method for the calculation of SLD operator is to expand it in the eigenspace of

density matrix. We now denote the spectral decomposition of ρ as
∑M

i=1 pi|ψi⟩⟨ψi|, with pi, |ψi⟩ the

ith eigenvalue and eigenstate of ρ, respectively. M is the dimension of ρ’s support. When ρ is positive

definite (or full rank), M equals to the state’s dimension d. In this representation, the element of SLD

operator can be expressed by [98, 99, 100]

Lij =
2∂θpi
pi + pj

δij +
pi − pj
pi + pj

⟨∂θψi|ψj⟩, (87)

for any of i, j less than M and Lij can be an arbitrary number for both i, j larger than M . This

method to calculate SLD operator is useful when the spectral decomposition of ρ is not difficult to

obtain, which is, however, not an easy task generally.

Lyapunov representation is another method to obtain the SLD operator and applied in many

scenarios [101, 102, 103]. The definition equation (86) is actually a special form of Lyapunov equation,
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indicating that SLD operator is a corresponding solution. In this representation, the SLD operator is

expressed by [103]

L = 2

∫ ∞

0
e−ρs (∂θρ) e−ρsds. (88)

One advantage of this representation is that it is basis-independent. Generally, this representation is

no easier to obtain than the traditional method. However, similar to the traditional one, Lyapunov

representation would be very useful for some scenarios. In this paper, we first review the Lyapunov

representation and figure out that Eq. (88) is available for both full and non-full rank density matrices.

Then we provide a new basis-independent expression of SLD operator based on the Lyapunov form.

The new expression would be extremely useful when the anti-commutator between the density matrix

and its partial derivative exhibits periodic properties.

To show the advantage of this method, we apply it in a class of states showing a linear relation

with their squares. This class includes all pure and two-level states. We provide simple expressions of

SLD operator and corresponding QFI via the given method for this class. Especially, as a special case,

general basis-independent expressions of SLD and QFI for any two-level state are provided. Noise

from the environment are widely exist in reality. The scenario for these states under white noise are

considered. Moreover, we also discuss the block diagonal states and the multiparameter estimations.

Lyapunov representation.-As the beginning of this paper, we first review the derivation of Lyapunov

representation of SLD operator. Mathematically, Eq. (86) is known as a special form of Lyapunov

equation. To solve this equation, one can construct a function f(s) = e−ρsLe−ρs, which satisfies

f(0) = L. The partial derivative of f(s) on s is ∂sf(s) = −2e−ρs (∂θρ) e−ρs. Integrating both sides of

this derivative equation, one can obtain f(∞) − f(0) = −2
∫∞
0 e−ρs(∂θρ)e−ρsds. When ρ is full rank,

e−ρs trends to zero for s → ∞, indicating that f(∞) = 0. Thus, the SLD operator can be directly

written in the form of Eq. (88). However, when ρ is non-full rank, f(∞) cannot vanish. Reminding

that M and d are the dimensions of the support and ρ respectively, then the limitation of e−ρs equals

to diag {0M , Id−M} when s trends to positive infinite. Here 0M is the M -dimensional zero matrix and

Id−M is the (d −M)-dimensional identity matrix. Correspondingly, we manually separate the SLD

operator into four blocks as

L =

(
AM Bd−M,M

B†
d−M,M Cd−M

)
, (89)

where the Hermiticity of L is applied. Utilizing this form, one can see that f(∞) = diag {0M , Cd−M} .
Meanwhile, for the integrand e−ρs(∂θρ)e−ρs, only the elements within the support is nonzero, thus,

L has to be in a block diagonal form, i.e., Bd−M,M = 0. Since the block Cd−M cannot be solved by

Eq. (86), Cd−M is actually undefined here. However, Cd−M will not be involved in the calculation of

QFI [98, 99], therefore, it will not bring indeterminacy on the final expression of QFI. Based on this

reason, we can simply take Cd−M = 0 for convenience. In this way, the SLD operators for both full

and non-full rank density operators can be uniformly expressed in Eq. (88).

