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Abstract

We review entangled coherent state research since its first implicit use in
1967 to the present. Entangled coherent states are important to quantum
superselection principles, quantum information processing, quantum optics
and mathematical physics. Despite their inherent fragility, entangled coherent
states have been produced in a conditional propagating-wave quantum optics
realization. Fundamentally the states are intriguing because they entangle the
coherent states, which are in a sense the most classical of all states of a
dynamical system.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

PACS numbers: 03.67.Bg, 42.50.Dv, 42.50.St

1. Introduction

Coherent states play an important role in representing quantum dynamics, particularly when
the quantum evolution is close to classical. The coherent state was originally introduced by
Schrodinger in 1926 as a Gaussian wavepacket to describe the evolution of a harmonic
oscillator [1]. The centroid (mean values of the canonical variables) obtained from the
Gaussian wavefunction follows the classical evolving harmonic oscillator, thereby mimicking
its periodic evolution, and the spread of the wavepacket is fixed. Furthermore, the spread
(variance) of this wavefunction satisfies the Heisenberg uncertainty relation and hence is as
localized as possible within the constraints of quantum theory.

The coherent state emerged as an important representation [2] with the advent of the laser,
and the concomitant desire to juxtapose quantum electrodynamics with analyses of coherent
optical systems. As the electromagnetic field in free space can be regarded as a superposition
of many classical modes, each one governed by the equations of a simple harmonic oscillator,
the coherent state became significant as a tool for connecting quantum and classical optics.

The coherent state in quantum optics thus embodies the quantum-to-classical transition.
Coherent states are minimum-uncertainty states. The centroid follows the evolution of the
classical canonical variables in the classical optical description. In addition, coherent states
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are eigenstates of the annihilation operator, and hence correspond to classical noiseless fields
in direct detection by ideal point electric-dipole detectors.

As coherent states are regarded as quasiclassical, the introduction of superpositions
of coherent states rapidly became of widespread interest. Evidence of such superpositions
first appeared in a study of a certain type of nonlinear Hamiltonian evolution (Hamiltonian
commuting with number operator) by Milburn [3, 4], and the consequent manifestation of
superpositions of coherent states was analyzed in detail by Yurke and Stoler [5, 6]. Studies of
superpositions of coherent states for a single mode of the electromagnetic field were concerned
with how to produce such states [7], their properties (such as squeezing, photon number
distribution and robustness to environmental decoherence) and extensions to generalized
coherent states [8—15].

Superpositions of coherent states have been reviewed by BuZek and Knight [16].
Superpositions of nearly distinct (i.e. weakly overlapping) coherent states earned the term
‘cat state’, in deference to Schrodinger’s paradox of the cat, whose state of existence seems
to be in a superposition of being dead versus alive [17]. As the states of death and life are
considered to be macroscopically valid and distinct, the superposition of two coherent states,
with large amplitude phases separated by 7 radians, is analogous to this paradox.

Superpositions of coherent states are difficult to produce, and fundamentally this could be
due to extreme sensitivity to environmental decoherence. In fact this sensitivity is important
in informing us as to why such peculiar states are not prevalent in nature. Experimental efforts
to create cat states have concentrated on creating superpositions of coherent states that have
limited distinguishability [18]. Such states have been dubbed ‘Schrédinger kittens’ [19].

Soon after the introduction of these single-mode superpositions of coherent states,
entangled coherent states (or superpositions of multimode coherent states) became of
widespread interest. Entanglement refers to the specific property that a state cannot be
expressed as a convex sum of product states [20]. These superpositions of multimode coherent
states arose independently in several papers. The earliest entangled coherent state appears in
equation (10) of the 1967 Aharonov and Susskind analysis of charge superselection which
shows that charges could appear in superposition [21]. Entangled coherent states thus provided
auseful representation to explain charge superposition within the superselection paradigm [22].

The next appearance of the entangled coherent state appeared in equation (11) of Yurke
and Stoler’s 1986 seminal paper on generating superpositions of coherent states [5]. They
suggested homodyne detection [23-25], which corresponds to a quadrature measurement
[5, 6, 26], as a means for measuring the cat states. Homodyne detection is effected by mixing
the cat state with a local oscillator in a coherent state with controllable phase. Mixing the
local oscillator state with the cat state in an interferometer yields an entangled coherent state
emerging as the output.

