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1 Introduction

Entanglement is a quantum mechanical phenomenon in which quantum systems exhibit correlations

above and beyond what is classically possible. As such it is a crucial resource for many aspects of

quantum information processing including quantum computation, quantum cryptography and commu-

nications, and quantum metrology [1]. Due to its fundamental, and increasingly practical, importance

there is a growing body of literature dedicated to studies of entanglement. Nevertheless, many as-

pects of entanglement, especially multi-partite entanglement and its evolution, are in need of further

exploration [2].

The unavoidable degradation of entanglement due to decoherence has severely hampered exper-

imental attempts to realize quantum information protocols. Decoherence is a result of unwanted

interactions between the system of interest and its environment. Highly entangled, and thus highly

non-classical, states may be severely corrupted by decoherence [3]. This is especially troubling as

these states tend to be the most potentially useful for quantum information protocols. An extreme

manifestation of the detrimental effects of decoherence on entanglement is entanglement suddent death

(ESD): in which decoherence causes a complete loss of entanglement in a finite time [4, 5] despite the

fact that the system coherence goes to zero only asymptotically. Much has been written about this

aspect of entanglement for bi-partite systems and there have been several initial experimental studies

of this phenomenon [6]. Fewer studies look at ESD, and specifically ESD with respect to multi-partite

entanglement, in multi-partite systems [7, 8, 9, 10, 11].

A class of two qubit states that are generally known to exhibit ESD are the so calledX-states [12], so

named due to the pattern of non-zero density matrix elements. These states play an important role in

a number of physical systems [13], and allow for easy calculation of certain entanglement measures. In

this paper, I explore the entanglement dynamics of three qubit X-states in dephasing and depolarizing

environments as a function of decoherence strength. Previous studies of three qubit X-shaped states

utilize more restrictive sets of states: GHZ-diagonal states [14] and generalized GHZ-diagonal states

[15]. Other papers have examined specific examples of three qubit X-state entanglement including

the effects of dephasing on a three-qubit quantum error correction protocol [16].

To quantify entanglement within the three qubit systems I utilize the negativity, Nj , defined as

the most negative eigenvalue of the partial transpose of the density matrix [17] with respect to qubit

j. This provides three distinct entanglement measures. As a pure tri-partite entanglement metric for

mixed states I will use the tri-partite negativity, N (3) which is simply the third root of the product

of the negativities with respect to each of three qubits [18], N (3) ≡ (N1N2N3)
1/3. A mixed state with

non-zero N (3) is distillable to a GHZ state. It is important to note the existence of bound entanglement

which may be present even if all negativity measures in a three qubit system are equal to zero. Thus,

when I refer to ESD of a state with respect to given negativity metrics this should not be confused with

separability of the state. Nevertheless, besides general interest in the behavior of these entanglement

metrics, the disappearance of negativity plays an important role in quantum information protocols in
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that it indicates that the entanglement of the state is not distillable.

The physical significance of X-states mentioned above demands and efficient means of experi-

mentally determining the presence of entanglement. This can be accomplished via ‘entanglement

witnesses.’ Three qubit states can be separated into four broad categories: separable (in all three

qubits), biseparable, and there exist two types of locally inequivalent tri-partite entanglement (GHZ

and W-type) [19]. Reference [20] provides a similar classification schemes for mixed states each of

which includes within it the previous classes. These are separable (S) states, bi-separable (B) states,

W states, and GHZ states, which encompasses the complete set of three qubit states.

Entanglement witnesses are used to determine in which class a given state belongs. These observ-

ables give a positive or zero expectation value for all states of a given class and negative expectation

values for at least one state in a higher (i.e. more inclusive) class. I will make use of specific entangle-

ment witnesses [20] that will identify whether a state is in the GHZ\W class (i.e. a state in the GHZ

class but not in the W class), in which case the state has experimentally observable GHZ-type tri-

partite entanglement. Though the use of entanglement witness cannot guarantee that entanglement

is not present, it does give experimental bounds on whether the entanglement can be observed.

