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Abstract

A linearized variant of relative entropy is used to quantify in an unified scheme the different kinds

correlations in a bipartite quantum system. As illustration, we consider a two-qubit state with parity

and exchange symmetry for which we derive the total, classical and quantum correlations. We also

give the explicit forms of its closest product state, closest classical state and the corresponding closest

product state to derive a closed additive relation involving the various correlations when measured by

linear relative entropy.
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1 Introduction

Quantum entanglement in quantum systems, comprising two or more parts, constitutes a key concept

to distinguish between quantum and classical correlations and subsequently to understand quantum-

classical boundary. Also, besides its fundamental importance, entanglement is commonly accepted to

be extremely important in the development of modern quantum information science [1, 2, 3, 4, 5, 6]. In

fact, they have found various applications in quantum information processing as for instance quantum

cryptography [7], quantum teleportation [8], quantum dense coding [9]. Nowadays, entanglement

began to be recognized as valuable resource for performing communication and computational tasks

[10, 11, 12]. In view of these remarkable realizations and implementations, the concept of entanglement

is expected to have many other implications and applications in others areas of research, especially

condensed matter physics.

Therefore, quantification and characterization of quantum correlations between the sub-components

of a quantum system have attracted a special attention during the last two decades. Different measures

were introduced from different perspectives and for various purposes [13, 14, 15, 16]. Probably the

most familiar measure is quantum discord [17, 18] which goes beyond the entanglement of formation

[19, 20]. It is given by the difference of total and classical correlations existing in a bipartite system.

Now, it is well understood that almost all quantum states, including unentangled (separable) ones,

posses quantum correlations. However, the analytical evaluation of quantum discord requires an op-

timization procedure that is generally a challenging task [21, 22, 23, 24, 25, 26, 27, 28]. To overcome

this difficulty, a geometrical approach was proposed in [29]. This uses the Hilbert-Schmidt norm in

the space of density matrices and presents the advantage that it provides closed analytical expressions.

Clearly, Hilbert-Schmidt norm is not the unique distance which can be defined in the space of quantum

states. Several distances are possible (trace distance, Bures distance, ...) with their own advantages

and drawbacks and each one might be useful for some appropriate purpose [30, 31, 32, 33].

The states of any multipartite quantum system can be classified as being classical, quantum-

classical and quantum states. Subsequently, the correlations can also be categorized in total, quan-

tum, semi-classical and classical correlations. This requires a specific measure (entropic or geometric

measure) to decide about the dissimilarity between a given quantum state and its closest one without

the desired property and to provide a scheme to compare consistently different correlations existing in

systems comprising two or more parts. In this sense, using the relative entropy, an approach unifying

the correlations in multipartite systems was developed recently in [34]. In particular, a very significant

and interesting additivity relation was reported (D+C = T +L) which reflects the sum of quantum D

and classical C correlations is equal to the sum of total mutual correlations T and another quantity L

that is exactly the difference between D and the quantum discord as originally introduced in [17, 18].

However, it must be noticed that despite its theoretical information meaning, the relative entropy

is not symmetrical in its arguments and therefore can not be viewed as a true metric distance. In

other hand, from an analytical point of view, the derivation of closed expressions of based entropy
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measures involves optimization procedures that are in general challenging and complicated to achieve.

In this respect, a purely geometrical unified framework to classify the correlations in a given quantum

state was discussed in [35, 36]. Using Hilbert-Schmidt norm and paralleling the analytical analysis

in deriving the geometric discord, the geometric measures of mutual and classical correlations in a

given system were derived [35, 36]. Contrarily to relative entropy measures, the additivity relation of

the type (D + C = T + L) is generally not satisfied when quantum correlations are quantified with

Hilbert-Schmidt distance.

In this paper, we introduce a linearized variant of relative entropy to obtain analytical expressions

of quantum and classical correlations in a two qubit system. The relation with the geometric measure

based on Hilbert-Schmidt norm is established and allows the derivation of computable correlations.

In this respect, this approach can be seen, in some sense, interpolating between the based relative

entropy view and the geometrical one. More specifically, it provides us with a very simple way to

perform the optimization required in deriving closest product, classical and classical product states.

We also show that the correlations satisfy a closed additivity. Also, the analytical expressions of the

correlations are explicitly derived.

This paper is organized as follows. In the second section, using the linear entropy, we define

the linear form of relative entropy which can decomposed in symmetric and anti-symmetric parts.

