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We introduce and study the task of assisted coherencdatistil. This task arises naturally in bipartite sys-
tems where both parties work together to generate the mapiosaible coherence on one of the subsystems.
Only incoherent operations are allowed on the target systhile general local quantum operations are per-
mitted on the other, an operational paradigm that we callllgeiantum-incoherent operations and classical
communication (LQICC). We show that the asymptotic ratessisted coherence distillation for pure states is
equal to the coherence of assistance, a direct analog ointaeglement of assistance, whose properties we
characterize. Our findings imply a novel interpretationhaf ¥on Neumann entropy: it quantifies the maximum
amount of extra quantum coherence a system can gain whevingcassistance from a collaborative party. Our
results are generalized to coherence localization in ajpautite setting and possible applications are discussed.

PACS numbers: 03.65.Aa, 03.67.Mn

Introduction. Quantum coherence represents a basic feadefine the “coherence of collaboration” as the maximum co-
ture of quantum systems that is not present in the classherence that can be generated on subsy&dwyLQICC op-
cal world. Recently, researchers have begun developing erations. In general, both LOCC and LQICC protocols can
resource-theoretic framework for understanding quantosm ¢ be very complicated, involving many multiple rounds of mea-
herence 1-9]. In this setting, coherence is regarded as asurementand communicatiobf]. A simplified scenario con-
precious resource that cannot be generated or increased wsiders one-way protocols in which Alice holds a purifyingsy
der a restricted class of operations known as incoherent ogem, and only she is allowed to broadcast measurement data.
erations R, 3]. A resource-theoretic treatment of coherenceThe maximum entanglement f8randC (resp. maximum co-
is physically motivated, in part, by certain processes oi-bi herence foB) that can be generated in this manner is called
ogy [10-12], transport theoryZ, 13, 14], and thermodynam- the “entanglement of assistanc&9 (resp. will be called the
ics [7, 15, 1€], for which the presence of quantum coherence‘coherence of assistance”). In the asymptotic setting the e
plays an important role. tanglement of assistance is known to be equal to the entangle

In this paper, we consider the taskasfsisted coherence dis- mentof collaboration if the overall state is pug®]. We show

an equivalent result for coherence: for pure states thereohe

tillation. It involves (at least) two parties, Alicé\f and Bob ¢ st . | to th h t collabrati
(B), who share one or many copies of some bipartite gtéite ence ot assistance 1S equal to the coherence of coflaboratio
n the asymptotic setting, and a closed expression for these

Their goal is to maximize the quantum coherence of Bob's tities is al ided. M hen Bob’ tea i
system by Alice performing arbitrary quantum operations onqugrt' : Iedstlrsl aiso prﬁv't ? " oreovt(;r, w En ob's sfys e‘."t's
her subsystem, while Bob is restricted to just incoheregt-op qubrtand the overall state 1S pure, the conerence of assista
ations on his. The duo is further allowed to communicateclasand the coherence of collaboration are equivalent everein th

sically with one another. Overall, we refer to the allowetl se smgle-.copy case.. Finally, we also pres.er?t a generaliztio
of operations in this protocol dsocal Quantumincoherent a multipartite setting where many assisting players colab

operations andClassical Communication (LQICC)As we rate to localize coherence onto a target system, and discuss

will show, the operational LQICC setting reveals fundaraént possible applications to quantum technologies.

properties about the quantum coherence accessible to Bob. Resourcetheory of coherence. The starting point of our work
particular, the von Neumann entropy of his st&&°), quan- is the resource theory of coherence, introduced recenfB-in
tifies precisely how much extra coherence can be generated # 8]. In particular, a quantum stateis said to be incoherent
Bob’s subsystem using LQICC than when no communicatiorin a given reference basig)}, if the state is diagonal in this

is allowed between him and any correlated party. basis, i.e., ifo = X; pi li) (i| with some probabilitieg;. For a
ipartite system, the reference basis is assumed to bea tens

Alice and Bob’s objective here is anal to the task
ICe an ons o JeC Ive nere IS ana OgOUS (0] e 1as roduct orocaI baseg[S, 8]

of assistedentanglementlistillation. In the latter, entangle- P
ment is shared between three partigsB, C, and the goal is A quantum operation is said to be incoherent, if each of its
for B andC to obtain maximal bipartite entanglement when Kraus operatork, is incoherent, i.e., iK,ZK} ¢ 7, wherel

all parties use (unrestricted) Local Operations and Glabsi is the set of incoherent states. Completely dephasing atey st
Communication (LOCC). The corresponding maximal entanp in the incoherent basis will generate the incoherent state
glement that can be generated betw8sndC is known as  A(p) := X gili)i| with g = (ilpli). If d is the dimension of
“entanglement of collaboration’l[/]. By direct analogy, we the Hilbert space of the system, the maximally cohereng stat
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is|@g) = VI/d Y i), and we letd) := |®,) denote the “unit”  This theorem shows that any state which cannot be created for

coherence resource stag.[ free via LQICC operations constitutes a resource for ektrac
Similar to the framework of entanglement distillatia?il]  ing coherence on Bob’s side. For the proof of the theorem we

