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A recursive approach to determine the Hilbert—Schmidt measure of pairwise quantum
discord in a special class of symmetric states of k qubits is presented. We especially focus
on the reduced states of k qubits obtained from a balanced superposition of symmetric
n-qubit states (multiqubit Schrédinger cat states) by tracing out n — k particles (k =
2,3,...,n—1). Two pairing schemes are considered. In the first one, the geometric discord
measuring the correlation between one qubit and the parity grouping (k — 1) qubits
is explicitly derived. This uses recursive relations between the Fano—Bloch correlation
matrices associated with subsystems comprising k, k—1, ... and two particles. A detailed
analysis is given for two-, three- and four-qubit systems. In the second scheme, the
subsystem comprising the (k — 1) qubits is mapped into a system of two logical qubits.
We show that these two bipartition schemes are equivalents in evaluating the pairwise
correlation in multiqubits systems. The explicit expressions of classical states presenting
zero discord are derived.

Keywords: Coherent states; Dicke states; GHZ and W states; geometric quantum discord;
Hilbert—Schmidt distance.

PACS numbers: 03.65.-w, 03.67.-a, 03.65.Aa, 03.67.Mn

1. Introduction

Quantum correlations in multipartite systems have generated a lot of interest
during the last two decades.!® This is essentially motivated by their promising
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applications in the field of quantum information such as implementing quantum
cryptographic protocols, speeding up quantum computing algorithms and many
more quantum tasks (see for instance Refs. 4 and 5). An important issue in inves-
tigating quantum correlations concerns the appropriate measure to decide about
quantumness in a given quantum system and to separate between classical and
quantum states. The characterization of quantum correlations is necessary in or-
der to exploit their advantages, in an efficient way, in the context of quantum
information processing such as quantum teleportation,® superdense coding” and
quantum key distribution.® Several methods and different measures of quantum
correlation were exhaustively discussed in the literature from various perspec-
tives and for many purposes (for a recent review see Ref. 3). They can be clas-
sified in two main categories: Entropic-based measures and geometric quantifiers or
norm-based measures. Entanglement of formation, linear entropy, relative entropy
and quantum discord®'* constitute familiar entropic quantifiers of correlations.
Probably, quantum discord, which goes beyond entanglement, is the most promi-
nent of these correlations. It has been the subject of intensive studies during the
last decade. It was originally defined as the difference between two quantum analogs
of the classical mutual information.'3'* The explicit evaluation of based entropy
measures require optimization procedures which are in general very complicated
to achieve. This constitutes the main obstacle in order to get computable expres-
sions of quantum correlations. To overcome such difficulties, geometric measures,
especially the ones based on Hilbert—Schmidt norm, were considered to formulate
a geometric variant of quantum discord.!® The Hilbert-Schmidt distance was used
to quantify classical correlations.'®!” We notice that the measure of quantum and
classical correlations in bipartite systems can be also evaluated through the 1-norm
distance (trace distance).!®72

On the other hand, the extension of Hilbert—Schmidt measure of quantum
discord to d-dimensional quantum systems (qubits) was reported in Refs. 22-24
(see also Ref. 25 and references quoted therein). It must be emphasized that this
higher-dimensional extension can be adapted to understand the pairwise quantum
correlations in multiqubit systems. Indeed, geometric quantum discord based on
the Hilbert—Schmidt norm turns out to be more tractable, in multiqubit systems,
from a computational point of view than entropic-based measures. In this sense,
we employ the approach by Dakic et al.'® to investigate the quantum correlations
in mixed multiqubit states. Specifically, we shall consider a balanced superposi-
tion of symmetric multiqubit states in which the symmetry properties offer drastic
simplification in evaluating quantum correlations.

This paper is organized as follows. In Sec. 2, we discuss the relevance of
symmetric multiqubit (n-qubit) states in defining Schrodinger cat states. We shall
essentially focus on balanced superpositions, symmetric or antisymmetric under
the parity transformation, which coincide with even and odd spin atomic coherent
states. A special attention, in Sec. 3, is devoted to reduced states describing sub-
systems containing k qubits (k = 2,3,...,n — 1) obtained by tracing out n — k
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qubits from a n-qubit Schrodinger cat state. This trace procedure gives rise to
states called extended X states. The algebraic structure of such states provides a
nice prescription to evaluate the quantum correlation based on Hilbert—Schmidt
(geometric quantum discord) between one qubit and (k — 1) qubits contained in
a mixed state. This procedure is explicitly described in Sec. 4. We consider in de-
tail the cases of two- and three-qubit systems. We develop the general method to
determine analytically geometric discord in mixed k-qubit states. We also derive
the explicit forms of classical (zero discord) states. In Sec. 5, we introduce another
scheme according to which the second part of the system containing k — 1 qubits is
mapped into two logical qubits. In this picture, the whole system reduces to a two-
qubit system. Remarkably, the geometric measure of quantum discord obtained,
in this second scheme, coincides with one derived in the first bipartition scheme
(Sec. 4). As illustration, a detailed analysis is given for k¥ = 3 and k = 4. The
method developed in this paper which extends the geometric measure of two-qubit
X states to embrace k-qubit X states is useful in investigating the global pairwise
correlation in multipartite qubit systems. Concluding remarks close this paper.

2. Symmetric Multiqubit Systems

The multiqubit symmetric states were shown relevant for different purposes in quan-
tum information science.?6733 In this paper, we shall mainly focus on an ensemble
of n-spin-1/2 systems prepared in even and odd spin coherent states.

2.1. Spin coherent as symmetric multiqubit systems

We consider n identical qubits. Each qubit lives in a two-dimensional Hilbert space
‘H = span{|0), |1)}. The Hilbert space of the n-qubit system is given by n tensored
copies of H:

Hy = HO".

Among the multipartite states in H,,, multiqubit states obeying exchange symmetry
are of special interest from experimental as well as mathematical point of views. An
arbitrary symmetric n-qubit state is commonly represented in either Majorana3*
or Dicke3® representation. Any multiqubit state, invariant under the exchange sym-
metry, is specified in the Majorana description by the state (up to a normalization
factor):

W)s> = % Z |770(1)7"'7770(n)>7 (1)

cES,
where each single qubit state is |n;) = (1 4 n:3;)~Y2(|0) + 7:|1)) GG = 1,...,m;
the bar stands for complex conjugation) and the sum is over the elements of the
permutation group S, of n objects. In Eq. (1), the vector [1,(1),..., 7)) stands
for the tensor product [1,(1)) @ -+ ® |1)s(n)). The totally symmetric n-qubit states
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can be also formulated in Dicke representation. The symmetric Dicke states with k
excitations are defined by35

ceS,

which generate an orthonormal basis of the symmetric Hilbert subspace of dimen-
sion (n+1). Therefore, permutation invariance, in symmetric multiqubit states, im-
plies a restriction to (n + 1)-dimensional subspace from the entire 2"-dimensional
Hilbert space. The Dicke states (2) constitute a special subset of the symmetric
multiqubit states (1) corresponding to the situation where the first k qubits are
such that 7; = 0 for ¢ = 0,1,...,k and the remaining qubits are in the states
|7 = 1) with i = k+ 1,...,n. Any symmetric state [1)5) (1) can be expanded in
terms of Dicke states (2) as follows:

|1hs) = ch|n k), (3)

where ¢;, (k=0,...,n) stand for the complex expansion coefficients. In particular,
when the qubits are all identical (1; = n for all qubits), it is simply verified that

the coefficients ¢y are given by
n! nk
=nl! 4
% =\ I @) T W

and the symmetric multiqubit states (1) write

) = [, = (1 + i)~ Z o k) (5)

which are exactly the j = n/2-spin coherent states (for more details see for instance
Ref. 36). In particular, the state |n,n) can be identified for n = 1 with spin-1/2
coherent state with [0) = [(1/2),—(1/2)) and |1) = |(1/2),+(1/2)).

