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Despite being one of the hallmarks of quantum physics, there is a lack of operational interpretations of
quantum coherence. Here we provide an operational interpretation of coherence of a quantum system, in terms
of the amount of noise that is to be injected in order to fully decohere it. In particular, we show that in the
asymptotic limit, the minimum amount of noise that is required to fully decohere a quantum system, is equal to
the relative entropy of coherence. This quantifies the erasure cost of quantum coherence. We employ the entropy
exchanged between system and environment during the decohering operation and the memory required to store
the information about the decohering operation as the quantifiers of noise. We show that both the quantifiers
yield the same cost of erasing coherence in the asymptotic limit. The relative entropy of coherence, hence, is
endowed with a thermodynamical and operational interpretation.

I. INTRODUCTION

With our ever increasing abilities to control systems at
smaller and smaller scales, the quantum properties like quan-
tum coherence and quantum entanglement make their pres-
ence felt more and more prominently. Recent developments in
thermodynamics of nano scale systems suggest that the quan-
tum coherence plays an essential role in determining the state
transformations of these systems and more importantly, in
providing a family of second laws of thermodynamics [1–10].
Also, the phenomenon of quantum coherence has been ar-
guably attributed to the efficient functioning of some complex
biological systems [11–16]. Given the importance of quantum
coherence, a formal structure of coherence resource theory is
developed in recent years [17–28]. There are two inequiva-
lent frameworks to characterize quantum coherence. The first
framework is based on a set of incoherent operations as free
operations and a set of freely available incoherent states [19].
This formalism has been successfully applied in the context
of quantum entanglement, providing further a family of co-
herence monotones based on entanglement monotones [24]
and quantification of the wave-particle duality [29]. More-
over, a class of maximally coherent mixed states is found, for
which coherence and mixedness satisfy a complementarity re-
lation, following this resource theory of coherence [30]. The
second formalism is based on the resource theory of asym-
metry [17, 18, 22], where operations are restricted to phase
insensitive operations and symmetric states are free resources
[18]. This formalism has been successfully used in the quan-
tum thermodynamics [6, 7].

But there is no prevalent consensus to which of the two
formalisms are better suited, in general, to understand most
of the phenomena where coherence plays an important role.
The reason for this lack of general consensus can be attributed
to the hitherto paucity of operational interpretations of quan-
tum coherence. In the quantum information theory, to equip a
particular “resource” of interest with an operational meaning,
consideration of thermodynamic cost of destroying (erasing)
the “resource”, turns out to be very fruitful and far reaching
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[31–37]. For example, the Landauer erasure principle [31] has
been a central one in laying the foundation of physics of in-
formation theory. Similarly, an operational definition of total
correlation, classical correlation and quantum correlation is
obtained independently in Refs. [38] and [39], via considera-
tion of thermodynamic cost to erase these correlations. In ad-
dition, the thermodynamic cost of erasing quantum correlation
needs entropy production has been shown in Ref. [40]. This
approach has also been successfully applied to private quan-
tum decoupling [41] and recently to markovianization [42].
These tasks inevitably use randomization of quantum systems
[43–45].

In this work, we provide an operational interpretation of
quantum coherence in terms of the amount of noise that has
to be dumped in to the system such that it decoheres com-
pletely. We consider two different measures to quantify the
amount of noise in the process of decohering a quantum sys-
tem: the entropy exchange between system and environment
during the decohering operation [46, 47] and the memory re-
quired to store the information about the decohering operation
[38]. We show that in the asymptotic limit, both these mea-
sures yields the same minimal cost of erasing coherence (the
minimal noise required to fully decohere the system) and the
minimum cost is given by the relative entropy of coherence
[19]. Thus, the relative entropy of coherence of a quantum
system can be interpreted as the minimal (work) cost of de-
cohering the quantum system completely. As a consequence,
the restrictions imposed in the resource theory of coherence
[19], namely the allowed operations being incoherent opera-
tions and free states being incoherent states, yield a measure
of coherence that has an operational significance.