22], general quantum states can be used for asymptotic distirefer to the Supplemental Material.

lation of maximally coherent states via incoherent operesti In the next step, we will provide an upper bound on the

Even more, a closed expression for the optimal distillataga  distillable coherence of collaboration. For this, we iuiioe

was found recently by Winter and Yangj[and turns outto be the QI relative entropy:

equal to the relative entropy of coherence introduced,iB] Cﬁ,g(pAB) = min S(EAE) )

x"BeQr

Lemma 1. The distillable coherence gfis [8 _ L .
ISt plis (8] with the minimization taken over the set of QI states. Itis in

AB i i :
Ca(o) = Cr(p) = S(A()) - S(o), (1) orde_zr to note thaC; is different from the r.elatlve entropy
of discord introduced inZ5, 26], as the latter involves a min-

where G(p) is the relative entropy of coherence, defined asimization over all bases dB, while Eq. @) is defined for a

. . g B . . .
C = minye; S _and — _tr(plo —S(). fixed incoherent basidi)"}. Using the same reasoning as in
2 <z Sello) ellr) (ploga) =S() [26, see Theorem 2 there], it is straightforward to see@i4t
Note thatCq4(p) > 0 if and only ifp is not incoherent. can also be written as
CHB(*®) = S(AP(0")) - S(*) )

Coherence of collaboration. We now move to the main topic

of this work, namely the assisted distillation of coherens®  with AB(p”B) := ¥ (I®|i Xi[)p B(I®i)i]). Moreover, since the

mentioned earlier, in this setting two parties Alice and Bobrelative entropy does not increase under general quantdm op

share many copies of a joint state= p”® and aim to maxi- erations,C/*® is monotonically nonincreasing under LQICC

mize coherence on Bob's system by LQICC operations. operations. The following theorem shows that the QI redativ
In order to make a quantitative analysis, we definadistil-  entropy is an upper bound @j'®.

lable coherence of collaboratioas the optimal rate, i.e., the thaorem 3. Given a state”® shared by Alice and Bob, the

optimal number of maximally coherent states on Bob’s sidgyiggijiaple coherence of collaboration is bounded above ac
per copy of the shared resource sjate the assisted setting: cording to

J=0}. @ CHB(0"®) < (™). (6)
The proof of the theorem can be found in the Supplemental

Here,M|| = Tr VMM is the trace norm, and the infimum is Material. This result shows that in the task considered
taken over all LQICC operations. When Alice is uncorre- here the relative entropy plays similar role as in the task of
lated from Bob, i.e0*B = p ® pB thenCdA\B(pAB) reduces ©ntanglement distillation2]7], bounding the distillation rate

to the distillable coherenc€q(o®) which can be evaluated from above. Note that for standard coherence distillation t
exactly using Lemmd [8]. In the following, we are inter- relative entropy of coherence is indeed equal to the optimal

ested in understanding how the assistance of Alice can infistillation rate B], see also Lemma. Itis an open question
prove Bob’s distillation rate, i.e., how |arg@€|5(pAB) canbe If this is also true for the task considered here, i.e., if the

in comparison t€4(p?). For answering this question, we first IN€quality €) is an equality for all quantum statgs®. As
note that the set of bipartite states which can be created vi§€ Will see in Theorena below, at least for pure states the
LQICC operations, that will be referred to as the it of ~ @nswer is girmative.

guantum-incoherer{QI) states, admits a simple characteriza-
tion. Namely, all such states have the following form:

Cﬁ\B(’D) = sup{R : n'T!o (ir)\f ||A [p®n] _ @®LRn

Coherence of assistance. We now introduce theoherence of
assistanc€CoA) for a statep as the maximal average coher-

VB = Z o ® i) (ifB. (3) ence of the state:
i Calp) = maxy | GC: (1) = max ) GiS(AwW).  (7)

Here,a-iA are arbitrary quantum states Anand the state$)®
belong to the local incoherent basis®f Note that QI states
have the same form as general quantum-classical s@®s [
(i.e., states with vanishing quantum disco?d]), except the
“classical” part must be diagonal in the fixed incoherentdas
It is obvious that any QI state h&®(0"®) = 0, and the
following theorem shows that the converse is true as well.

where the maximization is taken over all pure-state decempo
sitions ofp = 3; Gilyi){wil, andyi is denotindy: )il

To provide CoA with an operational interpretation it is
instrumental to compare it with entanglement of assistance
(EoA) originally proposed by DiVincenzet al. [19]. For a
bipartite state®C, one identifies a decomposition of maximal
average entanglement:

Theorem 2. A statep”® has G, °(0*®) > 0if and only if the E.(0P) = maxz GE(WES) = maxZ GS(trey®).  (8)
statep”B is not quantum-incoherent. - : -
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for pB¢ = ¥ qilyi)(wilBC. The interpretation of EoA is that  Let us turn to the obvious inequali@x(0®) < CZ(po®) and

by using local measurement and one-way classical commuask whethelC, is additive, in which case the inequality be-
nication, Alice can help Bob and Charlie obtain an averageomes tight. This question is especially interesting whaa o
entanglement of at mo#&,(0®°) when they all shargl)y*&C, considers Ref.§] where thecoherence of formatigrdefined

a purification 0foBC. In this case, any possible pure-state de-with a minimization rather than a maximization in Eq),(
composition ofpBC can be realized when Alice performs a and thus a dual quantity to the CoA, is shown to be additive.
suitable measurement and announces the reagt [If all Below, we will show that in contrast, CoA fails to exhibit ad-
the parties have access to arbitrary number of copies of thditivity in general. Nevertheless, when restricting atiem to
total state)¥)*EC, the figure of merit is the regularized EoA n copies of an arbitrary single-qubit stateadditivity of CoA
EX(0) = limpse %Ea(pm). For an arbitrary density matrix can be proven. The latter finding is quite noteworthy since no

pBC, the regularized EoA is simply given bg() analogous result is known for EoA in two-qubit systems.
EX(05%) = min{S(p®), S(o°))}. (9) Theorem 5. CoA is n-copy additive for qubit statps
Similarly, the CoA defined in Eq.7j has an operational Calp) = C3'(p) = S(A(p)). (14)

meaning if we assume that the state- p belongs to Bob,
who is assisted by another party (Alice) holding a purifimati
of pB. Together with Lemma then,C,(p®) quantifies a one-
way coherence distillation rate for Bob when Alice app”esinteresting to note that we prove non-additivity for syssem
the same procedure for each copy of the state. In the manygii, gimension 4 and above. Thus, it remains opef
copy setting, higher one-way distillation rates can tylydae g 5qditive for qutrits. Note that by Theoref this result
obtained when Alice performs a joint measurement across hefhjies that optimal coherence distillation for singlebiu
many copies. Thus, in direct analogy to E0A, we consider they stems involves just one-way communication and single-

: - i 1
regularized CoA defined & (o) := liMn-co ;Ca(0™)- copy measurements from a purifying auxiliary system.
As we prove in the Supplemental Material, the CoA of a

statep = 3% j pij 1) (jlis equal to the EoA of the corresponding wytipartite scenario. We now extend our results to the mul-

maximally correlated stat@®] pme = Xii j pij lii) (jjl: tipartite setting. When more than one party is providingsass
tance, the process of collaboratively generating coheréarc
Calp) = Ealpmo)- (10) P v9 9

Bob’s system will be calledoherence localizatignn direct
Clearly, Eqg. 0) implies that this equality is also true for the

However, in general the CoA is not additive.

We refer to the Supplemental Material for the proof. It is

analogy to the task afntanglement localizatiof80].

regularized quantities (o) = EX(pme). Using Eq. §), the . We consider il + 1)-partite statep” %, where the par-
regularized CoA thus acquires the simple expression: ties Ay, -, Ay are allowed to perform arbitrary local quan-
tum operations, and the parf is restricted to incoherent

C2(p) = S(A()). (11) operations only. Additionally, classical communicatisrai-
lowed between all the parties. The aim of all the parties is
Equipped with these tools we are now in position to provideto localize as much coherence as possible on the subsystem
a closed expression f@}'® for all pure states. of B. The corresponding asymptotic coherence localization
rate can be defined just as in Eg) @nd will be denoted by
Theorem 4. For a pure statg¥)"E shared by Alice and Bob, ChoAnlB(pA-AvB) For total pure states witB being a qubit
the following equality holds: we find that, quite remarkably, individual measurements on
. the auxiliary systems can generate the same maximal coher-
CQ‘BU%AB) =C3 (") = CR3(W)™®) = s(a().  (12) ence for the target systeBias when a global measurement is

The proof of the theorem can be found in the SupplemenPen‘ormed across all the auxiliary systefas- -« , Aw.

tal Material. With Theorem4 in hand, we give the von Theorem 6. Let|¥)"+**B be an arbitrary multipartite state
Neumann entropy an alternative operational interpretatio with system B being a qubit. Then

