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Abstract

Il s’agit d’etudier l’evolution de l’information de Fisher et la LQU (local quantum uncertainty)

pour des etats X a deux qubits quand ils evoulent dans un canal decoherent. Bien sur, il s’agit de voir

quelle est l’inflence de l’environnement en metrologie.
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1 Introduction

A class of two-qubit states called X-states are increasingly being used to discuss entanglement and

other quantum correlations in the field of quantum information. Maximally entangled Bell states

and “Werner” states are subsets of them. Apart from being so named because their density matrix

looks like the letter X, there is not as yet any characterization of them. The su(2) × su(2) × u(1)

subalgebra of the full su(4) algebra of two qubits is pointed out as the underlying invariance of

this class of states. X-states are a seven-parameter family associated with this subalgebra of seven

operators. This recognition provides a route to preparing such states and also a convenient algebraic

procedure for analytically calculating their properties. At the same time, it points to other groups

of seven-parameter states that, while not at first sight appearing similar, are also invariant under the

same subalgebra. And it opens the way to analyzing invariant states of other subalgebras in bipartite

systems.

Increasingly in the field of quantum information, aspects of entanglement [46], and of other quan-

tum correlations such as, for instance, “quantum discord” [47], between two qubits have been described

for a class of pure and mixed states that have come to be called “X-states” [48]. Although their use

goes back further [49], they were so named in [48] because of the visual appearance of the density

matrix, that it looks like the letter in the alphabet:

ρ =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

 . (1)

Non-zero entries occur only along the diagonal and anti-diagonal. Many calculations of entangle-

ment and other properties [49, 50], and their evolution under unitary or dissipative processes [51], can

be carried out analytically for such states which make them appealing objects for study. Many other

states of interest, such as the maximally entangled Bell states [46] and “Werner” states [52], are a

sub-class of X-states, lending further importance to their study.

Yet, no firmer definition has been given of what makes a pure or mixed system an X-state. This

Letter provides such a definition in terms of their invariance properties, that a particular symmetry

group or algebra underlies them. Such an identification of an underlying symmetry helps to explain

the analytical results while at the same time providing a well defined procedure for their preparation.

Recognizing the symmetry also makes computations involving such states, such as unitary operations

on them or evaluating concurrence or other measures of entanglement, straightforward and easily

tractable. And, finally, the symmetry also opens the way for constructing other density matrices

which may not visually appear as X but are nevertheless similar, states of a different rendering of the

same algebraic symmetry. Since they differ in entanglement and separability considerations, they may

prove useful for study.
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2 The subalgebra of X-states

Positivity and other standard requirements of any density matrix make the X-states shown in Eq. (1)

a seven-parameter family. The diagonal elements of the density matrix are real so that, along with the

trace being fixed at 1, three real parameters describe those diagonal entries. Hermiticity to guarantee

real eigenvalues reduces the off-diagonal entries to two complex (say ρ14 and ρ23, with ρ41 and ρ32

their respective complex conjugates) or four real parameters for the total of seven real parameters.

The full two qubit system has the symmetry of the SU(4) group and its algebra su(4). Fifteen

operators, most conveniently rendered as fifteen linearly independent 4 × 4 matrices or as Pauli

spinors/matrices of the two spins, together with the unit matrix, provide a complete description of

the general system. There are, however, several subalgebras of su(4). A series of recent papers have

provided a geometrical description of their states and operators [53, 54, 55, 56]. In particular, one

subalgebra, su(2) × su(2) × u(1), of seven operators or matrices occurs in many physical systems in

quantum optics and quantum information [53, 54]. This Letter presents them as the invariance set of

the X-states.

Inspection of the explicit 4 × 4 matrices in a standard basis for two spins, (| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩),
is instructive [53, 54, 57, 58] and points immediately to sets of seven of them with the same structure

of eight zeroes in the same positions as in Eq. (1). That is, these are operators that do not mix the

1-4 and 2-3 subspaces of the density matrix. Combined with the observation that such a set of seven

matrices closes under multiplication, it is immediate that they will carry X-states into each other, that

they preserve the X structure. For this purpose, both the Lie algebra aspect that the seven operators

close under commutation and their Clifford algebraic structure that they close under multiplication

are important. Indeed, explicit rendering of the fifteen operators in terms of two Pauli spinors called

σ⃗ and τ⃗ , together with the familiar multiplication rule σiσj = δij + iϵijkσk, i, j, k = 1− 3, where ϵijk is

the completely antisymmetric symbol and repeated indices are summed, is very useful for operations

with them.