The antisymmetric part is related to quantum Jensen-Shannon divergence. In other hand, the sym-

metric part is exactly the Hilbert-Schmidt distance. We also discuss and compare the additivity

relations of the various correlations in a bipartite quantum system using the linear relative entropy

and Hilbert-Schmidt norm. In section 3, as illustration, we consider bipartite system possessing the

parity symmetry and invariant under the exchange of its sub-components. In this situation the ex-

plicit derivation of closest product state, the classical state and its closest product state is achieved.

The analytical expressions of total, quantum and classical correlations are obtained and the additivity

relation are discussed. Concluding remarks close this paper.

2 Correlation quantifiers based symmetrized linear relative entropy

2.1 Correlation quantifiers based relative entropy

The main ingredient of the unified view of the correlations existing in multipartite systems is the

concept of relative entropy [34]. It is the quantum analogue of the Kullback-Leibler divergence between

two classical probability distributions and provides a measure of the dissimilarity between two quantum

states. The relative entropy defined by

S(ρ‖σ) = −Tr(ρ log σ)− S(ρ), (1)

constitutes a quantitative tool to distinguish between the states of a given quantum and gives the

distance between them according to the nature of their properties ( S(ρ) = −Tr(ρ log ρ) is the von

Neumann entropy). The distance between a given state ρ and the closest product state (πρ = ρA⊗ρB),
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where ρA and ρB denote the reduced densities matrices of the subsystems, as measured by relative

entropy, quantifies the total correlation T = S(ρ‖πρ). It writes as the difference of the von Neumann

[34]

T = S(ρ‖πρ) = S(πρ)− S(ρ) (2)

Similarly, using relative entropy, the quantum discord encompassing quantum correlations is measured

as the minimal distance between the state ρ and the classical states

χρ =
∑

i,j

pi,j|i〉〈i| ⊗ |j〉〈j| (3)

where pi,j are the probabilities and {|i〉, |j〉} local basis. It writes also as the difference between the

von Neumann entropies of the states ρ and χρ [34]

D = S(ρ‖χρ) = S(χρ)− S(ρ). (4)

The classical correlation, as measured by relative entropy, gives the distance between the classical

state χρ and its closest classical product state πχρ
. It coincides with the difference of von Neumann

enropies of the relevant states

C = S(χρ‖πχρ
) = S(πχρ

)− S(χρ). (5)

In this approach the based relative entropy quantum correlations or quantum discord D (4) does not

coincide with the quantum discord as defined originally in [17, 18]. The difference is given by [34]

L = S(πρ‖πχρ
) = S(πχρ

)− S(πρ). (6)

Noticing that the based entropy correlations T , D, C and L can be expressed as differences of von

Neumann entropies (Eqs. (2), (4), (5) and (6)), Modi et al have shown the following remarkable

additivity relation [34]

T −D − C + L = 0. (7)

It must be noticed that the relative entropy (1) is not symmetric under the exchange ρ ↔ σ. In this

respect, it cannot define a distance from a purely mathematical point of view. Moreover, the relative

entropy induces intractable minimization procedures that are in general very difficult to perform. To

avoid such difficulties the linear relative entropy offers an alternative way to get computable expressions

of correlations existing in multipartite systems [35].

2.2 Symmetrized linear relative entropy

The linear entropy

S2(ρ) =̇ 1− Tr(ρ2)

is related to the degree of purity, P = Tr(ρ2), and therefore reflects the mixedness in the state ρ. It

is defined as a linearized variant of von Neumann entropy by approximating log ρ by ρ − I where I

stands for the identity matrix. Accordingly, the relative entropy (1) can be linearized as follows

Sl(ρ1‖ρ2) = Trρ2(ρ1 − ρ2) (8)
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that is obviously not symmetric by interchanging ρ1 and ρ2. To define a symmetrized linear relative

entropy, Sl(ρ1‖ρ2) is decomposed as the sum of two terms: symmetric and antisymmetric. The

symmetric part is defined by

S+(ρ1‖ρ2) = Sl(ρ1‖ρ2) + Sl(ρ2‖ρ1). (9)

The antisymmetric term is given by

S−(ρ1‖ρ2) = Sl(ρ1‖ρ2)− Sl(ρ2‖ρ1) (10)

and rewrites as the differences between the linear entropies of the states ρ1 and ρ2

S−(ρ1‖ρ2) = S2(ρ2)− S2(ρ1). (11)

It is important to emphasize that the symmetrized linear relative entropy (9) is related to some

generalized version of relative entropy discussed in the literature. Indeed, it can be expressed as

S−(ρ1‖ρ2) = D2(ρ1 + ρ2‖ρ2 − ρ1)−D2(ρ1 + ρ2‖ρ1 − ρ2) (12)

in terms of quantum Jensen-Shannon entropy of order 2 defined by

D2(ρ1‖ρ2) := S2

(

ρ1 + ρ2

2

)