The pair coherent state [27-29], which is a special case of the Barut and Girardello
SO(2,1)~SU(1,1)~SL(2,R) coherent state [ 11], has an entangled coherent state representation
in equation (2.6) of Agarwal’s 1988 result [28]. Entangled coherent states as entities of physical
interest in their own right first arose in a study by Tombesi and Mecozzi [30, 31], where the
authors generalize the nonlinear birefringent evolution of Milburn [3, 4] and Yurke and Stoler
[5] to multimode coherent states. Rather than employing the single-mode nonlinear evolution
associated with the ideal optical Kerr nonlinearity, they treat the ideal Hamiltonian evolution
of two orthogonally polarized light beams interacting in a nonlinear birefringent medium.
After an appropriate evolution time, an initial two-mode coherent state evolves to an entangled
coherent state [30-33].

Tombesi and Mecozzi then studied the relevant statistics of these states, such as photon
number distribution and squeezing, as well as robustness to decoherence [31]. Agarwal and
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Puri [34] studied the evolution of a two-mode coherent state through an optical Kerr medium
and studied the entangled coherent state and its statistical properties. They also pointed out
that their entangled coherent state is a simultaneous eigenstate of operators that are quadratic
in the annihilation operators for the two modes.

The term ‘entangled coherent state’ was introduced by Sanders in a study concerning the
production of entangled coherent states by using a nonlinear Mach—Zehnder interferometer
[35, 36]. The nonlinear interferometer comprises a nonlinear medium in one path of a Mach—
Zehnder interferometer. The nonlinear medium alone could suffice to produce entangled
coherent states [30-33], but the interferometric set-up has analogies with the homodyne
detection concept for superpositions of coherent states [5]. Linear optics alone is known to be
insufficient to generate entangled coherent states so a nonlinearity is required [37].

Soon after the proposals to create entangled coherent states in two-mode propagating
fields were made, a cavity quantum electrodynamics realization was proposed using one atom
traversing two cavities and post-selecting on atomic measurement. This scheme was suggested
for realizing entanglement between a coherent state in one mode and the vacuum in the other
mode [38].

Entanglement of a coherent state with a vacuum state (which is a coherent state of zero
amplitude) was a particular focus of the Sanders proposal [35]. In this analysis, a bipartite
entangled coherent state was shown to violate a phase-coherence Bell inequality [39] in the
few-photon limit [35, 36]. Later entangled coherent states were also shown to violate a formal
Bell inequality in the large photon number limit [40].

Coherent states generated by a Kerr nonlinearity, within or without an interferometer,
obey a conservation rule for total photon number, which constrains the phase relationship
between the components of the multimode coherent state superposition. Chai [41] introduced
entangled coherent states as superpositions of two-mode coherent states with equal amplitude,
but opposite in optical phase, and allowed an arbitrary phase relationship between the two
components of the bipartite superposition. The analysis then focused on the two-mode
extension to single-mode even and odd coherent states [42]. Such states are sometimes
called ‘even entangled coherent states’ and ‘odd entangled coherent states’ [43] and naturally
generalize for g-coherent states [44, 45].

Chai studied statistical properties of even and odd entangled coherent states and showed
that the joint photon number distribution of such entangled coherent states vanished for certain
values of the photon number sum or difference. He also evaluated the squeezing properties
of these even and odd entangled coherent states. These states also have quantum metrological
applications [46, 47], and could be constructed by multimode parametric amplifiers [43].
Entangled coherent states also have applications to quantum information processing [48].

Although ‘balanced’, or equally weighted superpositions of multimode coherent states
are typically studied, ‘unbalanced’, or unequally weighted superpositions are possible. An
approximation to ideal unequally weighted superpositions can be generated by a nonlinear
evolution within a double cavity system [49]. The requisite nonlinear evolution is actually
a special case of the nonlinear evolution that leads to Titulaer—Glauber generalized coherent
states [8—10].