At this point it is worth noting that the erasure of informa-
tion (in form of correlations or coherence) has connection to
the no-hiding theorem [48, 49] that applies to any process hid-
ing a quantum state, whether by randomization, thermaliza-
tion or any other procedure. The no-hiding theorem [48, 49]
that generalises Landauer’s principle [31] offers insight into
the nature of thermalization processes in comparison with in-
sights provided by Landauer’s principle in the resolution of
Maxwell’s demon. Also, the thermalization process is a par-
ticular kind of decohering process in energy eigenbasis and
hence our results may have deep connections with the no-
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FIG. 1. (Color online) The schematic of the fully and ε-
randomization operations. The figure depicts that if we start with
n copies of any state (coherent or incoherent) and pass them through
some randomizing map, then the n copies decohere completely if the
map is fully randomizing and if the map is ε-decohering then the n
copies come very close to the fully decohered state keeping some
amount of coherence which is close to zero. We show that in both
the cases the minimum amount of noise that is required is same and
is equal to relative entropy of coherence in asymptotic limit.

hiding theorem.
The paper is organized as follows: In section II, we give a

brief outline of the concepts required to understand the pro-
cess of erasure of quantum coherence. In section III, we
present our main result of obtaining minimal (work) cost of
erasing coherence of a quantum system or of decohering a
quantum system completely. In section IV, we describe the
connection of erasing coherence to thermodynamics and the
Landauer erasure principle. Finally we conclude in section V
with overview and implications of the results presented in the
paper.

II. PRELIMINARIES: VARIOUS DEFINITIONS

Here, we briefly give an account of the concepts that are
required to derive our main results. In this paper we will be
concerned with the resource theory of coherence as in Ref.
[19].

Quantum coherence:– The theory of quantum coherence,
starts with fixing a reference basis as coherence is inherently
a basis dependent quantity [19]. For a given reference basis
{|a〉}, the set of incoherent states I is defined as the set of
all the states of the form ρI =

∑
a pa |a〉 〈a|, where {pa} is a

probability distribution, i.e., pa ≥ 0,
∑

a pa = 1, and the inco-
herent operations ΛI are defined as completely positive trace
preserving (CPTP) maps that map the set of incoherent states
onto itself. The bonafide measures of coherence that emerge
from this theory include the l1 norm and the relative entropy
of coherence [19]. The relative entropy of coherence of any

state ρ is given by [19]

Cr(ρ) = H(ρd) − H(ρ), (1)

where H(ρ) = −Tr(ρ ln ρ), is the von Neumann entropy and
ρd =

∑
a〈a|ρ|a〉|a〉〈a| is the diagonal part of ρ in the reference

basis {|a〉}. Furthermore, the maximally coherent state is de-
fined by |ψd〉 = 1

√
d

∑d−1
i=0 |i〉, for which Cr(|ψd〉 〈ψd |) = ln d

and the class of maximally coherent mixed states (MCMS) is
given by ρp := (1 − p)Id×d/d + p |ψd〉 〈ψd |, 0 ≤ p ≤ 1, for
which Cr(ρp) = ln d − S (ρp) [30].

Before we proceed further to present our main result, we
would like to give an illustration of the process of fully deco-
hering a qubit quantum system. Let us first fix the reference
basis to be the computational basis, {|a〉} (a = 0, 1). Now,
consider a qubit system in the state

|ψ2〉 =
1
√

2

1∑
a=0

|a〉 , (2)

which is a maximally coherent state in two dimensions and
relative entropy of coherence of this state is one bit. Suppose
that we want to fully decohere this state, i.e., to erase the co-
herence of this state. This can be achieved by applying two
incoherent unitary transformations I2 and σz with equal prob-
ability. After this action the state becomes

ρ =
1
2
|ψ2〉 〈ψ2| +

1
2
σz |ψ2〉 〈ψ2|σz =

1
2
I2. (3)

The relative entropy of coherence of this state is zero. This
means that applying two incoherent unitary operations prob-
abilistically, with equal probability, will suffice to erase the
coherence of the state, given in Eq. (2) (see Fig. 1). Similarly,
for MCMS in two dimensions [30], applying two incoher-
ent unitary transformations I2 and σz with equal probability,
yields I2/2. Also, it can be seen that for a d dimensional quan-
tum system, an ensemble of unitary transformations exists that
can decohere any state ρ of the system completely. Now, de-
fine the operators X̂ and Ẑ in the fixed basis, say {|1〉 , .., |d〉},
via

X̂ | j〉 = | j ⊕ 1〉 , and Ẑ | j〉 = e
2πi j

d | j〉 , (4)

where ⊕ denotes addition modulo d. It is known that [45]

ρ→
1
d2

d∑
j=1

d∑
k=1

X̂kẐ jρẐ j†X̂k† =
1
d
Id. (5)