A further method.-Defining the anti-commutator ρo as ρo(·) = {ρ, ·} and noticing the fact that the
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improper integral
∫∞
0 can also be written as lim

s→∞

∫ s
0 , Eq. (88) can be further expressed in the form

L = −2 lim
s→∞

∞∑
n=0

(−s)n+1

(n+ 1)!
(ρo)n ∂θρ. (90)

This is a further basis-independent form of SLD. This formula would be very useful when the

anti-commutator among ρ and its partial derivative exhibits periodic properties. In some cases, ρo

is the eigen-superoperator of ∂θρ, i.e., ρo∂θρ = a∂θρ with a a real number. When a > 0, the SLD

operator reduces to a very simple form

L =
2

a
∂θρ. (91)

The simplest case here is the pure states. For a pure state, it is easy to see that a = 1 as ρ2 = ρ.

Thus, the SLD operator for pure states is L = 2∂θρ.

Moreover, because of the equality

(ρo)n ∂θρ =
n∑

m=0

Cmn ρ
m (∂θρ) ρn−m, (92)

where Cmn = n!/[m!(n−m)!], the SLD operator in Eq. (90) can also be written in the form

L = −2 lim
s→∞

∞∑
n=0

n∑
m=0

(−s)n+1

(n+ 1)!
Cmn ρ

m (∂θρ) ρn−m. (93)

This form of SLD operator could be very useful when ρm (∂θρ) ρn−m are easy to calculate. Especially,

when ρ commutes with ∂θρ, above formula reduces to

L = ρ−1∂θρ = (∂θρ) ρ−1, (94)

where the equality
∑n

m=0C
m
n = 2n has been applied. The detailed calculation can be found in the

supplemental material. Based on this equation, the corresponding QFI reads

F = Tr[ρ−1(∂θρ)2]. (95)

Unitary parametrization.-A unitary parametrization process contains a large category of realistic

parametrization processes. Recently, an alternative representation of QFI for unitary parametrization

processes has been discussed [109, 110]. For a unitary parametrization process, the parametrized state

ρ = U(θ)ρinU
†(θ), with U(θ) a θ-dependent unitary matrix. The initial state ρin is θ-independent.

A key quantity in this alternative representation is a Hermitian operator H = i(∂θU
†)U . All the

information of parametrization is involved in this basis-independent operator. For a unitary process,

the QFI can be expressed by

F = Tr
(
ρinL

2
eff

)
, (96)

where Leff = U †LU is the effective SLD operator. In this scenario, it is easy to find that ρm (∂θρ) ρn−m =

iUρmin [H, ρin] ρn−mU †. Based on Eq. (93), the effective SLD operator can be written as

Leff = −i2 lim
s→∞

∞∑
n=0

n∑
m=0

(−s)n+1

(n+ 1)!
Cmn ρ

m
in [H, ρin] ρn−min . (97)
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For a pure initial state, as ρin[H, ρin]ρin = 0, Leff reduces to the known form Leff = i2[H, ρin] [110].

When the equation
{
H, ρ2in

}
= 2ρinHρin is satisfied, ρin and [H, ρin] are commutative. Then the

effective SLD operator is Leff = i
(
H− ρinHρ−1

in

)
.

Application.-Now we apply Eq. (90) into a class of density operators, which share a common feature

as below

ρ2 = αρ− β, (98)

where α and β are real numbers. In the eigenbasis of ρ, above equation is equivalent to p2i = αpi − β

for any i, which gives the solution pi = [α±
√
α2 − 4β]/2. If only one of the solutions is positive, the

density matrix is trivially proportional to the identity matrix. Thus, we only consider the situation

that both solutions are positive, i.e., α > 0 and β > 0. Moreover, it is worth to notice that α, β in

Eq. (98) can either depends on θ or not. Several well-known states, including all pure and two-level

states, satisfy this relation. From Eq. (98), it is easy to see that P = Trρ2 = α− β is the purity of ρ

and satisfies d−1 ≤ P ≤ 1 with d the dimension of ρ. From Eq. (90), the SLD operator for this class

of states can be expressed by

L =
1

α

[
2∂θρ+ (∂θβ) ρ−1 − ∂θα

]
. (99)

When ρ is non-full rank, i.e., det ρ = 0, ρ−1 is the inverse matrix of ρ on the support. The detailed

derivation of this equation can be found in the supplemental material.

When α, β are both constant numbers independent of θ, the SLD operator reduces to L = 2∂θρ/α.