The results presented in this paper are (i) the analytical determination of various negativity mea-

sures forX-states of an arbitrary number of qubits including how the negativity evolves under decoher-

ence, (ii) the demonstration that negativity disappears in finite time for X-states subject to different

types of decoherence and the (analytical and numerical) determination of the decoherence strength

when this occurs, (iii) the analytical calculation of the expectation value of X-states undergoing de-

coherence with respect to appropriate entanglement witnesses, (iv) the demonstration of the sudden

appearance, only at non-zero decoherence strength, in some X-states of the tri-partite negativity, and

(v) the calculation of a bound on the three qubit concurrence for X-states and the description of how

this can be extended to more qubits. In addition, I prove in the Appendix that the set of generalized

GHZ-diagonal states do not cover all possible X-states.

2 Three Qubit X-States

There are a number of classes of three qubit states whose entanglement properties have been studied

and whose non-zero density matrix elements form an X shape:

ρX(aj , bj , cj) =



a1 0 0 0 0 0 0 c1

0 a2 0 0 0 0 c2 0

0 0 a3 0 0 c3 0 0

0 0 0 a4 c4 0 0 0

0 0 0 c∗4 b4 0 0 0

0 0 c∗3 0 0 b3 0 0

0 c∗2 0 0 0 0 b2 0

c∗1 0 0 0 0 0 0 b1


(1)
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where j = 1, ..., 4. The most basic is a pure three qubit GHZ state with wavefunction |ψ±
k ⟩ =

1√
2
(|k⟩ ± |k⟩), where k is a three bit binary number between zero and seven and k is the result of

flipping each bit of k. The density matrix of this state is ρX(1/2j , 1/2j ,±1/2j). Mixed states that are

diagonal in the basis of these eight states form the set of GHZ-diagonal states studied in [14]. The

basis states have coefficients
√
λ±k for all 0 < k < 3, the squares of which sum to one. The density

matrix elements of these states are thus aj = bj = λ+k + λ−k and cj = λ+k − λ−k .

A generalized GHZ state is a non-maximally entangled state of the form:

|ψ±
k (α, β)⟩ = α|k⟩ ± β|k⟩. (2)

The density matrix of this state is ρX(|α|2j , |β|2j ,±αβ∗
j ) for j = 1, ..., 4. An incoherent mixture of

generalized GHZ states where k now ranges from 0 to 7 (as opposed to 0 to 3 used in in [14]) form a

generalized GHZ-diagonal state. These states are studied in [15] and have the form:

ρ =

7∑
k=0

λ+k |ψ
+
k (α, β)⟩⟨ψ

+
k (α, β)|+ λ−k |ψ

−
k (α, β)⟩⟨ψ

−
k (α, β)|. (3)

For these states the density matrix elements are as follows:

aj = |α|2(λ+k + λ−k ) + |β|2(λ+
k
+ λ−

k
) (4)

bj = |β|2(λ+k + λ−k ) + |α|2(λ+
k
+ λ−

k
) (5)

cj = αβ∗(λ+k − λ−k ) + α∗β(λ+
k
− λ−

k
) (6)

for 1 < j < N/2 and k = j − 1. However, as shown in the Appendix, generalized GHZ-diagonal

states do not include all possible X-states. This is due to the restriction of constant α and β for all

contributing generalized GHZ states.

In this paper I consider X-states that are completely general, limited only by the restriction that

the state is a proper density matrix. For convenience, I will refer to the four density matrix elements

aj , bj , cj and c
∗
j of the X-state as a GHZ-type state. At most, four GHZ-type states contribute to each

three qubit X-state.

3 X-State Entanglement

An X-state is a mixed state that can be written as a sum of GHZ-type states. When a partial trace

is taken over any one of the three qubits of an X-state the resulting two qubit matrix is diagonal.

This demonstrates that the entanglement of an X-state is either tri-partite or biseparable but not

completely separable. Before calculating any specific entanglement metric and studying its decay in a

given decohering environment, we note that an upper bound on the entanglement decay was derived in

[15] for a number of different decohering environments. Though these bounds were calculated for the

more limited generalized GHZ-diagonal states they appear to be appropriate to the states studied in

this work. However, these upper bounds go to zero only in the limit of complete decoherence. Thus,
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the states never exhibit entanglement sudden death for any entanglement metric and the bounds

cannot be used to study the ESD phenomenon. Below, I explore specific entanglement metrics for

which I provide analytical solutions to exactly calculate the decoherence strength at which the X-

states exhibit ESD for the given entanglement metrics. While ESD of these metrics cannot guarantee

separability of the X-state it does provide important information concerning distillability and the

ability to determine the presence of entanglement.