2.2. Multiqubit “Schrédinger cat” states

The prototypical multiqubit “Schrodinger cat” states, we consider in this work, are
defined as a balanced superpositions of the n-qubit states |n,n) and |n, —n) given
by (5). They write

Wﬂ%m) :N(|7’L,’I7> +eimﬂ-|nv 777>)7 (6)
where

n,dn) =£n) @ |£m) - @[ +n)

and the integer m € Z takes the values m = 0 (mod 2) and m = 1 (mod 2). The
normalization factor N is
N = [2+ 2p" cos m] 71/2,
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where p denotes the overlap between the states |n) and | — 7). It is given by

L—mm
= _— = . 7
p=nl = =17 P (7)
Experimental creation of cat states comprising multiple particles was reported in the

3738 Due to their experimental implementation, “Schrédinger cat” states

literature.
are expected to be an useful resource for quantum computing as well as quantum
communications. Also, in view of their mathematical elegance, multiqubit states
obeying exchange symmetry offer drastic simplification in investigating various
aspects of quantum correlations in particular the geometric measure of quantum dis-
cord as we shall discuss in the present work. Furthermore, the multiqubit symmet-
ric states (6) include Greenberger—Horne-Zeilinger GHZ,>® W (Ref. 40) and Dicke
states.3® The multiqubits states |n,n,0) (m = 0 mod 2) and |n,n,1) (m = 1 mod 2)

behave like a multipartite state of GHZ-type3® in the limiting case p — 0. Indeed,

the states |n) and | — 1) approach orthogonality and an orthogonal basis can be
defined such that |0) = |n) and |1) = | — n). Thus, the state |n,n,m) becomes of
GHZ-type:

L
V2

Also, in the special situation where the overlap p tends to unity (p — 1 or n — 0),
the state |n,n,m = 0 (mod 2)) (6) reduces to ground state of a collection of n

[n,n,m) ~ |GHZ)n = —=(10) ® [0) @ -+~ ® [0) + ™) @ [1) ® - @ [1)).  (8)

qubits:
10,7,0 (mod 2)) ~ |0) ®[0) ® --- ® |0) 9)
and it is simple to check that the state |n,0,1 (mod 2)) becomes a multipartite
state of W-type?
[0,7,1 (mod 2)) ~ [W),
1

\/ﬁ(|1>®|0>®~-~®\0>+\0>®|1>®-~-®|0>+~-~+\0>®\0>®-~-®|1>).

(10)

Tt is clear that the Schrodinger cat states |n,n,m = 0 (mod 2)) include the GHZ,
states (p — 0). In other hand, the states |n,n,m = 1 (mod 2)), constitute an
interpolation between two special classes of multiqubits states: |GHZ),, type cor-
responding to p — 0 and states of [W),, type obtained in the special case where
p— 1.

3. Multipartite Quantum Correlations

The structure of multipartite correlations within multiqubit quantum systems is
a challenging and daunting task. With the growth of number of qubits, there are
numerous ways in splitting the entire system to characterize how the particles are
correlated. Obviously, the bipartite splitting of the whole system is not sufficient
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to capture the essential of quantum correlation existing in a multiqubit system.
However, it must be noticed that the pairwise decomposition of total correlation
offers a good alternative to evaluate the amount of all correlations existing in a
multipartite system. In this paper, we approach the problem of analyzing n-qubit
correlation using only bipartite measures. Toward this end, we consider first the
correlation between one qubit with the remaining (n — 1) qubits in the state (6).
Thus, the pure density matrix of the symmetric n-qubit system writes

Pn = ‘nanam><nan,m| = p1\23---n .

Furthermore, after removing k = 1,2,...,n — 2 particles from the n-qubit system,
the reduced density matrix p,_; can be bipartitioned in two subsystems, one com-
prises of one qubit and the remaining (n —k — 1) qubits are contained in the second
subsystem. In this manner, a bipartite measure characterize the pairwise correlation
between the two subsystems. This offers a reasonable scheme to characterize the to-
tal amount of quantum correlation defined as the sum of the quantum correlations
for all possible bipartitions.*143

In this paper, we shall employ this picture to estimate the geometric measure
of quantum discord (D) in the symmetric multiqubit system of the form (6). We
give a detailed analysis for two-qubit and three-qubit subsystems. From these two
specific cases, we give a general algorithm to determine recursively the pairwise
quantum discord in a reduced density describing k-qubit system.

3.1. Two-qubit states

We begin with the two-qubit case. The tools we introduce are useful when extending
the size of the system to encompass more qubits. We first consider the two-qubit
states extracted from the state (6) by tracing out (n — 2) qubits. Since the n qubits
are all identical, we obtain n(n — 1)/2 identical density matrices. They are given by

p12 = NZ[In,n)(n,n| + € q2| — 1, —n){n,n|

+ e goln, ) (—n, —nl + | =, —n)(—n, —nl], (11)
where ¢ is defined by ¢s = p™~*® with s = 2. The state (11) can be alternatively
written as

1 oo N2 1 o N2
pr2=5(1+p )N2+2 m2 2l + 5 (1—p )WZ\W 2z, (12)

with
Ime = Noy(In,m) + €™ —n,—n)) and  Z|n)y = No_(|n,n) — ™| —n,—n)).

The normalization factors are defined by
N3 =2(1 % p® cosmm),
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for s = 2. In the computational base {|00),|01),|10),|11)}, the density matrix p12
has the form of the alphabet X. Indeed, it is represented by

G20l 0 0 G2aia’
0 a’a? a’a? 0
p1a = 2N 2 P20t ) (13)
0 2 2 2 2
q2—-a3a”  ga—ajaZ 0
G2 a’a’ 0 0 gatal

where
_VIEp
a+ = \/5
The state p1o can be also written as

> Mokl (14

k,1=0,1

and ¢s+ =14 qscosmm.

This form is suitable to establish a relation between the Bloch components of the
2 x 2 matrices p* and the correlation matrix elements associated with the two-qubit
state pio. In Eq. (14), the matrices p* writes in Bloch representation as

1 1
% = 5 (T%00 + T5%05) . p't = S(T o0 + T3 os) (15)
and
1 1
P = §(T10101 +T3'09), p' = §(T11001 +1,%03), (16)

where the Bloch components T (o = 0,1,2,3) are
F= N1+ (=)*p)(1 + (=)*p" "t cosmr),

T3 = N2(1+ (=) p) (A + (=)"p" * cosm) |
for K =0,1 and
T =T = N?(1—p?), T =-T3° =iN?(1 - p*)p" 2 cosm.
Reporting (15) and (16) in (14), one gets

P12 = ZTQBUQ ® ap, (17)
af

where the nonvanishing matrix elements T,z (o, 5 =0, 1,2, 3) are given by

Too =T +TH for a=0,3, Top =TN*+TPO for a=1,

(18)
Too = iTO —iT10 for a=2, T,3=T% T for a=0,3,
which gives
Too=1, Ti1 =2N?(1—p?), Toe=—2N?%(1—p?)p"2cosmr,
(19)

T3 = 2N?(p? + p"2cosmm), To3 = T30 = 2N?(p + p" ! cosmmn).
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The expressions (18) establish the relations between the Bloch components asso-
ciated with one-qubit states (15) and (16) and the two-qubit Fano-Bloch tensor
elements T* occurring in the two-qubit density pi2 (17). This result is generaliz-
able to more qubits. This issue is discussed in what follows.