Thus, the incoherent operation { 1
d2 , X̂kẐ j} jk perfectly random-

izes any state (see Fig. 1). However, the no-hiding theorem
[48] tells that the original state can be found in the ancilla
Hilbert space upto local unitary opertaion and in fact, this has
been experimentally tested [49]. Therefore, the coherence of
the original state which is apparently lost, can be found in the
ancilla. To completely erase the coherence one has to dump
the ancilla subsystem where the original information resides.
That will involve thermodynamic cost.
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But, what is the cost to be paid in order to implement this
probabilistic incoherent operation or how much noise does
this operation inject into the system? One possibility, is to
consider the amount of information needed to implement this
(erasing) operation, which is equal to the Shanon entropy,
H(p = 1/2) = 1 bit for the qubit example that we have con-
sidered above. Therefore, one can say that applying a proba-
bilistic operation consisting of two elements, with equal prob-
ability, costs one bit of information or injects one bit of noise
in the system. Similarly, for a qudit system, we can achieve
exact randomization via a map of the form Eq. (5). The en-
tropy that this map injects in the system as quantified by the
amount of information needed to implement it, is given by
H(p = 1/d2) = 2 log2 d bits. Clearly, the state independent
randomization over estimates the amount of noise that is re-
quired to decohere the state (cf. qubit and qudit case). Also,
this cost is independent of the nature of the operation, i.e.,
whether the operation is incoherent, unitary etc. The other
choice to quantify the amount of noise injected in the sys-
tem can be obtained based on exchange entropy as in Refs.
[38, 46, 47]. As we show below, the exchange entropy is
smaller than H(p).

Exchange entropy:– The exchange entropy [46, 47] is de-
fined as the amount of entropy that any CPTP map R injects
into the system S which passes through the channel R. To in-
troduce this measure, we first purify the system state ρS by
considering a reference system Z such that ρS = TrZ |ψ〉 〈ψ|

S Z .
Now the entropy that the map R injects into the system is de-
fined as

He(R, ρS ) := H
(
(R ⊗ IZ)[ψS Z]

)
, (6)

where IZ is the identity matrix on the reference system Z and
H is the von Neumann entropy. The exchange entropy has
been successfully employed in gaining insights in security of
cryptographic protocols [46, 47], in determining cost of eras-
ing total, classical and quantum correlations [38] and in con-
nection to concurrence [50]. Let R be comprised of random
unitary ensemble {pi, ui}

N
i=1. The exchange entropy satisfies,

He(R, ρS ) ≤ H(p) ≤ log N, which can be proved as follows

He(R, ρS ) = H

∑
i

pi |φi〉 〈φi|
S Z


≤ H(p) ≤ log N, (7)

where in the first line, we have used (ui ⊗ I
Z) |ψ〉S Z = |φi〉

S Z .
For the example of qubit maximally coherent state, the en-
tropy exchange is equal to one bit which is equal to H(p =

1/2) = 1 as obtained preceding paragraph. Similarly, for
maximally coherent qudit state, the entropy exchange of the
map in Eq. (5), is given by log2 d which is different than
H(p = 1/d2) = 2 log2 d of preceding paragraph. Also, note
that in the examples that we have considered, we found maps
that fully randomize the states. This may involve more cost
than the required one if we want to decohere the state. This is
because, the randomization operation not only erases the co-
herence but also the information contained in the system. Next
we define general randomizing map which can decohere any

system and then ε-decohering map that decoheres any state
with small error ε > 0.

Randomizing map:– Let the randomization be achieved by
an ensemble of incoherent unitaries {pi, uI

i }
N
i=1. We associate

the map

R : ρ 7→
N∑

i=1

piuI
iρuI†

i , (8)

to the ensemble of these incoherent unitaries. We will be call-
ing this class of incoherent completely positive trace preserv-
ing (ICPTP) maps on system S as the “incoherent unitary ran-
domizing” (IUR) maps. Let us also define ε-decohering map
as follows:
ε-decohering IUR map:– We say that an IUR map R acting

on a state ρ, is ε-decohering, if there exists an incoherent state
τ such that

||R(ρ) − τ||1 ≤ ε, (9)

where || · ||1 is the trace norm [51, 52] and for a matrix A, the
trace norm is defined as ||A||1 = Tr

√
A†A. With these defini-

tions in hand, we now present our results in the next section.