There are many such sets of seven operators/matrices constituting the su(2) × su(2) × u(1) sub-

algebra [53, 54, 56]. In each of them, one operator, the u(1) element, commutes with all six of the

others which themselves can be further subdivided as shown in [53] into two sets of “pseudospins”,

two sets of three which obey commutation relations of angular momentum within each set while all

three of one set commute with all three of the other. Any one of the fifteen operators can serve as the

commuting element because, as shown in a table in [54], each row has six zeroes so that each identifies

such a su(2)× su(2)× u(1) set. There are, therefore, fifteen non-equivalent such subalgebras.

We will designate such a set by {Xi}, i = 1, 2, . . . , 7, with X1 the commuting element. One such

is (X1 = σzτz, X2 = σyτx, X3 = τz, X4 = −σyτy, X5 = σxτy, X6 = σz, X7 = σxτx). This is the same

set that occurs in the CNOT quantum logic gate constructed out of two Josephson junctions and was

extensively studied in that context [53]. It was also pointed out that it occurs in nuclear magnetic

resonance when each spin is in an external magnetic field in the z-direction while being coupled to
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each other through scalar coupling σ⃗ · τ⃗ and “cross-coherences” σxτy and σyτx. But a different choice

for the commuting element X1 gives another such subalgebra, and we will return to this in section

IV. Each Xi is traceless, Hermitian, and unitary, and its square is unity so that the eigenvalues are

(±1,±1).

With any such set, {Xi}, the density matrix that remains invariant under their operations can be

rendered as a linear superposition of them,

ρ = (I +ΣigiXi)/4, (2)

in analogy to that for a single spin, (I+Σigiσi)/2. The seven real coefficients gi in Eq. (2) parametrize

X-states and are equivalent to the seven parameters in the density matrix in Eq. (1):

g1 = (ρ11 + ρ44)− (ρ22 + ρ33),

g2 = 2i(ρ14 − ρ41 + ρ32 − ρ23),

g3 = (ρ11 − ρ44)− (ρ22 − ρ33),

g4 = 2(ρ14 + ρ41 − ρ32 − ρ23),

g5 = 2i(ρ14 − ρ41 − ρ32 + ρ23),

g6 = (ρ11 − ρ44) + (ρ22 − ρ33),

g7 = 2(ρ14 + ρ41 + ρ32 + ρ23). (3)

The algebra of the seven {Xi} is most conveniently captured by Fig. 1 as has recently been

pointed out [56]. This figure occurs in projective geometry as the “Fano Plane” [59] and also is

used to represent the multiplication table for octonions [60]. Arranging the seven operators at the

vertices, mid-points of sides and in-center of an equilateral triangle, the seven lines shown (including

the inscribed circle) each carry three points, providing the multiplication rule for those {Xi}. The

notation of arrows is also borrowed from octonions except that unlike them which have all seven lines

arrowed, the three internal verticals are not in Fig. 1. On those lines, all three operators mutually

commute, so that the product of two gives the third regardless of order. On the four arrowed lines,

the operators mutually anticommute so that the product of two gives (±i) times the third, with plus

(minus) signs along (against) the sense of the arrow. For this purpose, each line is regarded as a closed

loop with a continuously circulating arrow. The central element commutes with all six of the others.