Namely, letéCq(0®) denote the maximal increase in distill-

able coherence that Bob can obtain when exchanging classi- CdAl""’AN'B(|‘P>A1*"'*ANB) = CdA‘°"B(|‘P>A‘°‘B) = S(A(pB)),

cal communication with a correlated party; i.6Cq4(o®) = (15)
ma&AB[CdA'B(pAB) — Cy4(0®)], where the maximization is taken where Ay = A, --- , Ay is viewed as one party with the lo-
over all extensiong”B of pB. Noticing that the maximum is cality constraint removed among the A

attained ifp”B is pure, Lemma. and Theorend imply that _ _ _
The proof is deferred to the Supplemental Material. This

5C4(0B) = S(p®). (13) theorem implies that for asymptotic coherence localizatio

the assisting partie&,, - - - , Ay do not need access to a quan-
Interestingly, this result does not depend on the particulatum channel: local quantum operations on their subsystems
choice of the reference incoherent basis. together with classical communication are enough to ensure
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maximal coherence localization. This is true if the totakst tillable in this way is bounded above by the relative entropy
is pure, and if coherence is localized on a qubit. distance from the set of free states which cannot be cregted b
the allowed operations. For pure states, the amount ofldisti
LQICC versus SLOCC protocols. The proof of TheoreMre-  able coherence of collaboration was shown to be equal to the
lied on relating the tasks of assisted coherence distitednd  asymptotic coherence of assistance of the incoherent, fzarty
assisted entanglement distillation. This further sugp@don-  quantity dual to the coherence of formation, and closely re-
jecture put forth in Ref.§] that the resource theory of coher- lated to the entanglement of assistance. The maximum extra
ence is equivalent to the resource theory of entanglement famount of coherence that one party can distill with with-
maximally correlated state29]. We can prove a more gen- out the assistance of an external player is given exactihéy t
eral connection between LQICC operations in the coherenceon Neumann entropy of the target system. Therefore, the
setting and LOCC operations in the entanglement setting. more mixed a state is, the more it benefits from collabora-
For a given bipartite staje”® we define the association tion for the task of extracting coherence. In the many-qubit
scenario, we showed that, for pure shared states, cokectiv
P8 = Z M{ @ liX(jI® = pA%¢ = Z M7 ® i (¢, (16) operations on all the collaborati\?e parties are not requive
1 1 optimal coherence localization onto a target qubit.
where M;; are operators acting on Alice’s space dfy is There are many scenarios of practical relevance where the
the fixed incoherent basis. As we show in the Supplementdhsk of assisted coherence distillation, or localizateam play
Material, if two statep”® ando”® are related via a bipartite a central role. For instance, we can think of a remote or not
LQICC map, i.e.c*® = AL qicc[p®], then the correspond- entirely accessible system on which coherence is needed as
ing stateg*B¢ and*BC are related via a tripartite stochastic a resource (e.g. a biological system): our results give- opti
LOCC (SLOCC) map, i.e.0*®¢ = Ag 0cdp”BC]. There- mal prescriptions to inject such coherence on the remote tar
fore any procedure which can be implemented “for free” inget by acting on a controllable ancilla. An assisted déstill
the framework of assisted coherence has an equivalent{prob#on procedure is also useful in order to maximize the thermo
bilistic “free” implementation on the level of maximally co ~ dynamical work extraction from the coherence of the target
related states. We find that, in fact, for many LQICC transfor System f]. In a multipartite setting, one can imagine to dis-
mationsp”B — B, the corresponding LOCC transformation tribute a correlated state among many parties, and implemen
pABC — GABC can be implemented with probability one. It an instance of open-destination quantum metrology (a proto
is an interesting open question whether the (tripartitelllCO  col somehow inspired by open-destination teleportatB)[
analog to every (bipartite) LQICC transformation has alsvay in which one party is selected to estimate an unknown parame-
a deterministic implementation. ter [34] and the other parties act locally on their subsystems in
In the case where the subsystéris uncorrelated, Eql¢)  order to localize as much coherence as possible on the chosen
reduces tp = 3 0ij ) (jl = pme = Xijpijlii)(jjl. For target, so as to enhance the estimation precision. Simjilarl
this situation, the above results imply that for any twothe task can be a useful primitive within a secure quantum
statesp ando = Ai[p] related via an incoherent operation cryptographic network3s], in which the distribution of non-
Ai, the corresponding maximally correlated stgpgg and  orthogonal states (and thus coherence) is required. Tinese a
ome are related via bipartite SLOCGne = AsLocdomdl- other collaborative games will be investigated in furtherkv
Moreover, in the asymptotic setting where many copies of ~ From an information-theoretic point of vievd, 37], our
are available, the SLOCC procedure becomes deterministisiudy supports the intriguing conjecture that the theoryoaf
whenever the entanglement costogf. is not larger than the herence is equivalent to the theory of entanglement of maxi-
distillable entanglement gf,.. This criterion can be easily mally correlated state$]8]. We also remark that the theory
checked, recalling that for these states the entanglemenf (assisted) coherence is not a fully reversible one. In re-
cost is equal to the entanglement of formati®i,[32], and  versible quantum resource theori@J]| if a resource statp
their distillable entanglement admits a simple expresg@8h ~ can be asymptotically converted to another resource state
rate R with free operations, thesr can be converted back to
Conclusions. In conclusion, based on the resource theory ofp at rate JR. However, note that in our case the maximally
coherence formalized by Baumgratzal. [3], we introduced  entangled statéq0) + |11))/ V2 can be converted to the state
the framework of assisted coherence distillation and, moréd+) via LQICC operations at rate 1, but the process is not re-
generally, of coherence localization. In this framework, i versible as LQICC operations cannot produce entanglement.
a multipartite system, one party aims to distill cohereniee v Acknowledgements. We thank Remigiusz Augusiak for dis-
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SUPPLEMENTAL MATERIAL nonvanishing probability. This means that by repeating thi
procedure on each copy pf‘®, Bob will end up with many
Proof of Theorem 2 copies of a state having nonzero coherence. Then, by using