− 1

2
S2(ρ1)−

1

2
S2(ρ2). (13)

which is a symmetrized version of relative entropy. It was recently used to investigate the distance

between quantum states (see for instance [37, 38] and references quoted therein) and subsequently

constitutes a good geometric candidate to classify quantum states according to their correlation con-

tents. The square root of quantum Jensen-Shannon divergence is a metric and can be isometrically

embedded in a real Hilbert space equipped with a Hilbert-Schmidt norm [37]. This result is very useful

in our context. In fact, using (8) and (9), the symmetric part of symmetrized linear relative entropy

is exactly the Hilbert-Schmidt distance

S+(ρ1‖ρ2) = ‖ρ1 − ρ2‖2. (14)

The symmetric and antisymmetric linear entropy are the essential ingredients in this work. The

symmetrized linear relative entropy is utilized to measure the distance between the states of a given

quantum system and the antisymmetrical linear relative entropy quantifies the amount of correlations

existing between two distinct states. Hence, the linear relative entropy offers an adequate scheme to

derive explicit expressions for correlations in a common framework and to discuss the relationship

between quantum, semi-quantum and classical correlation. Further, in view of the emergence of

Hilbert-Schmidt distance in the context of linear relative entropy, interesting relations between the

correlations as measured by linear relative entropy and their Hilbert-Schmidt counterparts, as defined

in [35, 36], can be derived. This issue is discussed in the remaining part of this section.
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2.3 Additivity relation of geometric and entropic correlations

The Fano-Bloch representation of an arbitrary two-qubit state ρ is

ρ =
1

4

∑

α,β

Rα,β σα ⊗ σβ (15)

where α, β = 0, 1, 2, 3, Ri0 = Trρ(σi ⊗ σ0), R0i = Trρ(σ0 ⊗ σi) are components of local Bloch vectors

and Rij = Trρ(σi ⊗ σj) are components of the correlation tensor. The operators σi (i = 1, 2, 3) stand

for the three Pauli matrices and σ0 is the identity matrix. The distance (14), between two distinct

density matrices ρ and ρ′, writes as

S+(ρ‖ρ′) ≡ d(ρ, ρ′) =
1

4

∑

α,β

(Rα,β −R′

α,β)
2, (16)

in terms of the elements of the correlations matrices. Beside the distance defined by (16), the linear

analogue of total correlation T (2), quantum correlation D (4), Classical correlation C (5) and the

quantity L (6) are respectively given by

T2 = S−(ρ‖πρ) D2 = S−(ρ‖χρ) C2 = S−(χρ‖πχρ
) L2 = S−(πρ‖πχρ

). (17)

Using the expression (11), it is simply verified that the correlations T2, D2, D2 and L2 can be written

as differences of linear entropies. This implies the remarkable additivity relation

T2 −D2 − C2 + L2 = 0. (18)

Since the Hilbert-Schmidt provides an useful tool to quantify geometrically the quantum correlation

(geometric quantum discord) [29], the geometric analogues of total correlation T (2), quantum cor-

relation D (4), classical correlation C (5) and the quantity L (6) were introduced in [36]. They are

defined by

Tg ≡ ‖ρ− πρ‖2, Cg ≡ ‖χρ − πχρ
‖2, Dg(ρ) = ‖ρ− χρ‖2, Lg ≡ ‖πρ − πχρ

‖2, (19)

Furthermore, in view of the relation between the distance (9) and the Hilbert-Schmidt norm given

by (14), the based linear relative entropy correlations can be expressed in terms of their geometric

counterpart. Indeed, from the definitions (17), one gets

T2 = Tg−2S2(πρ‖ρ), D2 = Dg−2S2(χρ‖ρ), C2 = Cg−2S2(πχρ
‖χρ), L2 = Lg−2S2(πχρ

‖πρ) (20)

or alternatively

T2 = Tg+2Tr
(

πρ(ρ−πρ)
)

, D2 = Dg+2Tr
(

χρ(ρ−χρ)
)

, C2 = Cg+2Tr
(

πχρ
(χρ−πχρ

)
)

, L2 = Lg−2Tr
(

πχρ
(πρ−πχρ

)
)

(21)

Reporting the equations (20), or equivalently (21), in the additivity relation (18), it easily verified

that the correlations as measured by Hilbert-Schmidt norm satisfy the relation

Tg −Dg − Cg + Lg = ∆g (22)
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where

∆g = 2

[

Tr
(

πρ(πρ − ρ)
)

+Tr
(

πχρ
(χρ − πρ)

)

]

. (23)

It is important to note the classical states χρ satisfy Trρχρ = Trχ2
ρ [29] and subsequently the geometric

discord Dg coincides with the linear quantum correlation D2 (D2 = Dg). It is clear from equation (22)

that the geometric measures of correlations close an additive relation of type (18) when ∆g vanishes.