Alternatively, α can be a constant and β is dependent on θ. Under this situation, the SLD operator

reduces to L =
[
2∂θρ+ (∂θβ)ρ−1

]
/α. A well-known case here is the two-level states, which can be

expressed in the Bloch representation ρ = (I2 + r · σ) /2. Here σ = (σx, σy, σz)T is the vector of Pauli

matrices and r is the Bloch vector. Utilizing this representation, one can immediately find that ρ

satisfies Eq. (98) with α = 1 and β = (1 − P)/2. P is the purity. Then the SLD operator is

L = 2∂θρ−
1

2
(∂θP) ρ−1. (100)

This is the general basis-independent expression of SLD operator for any two-level state. For pure

states, it is known that P = 1, then L reduces to the known form. For a two-level mixed state,

substituting the Bloch representation of ρ and ρ−1 into above equation, the entire Bloch representation

of SLD operator in Ref. [104] can be reproduced.

Equation (99) is the general expression of SLD operator for all states satisfying Eq. (98). Utilizing

this formula, the corresponding basis-independent expression of QFI reads

F =
1

α2

[
2αTr (∂θρ)2 + (∂θβ)2 Trρ−1

− (2M − 1) (∂θα) ∂θβ
]
. (101)

For a full rank density matrix, M equals to d. The advantage of this basis-independent expression

shows in two aspects. First, during the specific calculation, one can choose a convenient basis, in
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which ∂θρ or ρ−1 are easy to express or calculate. Second, utilizing a basis-independent formula, the

effects of the density matrix on the QFI are more distinct.

The fact that Harmonic mean is less than the Arithmetic mean implies the inequality Trρ−1 ≥M2.

Meanwhile, it is easy to find Tr(∂θρ)2 ≥ 0. Thus, the QFI in Eq. (101) is bounded by the inequality

F ≥ 1

α2

[
(M∂θβ)2 − (2M − 1) (∂θα) ∂θβ

]
. (102)

This lower bound only depends on the coefficients and can be used to roughly evaluate the QFI.

For the cases that α and β are both θ-independent, the QFI reduces to F = 2Tr(∂θρ)2/α. When

α is a constant and β is dependent on θ, the QFI is in the form

F =
1

α2

[
2αTr (∂θρ)2 + (∂θβ)2 Trρ−1

]
. (103)

From this equation, the QFI for any two-level state can be immediately obtained as

Fq = 2Tr (∂θρ)2 +
1

4
(∂θP)2 Trρ−1. (104)

This is a general and unified expression for any two-level state, including two-level pure states. For

any mixed two-level state, the QFI is bound by the inequality Fq ≥ (∂θP)2.

Most quantum states has to face the disturbance from the environment in reality. White noise is

very usual in quantum processes. Several quantum metrological problems of states under white noise

have been discussed recently [105, 106, 107]. Usually, the white noise is depicted via the depolarizing

channel [108]. In this channel, the final state ρf can be expressed by

ρf = ηρin +
1 − η

d
Id, (105)

where ρin is the initial state and η is the reliability of the channel.

Now consider the situation that the initial state ρin satisfies Eq. (98), i.e., ρ2in = αinρin−βin. Under

this situation, the final state also satisfies Eq. (98) with the coefficients α = ηαin + 2(1 − η)/d, and

β = η2βin + η(1 − η)αin/d + (1 − η)2/d2. In this way, the SLD operator for the final state can be

directly obtained by substituting the specific formula of α and β into Eq. (99).

If αin and βin are both θ-independent, so will α and β, the SLD operator then reads

Lf =
2dη

dηαin + 2(1 − η)
∂θρin. (106)

One example for this case is a degenerate mixed state, i.e., ρin =
∑N

i=1
1
N |ψi(θ)⟩⟨ψi(θ)|, where N

(N < d) is the degeneracy and ⟨ψi(θ)|ψj(θ)⟩ = δij . It is easy to see that ρ2in = ρin/N , satisfying

Eq. (98). Taking θ as the parameter under estimation, the SLD operator can be directly written as

Lf =
dη

dη + 2N(1 − η)

d∑
i=1

Lin,i, (107)

where Lin,i = 2∂θ(|ψi⟩⟨ψi|) is the SLD operator for |ψi⟩⟨ψi|. For a pure initial state, i.e., N = 1, the

SLD operator reduces to the known form discussed in Ref. [107].
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Alternatively, the reliability η can also be the parameter under estimation. In this case, it can be

checked that ρf commutes with ∂ηρf . Thus, for any form of input state ρin, the SLD operator here is

always in the form of Eq. (94), namely, L = ρ−1
f ∂θρf .