To calculate the negativity of a three qubit X-state we take the eigenvalues of the partial transpose

of the density matrix with respect to one of the qubits. These 24 eigenvalues (8 for each possible partial

transpose) are all of the form:

Eij =
1

2

(
aj + bj ±

√
(aj − bj)2 + 4|ci|2

)
(7)

for all i, j = 1, ..., 4 and i ̸= j. From these eigenvalues one can see how the negativity detects the

entanglement of an X-state. Let us first assume a GHZ-type state with the only non-zero elements

aj , bj , cj and c
∗
j . The eigenvalues which utilize elements aj and bj cannot be negative (since aj+bj = 1

and ci = 0 for all i ̸= j). An additional three eigenvalues will be equal to −|cj |, demonstrating the

entanglement in the system. X-states that are sums of two GHZ type states have non-zero elements

ai, aj , bi, bj , ci, cj , c
∗
i , c

∗
j . Such states will again have negative eigenvalues −|ci|, −|cj | and two additional

possibly negative eigenvalues 1
2(ak + bk −

√
(ak − bk)2 + 4|cℓ|2) where k, ℓ = i, j and k ̸= ℓ. As more

density matrix elements of the X-state are filled up the eigenvalues tend to have the form of these

latter two eigenvalues.

3.1 Dephasing Environment

We now look at the entanglement evolution of the three qubit X-states with no interaction between

the qubits, in an independent qubit dephasing environment noting the exhibition of ESD with respect

to the negativity. The independent qubit dephasing environment is fully described by the Kraus

operators

K1 =

(
1 0

0
√
1− p

)
; K2 =

(
0 0

0
√
p

)
, (8)

where the dephasing parameter p can also be written in a time-dependent fashion, p = 1− exp(−κt).
When all three qubits undergo dephasing we have eight Kraus operators each of the form Al =

(Ki ⊗Kj ⊗Kk) where l = 1, 2, ..., 8 and i, j, k = 1, 2.

The effect of a dephasing environment of strength p on an X-state is to reduce the anti-diagonal

elements of the density matrix by a factor (1− p)3/2 while leaving the diagonal elements constant. To

calculate the negativity we look at the eigenvalues of the X-state after taking the partial transpose

with respect to the desired subsystem. The relevant eigenvalues are now of the form:

1

2

(
aj + bj −

√
(aj − bj)2 + 4|ci|2(1− p)3

)
. (9)
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The eigenvalues go to zero when:

p = 1− (ajbj)
1/3

|ci|2/3
. (10)

Based on the above, it is easy to see that ESD with respect to negativity is not exhibited by X-states

made up of single GHZ-type states (with non-zero elements aj + bj = 1, and cj): the negativity with

respect to any one qubit, and thus the tri-partite negativity as well, is simply −|cj |(1− p)3/2. When

the X-state is a mixture of GHZ type states ESD may be exhibited. Fig. ?? shows a sample X-state

that is the sum of two GHZ-type states that exhibits ESD with respect to the negativity of the third

qubit, N3. However, the state does not exhibit ESD with respect to N1 and N2, they are negative

for any value of p. The state thus exhibits ESD with respect to the tri-partite negativity at the same

dephasing strength as N3. For stronger dephasing no tri-partite entanglement is detected.

The above can be compared to the experimental detection capabilities of entanglement witnesses.