The use of Hilbert-Schmidt norm in quantifying and unifying the different correlations in a bipartite

system was recently investigated in two-qubit X states [36]. More specifically, it has been shown

that the additivity relation does not hold in general except for some specific cases like for instance

Bell states [35]. Along the same lines of reasoning, we shall consider a family of two-qubit states

parameterized by two real parameters to derive the explicit from of pairwise correlations measured by

linear relative entropy and we compare the obtained results with ones measured by Hilbert-Schmidt

norm. This constitutes the main of the next section.

3 Analytical expressions of correlations

To illustrate the results discussed in the previous section and to investigate qualitatively the differences

between the linear relative entropy measures and geometric ones based on Hilbert-Schmidt distance,

we shall consider a family of two qubit density matrices whose entries are specified in terms of two

real parameters. They are defined as

ρ =













c1 0 0
√
c1c2

0 1
2
(1− c1 − c2)

1
2
(1− c1 − c2) 0

0 1
2
(1− c1 − c2)

1
2
(1− c1 − c2) 0

√
c1c2 0 0 c2













(24)

in the computational basis B = {|00〉, |01〉, |10〉, |11〉}. The parameters c1 and c2 are positive with

c1 + c2 ≤ 1. We have taken all entries positives. In fact, the local unitary transformation

|0〉k → exp

(

i

2
(θ1 + (−)kθ2)

)

|0〉k

eliminates the phase factors of the off diagonal elements and the rank of the density matrix ρ remains

unchanged. Re-expressed in the Fano-Bloch representation, the density ρ takes the form (15) and the

non vanishing matrix correlation elements are

R30 = R03 = c1 − c2 R33 = 2(c1 + c2)− 1, (25)

R11 = 1− (
√
c1 −

√
c2)

2 R22 = 1− (
√
c1 +

√
c2)

2 (26)

where 0 ≤ c1, c2 ≤ 1. On other hand, the density matrix considered here is invariant under parity

symmetry and exchange transformation (ρ commutes with σ3 ⊗ σ3 and the permutation operator

which exchanges the qubit state |i, j〉 to |j, i〉). This reduces considerably the analytical evaluations

of bipartite correlations.
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3.1 Total correlation and closest product state

3.2 Closest product state

We shall begin our illustration by deriving the explicit expression of total correlation T2 defined by

(17). So, we first determine the closest product state to the density matrix ρ (24). An arbitrary

product state πρ = ρ1 ⊗ ρ2 writes

πρ = ρ1 ⊗ ρ2 =
1

4

[

σ0 ⊗ σ0 +
3

∑

i=1

(aiσi ⊗ σ0 + biσ0 ⊗ σi) +
3

∑

i,j=1

aibjσi ⊗ σj

]

(27)

where ~a = (a1, a2, a3) and ~b = (b1, b2, b3) denote the unit Bloch vectors of the states ρ1 and ρ2

ρ1 =
1

2
[σ0 +

3
∑

i=1

aiσi], ρ2 =
1

2
[σ0 +

3
∑

i=1

biσi]. (28)

Since the density matrix ρ is invariant by exchanging the role of the subsystems 1 and 2, its closest

product state is also invariant under this operation. This implies

ai = bi i = 1, 2, 3.

Furthermore, the parity symmetry of the density matrix ρ ([ρ, σ3⊗σ3] = 0) implies the parity invariance

of the product πρ. This imposes

ai = bi = 0 i = 1, 2.

It follows that the distance between the state ρ and πρ takes the simple form

d(ρ, πρ) =
1

4

[

2(R30 − a3)
2 +R2

11 +R2
22 + (R33 − a23)

2
]

(29)

to be optimized with respect one variable only, i.e. a3. The parity and exchange symmetries simplify

the minimization process to get the closest product state. Indeed, it is easy to see that the minimum

value of the distance (29) is reached when the variable a3 satisfies the following cubic equation

a33 + a3(1−R33)−R30 = 0. (30)

Being constrained to real solutions, the only real solution is given by

a3 =
3

√√
∆+R30

2
− 3

√√
∆−R30

2
(31)

where

∆ = R2
30 +

4

27
(1−R33)

3

is positive ( R33 ≤ 1). It follows that the closest product state to ρ is explicitly given by