3.2. Three-qubit states

The three-qubit states is extracted from the whole state (6) by removing (n — 3)
qubits by the usual trace procedure. In this case, one obtains n(n — 1)(n — 2)/3!
density matrices which are all identical. Explicitly, they are given by

imm

pi2s = N2 [[n,n,m)(n,n,nl + €™ qs| —n, —n, —n){n, 7, 7|

+ e_i"”"qS‘n, 1, 77><—77, -1, —77‘ + | =, =n, _77><_77a -, _77” ) (20)

where g3 = p” 2. Analogously to the previous case, we write the mixed three-qubit
state p123 in a more compact form as follows:

1 s N2 1 s N2

pr2s==(1+p 3)—2\77>3 3<n\+—(1—p 3)—2Z‘77>3 3<77|Z, (21)
2 3+ 2 37

where

imm ‘

I3 = Nay(|n,m,m) + ™ —n,—n,—n)),

Zn)s = Na—(|n.n,m) — "™ —n,—n,—n)),
with the normalization factors N34 given by
N2 =2(1 +p3cosmm).

In the computational base {]|000),]010),|100),|110),|001),|011),|101),|111)}, the
state pi23 takes the matrix form:

p123
2N2
q_,_g,aﬁ+ 0 0 q+3aiaa 0 q.,.gaiaz q_,_g,afiF 2 0
0 q_3aia2_ q_3aia2_ 0 q_3aia2_ 0 0 q_3a3_a4_
0 quaﬁaz quaﬁaz 0 quaﬁaz 0 0 quaa_a‘l_
q+3aia% 0 0 q+3a2+af 0 q+3a2+a‘i q+3aia‘i 0
T 0 gsata® gadte® 0 gadta® 0 0 ggalal
q+3aia2_ 0 0 q+3aia‘i 0 Q+3Clia4_ Q+3aia4_ 0
q+3aia2_ 0 0 q+3aia‘i 0 q+3aia4_ q+3a3_a4_ 0
0 g-zaiat  g-zaial 0 q-3a3 at 0 0 g-3a8

The state (22) can be also rewritten as

p123 = Z P e k), (23)
k,1=0,1

1550124-8
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where |k), |I) are related to the qubit three. The two-qubit density matrices p**
(for k = 0,1) writes, in the computational basis spanned by {|0); ® |0)2,]0); ®
)2, [1)1 @10)2,[1)1 ® [1)2}, as

qy3a 0 0 qy3ata’
4 2 4 2
p%0 = 2N F-af - G-ehia- 0 (24)
0 q_3aia2_ q_3aia2_ 0
g+sata? 0 0 qy3ata
and
q_3aia% 0 0 q_3a2+a‘i
2 4 2 4
ptt = oA rofnfm Gratfs 0 (25)
0 q+3aia‘£ q+3aia‘£ 0
q—za%a* 0 0 q_za®
For (k=0,l=1) and (k = 1,1 = 0), we have respectively
0 q+3aia2_ q+3aia2_ 0
4 2 2 4
q-zaia‘ 0 0 q-szaia”
01 2
p=2N ' o 5 4 (26)
q-saia” 0 0 q-saia”
0 gizaiat  grzaiat 0
and
0 q,gaia?_ q,gaiaz_ 0
4 2 2 4
q+3a5a” 0 0 q+3asa_
oo | 9 B
q43aia” 0 0 qt3aia”
0 q,gaia‘ﬁ q,gaia‘i 0

The Fano-Bloch representation of the matrices p**, given by (24) and (25), takes
the form:

1
Pk = 1 Z’; T(’;Igaa ® og, (28)
@

where a, 5 = 0,1,2,3 and the correlation matrix elements Tf’g are given by
TH = T 00 ©.05).
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Int. J. Mod. Phys. B 2015.29. Downloaded from www.worldscientific.com
by THE ABDUS SALAM INTERNATIONAL CENTER FOR THEORETICAL PHYSICS (ICTP) on 07/22/15. For personal use only.

M. Daoud, R. Ahl Laamara & S. Seddik

The explicit expressions of the nonvanishing contributions are
kk _
Tow =1,

1+ (=)*p"=3 cosmn

p
Ty = TgF = (1 + (=)*p) 1+ p" cosmm

2

1—p?
1+ prcosmm’ (29)

n—3

(1 —p*)p" =3 cosmm

T = 3(1+ (-)*p)

i

1
Tk:k: E—! _\k
22 2( +(=)'p) 1+ p"cosmm
p? + (—)kp" =3 cosmm

Tk:k: —
33 14 p”cosmm

(1+(=)*p)

DO | =

Similarly, for the two-qubit states p*' (k # [) given by (26) and (27), the Fano-Bloch
representation writes

1
Kl _ kl
=7 ?8 Ty50a @05, (30)
«

where the nonzero matrix elements T’ (% are given by
1 1—p?
21+ prcosmm’

i p(l—p?)
Tkl — Tkl — (kL p(
02 20 = (=) 21+ prcosmm’

kl _ kl _
TOl - TlO -

2\, —2 (31)
Th 1(1—p*)p"~*cosmm
13 31 n
2 1+ p™ cosmm
i (1—p*)p"~2cosmm
T =Tg = (-)*5

2 14 p" cosmm
Using (23

~—

, the three-qubit state p123 expands as

[(,000+,011)®00+(,000—p11) ®03+(p01+p10)®01+i(p01—,010)®02].
(32)

pP123 =

DN =

Inserting (28) and (30) in Eq. (32) and using the results (29) and (31), one gets

1
p123 = 3 Z [Taﬁoaa ®03R00+Tap10a @05 R 01 +Tap20a ® 0g Q02

af
+ Top30a @ 05 @ 03], (33)

where

Topo =To5 =T +Tak,
(34)
Tops =T,5 =T —Toh,

1550124-10
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with a3 = 00,03,30, 11,22, 33 [cf. (29)], and

T = Ty = T8+ 113,
(35)
Tapa = Tst = T, —iT2Y,
with a8 = 01,02, 10,20, 13,23,31,32 (¢f. (31)). Reporting (29) and (31) in the
expressions (34) and (35), one obtains the 32 nonvanishing correlation matrix ele-
ments T, 3, corresponding to the three-qubit state pi23. Subsequently, the recursive
relations (34) and (35) offer a nice tool to determine the correlation elements T4 3,
in terms of those associated with the two-qubit density matrices p** and p*! given,
respectively, by (28) and (30). Clearly, along the same line of reasoning, the re-
cursive relation obtained for two and three qubits are ready to be extended to an
arbitrary k-qubit state.