Appropriate entanglement witnesses for X-states are of the sort:

Wk =
3

4
−|GHZ(k)⟩⟨GHZ(k)| (11)

where |GHZ(k)⟩ = 1√
2
(|k⟩ + |k⟩). For an X-state consisting of a single GHZ-type state the entan-

glement witness Wk gives Tr[Wkρ] = 1
4(1 − 4(1 − p)3/2|ck|). Thus, Wk loses its ability to detect

entanglement at dephasing strength p = 1− 1
24/3|ck|2/3

. The maximum occurs for |ck| = 1/2 in which

case the entanglement is no longer detected at p = 1 − 1
21/3

. For general X-states the entanglement

witnesses give the following:

Tr[Wℓρ] =
1

4
(3(ai + bi + aj + bj + ak + bk)

+ aℓ + bℓ − 4(1− p)3/2|cℓ|). (12)

This can be solved for the exact value of p at which the entanglement is no longer detected:

p = 1− (3(ai + bi + aj + bj + ak + bk) + aℓ + bℓ)
2/3

24/3|cℓ|2/3
. (13)

I note that which of the above witnesses is most sensitive may depend on the intial state and the

decoherence strength and can be determined via a minimization process. What is important is that the

witnesses detect purely tri-partite entanglement that does not include biseparable but not completely

separable entanglement.

3.2 Depolarizing Environment

I now look at an independent qubit depolarizing environment and, as above, explore the entanglement

evolution of the three qubit X-states. The Kraus operators for this environment are:

K1 =

√
1− 3p

4
,Kw =

√
p

2
σw, (14)

where σw are the Pauli spin operators, w = x, y, z and p is now the depolarizing strength. The

depolarizing environment affects both the anti-diagonal and diagonal elements of the density matrix.
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The anti-diagonal elements are simply reduced by a factor of (1 − p)3. The diagonal element ai

becomes:

a′i = ai(1−
3p

2
+

3p2

4
− p3

8
)

+ (aj + ak + bℓ)(
p

2
− p2

2
+
p3

8
)

+ bi
p3

8
+ (aℓ + bj + bk)(

p2

4
− p3

8
) (15)

where if (i, ℓ) = (1, 4), (j, k) = (2, 3) and vice versa. For the b′i elements simply replace each term bl

with al and each al with bl, for l = 1, ..., 4. Since the decohering environment preserves the X shape

of the density matrix the eigenvalues of the partially transposed density matrix follow Eq. 7 and

the critical value of p for which a given eigenvalue goes from negative to positive can be analytically

determined.

When the initial density matrix is composed of only one GHZ-type state eigenvalues of the par-

tially transposed density matrix are the same for each qubit and the state exhibits ESD at the same

depolarizing strength for all Nj and N (3). When the X-state density matrix is a mixture of multiple

GHZ-type states ESD may be exhibited with respect to specific negativity measures at different de-

polarizing strengths. Figure ?? shows the lowest eigenvalue of the partially transposed density matrix

with respect to each of the three qubits for a sample X-state composed of a mixture of GHZ-type

states as a function of decoherence strength. One eigenvalue is always positive (i.e. indicating zero

negativity) and two of the eigenvalues cross zero (i.e. the state undergoes ESD with respect to the

single qubit negativities) at different decoherence strengths. For low values of p two of the lowest

eigenvalues are negative demonstrating the presence of entanglement. However, there is no measur-

able GHZ distillable tri-partite entanglement as measured by N (3). For slightly higher values of p

there is a small region for which only one of the eigenvalues is negative. Now N (3) becomes negative

showing a sudden birth of (GHZ distillable) tri-partite negativity. As p increases further, the state

exhibits ESD with respect to all single qubit negativities and N (3) (and N2) becomes positive. This

sort of N (3) behavior indicates that there is only a small region of decoherence strengths (which does

not include p = 0) for which we can be sure there exists GHZ-distillable entanglement. Such behavior,

going from positive to negative and back, cannot occur when the X-state is composed of only two

GHZ-type states. This is because two of the single qubit negativites are equal, the partial trace with

respect to two of the qubits give the same set of eigenvalues. The sign of N (3) is thus determined solely

by the eigenvalues of the partially transposed state with respect to the third qubit. An example of a

state exhibiting the sudden birth of N (3) entanglement followed by an exhibition of ESD is portrayed

in the inset of Fig. ??.

To test for the presence of purely tri-partite entanglement in the depolarizing system we look at

the expectation value of the state with an entanglement witness. Using the witnesses defined above
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we note that witness Wj for a state depolarized with a strength p gives:

Tr[Wjρ] =
1

8
(p2 − 2p+ 6)(

∑
i̸=j

ai + bi)

− 1

8
(3p2 − 6p− 2)(aj + bj) + (p− 1)3cj . (16)

This equation can then be solved for the critical decohernce strength at which entanglement will no

longer be detected.