πρ =
1

4

[

σ0 ⊗ σ0 + a3 σ3 ⊗ σ0 + a3 σ0 ⊗ σ3 + a23 σ3 ⊗ σ3

]

. (32)
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3.2.1 Total correlation

Using (17) together with (10), the total correlation, as measured by linear relative entropy, writes

T2 =
1

4

[

2(R2
03 − a23) +R2

11 +R2
22 + (R2

33 − a43)]. (33)

The behavior of total correlation T2 versus c1 is given in the figure 1 for different values of α = c1+ c2

(α = 0.1, 0.2 · · · , 0.9). In this figure, as well as in others presented in this paper, the parameter c1

is varying from 0 to α. Accordingly, it is easily distinguishable the line representing the behavior of

total correlation T2 versus c1 for each fixed value of α. For instance, the short line corresponds to

α = 0.1 and the long one represents the total correlation when α = 0.9. The minimal values of total

correlation are obtained for (c1 = 0, c2 = α) and (c1 = α, c2 = 0). These two situations correspond

respectively to states of the form

ρ(c1 = 0, c2 = α) = α|11〉〈11| + (1− α)|ψ1〉〈ψ1| (34)

and

ρ(c1 = α, c2 = 0) = α|00〉〈00| + (1− α)|ψ1〉〈ψ1| (35)

where

|ψ1〉 =
1√
2
(|00〉 + |11〉). (36)

The total correlation reaches its maximal values for c1 = c2 = α
2
. In this respect, among the states

under consideration, more correlated are those of the form

ρ(c1 =
α

2
, c2 =

α

2
) = αρ0 + (1− α)ρ1 (37)

where the states ρ1 and ρ0 are respectively given by

ρ1 = |ψ1〉〈ψ1| (38)

where |ψ1〉 is given by (36) and

ρ0 = |ψ0〉〈ψ0| (39)

where |ψ0〉 is the state defined by

|ψ0〉 =
1√
2
(|01〉 + |10〉)

In other hand, it is clear from figure 1 that when 0 ≤ α ≤ 0.5, the total correlation T2 increases as

the parameter α increases. For instance, for c1 = 0.05 the amount of classical correlation, present in

states (24) with α = 0.1, exceeds ones measured by linear entropy in states with α = 0.2, 0.3, 0.4, 0.5.

The situation is completely different for α ≥ 0.5. Indeed, for small values of c1, the total correlation

present in states with α = 0.6 is higher than correlations present in states with α = 0.7, 0.8, 0.9. For

high values of c1 (c1 = 0.55 for instance), more correlation is obtained for states with α = 0.9.
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Figure 1. Total correlation T2 versus the parameter c1 for different values of α = c1 + c2.

3.3 Quantum correlation and closest classical state

3.3.1 Quantum discord

It is commonly accepted that the explicit evaluation of based entropy quantum discord [17, 18] is

a difficult task for an arbitrary bipartite system. This difficulty originates from the minimization

procedure of conditional entropy which was achieved only for some special types of two qubit systems

[21, 22, 23, 24, 39, 40, 41] (see also [42, 43] and references therein). To overcome this problem, the

geometric quantifier of quantum discord, using the Hilbert-Schmidt norm, was introduced in [29]. It

is defined as the minimal Hilbert-Schmidt distance between a given state ρ and the closest classical

states of the form

χ =
∑

i=1,2

pi|ψi〉〈ψi| ⊗ ρi (40)

when the measurement is performed on the first subsystem. In equation (40), pi is a probability

distribution, ρi is the marginal density matrix of the second subsystem and {|ψ1〉, |ψ2〉} is an arbitrary

orthonormal vector set. Based on the results obtained in [29], the explicit expression of the geometric

quantum discord in the state (24) writes

Dg =
1

4

(

R2
11 +R2

22 +R2
33 +R2

03 − λmax

)

(41)

where the correlation elements are given by (25) and (26) and λmax is

λmax = max(λ1, λ2, λ3) (42)

where λ1, λ2 and λ3 denote respectively the elements of the diagonal matrix K given by

K := diag (R2
11, R

2
22, R

2
33 +R2

03).

The closest classical state is the eigenstate associated with λmax [29]. As already mentioned the

quantum correlation D2 coincides with the geometric measure of quantum discord. Thus, one gets

D2 = Dg =
1

4
min{λ1 + λ2, λ1 + λ3, λ2 + λ3}. (43)
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where the explicit expressions of the eigenvalues of the matrix K, corresponding to the state ρ, are

λ1 =
[

1− (
√
c1 −

√
c2)

2
]2

λ2 =
[

1− (
√
c1 +

√
c2)

2
]2

λ3 =
1

2

[

(3c1 + c2 − 1)2 + (c1 + 3c2 − 1)2
]

Since λ1 is always greater than λ2, the geometric discord is simply given by

Dg =
1

4
min{λ1 + λ2 , λ2 + λ3} =

1

4
{min(λ1, λ3) + λ2}.