Extension.-The block diagonal states are widely used and discussed in quantum mechanics. One

vivid example is the optical systems taking into account the superselection rules [111]. Generally, a

block diagonal state can be written as ρ =
⊕n

i=1 ρi. Here
⊕

represents the direct sum. One can

check that an available form of SLD operator here is block diagonal, i.e., L =
⊕n

i=1 Li, where Li is

the corresponding SLD operator for ρi. Consider the scenario that each block satisfies the equation

ρ2i = αiρi − βi. It should be noticed that Trρi < 1 and the purity for ρ is P =
∑

i αiTrρi − βi. In this

scenario, each Li satisfies Eq. (99). Thus, the entire SLD operator can be expressed by

L =

n⊕
i=1

1

αi

[
2∂θρi + (∂θβi) ρ

−1
i − ∂θαi

]
. (108)

Moreover, if ρi is a 2-dimensional block, it can be expanded via the Pauli matrices into ρi =

µiI + ri · σ, where µi = Trρi/2, and ri is the Bloch vector for ith block. Then it can be found that ρi

satisfies Eq. (98) with αi = 2µi and βi = 2µ2i − Pi/2. Here Pi = Trρ2i . With these coefficients, the

SLD operator for ith block reads

Li =
1

µi

(
∂θρi + ξiρ

−1
i − ∂θµi

)
, (109)

where the coefficient ξi = 2µi∂θµi − ∂θPi/4. If det ρi = 0, ξi vanishes. One simple example here is all

the X states.

Multiparameter estimation.-In multiparameter estimation, the quantum Fisher information matrix

F is also defined via the SLD operators, i.e.,

Fij :=
1

2
⟨{Lθi , Lθj}⟩, (110)

where Lθi(j) is the SLD operator for parameter θi(j). For any state satisfying Eq. (98), Fij can be

expressed by

Fij =
1

α2

[
αTr {∂iρ, ∂jρ} + ∂iβ (∂jβ) Trρ−1

−
(
M − 1

2

)
(∂iα∂jβ + ∂jα∂iβ)

]
. (111)

Here ∂i(j) represents the partial derivative on θi(j). Obviously, the diagonal element of F reduces to

the form in Eq. (101). For the cases that α is constant and β is dependent on the parameters, Fij is

in the form

Fij =
1

α2

[
αTr {∂iρ, ∂jρ} + ∂iβ (∂jβ) Trρ−1

]
. (112)

Especially, for a two-level state, this equation reduces to

Fq,ij = Tr ({∂iρ, ∂jρ}) +
1

4
∂iP (∂jP) Trρ−1. (113)
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This is the general basis-independent expression of quantum Fisher information matrix for any two-

level state.

Conclusion.-In summary, we first reviewed the Lyapunov representation of the SLD operator and

showed that this representation is available for both full and non-full rank density matrices. Further-

more, based on the Lyapunov representation, we gave a method for the calculation of SLD operator.

This method is particularly useful for those states between whom the anti-commutators and their

partial derivatives exhibits periodic properties.

As an application of the given method, we discussed a class of states, which have a linear relation

with their squares. The corresponding analytical expressions of the SLD operator and QFI are provided

via the method. Especially, we successfully provide the general basis-independent formulas of SLD

and QFI for any two-level state. Furthermore, we discussed the white-noisy scenario of these states

and extend our discussion to the block diagonal states. For multiparameter estimation, the quantum

Fisher information matrix is also analytically given.

The calculation of SLD operator is an important topic in theoretical quantum metrology. We

hope this work may draw attention in the community to studying more methods to obtain the SLD

operators for various scenarios.