III. COST OF ERASING QUANTUM COHERENCE

In this section, we prove the main result of our work. We
will be concerned with asymptotic cases of the randomiza-
tion procedure. But before going to the asymptotic case, let
us consider the single copy case. Consider any CPTP map Υ

that decoheres the system in any state ρ and maps it to some
incoherent state ρI =

∑
a pa |a〉 〈a|, where {|a〉} is the fixed ref-

erence basis and {pa} defines a probability distribution, i.e.,

ρ→ ρI = Υ[ρ]. (10)

The entropy exchange of this map is given by He(Υ, ρ) =

H
(
(Υ ⊗ IZ)[|ψ〉 〈ψ|S Z]

)
, where Z is a reference system used

to purify the state ρ. Now from monotonicity of mutual infor-
mation, i.e., I(Υ[ρS Z]) ≤ I(ρS Z), we have

He(Υ, ρ) ≥ H(ρI) − H(ρ). (11)

The minimum exchange entropy can be defined as Hmin
e =

min{pa} H(ρI)−H(ρ). If this minimum is achieved for ρI = ρd,
where ρd is the diagonal part of ρ in the reference basis, then
Hmin

e = Cr(ρ). In the asymptotic limit we show that this is
exactly the case even if the CPTP map decoheres the state ρ
with some nonzero small error. Now, we state our main result
as the following theorem.
Theorem: The quantum coherence of a system in a state ρ, as
measured by the minimal amount of noise that is to be added
in order to turn it into an incoherent state, described as the co-
herence of erasure of ρ, is relative entropy of coherence Cr(ρ),
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in the asymptotic limit. Mathematically, it holds that

sup
ε>0

lim inf
n→∞

1
n

min
{
He(R, ρ⊗n) : R ε-decohering

}
= sup

ε>0
lim sup

n→∞

1
n

min
{
log N : R ε-decohering

}
= Cr(ρ). (12)

Proof. The proof of the theorem follows from the following
two lemmas.

Lemma 1: Consider any IUR map R on the n copies of the
system S n as

R : ρ⊗n 7→

N∑
i=1

piU I
i ρ
⊗nU I†

i , (13)

which ε-decoheres ρ⊗n. Then, the amount of entropy that is
injected in the system is lower bounded as

He(R, ρ⊗n) ≥ n[Cr(ρ) − ε log d − H2(ε)], (14)

where Cr(ρ) is the relative entropy of coherence for the state
ρ as given in Eq. (1) and H2(ε) = −ε ln ε − (1 − ε) ln(1 − ε) is
the binary Shanon entropy. In the asymptotic limit, the min-
imum entropy exchange, i.e., the minimum cost for erasing
coherence, is given by

sup
ε>0

lim inf
n→∞

1
n

min
{
He(R, ρ⊗n) : R ε-decohering

}
= Cr(ρ).

(15)

Proof. First of all, define

RD := P(R[ρ⊗n]) =
∑

k

ΠkR[ρ⊗n]Πk, (16)

where {Πk} are the projectors on the product subspaces writ-
ten in the reference basis for the n copies of the system. Any
incoherent state under the projective measurement in the ref-
erence basis remain intact. Now utilizing the monotonicity of
the trace norm under CPTP maps [51, 52], we have

||RD − τ||1 = ||P(R[ρ⊗n]) − P(τ)||1
≤ ||R[ρ⊗n] − τ||1 ≤ ε, (17)

where in the last line we have used the fact that the IUR map R
is an ε-decohering map. Now consider the following quantity

||R[ρ⊗n] − RD||1 ≤ ||R[ρ⊗n] − τ||1 + ||τ − RD||1 ≤ 2ε, (18)

where we have used the triangle inequality for the trace dis-
tance and made use of Eq. (17) together with the fact that the
IUR map R is an ε-decohering map. Now, since ||R[ρ⊗n] −
RD||1 ≤ 2ε, in the worst case with ||R[ρ⊗n] − RD||1 = 2ε, from
the Fannes-Audenaert inequality [53] (see appendix A), we
have

|H(R[ρ⊗n]) − H(RD)| ≤ ε ln(dn − 1) + H2(ε)
≤ εn log d + H2(ε), (19)

where in the last line we have used ln(dn − 1) ≤ n log d and
H2(ε) = −ε ln ε − (1 − ε) ln(1 − ε). Noting the fact that RD is
the diagonal part of R[ρ⊗n] and H(RD) ≥ H(R[ρ⊗n]), we have

H(R[ρ⊗n]) ≥ H(RD) − nε log d − H2(ε). (20)