Thus, to compare the eigenvalues λ1 and λ3, we need to determine the sign of the following two

variables function

λ3 − λ1 = 2(
√
c1 +

√
c2)(

√
c1(2c1 − 1) +

√
c2(2c2 − 1)),

which is positive when the parameters c1 and c2 satisfy the condition

√
c1(2c1 − 1) +

√
c2(2c2 − 1) ≥ 0. (44)

Conversely, when this quantity is non positive, we have λ3 ≤ λ1. Setting

√
c1 = e−r cos θ,

√
c2 = e−r sin θ with r ∈ R, 0 ≤ θ ≤ π

2
,

the condition (44) rewrites

e−r(cos θ + sin θ)(2e−2r(1− cos θ sin θ)− 1) ≥ 0

which is satisfied when

2e−2r(1− cos θ sin θ)− 1 ≥ 0

or equivalently

c1 + c2 −
√
c1c2 ≥

1

2
(45)

in terms of the parameters c1 and c2. The set of states of type (24) can be written as

{ρ ≡ ρc1,c2 0 ≤ c1 + c2 ≤ 1} =

1
⊕

α=0

{ρα ≡ ρc1,α−c1 0 ≤ c1 ≤ α}

with

c1 + c2 = α 0 ≤ α ≤ 1.

The condition (45) is satisfied if and only if α ≥ 1
2
. This implies that for a fixed value α ≤ 1

2
, the

difference λ3 − λ1 is non positive and the geometric measure of quantum discord (43) writes

Dg = D+
g =

1

4
(λ2 + λ3). (46)

For α ≥ 1
2
, the condition (45) is satisfied for

0 ≤ c1 ≤ α− α+ ≤ c1 ≤ α
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where

α± =
α

2
± 1

2

√

(1− α)(3α − 1) (47)

In this situation, the geometric quantum discord is given by

Dg = D−

g =
1

4
(λ1 + λ2). (48)

It reads

Dg = D+
g =

1

4
(λ2 + λ3). (49)

when α− ≤ c1 ≤ α+.

3.3.2 Closest classical state

To obtain the explicit form of the closest classical state to the state (24), we follow the procedure

developed in [29]. It consists in minimizing the Hilbert-Schmidt distance and determining the eigen-

vector corresponding to the eigenvalue λmax. We discuss separately the situations λmax = λ1 and

λmax = λ3. We first consider the situation where λ1 ≤ λ3. In this case, we find that the zero discord

states, as measured by Hilbert-Schmidt distance, has the form

χ−

ρ =
1

4
[σ0 ⊗ σ0 +R30σ3 ⊗ σ0 +R30σ0 ⊗ σ3 +R33σ3 ⊗ σ3], (50)

where the notation − stands for the condition λ1 − λ3 ≤ 0. In this case the pairwise quantum

correlation is

D−

2 = S−(ρ‖χ−

ρ ) =
1

4
(λ1 + λ2) =

1

4
(R2

11 +R2
22), (51)

which rewrites in terms of the parameters c1 and c2 as

D−

2 ≡ D−

g (ρ) =
1

4

[

1− (
√
c1 −

√
c2)

2
]2

+
1

4

[

1− (
√
c1 +

√
c2)

2
]2

It is interesting to note that the closest classical state χ−
ρ satisfies

Trρχ−

ρ = Trχ−
2

ρ

reflecting that the geometric quantum discord coincides indeed with the quantum correlation evaluated

by means of linear relative entropy. Similarly, in the situation where λ1 > λ3, it is easy to verify that

the closest classical state is given by

χ+
ρ =

1

4

[

σ0 ⊗ σ0 +R03σ0 ⊗ σ3 +R11σ1 ⊗ σ1

]

, (52)

where the notation + refers now to the situation where λ1 − λ3 > 0. In this case, the maximal

eigenvalue of the correlation matrix K is λ1 and the Hilbert-Schmidt distance between the density

matrix ρ and its closest classical state is

D+
2 = S−(ρ‖χ+

ρ ) =
1

4
(λ2 + λ3) =

1

4
(R2

22 +R2
03 +R2

33) (53)
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which can be also re-expressed as

D+
2 ≡ D+

g (ρ) =
1

4

[

[

1− (
√
c1 +

√
c2)

2
]2

+
1

2

[

(3c1 + c2 − 1)2 + (c1 + 3c2 − 1)2
]

]

.