Lemma 1 from the main text Bob can distill maximally coher-
Here we will prove that any state which is not quantum-ent states with nonzero rate. This completes the proof of the
incoherent (QI) has nonzero distillable coherence of botla  theorem.
ration C;®(0"8) > 0. To prove this, suppose that® is not

Ql. We can always expand Proof of Theorem 3

P8 = le) (et @ NE, (A1)
ij

In the following, we will prove that for any staje®® the
distillable coherence of collaborati@f'® is bounded above
where thee)” form an orthonormal basis for Alice’s Hilbert by the QI relative entropy‘,f'B:
space and th&li‘? are some operators on Bob’s space. Note AB, AB A
IB( AB
that the operator® are nonnegative, i.eN? > 0, and Cy (0™7) < CH(™). (A.4)
can be written agjp?. The statep? can be seen as the To prove this statement, we first note titcan also be ex-
post-measurement state of Bob if Alice performs a von Neupressed as follows:
mann measurement in the basis”, andg; is the correspond-
ing probability. If for some outcome with nonzero prob- cg\‘B(pAB) = sup{Cr (1#)) : lim (inf ”A [pi®”] _pfn ) = o},
ability g > O the corresponding stat€® is not incoherent, noe A A (A.5)
then LBemma 1 in the main text guarantees ﬂiﬁ?(pAB) > with the initial statepi = "B ® |0) (0B, the final stateys =
aiCr(0f) > 0. _ _ |00y (00"Be|¢) (4|5, Bis an additional particle in Bob’s hands,
In the next step, we will consider the case where all the, |+ i um in Eq.A.5) is taken over all LQICC opera-
statep? corresponding to nonzero outcome probabiijty 0 tionsA between Alice and Bob
are incoherent (i.e. all the operatdts are diagonal w.r.t. the Then, by definition o€® in E'q (A.5), for anys > O there
incoherent basis). Then, the condition that the stéféis exists a statég), an inte%em and an ,LQICC protocol,
not QI implies thatN,, must have fi-diagonal elements for acting onn copiés of the stat,é such that
somek # |. Using the fact thatNy = N, , we see that at !
least one of the operatoMq + N, or i(Niw — N,;) must also CLPE™®) - Cilig) < &, (A.6)
contain dfdiagonal elements in this case. Depending on what ' A [pen @n
. . . n [pi ] -pi || < e (A.7)
is the case, Alice performs a von Neumann measurementin a
basis containing the state adig)” + sinf|e)” or in a basis In the next step, we will prove continuity &;. In partic-
containing the state cede)” + i sind|e)" with some angle  yjar for two stateg*Y ando™" with [|pX¥ - oX|| < 1 the QI
measurement state of B@E is given by

ICXY(p*Y) — CXY(0*Y)| < 2T log, dxy + 2h(T),  (A.8)

B - -
= co< ONyy + Sir? ON; + cosf sind(Ng + Ni), (A.2 . . .
Pape Kk ! (N + N, (A-2) whereT = ||pXY — ¢XY||/2 is the trace distancelyy is the

where pgnzis the corresponding outcome probability. Sincedimension of the total system, and

cog 6, sirf 0, and co® sing are linearly independent, the trace _

of the right-hand side of EqA(2) cgnnot F\)/anish for alb. h(x) = =xlogy x = (1 =X logy(1 - X) (A-9)

Hence, there are some<06 < /2 for whichp, > 0. Sim-  is the binary entropy. It is straightforward to prove E4.8)

ilarly, in the second case the post-measurement state of Bdiy using continuity of the von Neumann entrof3g].