4 X-States with More Qubits

The particular matrix structure of the X-state allows us to extend our results beyond three qubits.

A matrix with non-zero elements in an X shape can be block diagonalized with blocks of size 2 × 2.

Assuming the X-matrix elements along the diagonal are d1, ..., dN , and the elements along the anti-

diagonal are e1, ..., eN (starting at the top right), the mth 2×2 block along the diagonal has elements:

Am =

(
dm em

eN−m+1 dN−m+1

)
; (17)

where 1 ≤ m ≤ N/2. Thus, the eigenvalues of any dimension X-shaped matrices are simply the

eigenvalues of the 2× 2 blocks which are

1

2
(dm + dN−m+1 ±

√
(dm − dN−m+1)2 + 4emeN−m+1). (18)

When calculating the negativity a partial transpose of the density matrix must be taken. This

has the effect of rearranging only the elements along the anti-diagonal while preserving the X shape.

Thus, the eigenvalues of the partial transpose of an X-state of any dimension have the form of Eq. 7

and the negativity is easily calculated.

5 Three-Qubit Concurrence

In this section I derive an explicit expression for a lower bound of three qubit mixed state concurrence

as defined in [21] for X-states. A general expression for a lower bound on the three-qubit concurrence

is:

τ3 =

√√√√1

3

6∑
ℓ=1

[
(C

12|3
ℓ )2 + (C

13|2
ℓ )2 + (C

23|1
ℓ )2

]
. (19)

Each of the three bi-partite concurrence terms C
ij|k
ℓ is given as the sum of the six terms:

Cℓ = max{0,
√
λ1ℓ −

√
λ2ℓ −

√
λ3ℓ −

√
λ4ℓ}, (20)

where λlℓ are the non-zero eigenvalues of ρ̃ = ρS
ij|k
ℓ ρ∗S

ij|k
ℓ in descending order. The operators S

ij|k
ℓ

are given by S
ij|k
ℓ = Lij

ℓ ⊗Lk
0 where Lij

ℓ is one of six generators of the group SO(4) operating on qubits
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i, j, and Lk
0 is the generator of SO(2), the Pauli matrix σy, operating on qubit k. This lower bound on

mixed state concurrence has been calculated for some simple X-states in [22]. Here I look to extend

these results and note where the lower bound goes to zero. Once the lower bound does go to zero,

there is no longer a guarantee that entanglement is present.

For initial density matrices that are X-states only six of the 18 contributing terms to the three

qubit concurrence are non-zero. More specifically, only the two SO(4) generators with elements on the

anti-diagonal contribute to each of the three bi-partite concurrences. I will refer to the SO(4) generator

with anti-diagonal (−1, 0, 0, 1) as Lij
1 , and the SO(4) generator with anti-diagonal (0,−1, 1, 0) as Lij

2

. For X-states the four eigenvalues that make up each of the six terms are of the form:

λ
ij|k
ℓ,m±

= ambm + |cm|2 ± 2
√
ambm|cm|2 (21)

for two different values of m. For the partition 12|3 and SO(4) generator ℓ = 1 the contributing

terms have m = 1, 2. For the generator ℓ = 2,m = 3, 4. Similarly, for the partition 23|1 we find

ℓ = 1,m = 2, 3 and ℓ = 2,m = 1, 4. Finally, for the 13|2 partition ℓ = 1,m = 2, 4 and ℓ = 2,m = 1, 3.

Given these eigenvalues the three-concurrence can be easily computed.