3.3. k-qubit states

A mixed k-qubit state (k = 2,3,...,n) is obtained by tracing out (n — k) qubits
from the state (6). It is given by

prs.k = N?[|mm,...omy(mm, . onl + € el —n,—n, . =) (o,
+e " aln, . o) (=, =, ..., =)
+‘*7777777'~'7*77><7777*777"'*77”v (36)

where ¢, = p" . The reduced density matrix pios...; is of rank two. Indeed, the
state (36) rewrites

1 o N? 1 oy N2
prask = 5 (L4 P ) e k(i + 5 (1= 2" ") S Znhi k0|2, (37)
k+ k—

where

‘77>k = Nk-‘r(‘n?n’ tee ,77> + eimﬂ—| == _77>) )

Zlmk = No—(In,m, - om) — €™ =1, =1, =)
and the normalization factors N+ are given by
N7 =2(1£p" cosmr).
The cyclic operator Z is now defined by
Z|77a77,,77> = |77a77aa77> Z‘ _na_nv"'a_n> :_|_77?_77?"'?_77>-

Using (36), it is simple to check that the k-qubit state p1as..., can be expressed in
terms of states comprising (k — 1) qubits. The state pias...r (36) can be written also
as

P123-k = Z P15 (e—1) @ 1) (sl (38)

rs=1,2

1550124-11
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where
T8 78 —Tr—Ss 1 n— N2 T S
PS5 oy =P =at T ta S+ "2 M) -1y (k-1 (11 Z
(k—1)+
1 ew N? L s
+§(1 -p k)ATZ U vy -yl Z5TH . (39)
(k—1)—

Explicitly, the k-qubit matrix (38) writes

1 1
praz.. = = (0" + p) @ 00 + S (p° + ') @ oy

2 2
i 1
+500" =P @o2 + 50" —p') @03 (40)
and the (k — 1)-qubit states p™® can be expanded, in Fano—Bloch representation, as
S 1 T
pr = ok—1 Z Tafa2~~~ak_10—a1 D Oay @ Q0ay_,- (41)

[e SIS FRRreYe iy |
Hence, reporting (41) in (38), the k-qubit state pios..., takes the form:
1
P123--k = Q_k Z Ta1a2~~~ak_1o¢k Oa1 @0y @+ Q0qy_; 0q,, (42)

Q1,02 X — 1,0k

where the correlation matrix elements Ty, ny-..ap 0, €Xpressed in terms of the cor-
relation coefficients occurring in (41) as

_ 700 11
Talaz"'ak—lo - Ta1a2~~~ak_1 + Qapog- 1)
T _ 700 _ l1l
aragakg—13 = Lajas-ap_q a1 1)
(43)
_ 701 10
TQIQZ"'Qk—ll - Talaznﬂk,l + Talaznuk,l?
_ ;701 .10
Talaz---ak_ﬂ - ZTalaz---Ock_l - zTOélaZ"'ak—l

and we have the relations between the correlation matrix elements of k and (k—1)-
qubit states. In this picture the correlation matrix elements associated with a k-
qubit state can be recursively expressed in terms of the ones involving two qubits.
It is simply verified that the relations (43) reduce to (18) for k = 2 and to (34), (35)
for k = 3. To illustrate the algorithm in deriving relations of type (43), we consider
the case of four qubits. In this situation, the density matrix (36) becomes

praza = N2 [|n,m,m,m)(m,m,m,ml + €™ qu| =0, —n, =0, —n) (n, 0, n,7|
+e " quln, mnn)(—n, =, —n, =l + | = 0, =0, =0, —n){—n, =0, —n — n]]
(44)

and the expression (38) gives

p1234 = P93 ® [0)(0] + pl35 @ |0) (1] + p195 ® [1)(0] + pigs @ |1)(1],  (45)
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where the three-qubit states p¥3;, p{35, pi95 and pli; are given in the usual com-
putational basis as

00
P123
2N2
g+aaf 0 0 q+aaf a® 0 q+aa§a?®  qraaSa? 0
0 q_4aia2_ q_4aia2_ 0 q_4aia2_ 0 0 q_4a‘_1,_a4_
0 q,4aia2_ q,4aia2_ 0 q,4aia2_ 0 0 q74aia4_
q+4aia% 0 0 q+4aia‘i 0 q+4aia‘i q+4aia‘i 0
0 q_4aia% q_4aia% 0 q_4aia% 0 0 q_4aia‘i
g+4af a? 0 0 q+aatat 0 g+aatat  giaatat 0
q+4aia2_ 0 0 q+4aﬁa4_ 0 q+4aia4_ q+4aia4_ 0
0 q,4aia‘£ q,4aia‘£ 0 q,4aia‘£ 0 0 q74aia67
(46)
Pl
2N2
6 42 4 4 4 4 4,4
q-4aa” 0 0 q-4aia” 0 q-s4aja”  g-4aia” 0
0 qraatal  graalal 0 qyaatal 0 0 qraaial
0 qraatal  graatal 0 qyaatal 0 0 qraa?al
q74aﬁa‘i 0 0 q,4aiag 0 q74a3_a6_ q74a3_a6_ 0
o 0 q+4aia4_ q+4aia‘i 0 q+4aia4_ 0 0 q+4aia‘i ’
q-safa’ 0 0 q-4a%al 0 q-4a2a® g 4a2a® 0
q_4aia‘i 0 0 q_4aia‘i 0 q_4a3_a6_ q_4a3_a6_ 0
0 qyaaial  qiaaZal 0 qysaaial 0 0 qraa®
(47)
PR
2N2
0 q+4aia2_ q+4a3_a2_ 0 q74aia2_ 0 0 q,4aﬁa4_
q74aia27 0 0 q74aia‘i 0 q+4aia‘i q+4aia‘£ 0
q_4aiaz 0 0 q_4aia‘i 0 q+4aia‘i q+4aia‘£ 0
0 q+4aia‘i q+4aia4_ 0 q_4aia‘i 0 0 q_4aia6_
g-1a%a? 0 0 g-aafat 0 g-aata®  g_gatat 0
0 qraatat  qyaafat 0 q+aafat 0 0 qyaa’ ab
0 qraata  qyaaiat 0 q+aafat 0 0 qyaa? ab
q74aia4_ 0 0 q74a3_a6_ 0 q,4aiag q,4aiag 0
(48)
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and
10 01 \*

P123 = (Pns) . (49)
It is clear that with increasing the qubits number, complicated analytical com-
putation emerges especially in computing the quantum correlations. However, the
recursive algorithm presented above, offers an alternative way for symmetric multi-
qubit (6), to reduce the complexity in determining analytical evaluation of geometric
discord. The expression (45) allows us to express the correlations factors To, asasas

in terms of those corresponding to three-qubit density matrices p99;, p¥3,, p19; and
pﬁg. Indeed, the state p1234 writes in the Fano-Bloch representation as

1
P1234 = 2_4 Z Torasaz0i00; @ Oay @ Oay @ Oy (50)

o,002,03,004

and by reequating (45) as

1 1 1
prasa = 5 (Pl + p1a3) ® 00 + 5 (P1as + p1ds) @ 01 + 5 (plag — p1zy) ® 02

1
+§(P(1)23 — p{%s) ® o3, (51)

it is simple to see that
Talazago - TOO + Tll

(e R DY X} ajpooas

T(Xl()tz()tgl — TOl + TlO

Qo203 ajogag ? (52)
Torazas2 = iTgllagag - iT()lc?azag )
Ta1a2a33 = Tc(y)?azag - Talllazaz ’
where the quantities Tff’az’ag, defined so that
= or D T amasTer @00, @00y (5)

1,002,003

can be obtained easily following the method developed above for three- and two-
qubit states. It follows that the nonvanishing elements T, nyasq, are those with
indices (aq, g, s, aq) belonging to the following set of quadruples:

{00,11,22,33,03,30} x {0,3} x {0,3},
{00,11,22,33,03,30} x {1,2} x {1,2},
{01,10,20,02,13,31, 23,32} x {1,2} x {0,3},
{01,10,20,02,13,31,23,32} x {0,3} x {1,2}}.