Entangled coherent states were initially treated as bimodal states but later generalized to
superpositions of multimode coherent states [50-52]. Generalizations to multimode systems
allow the intricacies of multipartite entanglement to become manifest in entangled coherent
states. Examples of interesting multipartite states having analogies in entangled coherent states
include Greenberger—Horne—Zeilinger and W types of states [53, 54]. Another example is the
cluster state [55-57].



J. Phys. A: Math. Theor. 45 (2012) 244002 Review

As entangled coherent states exhibit entanglement, which is a resource for quantum
information protocols, entangled coherent states have been studied both as a resource for, and
also as an input to, a quantum information protocol. The degree of entanglement embodied
by entangled coherent states was studied in the context of quantum information, where
entanglement is considered a resource.

By showing that the even bipartite entangled coherent state can be obtained by mixing an
even coherent state with the vacuum at a beam splitter, van Enk and Hirota [58] establish that
the even entangled coherent state has precisely one ebit of entanglement, where one ebit is the
amount of entanglement in a maximally entangled state of two qubits, or spin-% particles. The
degree of entanglement in a bipartite entangled coherent state generated by a nonlinear Kerr
evolution was subsequently shown to yield an arbitrarily large amount of entanglement over
proportionately short times and a limited amount of entanglement over longer times [59].

Entangled coherent states have been employed in quantum teleportation tasks [60]
in two ways: as the state being teleported via continuous-variable quantum teleportation
[61, 62] and as the entangled resource state employed to affect the teleportation
[58, 61, 63, 64]. Teleportation gives operational meaning to the amount of entanglement in
an entangled coherent state as teleportation consumes prior shared entanglement to transport
quantum information through a classical channel [60].

Entangled coherent states can go beyond entangling harmonic oscillator coherent states.
Earlier in this section we mentioned the Barut—Girardello coherent states [11], which
can be used to construct pair coherent states, and these states are also an example of
generalizing coherent states beyond the Heisenberg—Weyl algebra. Gilmore and Perelomov
independently showed another way of generalizing coherent states based on abstracting
the displacement operator to general group operations acting on minimum- or maximum-
weight states [12—15]. The orbit of Gilmore—Perelomov states under the general group action
forms the coherent states for the given group. For example, entangled coherent states can be
constructed as superpositions of tensor products of two or more generalized Perelomov or
Barut—Girardello su(2) [65, 66] and su(1, 1) coherent states, as well as entangled binomial
states [65].

In fact entangled coherent states arise naturally from the nonclassical coalgebraic structure
of the generalized boson algebra U4 (h(1)) [67]. Squeezed states [68] are a generalization of
coherent states as orbits of squeezed vacuum states under the Heisenberg—Weyl displacement
operator. Specifically, squeezed states are constructed as orbits of the squeezed vacuum state,
whereas coherent states are obtained by the same orbit construction but with the vacuum
replacing the squeezed vacuum state as the fiducial state [26]. The topic of squeezing in
the context of entangled coherent states arises when entangled coherent states are subject to
squeezing [69]. Another example of the nexus between squeezed light and entangled coherent
states arises when squeezed light is employed to enhance homodyne detection efficiency for
superpositions of coherent states [31].

Generalization beyond the entangling of coherent states per se is also interesting. For
example, coherent states can have photons added to them thereby creating ‘photon-added
coherent states’ [29], which leads naturally to entangled photon-added entangled coherent
states [70, 71]. The ‘single-mode excited entangled coherent states’ also involve adding a
photon by acting on an entangled coherent state directly with a photon-creation operator
[72, 73], and this state has value as a cyclic representation of the hrv algebra [72].

This article provides an overview of research into entangled coherent states and their
generalizations, implementations and applications. This field of research is quite large so not
every paper is cited, but this article strives to be comprehensive in covering all the directions
concerning entangled coherent states. With the recent successful generation of entangled
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coherent states [74] and their potential importance in quantum information processing, many
new discoveries can be expected in the near future.