4.0.1 SLD operator for the states commuting with their partial derivative

In the following we give the detailed calculation of the SLD operator for the states commuting with

their partial derivative. From the equation

L = −2 lim
s→∞

∞∑
n=0

n∑
m=0

(−s)n+1

(n+ 1)!
Cmn ρ

m (∂θρ) ρn−m, (114)

one can see that when ρ commutes with ∂θρ, this equation can be rewritten into

L = − lim
s→∞

∞∑
n=0

(−2s)n+1

(n+ 1)!
ρn (∂θρ) . (115)

Remind that the spectral decomposition of density matrix is in the form

ρ =

M∑
i=1

pi|ψi⟩⟨ψi|, (116)

where pi and |ψi⟩ are ith eigenvalue and eigenstate of ρ, respectively. M is the dimension of ρ’s

support. In this representation, the SLD operator is

L = − lim
s→∞

∞∑
n=0

(−2s)n+1

(n+ 1)!

M∑
i=1

pni |ψi⟩⟨ψi|∂θρ

= −
M∑
i=1

1

pi
lim
s→∞

(
e−2spi − 1

)
|ψi⟩⟨ψi|∂θρ

=

M∑
i=1

1

pi
|ψi⟩⟨ψi|∂θρ. (117)
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It is known that
∑M

i=1 p
−1
i |ψi⟩⟨ψi| is defined as the inverse matrix of ρ in the support. Thus, the SLD

operator can be finally expressed by

L = ρ−1∂θρ, (118)

where ρ−1 is the inverse matrix of ρ on the support.

4.0.2 Detailed calculation for the application

1. Calculation of SLD.-In the application, for any state satisfying the equation

ρ2 = αρ− β, (119)

one can obtain the following relation

ρo (∂θρ) = α∂θρ+ (∂θα) ρ− ∂θβ. (120)

Based on this equation and Eq. (119), the nth order term is in the form

(ρo)n ∂θρ = αn∂θρ+ (ρ∂θα− ∂θβ)αn−1
n−1∑
m=0

(
2ρ

α

)m
. (121)

Submitting this equation into the equation

L = −2 lim
s→∞

∞∑
n=0

(−s)n+1

(n+ 1)!
(ρo)n ∂θρ (122)

and since α > 0, the SLD operator can be expressed by

L =
2

α
∂θρ− 2 (ρ∂θα− ∂θβ) ×

lim
s→∞

∞∑
n=0

(−s)n+1

(n+ 1)!
αn−1

n−1∑
m=0

(
2ρ

α

)m
. (123)

Utilizing the spectral decomposition of the density matrix, the term

lim
s→∞

∞∑
n=0

(−s)n+1

(n+ 1)!
αn−1

n−1∑
m=0

(
2ρ

α

)m
= lim

s→∞

M∑
i=1

∞∑
n=0

(−s)n+1

(n+ 1)!
αn−1

n−1∑
m=0

(
2

α

)m
pmi |ψi⟩⟨ψi|

= lim
s→∞

M∑
i=1

α

α− 2pi

∞∑
n=0

(−s)n+1

(n+ 1)!
αn−1

[
1 −

(
2pi
α

)n]
|ψi⟩⟨ψi|

= lim
s→∞

M∑
i=1

1

α− 2pi

[
1

α

(
e−sα − 1

)
− 1

2pi

(
e−2spi − 1

)]
|ψi⟩⟨ψi|, (124)

where the equality
∑n−1

m=0 x
m = (1 − xn)/(1 − x) has been applied. Since all pi here are larger than

zero, above limitation reduces to the form

1

2α

M∑
i=1

p−1
i |ψi⟩⟨ψi| =

1

2α
ρ−1, (125)
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where ρ−1 is the inverse matrix of ρ on the support. Finally, the SLD operator for any state satisfying

Eq. (119) can be expressed by

L =
1

α

[
2∂θρ+ (∂θβ) ρ−1 − ∂θα

]
. (126)

2. Calculation of QFI.-Based on Eq. (126), the quantum Fisher information F = ⟨L2⟩ can be

directly calculated as

F =
1

α2

[
4⟨(∂θρ)2⟩ − 4 (∂θα) ⟨∂θρ⟩

+ (∂θβ)2 Tr
(
ρ−1
)
− 2M (∂θα) (∂θβ) + (∂θα)2

]
, (127)

where ⟨{∂θρ, ρ−1}⟩ = 2Tr(∂θρ) = 0 has been applied. Denoting the purity of ρ as P, i.e., P = Trρ2,

one can see that ⟨∂θρ⟩ = ∂θP/2, and

⟨(∂θρ)2⟩ =
1

2
Tr [(ρo∂θρ) ∂θρ] . (128)

Substituting Eq. (120) into above equation, there is

⟨(∂θρ)2⟩ =
1

2
αTr (∂θρ)2 +

1

4
(∂θα) (∂θP) . (129)