5.1 Dephasing Environment

For X-states composed of only one GHZ-type state an exact calculation for τ3 in a dephasing envi-

ronment yields the maximum between 0 and:√
ai − a2i + ci(−ωi + 2γ

1
2
i )−

√
ai − a2i + ci(−ωi − 2γ

1
2
i ) (22)

where,

ωi = ci(p− 1)3

γi = ai(ai − 1)(p− 1)3. (23)

Eq. 22 goes to zero only in the limit of p→ 1. Thus, the lower bound cannot go to zero for a GHZ-type

state, some entanglement will always be present. In fact, the lower bound cannot go to zero unless

the X-state is composed of four GHZ-type states. This is because τ3 is a summation of terms and can

go to zero only if each term goes to zero. Each one of these (six) terms consists of four eigenvalues,

two for each of two m values. If the eigenvalues of one of the m values are zero (which will happen

if ci and ai or bi = 0) the term will have the form of Eq. 22. Thus, that term, if not initially zero,

will remain non-zero until p = 1. This behavior is demonstrated in Fig. ?? and should be contrasted

with the negativity and tri-partite negativity measures. The negativity of X-states can go to zero in

a dephasing channel when the X-state is composed of only two GHZ-type states. The reason for this

is that the negativity can be defined with respect to only one of the qubits (for example N3) which

may go to zero while negativity measures with respect to the other qubits do not. The three qubit

concurrence, however, is a sum over all terms and therefore cannot go to zero unless each bi-partite

concurrence term goes to zero.
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5.2 Depolarizing Environment

The bound on the three-qubit concurrence for X-states composed of one GHZ-type state in a depo-

larizing environment gives the maximum between 0 and:

qi
4
−

√√√√
ω2
i −

γ′i
64

−

√
ω2
i γ

′
i

4
+

√√√√
ω2
i −

γ′i
64

+

√
ω2
i γ

′
i

4
(24)

where,

qi = (p− 2)p
√

4(p− 1)2(ai − a2i )− p(p− 2) (25)

γ′i = (ai(p− 2)3 + (ai − 1)p3)((ai − 1)(p− 2)3 + a1p
3).

τ3 for this state is shown in Fig. ?? for an initial state ai = bi = 1/2. For the depolarizing environment

τ3 can go to zero even for X-states composed of only one GHZ-type state.

The matrix ρ̃ for a X-state density matrix with any of the six SO(4) generators retains its X shape,

having four diagonal and four anti-diagonal elements (and thus have only four non-zero eigenvalues

as noted in [21]). The X is ‘balanced’ when S
ij|k
ℓ is anti-diagonal. I use the term ‘balanced’ as

follows: any diagonal X-matrix element dm that is non-zero has a non-zero counterpart element em,

where I have used the notation of Eq. 17. An unbalanced X-matrix will have non-zero elements whose

counterparts are zero. When a balanced X-matrix is block diagonalized non-zero 2×2 blocks will have

four non-zero elements leading to non-degenerate eigenvalues like those of Eq. 18. Block diagonalized

unbalanced X-matrices will have a zero in one of the off-diagonal elements of the 2× 2 diagonal block

as can be noted from Eq. 17. In the unbalanced case the eigenvalues are then simply the diagonal

elements of the block which are of the form aibj , aibj , akbl, akbl. These elements (eigenvalues) are

degenerate and thus these bi-partite concurrence terms equal zero.

5.3 n-Qubit Concurrence

As mentioned above, only the two SO(4) generators with elements on the anti-diagonal, contribute to

the three qubit concurrence. This is because only these two generators have anti-diagonal elements

which lead to balanced X-matrices ρ̃. The other generators lead to unbalanced ρ̃ matrices whose

eigenvalues are simply its diagonal elements. The eigenvalues are each doubly degenerate meaning

that these terms will not contribute to the concurrence. The above allows us to simplify calculations

for higher qubit concurrences of X-states. The only terms necessary to calculate are those that utilize

anti-diagonal S
ij...|kℓ...
ℓ matrices. Thus, for four qubits there would be four terms from the SO(4)⊗SO(4)

generators for each of the three balanced partitions (two qubits on each side of the partition) and an

additional four terms from the SO(8) ⊗ SO(2) generators for each of the four unbalanced partitions

(partitions of three and one qubit). This gives a total of 28 terms which should significantly simplify

these calculations.