0'5’ is given by The continuity relation in Eq.A.8) together with Eq.A.7)

implies that for any O< & < 1/2 there exists an integer> 1

Qoo = COS ONi + i’ ONy + i cososind(Ni — Ni) (A.3)  and an LQICC protocah, acting onn copies of the statg,

. - such that
with outcome probabilitgy. By the same argument, there are

some 0< 6 < x/2 for whichgy, > 0. Moreover, in both of Cf'Bé(An[pi@”]) > CrA‘BB(p?”) - 2nglog, d - 2h(e), (A.10)

the above cases the post-measurement state of Bob contains ) ) ) .
offdiagonal elements. whered is the dimension of the total systeABB. Since the

Finally, we will now show how the above results imply that Q! relative entropyCr is additive and does not increase under
CdAIB(pAB) > 0 is true for any state which is not QI. In par- LQICC operat|ons, it follows that for any @ ¢ < 1/2 there
ticular, we proved that for any such state Alice can perform £XiSts an integem > 1 such that
local von Neumann measurement in such a way that the post- BB ABE 2
measurement state of Bob contains nonzero coherence with ~ Cr (0i) = G (o) — 2el0g, d — —h(e). (A.11)



By using the relation€®8(o) = CAB(*8) andCAB8(p;) = Proof of Theorem 5
C:(19)), the latter inequality implies
CAB(AB) > C, (). (A.12) In the following, we will prove the equality
On the other hand, EGA(6) means thaC, (|¢)) > C,'®(0"®) - Calp) = C3'(p) = S(A(p)) (A.20)
&. Combining these results completes the proof of the theo; . .
for any single-qubit state.

rem. Let |¥)*B be an arbitrary purification fg#8, and expand in

the incoherent basis as

Coherence of assistance and entanglement of assistance of 1
maximally correlated states [P)AB = Z Vi i) KB, (A.21)
k=0

In the following we will prove the relation . .
9 P wherely)* are arbitrary states for Alice. In the next step we

Ca(p) = Ealome), (A.13) note that there always exist orthogonal staje¥* which form

where the statp = 5, pi; iy(jl is arbitrary, and the state a mutually unbiased basis with respect to the two staig$.

A :
Pme = Xi.jpij i) (jj| is the maximally correlated state associ- Thus, the stategi)™ can be written as
ated withp. A 1

For proving Eq. A.13), consider an optimal decomposition W™ = ﬁ
of the stateome = X Pk IWk) (¥l such that

(€7 g )™ + € p_)") (A.22)

with some realsy andgy.
Ealome) = Z PRE(l¥10)), (A.14) When Alice performs a von Neumann measurement in the
k In.)* basis, Bob will find his system in one of the post-

where the entanglement of a pure stgtg"” is given by the =~ Measurement states

von Neumann entropy of the reduced st&§uy)*") = S(pX). B_ 9. |\B s [1\B

Note that every stat@y) in the above decomposition can be 1907 = VPoe™ [0+ Ve I1) (A-23)
written in the formjyy) = ; c€[ii) with complex coéiicients  with some reals.. andg. for the-+/- outcome respectively. In
¢ [32. In the next step, we introduce stat¢g) = ¥ cli),  both cases, the state has cohera®i¢.)®) = S(A(0B)). The
and note that together with probabilitipg these states give above reasoning shows thag(p) = S(A(p)) is true for any
rise to a decomposition of the state= 3y p«lgw) (¢l Note  single-qubit state. Recalling thaC(p) = S(A(p)) is true
that this decomposition gf is optimal for the coherence of for any quantum state, the proof of Eq. A.20) is complete.
assistance: We will now show that there exist statesof dimension 4

Calp) = Z PkCr (Ifk))- (A.15) such that
k

Calp) < C5(p). (A.24)

The proof of Eq. A.13) is complete by using the relation

Cr(l61) = E(lw). This inequality also implies that the coherence of assigtan
cannot be additive. For proving this, consider the 2 state

Proof of Theorem 4 [P)AB = % (100 + |11) + [+2) + |+3)) (A.25)

Proof. In the following we will prove the equality with |£) = 1/ V2(1+) + i]1)). We will show that the reduced
B o B of By X X
CQ\\B(P{J)AB) — C;O(pB) — C]A\B(||{,>AB) — S(A(pB)) (AlG) Statep- SatIS.erSCa(p ) < Ca (p ) =2. We will prove this by
showing a slightly stronger statement: for any measurewnfent
Clearly, the regularized CoA of a stgi = tra|¥)(¥[*B can-  Alice performed on the state in EA@5), the corresponding

not be Iargerthaﬁig\‘B of its purification: post-measurement state of Bob will have coherence strictly
below 2.
cor B AB AB
Ca (") < G ()™, (A.17) This can be seen by contradiction: assume that for some

Together with Eq. (11) in the main text one obtains the lowermeasurement of Alice with POVM elemeM” the corre-
bound sponding post-measurement state of Bob has maximal coher-
ence, i.e. it corresponds to the stgbg) = 1/22?:0“). This