Here, we pause to look at entropy of RD more closely. The in-
coherent unitary operations cannot change the diagonal parts
of any density matrix except permuting the diagonal elements
(of course they can change phases of off diagonal terms).
This can be seen from the fact that any incoherent unitary
can be written as a product of a unitary diagonal matrix and
a permutation matrix, i.e., U I = VΠ. Therefore, we have
U IρU I† = V

∑
i j ρi j |Π(i)〉 〈Π( j)|V†. In the following, a super-

script d on a state ρ will mean the diagonal part of the density
matrix in the fixed product reference basis. Now the diagonal
part of the density matrix U IρU I† is given by

(U IρU I†)d =
∑

l

〈l|V
∑

i j

ρi j |Π(i)〉 〈Π( j)|V† |l〉 |l〉 〈l|

=
∑

i

ρΠ(i)Π(i) |Π(i)〉 〈Π(i)| . (21)

Therefore, we have H((U IρU I†)d) = H(ρd). Making use of
this fact for RD, we have

H(RD) ≥
∑

i

piH
((

U I
i ρ
⊗nU I†

i

)d
)

=
∑

i

piH
(
ρd⊗n

)
= nH

(
ρd

)
. (22)

From the Eq. (20), we have

H(R[ρ⊗n]) ≥ nH(ρd) − nε log d − H2(ε)

≥ n[H(ρd) − ε log d − H2(ε)], (23)

where in the last line, we have used −H2(ε) ≥ −nH2(ε). Now,
we come to the question of finding the cost of randomizing
operation, i.e., the entropy that we have injected in the system.
For this (as in the definition), we will consider the purification
of ρ which is given by ψ such that ρ⊗n = TrZ(|ψ〉 〈ψ|⊗n). Let us
define

ΩS nZn := (I⊗n
Z ⊗ R)[|ψ〉 〈ψ|⊗n]. (24)

Since, R does not act on the reference system Z, H(ΩZn ) =

H
(
TrS (|ψ〉 〈ψ|⊗n)

)
= H(ρ⊗n) = nH(ρ). Now,

H(ΩS nZn ) ≥ H(ΩS n ) − H(ΩZn )
≥ H(R[ρ⊗n]) − nH(ρ), (25)

where in the first line, we have made use of the Araki-Lieb
inequality [51, 52, 54]. Using Eq. (23) in the above equation,
we get

H(ΩS nZn ) ≥ n[H(ρd) − H(ρ) − ε log d − H2(ε)]
= n[Cr(ρ) − ε log d − H2(ε)]. (26)
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Therefore, in the asymptotic limit, the minimal entropy ex-
change is given as in Eq. (15). This completes the proof of
the lemma 1.

Next we consider the question of cost of erasing coherence
while the amount of noise injected in the system is quantified
by log N, where N is the number of unitaries in the ensemble
comprising the ε-decohering map.

Lemma 2: For any state ρ and ε > 0 there exists, for all
sufficiently large n, a map

R : σ 7→
1
N

N∑
i=1

UiσU†i (27)

on system with Ui being unitary operators on the system,
which ε-decoheres it, and with

log N ≤ n (Cr(ρ) + ε) , (28)

where Cr(ρ) is the relative entropy of coherence of the state
ρ. In the asymptotic limit, the minimal amount of noise as
quantified by log N, that is injected in the system is given by

sup
ε>0

lim sup
n→∞

1
n

min
{
log N : R ε-decohering

}
= Cr(ρ). (29)

Proof: Let us consider n copies of the system in the state ρ.
Also, consider a typical projector Π that projects the system
onto its typical subspace. Let ρ̃ = Πρ⊗nΠ. By definition of
the typical projector, we have Tr(Πρ⊗n) ≥ (1 − ε). Therefore,
using the “gentle operator lemma” [52], we have

||ρ⊗n − ρ̃||1 ≤ 2
√
ε. (30)

Now consider an ensemble of unitaries with some probability
density function p(dU), i.e. {U, p(dU)} such that, for any state
γ on the typical subspace of ρ⊗n, it yields∫

U
p(dU)UγU† =

1
D
IΠ, (31)

where D = 2n(H(ρ)−ε) and IΠ is the identity supported on the
typical subspace of the system. Therefore, we have∫

U
p(dU)Uρ̃U† =

1
D
IΠ := τ. (32)

Now, using Dd = 2n(H(ρd)+ε), we have

τ =
1
D
IΠ ≥

1
Dd
IΠ. (33)

Then, using the “operator Chernoff bound” [55, 56] (see also
appendix A), we show that we can select a subensemble of
these unitaries which suffices the approximation. To this end,
we will consider the unitaries as random operators with the
distribution p(dU), and define the random operators as