10



6 Conclusions

In this paper I have studied the entanglement dynamics for three qubit X-states in both dephasing

and depolarizing environments. To do this I have analytically calculated the eigenvalues of partial

transposes of the X-states which allows for easy determination of the negativity. Since the dephasing

and depolarizing environments retain the density matrix X shape one can calculate which initial states

will exhibit ESD with respect to the negativity measures and at what decoherence strength. I noted

that the tri-partite negativity, a tri-partite entanglement measure which is sufficient to ensure GHZ

distillability, can exhibit non-standard behavior for certain X-states: its appearance only at non-zero

decoherence strength followed by its sudden disappearance. In addition, I explored the detection

capability of entanglement witnesses sensitive to tri-partite entanglement. As with the negativity, the

expectation value of the X-state with respect to the entanglement witness can be solved analytically

and are vital in assessing potential experimental studies. These results are extended to systems made

of arbitrary numbers of qubits. Finally, I analytically solved for the relevant terms of a lower bound

on the three-qubit concurrence for an X-state, demonstrated when it goes to zero in dephasing and

depolarizing environments. This method may be useful for calculating concurrences for larger numbers

of qubits.

It is a pleasure to thank G. Gilbert and S. Pappas for helpful feedback and acknowledge support

from the MITRE Innovation Program under MIP grant #20MSR053.

A General X-States

As mentioned in the main part of the paper, a previously studied set of states with an X shaped

density matrix is the generalized GHZ-diagonal states [15]. In this Appendix I prove that generalized

GHZ-diagonal states do not include all possible X-states by constructing an explicit state with an

X-shaped density matrix that is not part of the aforementioned set.

Generalized GHZ-diagonal states with n qubits have the form

ρ =

N−1∑
k=0

λ+k |ψ
+
k (α, β)⟩⟨ψ

+
k (α, β)|+ λ−k |ψ

−
k (α, β)⟩⟨ψ

−
k (α, β)|, (26)

where N = 2n is the Hilbert space dimension. The density matrix elements of these states using the

notation of Eq. 1 are as follows:

aj = |α|2(λ+k + λ−k ) + |β|2(λ+
k
+ λ−

k
) (27)

bj = |β|2(λ+k + λ−k ) + |α|2(λ+
k
+ λ−

k
) (28)

cj = αβ∗(λ+k − λ−k ) + α∗β(λ+
k
− λ−

k
) (29)

for 1 < j < N/2 and k = j − 1.

We now construct an X-state that is not a generalized GHZ-diagonal state. Let us set cj = 0.

There are then three possible solutions for Eq. A4:

11



α = 0 or β = 0

If either of these is true then all other cm for m ̸= j must also equal zero.

λ+k = λ−k and λ+
k
= λ−

k

If this is true aj = 2(|α|2λk+|β|2λk) and bj = 2(|β|2λk+|α|2λk) where λk = λ+k = λ−k . Therefore,

if in addition bj = 0 (which would require λk = λk = 0), aj must equal zero.

(λ+k − λ−k ) =
α∗β
αβ∗ (λ

−
k
− λ+

k
)

Let α∗β = reiθ where r, θ are real. Then the fraction α∗β
αβ∗ = e2iθ. As mentioned in the main part

of the paper, the coefficients λ are all real forcing e2iθ to be real and θ = 0,mπ for all integers

m. Therefore, α∗β and αβ∗ must both be purely real or purely imaginary.

We can now explicitly construct a two qubit X-state that is not part of the set of generalized

GHZ-diagonal states by setting c1 = 0 and violating each of the three conditions listed above. Such a

state can have the form:

ρC =


a1 0 0 0

0 a2 reiϕ 0

0 re−iϕ b2 0

0 0 0 0

 . (30)

where r, θ are real and r2 < a2b2 guarantees the density matrix has positive eigenvalues. In addition,

ρC must be trace 1, a1 + a2 + b2 = 1, and its purity must be a21 + a22 + b22 + 2r2 ≤ 1.

In Eq. 30 c1 = 0, yet c2 ̸= 0, indicating that α, β ̸= 0. Furthermore, b1 = 0 while a1 does not,

indicating that λ+0 = λ−0 and λ+3 = λ−3 cannot both be true. Finally, c2 = reiϕ need not be real nor

purely imaginary indicating that (λ+0 −λ−0 ) ̸=
α∗β
αβ∗ (λ

−
3 −λ+3 ). Thus, the state ρC is not part of the set

of generalized GHZ-diagonal states though it certainly is an X-state.
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