B AB AB
S(A(")) < Cy (¥)™). (A.18) condition can also be written as follows:
On the other hand, Eg. (5) in the main text implies TrAIMA %) (PE] = p D) (0 (A.26)
A = 4 4] > .
CHB(¥Y"®) = S(A(p®)). (A.19)

_ _ whereM” < 1* is a nonnegative operator on the subsysfem
Together with Theorem 3 this completes the proof. O andp > 0 is the probability of Alice’s outcome.
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In the next step it is crucial to note that E&.26) can only  results also imply the existence of a POMM,, I1_} which
be fulfilled if M has the same nonzero overlap with all the can be implemented via LOCC such that
stateq0), |1), |+), and|+):
~ ~ Iy n-) =T_1Iny) = 0. (A.32)
(OIMI0y = (1IM|1) = (+|M]+) = (+|M]|+) > Q. (A.27)
Applying this POVM on systemdA;---Ay of the state

Denoting the elements dfl by My = (KIMII), the above |yyA-AvB wij| generate post-measurement states for Bob of
equality leads to the form

Moo = M11 = % (Moo + My1+ Mgy + MlO) |¢i>B = \/Eemi |O>B + \/meiwt |1>B P (A-33)

_ :—L(Moo+ Mi1 + iMo1 — iM10) . (A.28) which Ieave_s him with optimal coherendg;(|¢2))
2 S(A(p®B)). This completes the proof of the theorem.

Taking into account thaM is nonnegative, this set of equa-
tions has only one solution, namelog = M1 = Mo =
Mio = 0. This completes the proof. Interestingly, from the

above consideration it is not cleaiGf,(p) is additive for qutrit ] ] ] ]
states. Here we will prove that for any pair of bipartite states

P8 = Z Mieliy(j®, o= Z NG @1i) (jI®
ij i

Relating LQICC and tripartite SLOCC maps

Proof of Theorem 6

_ _ related viac*® = A_qicc[p™®], with an LQICC operation
Here we will prove the equality AvLaice, the corresponding tripartite states

I AP (h ) = CReB (1N®) = S (A7), pEC= Y Ml GIFS, 7A=Y NRelii) ()i
(A.29) N 0]
whereB is a qubit, and; = A; - - - Ay denotes the total sys-
tem except foB. In the following, we assume that the parties are refated via SLOCC, i.ar**¢ = As_ocdp"®“] with some
Ad, ..., Ay can perform arbitrary local operations, the pagty Stochastic tripartite LOCC operatiots_occ. We also prove
is restricted to incoherent operations, and classical conim ~ Certain cases when this map can be implemented with proba-
cation is allowed between all parties. bility one.
For proving this statement, we will show that for some Consider an LQICC protocahiqicc that mapso”® into
LOCC protocol onAy, . . ., Ay all post-measurement states of B, In the following, we assume that this protocol consists of

Bwill have coherencs (A(pB)). This meansthatby Lemma1 " intermediate LQICC operations. If we introduce the states
of the main text the staf#)*>*8 can be used to extract co- S5 * ar,i‘g”” - % the/r:Bthe total protocol can be written as

. AB
herence at ratg (A(o®)). This will complete the proof, since wp~ = Wi© = o wph = wp”. We further suppose that

by Theorem 3 of the main text it is not possible to achieveeaCh Stefiu — wiqa IS either a local quantum operation on

e . Alice’s side followed by classical communication of the -out
more coherence 0B even by joint operations ofy, . .., Ay. . . e
: . S X come to Bob, or a local incoherent operation on Bob's side,
In the following, we will use similar arguments as in the

proof of Theorem 5. In the first step, we expand the stat followed by classical communication of the outcome to Alice

. ; ) o S\Ve will now see that for any such transformati AB
|¥y*sAv8 in Bob’s incoherent basis, arriving at y ioff — Wi

there exists a tripartite SLOCC protocol transforrmfg?eto

~ABC
1 Wyyq
[Py AnB - Z VPR A A (kB (A.30) First, suppose that the proces®® — w£B involves a local
k=0 measurement of Alice and classical communication to Bob.

hen, it is easy to see that the proceg$® — @LEC can
e implemented deterministically, i.e., there exists [zaftite
LOCC operation such{™¢ — &2EC. For this, the same lo-
cal measurement has to be performed on the subsy&tem
@RBC, and the result is communicated to both parBemndC.
1 In the following we will consider the situation where the
V2 processul® — wiE involves a local incoherent operation on
Bob'’s side, followed by classical communication to Alicee W

with some realsy andp. suppose that the stai€'® has the form
To complete the proof we will use the results of Walgette

al. [39], showing that any two multipartite orthogonal states wfB = Z ol eliy(jlB. (A.34)
In+) and|n_) can be perfectly distinguished via LOCC. Their 0 .