X := DUρ̃U†. (34)

Here X ≥ 0. Using ρ̃ ≤ Π/D (see Eq. (A10)), we have

X = DUρ̃U† ≤ UΠU† ≤ I. (35)

Now, the average value EX of the random operator X is given
by

EX = D
∫

U
p(dU)Uρ̃U†

= Dτ ≥
D
Dd
IΠ = 2−n(Cr(ρ)+2ε)Π, (36)

where Cr(ρ) is the relative entropy of coherence of the state ρ.
If X1, .., XN , where Xi = DUiρ̃U†i (i = 1, .., n), are N indepen-
dent realizations of X, then using the operator Chernoff bound
(see Eq. (A12) of appendix A), we have

Pr

(1 − ε)EX ≤
1
N

N∑
i=1

Xi ≤ (1 + ε)EX


≥ 1 − 2 dim(Π) exp[−

Nε2

4 ln 2
2−n(Cr(ρ)+2ε)]. (37)

For N = 2n(Cr(ρ)+3ε) or higher, we have the corresponding prob-
ability on LHS of Eq. (37) nonzero for sufficiently large n. For
this case, we have

(1 − ε)EX ≤
1
N

N∑
i=1

Xi ≤ (1 + ε)EX. (38)

This can be recast as∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
N

N∑
i=1

Uiρ̃U†i − τ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

≤ ε. (39)

Now, we have∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
N

N∑
i=1

Uiρ
⊗nU†i − τ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

≤ ε +

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
N

N∑
i=1

Ui

(
ρ⊗n − ρ̃

)
U†i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

≤ ε + ||ρ⊗n − ρ̃||1

≤ ε + 2
√
ε. (40)

Therefore, there indeed exists decohering map R that
(ε + 2

√
ε)-decoheres any state with, N = 2n(Cr(ρ)+3ε) ≤

2n(Cr(ρ)+ε+2
√
ε), i.e., log N ≤ n

(
Cr(ρ) + ε + 2

√
ε
)
. Thus, in

the asymptotic limit, the minimal cost of erasing coherence
is given by Eq. (29). This concludes the proof of the Lemma
2. Now, combining Lemma 1 and 2 completes the proof of
the theorem. Thus, our result provides an operational inter-
pretation of the coherence measure of the newly developed
resource theory of coherence [19], i.e., the relative entropy of
coherence is nothing but the minimum amount of the noise
that has to be added to the system to erase the coherence.
Moreover, our result is robust, that is if we allow for nonzero
error in the erasing process, it still gives the same answer in
the asymptotic limit.

In an independent work, Winter and Yang [57] have shown
that the relative entropy of coherence, emerges as the asymp-
totic rate at which we can distill maximally coherent states.
This is very satisfying as the same quantity, namely, the rel-
ative entropy of coherence comes up from two (apparently)
completely different tasks such as the erasure and distillation
of coherence. Thus, results of [57] and ours complement each
other, pointing to Cr(ρ) as a bonafide operational measure of
quantum coherence.
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IV. CONNECTION TO LANDAUER’S ERASURE

Erasure of information has a long history [31–33, 36, 37,
58–65]. In classical or quantum computer when we erase in-
formation, we need to pay a price. This is the Landauer era-
sure principle which says that erasure of a single bit (or qubit)
of information costs one bit of entropy. In general, when we
erase a string of qubits we reduce the entropy of a quantum
register. That inevitably increases the entropy of its surround-
ings, leading to generation of heat.

Can there be a direct connection between erasure of infor-
mation and erasure of quantum coherence? First, note that
these two operations are in general not the same. An irre-
versible operation may lead to an incoherent state, thus eras-
ing all the coherence yet there can be some information left in
the final state. However, if we erase information we bleach out
everything, including that of the quantum coherence. Here,
we make a formal connection between the erasure of quan-
tum coherence and erasure of information. Furthermore, we
argue that the energy cost of keeping the state coherent, in the
asymptotic limit, is given by kBTCr(ρ) per copy.