Therefore, the quantum Fisher information can be expressed by

F =
1

α2

[
2αTr (∂θρ)2 − (∂θα) (∂θP) + (∂θα)2

+ (∂θβ)2 Tr
(
ρ−1
)
− 2M (∂θα) (∂θβ)

]
. (130)

Moreover, since P = α− β here, above equation can finally be written as

F =
1

α2

[
2αTr (∂θρ)2 + (∂θβ)2 Trρ−1

− (2M − 1) (∂θα) (∂θβ)
]
. (131)

3. Calculation of QFI matrix.- For the SLD operators in Eq. (126), the element of quantum

Fisher information matrix is

Fij = 2Tr (ρ {∂iρ, ∂jρ}) − ∂jα∂iP − ∂iα∂jP + ∂iα∂jα

+ (∂iβ) (∂jβ) Trρ−1 −M (∂jα∂iβ + ∂iα∂jβ) . (132)

Since the first term

2Tr (ρ {∂iρ, ∂jρ}) = αTr {∂iρ, ∂jρ} +
1

2
(∂iα∂jP + ∂jα∂iP) , (133)

and ∂iP = ∂iα− ∂iβ, Fij can be simplified as

Fij =
1

α2

[
αTr {∂iρ, ∂jρ} + ∂iβ (∂jβ) Trρ−1

−
(
M − 1

2

)
(∂iα∂jβ + ∂jα∂iβ)

]
. (134)

When i = j, above equation reduces to Eq. (131).
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[43] M. Jarzyna and R. Demkowicz-Dobrański, Phys. Rev. A 85, 011801(R) (2012).

[44] R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek

and I. Walmsley, Phys. Rev. A 80, 013825 (2009).

[45] V. Giovannetti, S. Lloyd, and L.Maccone, Nat. Photonics 5, 222 (2011).

[46] V. Giovannetti, S. Lloyd, and L.Maccone, Phys. Rev. Lett. 96, 010401 (2006).

[47] C. C. Gerry and J. Mimih, Contemp. Phys. 51, 497 (2010).

28



[48] A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 109, 233601 (2012).

[49] W. Zhong, Z. Sun, J. Ma, X. Wang, and F. Nori, Phys. Rev. A 87, 022337 (2013).

[50] D. C. Brody, J. Phys. A: Math. Theor. 44, 252002 (2011).

[51] J. Liu, X. Jing, and X. Wang, Phys. Rev. A 88, 042316 (2013).

[52] J. Joo, W. J. Munro, and Timothy P. Spiller, Phys. Rev. Lett. 107, 083601 (2011).

[53] Y. M. Zhang, X. W. Li, W. Yang, and G. R. Jin, Phys. Rev. A 88, 043832 (2013);

[54] Y. C. Liu, G. R. Jin, and L. You, Phys. Rev. A 82, 045601 (2010).

[55] X. Jing, J. Liu, W. Zhong, and X. Wang, Commun. Theor. Phys. 61, 115-120 (2014).

[56] P. B. Slater, J. Phys. A: Math. Gen. 29, L271-L275 (1996).

[57] C. W. Helstrom, Quantum Detection and Estimation Theory, Academic, New York (1976).

[58] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, NorthHolland, Amster-

dam (1982).

[59] A. Uhlmann, Rep. Math. Phys. 9, 273-279 (1976).

[60] P. Mendonça, R. Napolitano, M. Marchiolli, C. Foster, and Y.-C. Liang, Phys. Rev. A 78, 052330

(2008).

[61] X. Wang , C. S. Yu, and X. X. Yi, Phys. Lett. A 373, 58-60 (2008);

[62] J. Liu, X.-M. Lu, J. Ma, and X. Wang, Sci. China-Phys. Mech. Astron. 55, 1529-1534 (2012).

[63] W. L. You, Y.W. Li, and S. J. Gu, Phys. Rev. E 76, 022101 (2007).
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