Finally, we stress the usefulness of the recursive approach, discussed in this sec-
tion, in determining the Fano—Bloch components for an arbitrary k-qubit state in
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terms of those involving (k— 1)-qubits. This gives a simple way to specify the corre-
lation matrix elements for k-qubit state in terms of ones associated with two-qubit
subsystems. In this picture, for the symmetric multiqubit states (6), considerable
simplification arises in establishing such recursive relations and subsequently sim-
plify drastically the evaluation of pairwise geometric quantum discord.

4. Geometric Measure of Quantum Discord and Classical States

We now face the question of determining the explicit form of geometric discord
between a qubit and a second parity of dimension 2¥~1 in the k-qubit mixed state
(36). For this end, we must first find the expression of closest classical states to the
states of type (36) when the distance is measured by Hilbert—Schmidt trace. We
shall follow the procedure developed in Ref. 15 for a two-qubit system.

4.1. Two-qubit states
For the two-qubit state (17) which rewrites
1
P12 =7 [00 ® 00 + T3003 ® 00 + To300 ® 03 + T1101 ® 01 + Thoos @ 03
+ Ts303 @ 03], (54)

the zero discord or classical states are given by

X12 = p1)1) (1] @ p3 + pa|he) (| @ p3 (55)

where {|11), [t2)} is an orthonormal basis related to the qubit one and p? (i = 1,2)
are the reduced density matrices attached to the second qubit. It can be written

also as
1 3 3 3
X12 = 1 o0 @0 + Zteiffi @ oo + Z(5+)i00 @o;+ Z ei(s—)joi®@ajl, (56)
i=1 i=1 ij=1
where

t=pi—p2, €= @loilr), (sx);=Tr((p1pl £ p2p3)oy)-

The distance between the density matrix p12 (54) and the classical state x12 (56),
as measured by Hilbert—Schmidt norm, is

3 3
(£ —2tesTso+T50)+ Y _(Toi—(s4)i)°+ > (Tij—ei(s-);)?

i=1 i,j=1

HP12*X12||2:

1=

(57)

1550124-15



Int. J. Mod. Phys. B 2015.29. Downloaded from www.worldscientific.com
by THE ABDUS SALAM INTERNATIONAL CENTER FOR THEORETICAL PHYSICS (ICTP) on 07/22/15. For personal use only.

M. Daoud, R. Ahl Laamara & S. Seddik

The minimal distance is obtained by minimizing the Hilbert—-Schmidt norm (57)
with respect to the parameters ¢, (s4); and (s—);. This gives

t = e3T3),

(54)1=0, (s54)2=0, (s4)3="To3,

(58)
3
(S,)i = Z ejTjZ- .
j=1
Inserting the solutions (58) in (57), one gets
1
lpr2 = xa2l* = 1 [TrK —e'Ke], (59)
where the matrix K is defined by
K = diag(T7,, Toy, Tso + T33) - (60)
From (19), the eigenvalues of the matrix K (60) read
1— 2\2
S e (61)
(14 pm cosmm)?
1 — p2)2 2(n—2)

(1 + p™cosmm)?’

Ao — (p? + p*=2)(1 + p?) + 4p™ cosmm (63)
s (1 + p™ cosmm)? '

It easily seen from (59) that the minimal Hilbert—Schmidt distance is obtained for
the vector e associated with the maximal eigenvalue Ap.x of the matrix K. Thus,
the geometric measure of quantum discord in the state p;s is given by

1
Dg(ﬂl?) = Z()\l + )\2 + )\3 - )\max) . (64)

From the expressions (61) and (62), we have Ay < A;. This implies that Apax is
equal to A1 or Az. In this respect, to find the closest classical states, two situations
must be considered separately. We begin with the first case where Apax = As.
The eigenvector, associated with this maximal eigenvalue, is € = (e = 0,e2 = 0,
e3 = 1)'. Reporting this result in (58), it is simple to check that the closest classical
state (56) takes the form:

1
X1z =7 [00 ® 00 + T3003 ® 00 + Tozo0 @ 03 + Ts3 03 ® 03] . (65)

Similarly the eigenvector associated to Apax = A1 is € = (e1 = 1,e2 = 0,e3 = 0)*
and from (58), one gets

1
X12:Z[00®00+T0300®03+T11 o1 ®01]. (66)
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Beside the explicit derivation of closest classical states (65) and (66), another
important point to be emphasized is the relation between the matrix K (60), which
encodes the geometric measure quantum correlations in the state p12, and the Bloch
components of the one-qubit density matrices p¥ (i = 1,2) and p¥ (i # j) given
respectively by (15) and (16). For this end, using the relations (18), the matrix K
(60) rewrites as

K = diag(2(T7")?, —2(13")%, (15°)% + (131)?) - (67)

Furthermore, for one-qubit states p%°, p°, p'® and p'!, we introduce the analogs of
the matrix K (60). Hence, for the states p° and p'! (15), we introduce the 3 x 3
matrices:
K" = (0,0,T4%)1(0,0,74%), k=0,1
and similarly, we introduce the matrices:
KM = (TF T8t 0)(TF T8, 0), for (k,1) = (0,1) or (1,0),

for the states p°! and p'® (16). Subsequently, one verifies

K =2(K% 4+ K% + K'° + K1),

This remarkable relation holds also for the states containing three or more qubits
as a consequence of the symmetry invariance of the multiqubit system under con-
sideration. A detailed analysis of this issue is presented in what follows.

4.2. Three-qubit states

We now face the problem of finding the pairwise quantum discord in the three-
qubit states of the form (20). This extends the results presented in the previous
subsection. More especially, we analytically determine the pairwise quantum discord
between the qubit one and the subsystem (23) in the state pi2s (20) and we find
the closest classical tripartite states. To achieve this, we write the density matrix
(33) as follows:

1
P23 = ¢ [Toooao ® o ® oo+ T300 03 Q09 @ 00 + Z Topy 00 R 0p @ 04
(8,7)#(0,0)

+ Z Z Tipy0i @ 03 & 07} . (68)
t (B,7)#(0,0)
The classical states (i.e., states presenting zero discord between the qubit one and
the subsystem (23) are of the form

X123 = P1[¥1) (Y1 ® P+ p2lip2) (va| @ p3° (69)

where {|¢1),[2)} is an orthonormal basis related to the qubit one. The density
matrices p?? (i = 1,2) corresponding to the [subsystem (23)] write as

1
i = 4 [z; Tr(p}’00 @ 05)00 @ 0| -
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The Fano—Bloch form of the tripartite classical state (69) is given by

1 3
X1[23 = ] 00®00®00+Zteiai®00®00

i=1

3
+ D (5+)apoo®oa@osty . Y eils-)apoi@0a®@op|
(v, 3)#(0,0) =1 (a,B)#(0,0)

(70)
where
t=p1—p2, e ="hloiv1), (5£)ap=Tr((p1pT° £ p2p3’)oa @ as).