The erasing of the coherence requires the erasing of the in-
formation acquired by the memory in order to implement the
random incoherent unitary map. This can be seen as follows.
Let the states of the memory system be described by {|k〉}Nk=1,
which occur according to probability distribution {pk}. We im-
plement the random incoherent unitaries based on the random
bits of the memory. This step does not change the coherence.
But if we choose to forget the memory bit, as is necessary to
implement the random incoherent unitary channel, the mem-
ory bit acquires some (subjective) information as given by the
final state of the memory system

ΩM =

N∑
k=1

pk |k〉 〈k|M . (41)

Therefore, we need to erase this state of the memory (source
of subjective information [36]) and this will cost work. Based
on the previous studies the work cost of erasing [36, 38, 63]
this state is always at least kBT H(ΩM) = kBT H(p) implying
that the work Wer required to erase the coherence, satisfies

Wer ≥ kBT H(p) ≥ kBT He(R, ρS ). (42)

Therefore, the minimum amount of work that is neces-
sary to erase the quantum coherence of the system is equal
to kBTCr(ρS ).

We can also give an intuitive argument as to why the rela-
tive entropy of coherence is equal to the minimal noise that
needs to be injected into the system as well as the cost of
maintaining the state coherent. This can be seen by combin-
ing the Schumacher compression theorem with the Landauer
erasure principle. If we are given n-copies of a quantum sys-
tem in state ρ, then in the asymptotic limit, the best possible
compression one can achieve is the Schumacher compression
[66, 67]. The information content of n-copies with arbitrar-
ily good fidelity resides in a Hilbert space of dimension 2nS (ρ)

which is the dimension of the typical subspace of ρ⊗n. When

each of the system decoheres to its diagonal state, the dimen-
sion of the typical subspace increases as given by 2nS (ρd). This
suggests that effectively, Ne = n(S (ρd) − S (ρ)) number of ex-
tra qubits of quantum information needs to be injected to the
system to decohere the state. Thus, the erasure of coherence
needs Cr(ρ) bits of entropy per copy. Conversely, we can ask
how much does it cost to keep the state coherent? This can be
achieved by throwing away Ne extra qubits from n-copies of
the decohered state ρd which is equivalent to nS (ρd) qubits in
the typical subspace. Now using the Landauer principle, if the
erasure process takes place at a temperature T , then to erase
S (ρd) − S (ρ) number of qubits effectively, we need to spend
kBT (S (ρd) − S (ρ)) = kBTCr(ρ) amount of energy per copy.
Physically, this suggests that kBTCr(ρ) can also be interpreted
as the amount of energy required to keep a state coherent. Fur-
ther exploration along these lines will be the subject of future
work.

V. CONCLUSION AND DISCUSSION

To conclude, we have provided an operational interpreta-
tion to quantum coherence as measured by the relative entropy
of coherence, in terms of the amount of noise that is to be in-
jected in a quantum system in order to fully decohere it, in the
asymptotic limit. This provides thermodynamic cost of eras-
ing quantum coherence. Moreover, our result is robust, i.e., if
we allow for nonzero error in the erasing process, it still gives
the same answer in the asymptotic limit. The resource theory
of coherence starts with the premise that the allowed opera-
tions are the incoherent ones and the free states are the inco-
herent states, and proposes the relative entropy of coherence
as a valid measure. However, its operational interpretation
was lacking. Our results imply that with the above restric-
tions, the quantifier of coherence has an explicit operational
significance.

Erasure of information and therefore erasure of coherence
has deep connections with physics and information science.
When we erase information the final state is reset to a fixed
state that can be used again in quantum memory, thus bleach-
ing out all the information. Therefore, the erasure of quantum
coherence is in general different from the erasure of informa-
tion. We may have a physical process where we end up with a
diagonal state in some chosen basis, leading to erasure of co-
herence yet that may not correspond to erasure of information.
However, erasure of information or hiding of information nec-
essarily means that the system looses everything including the
coherence. Here, in this work, we have argued that the erasure
of coherence and cost of keeping coherence of any state, in
the asymptotic limit, is given by the relative entropy of coher-
ence. It will be very interesting to further explore the relation
between no-hiding theorem and coherence erasure. This will
be the subject of future work. We hope that our result may
provide deep insights into the nature of coherence and inter-
play of information within the realm of quantum information
and thermodynamics.
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Appendix A: Trace distance and gentle operator lemma

For the sake of completeness, here we provide the already
well known results in the context of trace distance, such as
gentle operator lemma [68, 69] and Fannes-Audenaert In-
equality [53]. We also state operator Chernoff bound [55, 56]
and list properties of typical subspaces. All these results are
quoted from [52] along with original references.