Here also, the closest classical states (50) and (52) satisfy the following identities

Trρχ±

ρ = Trχ±2

ρ

The quantum discord as measured by linear entropy, which coincides with geometric quantum discord

using Hilbert-Schmidt norm, is represented in the figures 2 and 3. Figure 2 gives the amount of

quantum correlations for states with α ≤ 1
2
. It is clearly seen that the quantum discord is minimal

value for c1 = α
2
. It is intersting to note that in the minimally discordant states, given by (37), the

total correlation is maximal (see figure 1). In other hand, the maximal value of quantum discord is

obtained for states with (c1 = 0, c2 = α) and (c1 = α, c2 = 0) which are respectively given by the

expressions (34) and (35). Here also it important to note that the total correlation, in these maximally

discord states, is minimal (see figure 1). It follows that for the states under consideration(24) the

quantum discord is maximal (resp. minimal) for states presenting a minimal (resp. maximal) amount

of total correlation. The quantum discord evolves smoothly contrarily to the situation where α ≥ 1
2

(figure 3) where the quantum discord changes suddenly when c1 = α− and c1 = α+ given by the

expressions (47). This sudden change of quantum discord occurs when the states present a maximum

amount of quantum correlation. The behavior of quantum discord present then three distinct phases:

0 ≤ c1 ≤ α−, α− ≤ c1 ≤ α+ and α− ≤ c1 ≤ α. The minimal value of quantum discord is obtained in

the intermediate phase (α− ≤ c1 ≤ α+) for the states of the form (37).

Figure 2. Quantum discord D2 ≡ Dg as function of the parameter c1 for α ≤ 1
2
.
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Figure 3. Quantum discord D2 ≡ Dg as function of the parameter c1 for α ≥ 1
2
.

3.4 Classical correlations

Now, we consider the analytical derivation of classical correlation (17) in the state ρ (24). For this

end, we need to determine the closest product states to classical states χ−
ρ and χ+

ρ . We discuss first

the situation where the classical is given by χ−
ρ (50). Noticing that χ−

ρ possess parity and exchange

symmetries, its closest product state is obtained following the method used to derive the closest

product state (32). Hence, one gets

π
χ−

ρ

=
1

4

[

σ0 ⊗ σ0 + a3σ3 ⊗ σ0 + a3σ0 ⊗ σ3 + a23σ3 ⊗ σ3

]

(54)

that coincides with πρ. Subsequently, the classical correlation writes

C−

2 =
1

4

[

2(R2
03 − a23) + (R2

33 − a43)]. (55)

The determination of the closest classical product to classical state χ+
ρ is slightly different from the

previous case. In fact, the state χ+
ρ is invariant under parity transformation but it is not invariant

under exchange symmetry. It follows that the closest classical product should have the form

π+χρ
=

1

4

[

σ0 ⊗ σ0 + α3σ3 ⊗ σ0 + β3σ0 ⊗ σ3 + α3β3σ3 ⊗ σ3

]

, (56)

where the variables α3 and β3 are obtainable by minimizing the Hilbert-Schmidt distance between the

states χ+
ρ (52) and πχ+

ρ
(56). This gives

α3 = 0 β3 = R03.

Thus, the closest product state is

πχ+
ρ
=

1

4
[σ0 ⊗ σ0 +R03σ0 ⊗ σ3], (57)

and from the definition (17), the classical correlation reads

C+
2 =

1

4
R2

11. (58)

Finally, using the definition of the quantity L2 (17) and the expressions of the closest product πρ (32)

and the closest classical product states πχ−

ρ

(54) and πχ+
ρ

(57), one obtains

L−

2 = 0 L+
2 =

1

4

[

2a23 + a43 −R2
03], (59)

and one recovers the additivity relation

T2 + L±

2 = D±

2 +C±

2

as excepted.
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Figures 4 and 5 give the classical correlations the distances between classical states and their

closest product states as measured by linear relative entropy. For α ≤ 1
2
, the classical correlation

behaves like total correlation. It is maximal for the states satisfying c1 = c2 = α
2
(37) and minimal

for (c1 = 0, c2 = α) (Eq. (34)) and (c1 = α, c2 = 0) (Eq. (35)). Figure 5 shows a discontinuity of

classical correlations in the points c1 = α− and c1 = α+ (Eq.(47)) where the quantum discord changes

suddenly. This discontinuity indicates that the linear relative entropy L+
2 , between the product states

πρ and the product of classical states πχρ
, is non-vanishing and the total correlation does coincides

with the sum of quantum discord D+
2 and classical correlation C+

2 when the parameter c1 ranges from

α− to α+.