The Hilbert—Schmidt distance between the three-qubit state p123 (68) and a classical
state (70) is

{(t2 — 2tesT300 + Ting) + Z (Toap — (54)a,8)”
(o, 3)#(0,0)

3
+ Z Z (Tiaﬁ — ei(s)a’g)ﬂ . (71)

i=1 (a,5)#(0,0)

1
HP1|23 - ><1|23H2 = S

To derive the closest classical state as measured by Hilbert—Schmidt, an optimiza-
tion with respect to the parameters ¢, e; (i = 1,2,3) and (s4+)q,5 is performed.
Thus, the minimal distance is attainable by setting zero the partial derivatives of
the Hilbert—Schmidt distance (71) with respect to ¢ and (s+)q,3. This gives

3
t=e3Ts00, (5+)a,8="Toas, (5-)ap= Z eiliap- (72)
i=1

Reporting the results (72) in (71), one obtains

3
1
lp1)23 — X1|23H2 =3 Tano — €3Tan0 + § § Tz'zaﬁ
i=1 (a,8)#(0,0)

3
— Z Z eiejTiagTjaﬁ 5 (73)

1,5=1 (o, 8)#(0,0)

to be optimized with respect to the three components of the unit vector e =
(e1,e2,e3). Equation (73) can reexpressed as

1
1p1123 — Xaj23ll° = 3 [lzl? + IT? — e(za’ + TT")e'], (74)
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in terms of the 1 x 3 matrix defined by

2" = (0,0, T30) (75)
and the 3 x 15 matrix given by
T := (Tiap) with (o, ) # (0,0). (76)
Setting
K =axz' +TT" (77)

and reporting (75) and (76) in (77), one obtains after some tedious calculations:
K = diag(k1, k2, ks3), (78)

where k1, ko and k3 are given by

=0 3 T T, k=) > To; + T3,

i—1,2j-0,3 i—1,2-0,3
(79)
_ 2 2
ks = E E Ts; + E E 1555 -
i=0,3j=0,3 i=1,2j=1,2

Using the relations (34) and (35), the eigenvalues of the matrix K can be reexpressed
in terms of the bipartite correlations elements T, 3 associated with the qubit density
matrices pOt, pP1 pl9 and p'! (cf (28) and (30)). Therefore, one has

ki = 2((T7)* + (T11)?] + 4| Tip | + 47351, (80)
ka = 2[(T35)% + (T35)?] + 4| T50|* + 4| T35, (81)
ks = 2((T50)% + (T50)%] + 2[(T55)* + (T3 )*] + 4TS P + 4T 2. (82)

Finally, using (29) and (31), we obtain

(1—p*)*(1+p?)
k1 =2 83
! (1 + p*cosmm)?’ (83)
b oL P?P (L4 )Y (84)
2 (1 + p" cosmm)? ’
2 2(n—3) 1 4 Apn
by = 2@ TP )AA D) ¥ A7 cosmm (85)

(1 + pm cosmm)?
The minimal value of the Hilbert—Schmidt distance (74) is reached when e is the
eigenvector associated to the largest eigenvalue of the matrix defined by (77). We
denote by knax the largest eigenvalue among k1, ks and k3. Since k1 > ks, kpax 1S ko
or k3 depending on the number of qubits n and the overlap p. Notice that the sum
of the eigenvalues k1, ks and ks of the matrix K is exactly the sum of the Hilbert—
Schmidt norm of the matrices = (75) and T (76) (i.e. k1 + ko + ks = [|z||* + || T||?).
It follows that the minimal Hilbert—-Schmidt distance (74) writes as,

1
Dy (p1)23) = g(lﬁ + k2 + k3 — Kmax) (86)
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and gives the geometric measure of the pairwise quantum discord in the state pi23
partitioned in the subsystems (1) and (23). When the matrix elements of the density
matrix piag (32) are such that kpmax = k1, one can simply verify that the closest
classical state is given by

1
X(J%d:g 0o Qo9 X oo+ Z TOaﬁUO®Ua®Uﬁ+ Z Tlaﬁo—l Koq ®op
(a,8)7#(0,0) (a,8)7#(0,0)

(87)

Conversely, in the situation where ky,.x = k3, one finds

1
xﬁ’%gz 3 00 ® 00 ® 0¢ + 130003 ® 09 @ 09 + Z Toapoo @ 0o @ 0p
(a,8)#(0,0)

+ Z T30303 @ 0q Q0g]| . (88)
(a,8)#(0,0)

4.3. k-qubit states

Now we come to the generalization of the previous analysis. In this order, we shall
determine the explicit expression of the geometric discord in the k-qubit state (36)
when a bipartite splitting of type 1]23-- -k is considered. We also derive the closest
classical state to the state (36). We first expand the density matrix pia...,; (42) as
1
P12k = o [ToomoUo ®og-- @09+ 130...003 ® 09 @ -+ 09

+ Z T0(¥2~~~(Xk0-0®0-042 ®0-Ock
(a2,...ap)#(0,...,0)

+ Z Z Tias--ar0i © Oay @ -0y |, (89)
i (oz,...ak)#(0,...,0)

in terms of the nonvanishing correlations coefficients. Any k-qubit state having zero
discord is necessarily of the form:

X1j23--% = P1[t01) (1] @ p3°* + paltha) (vha| @ p3° ¥, (90)
where {|11), [tb2)} is an orthonormal basis related to the qubit one. The density
matrices p?>* (i = 1,2), corresponding to the subsystem (23---k), that contains

(k — 1) qubits, write as

pzzd "= 9k—1 Z Tr(p?d kgaz ®0a,)0a; ® Oqy,

Q2,...0k
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To examine the pairwise quantum correlations in the states (36), the appropriate
form for multipartite classical state (90) is

1 3
X1|23"'k:2_k: 00@00"’@00+Zt6i0i®0’O...®00
i=1
+ Z (S+)as,....an00 @ Tay @ -+ Oay

(avz,...0)#(0,...,0)

3
+ Z Z ei(s*)az,-u,ako—i DOy @ 0qy |, (91)

=1 (a2,...,ar)#(0,...,0)
where

t=p1—p2, e = i|oilth),

(Sj:)()tz,...,ock = Tr((plp%z...k ip2p§3"'k)0a2 ®-- .U%> ]

Hence, the Hilbert—Schmidt distance between the state pia3..., (89) and a classical
state of the form (91) is given by the following expression:

1
llp1)23..k — )(1\23~~1f||2 = o [(t2 — 2te3T30..0 + T...0)

-+ Z (TOcy2~~~ouC - (s+)a2,~~~,0¢k)2

(@2y-vs01) (0,...,0)

3
+ Z Z (Tiaz---ak — ei(Sf)az,...,ak)z ’ (92)

=1 (aa,...,ar)#(0,...,0)

which must be optimized with respect to the parameters t, e; (i = 1,2,3) and
(84 )as,....a) to find the closest classical states. In this sense, we start by setting the
partial derivatives of (92), with respect to the parameters ¢ and (S4+)as,...ax, €qual
to zero. Thus, we get