In the context of continuity of von Neuman entropy, Aude-
naert proved a tighter inequality than Fannes’ inequality [70],
which is now known as Fannes-Audenaert inequality [53] and
can be stated as

Fannes-Audenaert Inequality ([53]):– For any ρ and σwith
T ≡ 1

2 ||ρ − σ||1, the following inequality holds:

|H (ρ) − H (σ)| ≤ T log (d − 1) + H2(T ), (A1)

where d is the dimension of the Hilbert space of the system
in the state ρ and H2(T ) = −T ln T − (1 − T ) ln(1 − T ) is
the binary Shanon entropy. Next we state, the gentle operator
lemma, which was first given in Ref. [68] and later improved
in Ref. [69] (see also [52]).

Gentle operator lemma ( [68, 69]) :– Suppose that a mea-
surement operator Λ (0 ≤ Λ ≤ I) has a high probability of
detecting a subnormalised state ρ, i.e., Tr {Λρ} ≥ Tr(ρ) − ε,
where 1 ≥ ε > 0 and ε is close to zero. Then

√
Λρ
√

Λ is
2
√
ε-close to the original state ρ in trace distance:∥∥∥∥ρ − √Λρ

√
Λ
∥∥∥∥

1
≤ 2
√
ε, (A2)

where ‖σ‖1 = Tr
√
σ†σ.

Typical Sequence and Typical Set:– A sequence xn is δ-
typical if its sample entropy H (xn) is δ-close to the entropy
H (X) of random variable X, where this random variable is the
source of the sequence. The set of all δ-typical sequences xn

is defined as the typical set T Xn

δ , i.e.,

T Xn

δ ≡ {x
n : |H (xn) − H(X)| ≤ δ}. (A3)

Now, consider a quantum state with spectral decomposition

as

ρX =
∑

x

pX(x) |x〉 〈x|X . (A4)

Considering n copies of the state ρX , we have

(ρX)⊗n := ρXn
=

∑
xn

pXn (xn) |xn〉 〈xn|
Xn
, (A5)

where Xn = (X1 . . . Xn), xn = (x1 . . .n), pXn (xn) =

pX(x1) . . . pX(xn) and |xn〉 = |x1〉
X1 ⊗ . . . ⊗ |xn〉

Xn .
Typical Subspace:– The δ-typical subspace T Xn

ρ,δ is a sub-
space of the full Hilbert space X1, . . . , Xn and is spanned by
states |xn〉X

n
whose corresponding classical sequences xn are

δ-typical:

T Xn

ρ,δ ≡ span
{
|xn〉

Xn
: xn ∈ T Xn

δ

}
. (A6)

Also, one can define a typical projector, which is projector
onto the typical subspace, as

ΠXn

ρ,δ ≡
∑

xn∈T Xn
δ

|xn〉 〈xn|
Xn
. (A7)

Properties of typical subspaces:– (a) The probability that
the quantum state ρXn

is in the typical subspace T Xn

ρ,δ ap-
proaches one as n becomes large:

∀ε > 0 Tr
{
ΠXn

ρ,δρ
Xn}
≥ 1 − ε for sufficiently large n, (A8)

where ΠXn

ρ,δ is the typical subspace projector. (b) The dimen-

sion dim
(
T Xn

ρ,δ

)
of the δ-typical subspace satisfies

∀ε > 0 (1 − ε) 2n(H(X)−δ) ≤ Tr
{
ΠXn

δ

}
≤ 2n(H(X)+δ), (A9)

for sufficiently large n. (c) For all n the operator ΠXn

δ ρ
Xn

ΠXn

δ
satisfies

2−n(H(X)+δ)ΠXn

δ ≤ ΠXn

δ ρ
Xn

ΠXn

δ ≤ 2−n(H(X)−δ)ΠXn

δ . (A10)

Operator Chernoff Bound ([55, 56], see also [52]):– Let
X1, . . . , Xn (∀m ∈ [n] : 0 ≤ Xm ≤ I) be n independent
and identically distributed random variables with values in the
algebra B (H) of bounded linear operators on some Hilbert
space H . Let X denote the sample average of the n random
variables: X = 1

n
∑n

m=1 Xm. Suppose that for each operator Xm

EX {Xm} ≥ aI, (A11)

where a ∈ (0, 1). Then for every ε where 0 < ε < 1/2 and
(1 + ε) a ≤ 1, the probability that the sample average X lies
inside the operator interval [(1 ± ε)EX {Xm}] is bounded as

Pr
X

{
(1 − ε)EX {Xm} ≤ X ≤ (1 + ε)EX {Xm}

}
≥ 1 − 2 dim(H) exp

(
−

nε2a
4 ln 2

)
. (A12)
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