Figure 4. Classical correlations C2 versus c1 for α ≤ 1
2
.

Figure 5. Classical correlations C2 versus c1 for α ≥ 1
2
.

3.5 Hilbert-Schmidt measures of correlations

The equations (20), or equivalently (21), give the relations between the geometric Hilbert-Schmidt

measures of the various correlations present in the states under consideration and based linear relative

entropy correlations. Indeed, using the expressions of closest product states πρ (32), one gets

Tr
(

πρ(πρ − ρ)
)

=
1

4
a23(R33 − a23). (60)

Similarly, using the closest classical state χ−
ρ (50), χ+

ρ (52) and the closest classical product states πχ−

ρ

(54), πχ+
ρ
(57), one shows

Tr
(

πχ−

ρ

(χ−

ρ − πρ)
)

=
1

4
a23(a

2
3 −R33) (61)
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and

Tr
(

πχ+
ρ
(χ+

ρ − πρ)
)

=
1

4
R03(R03 − a3) (62)

for λ1 ≤ λ3 and λ1 > λ3 respectively. Reporting (60) in (21) and using the result (33), one obtains

the following expression of the geometric measure of total correlation

Tg =
1

4

[

2(R30 − a3)
2 +R2

11 +R2
22 + (R33 − a23)

2

]

. (63)

This result can be also derived from (19) using the expressions of the closest product state (32). In

the same way, substituting (61) (resp. (62)) in the relevant expression in (21) and using (55) (resp.

(58)), one gets

C−

g =
1

4

(

2(R30 − a3)
2 + (R33 − a23)

2
)

. (64)

and

C+
g =

1

4
λ1 =

1

4
R2

11. (65)

The expressions of the quantities L±

2 (59) together with the equation (21), defining the relation between

L±

2 and L±
g , yield

L−

g = 0 L+
g =

a23
4

(

1 + a23 + a3(a
2
3 −R33)

2
)

(66)

Finally, using the equations (60), (61) and (62), the quantity ∆g, defined by (23), is given by

∆−

g = 0 ∆+
g =

1

2
a23(R33 − a23) (67)

for λ1 ≤ λ3 and λ1 > λ3 respectively. From the results (51), (63), (64), (66) and (67), one verifies that

T−

g −D−

g − C−

g = 0

where T−
g stands for the total correlation Tg for the two-qubit states ρ labeled by the parameters c1

and c2 fulfilling the condition λ1 ≤ λ3. This reflects that the total geometric correlation present in

this sub-class of states is exactly the sum of geometric quantum and classical correlations. This result

is no longer valid for the states such that λ3 < λ1. Indeed, from the equations (53), (63), (65), (66)

and (67), we have

T+
g −D+

g − C+
g + L+

g = ∆+
g .

Using the equations (66) and (67), one verifies

∆+
g − L+

g = −1

4
a23

(

a23 + (a23 + 1−R33)
2

)

(68)

which implies that

T+
g −D+

g − C+
g ≤ 0.

In the last equation, the equality holds for a3 = 0 which gives R30 = 0 and subsequently the state ρ

(24) becomes a two-qubit state of Bell type. This agrees with the result derived in [36].
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4 Concluding remarks

The relative entropy constitutes a typical measure providing a quantitative ingredient to deal, in a

common framework, with the different kind of correlations in multipartite systems [34]. In this view

a closed additivity relation involving total T , quantum D, classical C correlations and L the relative

entropy between a classical state and its closest classical product states. However, the relative entropy

formalism presents some technical inconvenience when one needs to determine analytic expressions

of correlations. This is mainely due to optimization process required in minimizing the distance

between a quantum state and its closest one without the required property. To overcome this problem,

and paralleling the definition of geometric discord, the Hilbert-Schmidt distance was considered to

introduce the geometric variants of total, quantum, classical correlations [35, 36]. Unfortunately, the

closed additive relation, obtained when the correlations are measured by relative entropy, ceases in

general to be valid when the Hilbert-Schmidt norm is used. In this paper, we proposed an unified

scheme based on a linearized variant of relative entropy to quantify the correlation in a bipartite

quantum system. This provided us with an useful tool to get computable expressions and to classify

the different correlations in a bipartite quantum system. We compared the correlations quantified by

linear relative entropy with ones obtained by means of Hilbert-Schmidt norm to understand the origin

of deviation from the additivity property. To exemplify our analysis, we have considered a special

class of two-qubit X states for which we obtained the analytical expressions of all types of correlations

(classical, quantum and total) and the explicit form of their closest product states, closest classical

states and closest classical product states.
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