3
t= €3T30...0 5 (8+)a27m7ak = TOOQ"'Otk 5 (5—)(12,...,ak = ZeiTiazmak . (93)
=1

Reporting the conditions (93) in the expression (92), one obtains

3
1
llp1)23. -k — ><1\23---k:||2 = o T50..0 — €3T30..0 + E E Ti2042~~~o¢k
I=1 (cn i) £(0,0)

3
— Z Z eiejTiag---aijOtz“'ak ) (94)

1,J=1 (az,...,ar)#(0,...,0)

that has to be optimized with respect to the three components of the unit vector
e = (e1,e2,e3) in order to get the minimal Hilbert—Schmidt distance. After some
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algebra, the distance (94) takes the following compact form:

s — Xapall? = g ol + T - e(aat + 7], (95)

in terms of the 1 x 3 matrix defined by
z' =(0,0,T30...0) (96)

and the 3 x (4¥=1 — 1) matrix given by
T = (Tiny0p) Wwith (ag,...,ar) #(0,...,0), (97)
which are the extended versions of the matrices (75) and (76) introduced for k = 3.
Similarly to the particular cases k = 2,3 and from Eq. (95), it is easily seen that

the pairwise quantum correlation is completely characterized by the eigenvalues of
the matrix:

K =zz' +TT". (98)

It is clear that the computation of these eigenvalues for an arbitrary multiqubit
state constitutes a very complex task. However, this complexity is considerably
reduced for the states pi2.., by exploiting their parity symmetry (i.e., commutes
with 03 ® 03 - - - 03). This implies that the matrix T (97) writes formally as

T - Z (Tlocz"'ock, T2042~~~04k70)t + Z (0307T3O¢2~~04k)t'
Q2,...,0 A2,

This form is more appropriate to show that the product 7T is diagonal. The qubits
forming the system described by the state pjo..., are identical and invariant under
exchange symmetry. Consequently, since the elements the density matrix pis...,; are
real values and in view of the recurrence relations (43), the off-diagonal entries of
the matrix 77" vanish. This result has been discussed already for k = 2, k = 3 and
will be explicitly proved hereafter for k = 4. It follows that the matrix K (98) is
diagonal:

K = diag(kq, k2, k3) ,

where

— E 2
kl — Tlaz---akv
Q2,..., 0
§ : 2
T2042~~~04k’
Q2,...,0F

_ 2 2
ks =T50..0 + § Tsny o
@z, #0

ko

To exemplify this procedure, we consider the situation where k = 4. In this case,
the 3 x 63 matrix elements of T' defined by (97) can be explicitly derived using
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Eq. (52). A straightforward but lengthy computation shows that the 3 x 3 matrix

K is diagonal and the corresponding eigenvalues are

k=303 > Thy+ > > > Tha

k=0,3i=1,2j=0,3 k=1,2j=1,2i=1,2

+ Z Z Zlek‘ji+ Z Z Zlek‘jiv

k=0,3 j=1,2i=0,3 k=1,2 j=0,3i=0,3

k2= 3 D0 D Tyt D 2. D T

k=0,3i=1,2j=0,3 k=1,2 j=1,2i=1,2

DD D Tt Y Y D Tage

k=0,3 j=1,2i=0,3 k=1,2 j=0,3i=0,3

ko= 3 D0 D Tyt . Y. ) T

k=0,3i=0,3 j=0,3 k=1,2 j=1,2i=0,3

+ 22 D T+ X 2. D T

k=0,3j=1,2i=1,2 k=1,2 j=0,3i=1,2

(100)

(101)

The expressions (99), (100) and (101) can be simplified further. Indeed, from the

relations (43), which reproduce the expressions (52) for k = 4, one

k=2 D (TR + @)+ D D (1) +
k=0,3 j=1,2 k=1,2j=0,3
Z Z 1k1+ Z Z 1kJ )
k=0,3 j=0,3 k=12 j=1,2

=20 > (T (Tofi)) + Y > (T30 + (
k=0,3 j=1,2 k=1,2 j=0,3
t4 Z Z 2kJ 2ka+ Z Z 2kg )
k=0,3 j=0,3 k=1,2=1,2

_ 00 11 00
=2 [ > D TR+ (@) + Y D (15
k=0,3=0,3 h=1.2j=1,2
+4 E 3k] Skj + E E 3k] ’

k=03 j—1,2 k=1,2j—0,3
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in terms of the three-qubit correlation elements T(’;,ZB,Y associated with the density
matrices p§bs (53). The tripartite correlations coefficients T(’;,ZB,Y are evaluated us-
ing the recurrence relations of type (34) and (35) (modulo some obvious substitu-
tion) as expansion of bipartite correlations associated with two-qubit subsystems.

Subsequently, one finds

ki = 16N (1= p?*)(1 - p%), (105)
ky = 16N*(1 — p?)(1 — pS)p*n=4) | (106)
ks = 16/N* [(1 + ) (p% 4 p* ) + 4p™ cos mm) . (107)

Clearly, the derivation of pairwise quantum discord in k-qubit mixed states between
one qubit and the other (k—1) qubits, viewed as a single subsystem, requires tedious
analytical manipulation. However, it must be noticed that the parity containing (k—
1) qubits can be mapped onto two logical qubits. This encoding scheme was recently
considered in Refs. 36, 45 and 46 to examine the pairwise quantum correlations in
multiqubit systems. In this spirit, we shall compare in the following section the
geometric measure of quantum discord obtained in each picture.

5. Pairwise Encoding

Different suitable splitting scenarios are possible in investigating quantum correla-
tions in a n-qubit system. In the previous sections, we essentially focused on the
quantum correlation in k-qubit states (k = 0,1,...,n — 1) extracted by a trace
procedure from the whole system, by splitting the system of k qubits into a single
qubit and a cluster of (k — 1) qubits. In this section, we shall consider the scenario
where the information contained in the cluster of (k — 1) particles is encoded into
two logical qubits {|0)23...k, |1)23...k } defined by

7.1, oom) = by 023k + b-[L)ogek, | =1, =0, =1) = b4|0)23.k — b-[1)23.k,

(108)
1 :l: k—1
SET R

In this encoding scheme, the density matrix pi|23..k = p1(23..k) (36) rewrites, in
the basis {‘0> ® ‘0>23~~~k, ‘0> ® ‘1>23~~~k, ‘1> X |0>23...k, |1> X |1>23...k}, as

P1(23---k)

where

aibi(l + gy cosmm) 0 0 aya_byb_(1+ gy cosmr)
A2 0 a%rbz;(l — qg cosmm) ayra_byb_(1— gy cosmm) 0
- 0 aya_byb_(1— gy cosmm) a2_ba_(1 — q), cos mT) 0 ’
aya_byb_(1+ g cosmm) 0 0 a2 b2 (14 g cosmm)
(109)
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or equivalently, in the Fano—Bloch representation, as
1
P1(23k) = 7 Z Rapoa @ 0p, (110)
af

where the nonvanishing matrix elements R,g (o, 8 = 0,1,2,3) are given by

Roo =1, Ry =2N?%/(1—-p2)(1 - p2E-D),

Ros = —2N?2\/(1 — p2)(1 — p2(:=D)) p~F cosmr
Raz = 2N2(p* + p"~Fcosmm), Roz = 2N2(pF~1 + pn~k+l cosmr),

R3o = 2N?(p + p"~!cosmm).