Similar to the proof of Theorem 5, we note that there existg
orthogonal multipartite statés. ) which form a mutually un-
biased basis with respect to the staigs. In other words, the
stategyk) can be written as

ey = ——= (€% 1) + P ) (A.31)



The incoherent operation performed by Bob can always be This takeSrQBO‘i to the state
described by the following incoherent Kraus operators:

Tt (A.44)
KE =" Cas Ifai)) P, (A.35)

= Z 1) Of @11 (1)) (Fa(DIP @ 1T (Fu (DI @ ) CjIC
wherec,; are complex numbers, and the set of functify(§)
maps the sefi} onto itself. If Bob obtains the outcome the

corresponding post-measurement state is given by 3. In the final step, Charlie measundﬁsr; the generalized
Hadamard basisi{lb) = = X% Ve et
JAB wJOA®f WRAOE A.36 With some probability, outcomqb()) is obtained,
¢ ,ZJ: P (D) (D) (A-36) leading to the desired the final stat®€ given in
Eq. (A.39).

with probability
In the following we will show that the above procedure can al-
ways be implemented with nonzero probability. In particula

* ; \(B
Po = Tr Z C‘I*‘Cavioﬁ\ ® 1 (D) (Fa (D7) (A-37) we will see that for any with probability p, > 0 as described
Y above, the probability to obtain the statf®® from the state
Correspondingly, the statngC has the form &')':‘BC via tripartite SLOCC is always nonzero.
To prove this, we will first show that, > 0 impliesq, > 0,
ORBC = Z Y@ i) (jjIBC. (A.38)  whereq, was given in Eq.4.40). This can be seen by con-
tradiction, assuming thag, = 0. This implies the following:
For showing the existence of a stochastic LOCC protocol Tr [anﬁBCIABéblbo)(bol] -0 (A.45)

transforming.; B¢ to & EC it is enough to show that the state

~ ABC
o~ can be transformed into the state where the statéb) is given aslb) = cho ljy / Vdc, and

the particlesB andC have the same dlmenS|on This result

7,BC = Z GriCa ——=0f @ [f. (1)) (F()I® @ Ifa(i)) (Fu (1) - together with Eq.A.41) leads to the equality
(A.39) o
via stochastic LOCC operations with nonzero probability fo %Tr Z C0,iCq,jOfj @ I (1)) (o (I)IF | = 0. (A.46)
i

all a. This protocol consists of the following steps.

1. Inthe first step, the incoherent measurement with Krau8y comparing this with Eq.A.37) we see that the left-hand
operatorgKE} as given in Eq.4.35) is performed on  side of this equality is equal fp,/dc, and thusp, = 0. This
the partyB of the total states5C. If the outcomer is ~ Proves thap, > 0 impliesq, > 0.

not possible in the LQICC protocol (i.e. ff, = 0), the To complete the proof that the above procedure can always
protocol is aborted. Otherwise, with probability be accomplished with nonzero probability we note that in the
measurement in the step 3 of the protocol the desired outcome
o = TIKELPUKE)] (A.40)  appears with nonzero probability wheneyer> 0. This can

(which is in general dferent fromp,) the outcomey is be seen directly, by evaluating the corresponding protbgbil

obtained an_d broadcast to the other pariendC. The Tr [NQBCC]]_ABC ® |bo) <b0|]
corresponding post-measurement state has the form

CajC;‘ . . .
= Tr Z, W dB"oﬁ@|f(,(|)><fw(1)|B®|fc,(|)><fa(1)|C :

ABC _ ‘“‘”oAf f,(j) c. (A4l
w0 = ) ORI (Lo (. (AdY)

v

R (A.47)
2. In the next step, Charlie introduces an ancilla system By comparing this expression with E&A.37), we further find
originally in the statd0)© so that the total state is that
ABOC (A.42) Tr [#QB®1A8C® Ibo) (bol] _ _Pa . (A.48)
qadB
m a]
= Z Of @1 (i)) (f(DIB® li) (iI° @ [0y (O . Since we assume that, > 0, this completes the proof that

the stochastic LOCC procedure discussed above has always
Depending on the outcome Charlie then performs a honzero probability of success.
local unitary rotation such that Finally, we note that for the certain types of incoherent
y y operationA gicc the aforementioned transformation is deter-
Ua (IDC10)°) = 1)) i)C . (A43)  ministic. In particular, this is the case if the functidi is
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reversible. Then there exists a unitary rotation for Cledy[f in the above protocol are omitted.

such that
In summary, the transformatigrf®¢ — 54BC can always

US1iY® = I,())°. (A.49)  be achieved with some nonzero probability. If all the inashe
ent operations im\_qicc have Kraus operatots, with f,(i)
Performing this rotation on the state in E&.41) generates being reversible for every, then the transformation can be
the desired maximally correlated staf®, and steps 2 and 3 accomplished with probability one.