For each of those, there is one “conjugate” element with which it commutes and four with which it

anticommutes. All of this can be read off by merely glancing at Fig. 1 and will provide simple rules

for their manipulation in the next section.
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3 Fisher information for a non-full rank density matrix

4 Quantum decoherence channels

A quantum channel can be described in the Kraus representation

E(ρ) =
∑
µ

KµρK
†
µ, (4)

where Kµ are Kraus operators satisfying
∑

µK
†
µKµ = I. As we discussed in the previous section, to

obtain the GMQD, we need to know the expectation values of the Pauli matrices of the two qubits for

the state E(ρ). So we turn to the Heisenberg picture to describe quantum channels via the map [40]

E†(A) =
∑
µ

K†
µAKµ (5)

with A an arbitrary observable. Then the expectation value of A can be obtained through ⟨A⟩ =

Tr [AE(ρ)] = Tr
[
E†(A)ρ

]
. Because an arbitrary Hermitian operator on C2 can be expressed by A =∑3

i=0 riσi with ri ∈ R, then a quantum channel for a qubit can be characterized by the transmission

matrix M defined through

E†(σi) =
∑
j

Mijσj or Mij =
1

2
Tr
[
E†(σi)σj

]
. (6)

Since Tr[E†(σi)ρ] =
∑

j MijTr[σjρ], Mij actually describes the transformation of the polarized vector

Pi ≡ Tr[σjρ].

Now we consider the case of two qubits under local decoherence channels, i.e., ρ = [EA ⊗ EB](ρ0).
To obtain the GMQD of the output state ρ through the channel, we need to get the expectation matrix

R. With the Heisenberg picture, we have

Rij = Tr(E†
A(σi)⊗ E†

B(σj)ρ0) = (MAR0M
T
B )ij , (7)

where R0 is the expectation matrix under ρ0, i.e., (R0)ij = Tr(σi ⊗ σjρ0), and MA(B) is the transfor-

mation matrix characterizing the quantum channel EA(B). So we obtain R = MAR0M
T
B .

For simplicity, we assume EA and EB be identical, hereafter. Next, we consider three typical kinds of

decoherence channels: the amplitude damping channel (ADC), the phase damping channel (PDC), and

the depolarizing channel (DPC). They are described by the set of Kraus operators respectively [42, 41]:

KADC =
{√

s|0⟩⟨0|+ |1⟩⟨1|, √
p|1⟩⟨0|

}
, (8)

KPDC =
{√

sI,
√
p|0⟩⟨0|, √

p|1⟩⟨1|
}
, (9)

KDPC = {1
2

√
1 + 3s I,

1

2

√
p σx,

1

2

√
p σy,

1

2

√
p σz}, (10)

with s ≡ 1−p. Here the real parameter p ∈ [0, 1] may be time-dependent in some realistic setup [41, 42].

For instance, for the PDC, the parameter s may be like exp(−γt) with γ the rate of damping.

5



From Eqs. (6), (8), (9), and (10), the transmission matrix M of each channel can be got through

the transformation of the Pauli matrices in the Heisenberg picture [40] as

MADC =


1 0 0 0

0
√
s 0 0

0 0
√
s 0

−p 0 0 s

 , MPDC =


1 0 0 0

0 s 0 0

0 0 s 0

0 0 0 1

 , MDPC =


1 0 0 0

0 s 0 0

0 0 s 0

0 0 0 s

 . (11)

For simplicity, here we first take as the input states of two-qubit system the Bell diagonal states [5, 12]

ρ =
1

4

(
I ⊗ I +

3∑
i=1

ciσi ⊗ σi

)
, (12)

which includes the Werner states (|c1| = |c2| = |c3| = c) and Bell states (|c1| = |c2| = |c3| = 1).

This state is physical if the vector (c1, c2, c3) belongs to the tetrahedron defined by the set of the

vertices (−1,−1,−1), (−1, 1, 1), (1,−1, 1) and (1, 1,−1) [43]. This restriction can be described by the

following conditions [43, 5]:

3∑
i=1

ci ∈ [−3, 1],

ci − cj − ck ∈ [−3, 1] for i ̸= j ̸= k. (13)

For states (12), R0 = diag{1, c1, c2, c3} is of diagonal form. From the relation R = MR0M
T , we

get R under the ADC, the PDC, the DPC respectively:

RADC =


1 0 0 −p

0 c1s 0 0

0 0 c2s 0

−p 0 0 c3s
2 + p2

 , (14)

RPDC = diag
{
1, c1s

2, c2s
2, c3

}
, (15)

RDPC = diag
{
1, c1s

2, c2s
2, c3s

2
}
. (16)

R′ is obtained by deleting the first row of the matrix R, for ADC, PDC, DPC respectively.
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