Following the standard procedure to derive the geometric discord for a two-qubit
system, it is simple to check that

1
Dg(pl(gg...k)) = Zmln{ll + l2,l1 + l3,l2 + lg} . (111)
where
i =R}, lo=R3, I3=R3+ R,

Explicitly, the quantities A1, A2 and A3 are given by

= AN (1 =p*) (1 = p* ), (112)
ly = AN*(1 = p?) (1 — p*=1)p?(=h) (113)
Iy = 4N* [(1 + pz(k‘fl))(p2 + p2("7k)) + 4p™ cos m7r] . (114)

It is remarkable that for k = 2, k = 3 and k = 4, one recovers the results (61)—
(63), (83)—(85) and (105)—(107) respectively (up to the overall multiplicative factor
2%=2). Indeed, we have

1

i De(pj2s-.k)

This shows that encoding (k — 1) qubits in two logical qubits constitutes an
alternative and efficient way to compute easily the geometric measure of quantum

Dg(ﬂ1(23.~k)) =

discord.

6. Concluding Remarks

In this paper, we developed a general algorithm to evaluate the pairwise geometric
discord in a mixed state pj23...x, comprised of k qubits. This provides a closed analyt-
ical expressions for the geometric quantum discord based on Hilbert—Schmidt dis-
tance. We especially considered multiqubit states possessing parity invariance and
exchange symmetry. A detailed analysis is performed for reduced density matrices
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p123...; Obtained by a trace procedure from a balanced superpositions of symmetric
n-qubit states. Two splitting schemes were discussed. In the first one, where the re-
duced density is denoted by py|23...x, a recursive algorithm is proposed to determine
explicitly the pairwise geometric discord between the first qubit and the remaining
(k — 1) qubits. The parity and exchange symmetries simplify considerably the de-
termination of the geometric measure of quantum discord. The recursive approach
offers a very useful prescription to determine geometric quantum discord in terms of
two-qubit correlation matrices. This constitutes the key ingredient in deriving the
geometric discord. Another important issue we examined in this work concerns the
explicit derivation of classical (zero discord) states. We have also shown that there
exists an alternative scheme offering a simple procedure to compute the geometric
discord. This uses a bipartition scheme according to which the system grouping
the (k — 1) qubits in the state pias..., is mapped into a set of two logical qubits.
Remarkably the two schemes lead to the same result for the Hilbert—Schmidt mea-
sure of pairwise geometric discord.

We believe that the results obtained in this work can be extended to other
classes of multiqubit states. We also notice that they can be exploited in evaluating
multipartite geometric quantum discord in the spirit of the results recently obtained
in Ref. 44. Finally, another interesting application of the results obtained here, that
deserve a special attention, concerns the distribution of geometric quantum discord
between the different components of a multiqubit system.

References

1. R. Horodecki et al., Rev. Mod. Phys. 81, 865 (2009).

2. O. Giihne and G. Té6th, Phys. Rep. 474, 1 (2009).

3. K. Modi et al., Rev. Mod. Phys. 84, 1655 (2012).

4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information
(Cambridge University Press, Cambridge, 2000).

5. V. Vedral, Rev. Mod. Phys. 74, 197 (2002).

6. C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).

7. C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).
8. A. K. Ekert, Phys. Rev. Lelt. 67, 661 (1991).

9. P. Rungta et al., Phys. Rev. A 64, 042315 (2001).

10. C. H. Bennett et al., Phys. Rev. A 54, 3824 (1996).

11. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

12. V. Coffman, J. Kundu and W. K. Wootters, Phys. Rev. A 61, 052306 (2000).

13. L. Henderson and V. Vedral, J. Phys. A 34 6899 (2001); V. Vedral, Phys. Rev. Lett.
90, 050401 (2003); J. Maziero et al., Phys. Rev. A 80, 044102 (2009).

14. H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).

15. B. Dakic, V. Vedral and C. Brukner, Phys. Rev. Lett. 105, 190502 (2010).

16. B. Bellomo, R. Lo Franco and G. Compagno, Phys. Rev. A 86, 012312 (2012).

17. B. Bellomo et al., Phys. Rev. A 85, 032104 (2012).

18. J. Dajka, J. Luczka and P. Hanggi, Phys. Rev. A 84, 032120 (2011).

19. J. D. Montealegre et al., Phys. Rev. A 87, 042115 (2013).

20. B. Aaronson et al., New J. Phys. 15, 093022 (2013).

21. F. M. Paula, T. R. de Oliveira and M. S. Sarandy, Phys. Rev. A 87, 064101 (2013).

1550124-26



Int. J. Mod. Phys. B 2015.29. Downloaded from www.worldscientific.com
by THE ABDUS SALAM INTERNATIONAL CENTER FOR THEORETICAL PHYSICS (ICTP) on 07/22/15. For personal use only.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

Quantum correlations in multiqubit Schrodinger cat states

S. Rana and P. Parashar, Phys. Rev. A 85, 024102 (2012)

A. S. M. Hassan, B. Lari and P. S. Joag, Phys. Rev. A 85, 024302 (2012).
S. Vinjanampathy and A. R. P. Rau, J. Phys. A, Math. Theor. 45, 095303 (2012).
J. Zhou and H. Guo, Phys. Rev. A 87, 062315 (2013).

T. Bastin et al., Phys. Rev. Lett. 103, 070503 (2009).

T. Bastin, P. Mathonet and E. Solano, arXiv:1011.1243 [quant-ph].

A. R. U. Devi, Sudha and A. K. Rajagopal, arXiv:1003.2450 [quant-ph].

A. R. U. Devi, Sudha and A. K. Rajagopal, arXiv:1002.2820 [quant-ph].

D. Markham, arXiv:1001.0343 [quant-ph].

M. Aulbach, D. Markham and M. Murao, New. J. Phys. 12, 073025 (2010).
J. Martin et al., Phys. Rev. A 81, 062347 (2010).

M. Aulbach, D. Markham and M. Murao, arXiv:1010.4777 [quant-ph].

E. Majorana, Nuovo Cimento 9, 43 (1932).

R. H. Dicke, Phys. Rev. 93, 99 (1954).

M. Daoud, R. Ahl Laamara and W. Kaydi, J. Phys. A, Math. Theor. 46, 395302
(2013).

D. Leibfried et al., Nature 438, 639 (2005).

M. Brune et al., Phys. Rev. A 45, 5193 (1992).

D. M. Greenberger et al., Am. J. Phys. 58, 1131 (1990).

W. Diir, G. Vidal and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).

F. F. Fanchini et al., Phys. Rev. A 87, 032317 (2013).

K. Modi et al., Phys. Rev. Lett. 104, 080501 (2010).

C. C. Rulli and M. S. Sarandy, Phys. Rev. A 84, 042109 (2011).

Z.-H. Ma, Z.-H. Chen and F. F. Fanchini, New J. Phys. 15, 043023 (2013).
M. Daoud and R. Ahl Laamara, Phys. Lett. A 376, 2361 (2012).

M. Daoud and R. Ahl Laamara, Int. J. Quantum Inf. 10, 1250060 (2012).

1550124-27



	Introduction
	Symmetric Multiqubit Systems
	Spin coherent as symmetric multiqubit systems
	Multiqubit ``Schrödinger cat'' states

	Multipartite Quantum Correlations
	Two-qubit states
	Three-qubit states
	k-qubit states

	Geometric Measure of Quantum Discord and Classical States
	Two-qubit states
	Three-qubit states
	k-qubit states

	Pairwise Encoding
	Concluding Remarks