2. Formalism

2.1. Coherent states of the simple harmonic oscillator

Coherent states of the simple harmonic oscillator are well known since the foundational
work of Schrodinger [1] and the ubiquity of coherent states in quantum optics [75-77]. The

Hamiltonian for the quantized simple harmonic oscillator in one dimension is
Y Sy
H = % + Emw q, (D
with " signifying an operator, m the mass of the oscillator, w the angular frequency, and ¢ and
p the canonically conjugate Hermitian operators for position and momentum, respectively.
These conjugate operators satisfy the commutator relation [g, p] = ik, and the
Hamiltonian spectrum is (n + %)ha) for n a non-negative integer. The harmonic oscillator
thus has a ground state energy level of %hw and all excited energy levels are integer multiples
of hw above the ground state energy level. For the simple harmonic oscillator, n indicates the
number of quanta, with each additional quanta increasing the oscillator’s mechanical energy
by hw.
As the energy levels are equally spaced, it is convenient to introduce the quanta lowering
operator

(Mo, ip
N Fie
and its conjugate raising operator 4", which satisfy the commutator relation
[a,a'1=1 3)
corresponding to the Heisenberg—Weyl Lie algebra hro(1) comprising generators {d, a', 1}
with 1 the identity operator. The Fock number states |r), for n the number of quanta, provide

a countable, orthonormal basis for the Hilbert space .77, with n the number of quanta and |n)
an eigenstate of the number operator:

2

A=ad'a, Aln) = nn). 4)

The number states are energy eigenstates, hence are stationary states of the simple
harmonic oscillator. An alternative is a Gaussian wavefunction (note that a Gaussian in
position representation is also a Gaussian in the momentum representation, so it is sufficient to
refer to a Gaussian wavefunction without specifying position or momentum representation),
which satisfies the Schrodinger equation and is not stationary. The centroid (mean position
and momentum) follows the simple harmonic motion expected for the classical simple
harmonic oscillator, and the Gaussian remains a minimum-uncertainty state (with respect
to uncertainty in position and momentum) so the Gaussian wavefunction has desirable
properties.

This Gaussian, with initial conditions such that the position and momentum uncertainties
are stationary, is known as a coherent state due to Glauber’s association of such a state
with coherence in quantum optics. Glauber’s oscillating wavepacket is an eigenstate of the
annihilation operator a for a given harmonic oscillator. This pure-state wavefunction is given
in the Fock representation by

la) = D(a)|0) = ex (—E) i o« |n) (5)
- - b 2 n=0 \/ﬁ ’
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with o a complex dimensionless amplitude such that the mean position and momentum are

given by
_ 2h _ hw
q=., —Re(x), p=, —Im(a), (6)
mw 2m
respectively.

The quantity 7 = |a|? is the mean number of quanta, with the number of quanta governed
by a Poisson distribution

M; = |(nle = Viie)|? = e"ii" /n! (7
and

D(a) = exp(aa’ — a*d), (8)
the displacement operator. The Poisson distribution has the property that

i = (An)?, ©)
and the Mandel Q parameter is [78]

0= (An)ﬁ2 — n’ (10)

which is unity for the Poisson distribution (7), less than unity for sub-Poissonian distributions
and greater than unity for super-Poissonian distributions.

For the extension to N simple harmonic oscillators, each indexed by an integer ¢, the
algebra for the identity 1 and the 2N operators is

lag,afs € =1,2,...,N}, [de,d}] =8l (11)

The coherent state can be used for multiple harmonic oscillators. For N simple harmonic
oscillators, the joint coherent state is

N
) = [ ] les) = D(@)]0), (12)
i=1

with D(a) a product of single-mode displacement operators (8) and |0) the joint ground state
of all N oscillators. As discussed above, a product coherent state with respect to a specific set
of modes transforms to another product coherent state via a linear mode transformation.

Although this subsection has been concerned with the motion of the simple harmonic
oscillator, and the energy quanta that separate the equally spaced energy levels have been
referred to as quanta, the analysis also applies to the electromagnetic field. The free-space
field is reducible to modes, and the dynamics of each mode corresponds to a simple harmonic
oscillator. The energy quanta are photons as discussed in subsection 2.2.

2.2. Coherent states in quantum optics

In quantum optics, the electromagnetic field can be decomposed into modes, and the dynamics
of each mode in free space is equivalent to the dynamics of the simple harmonic oscillator,
with 7 the number of photons in the given mode. The canonically conjugate operators g and
p are referred to as the in-phase and out-of-phase quadratures respectively, with the phase
reference being a local oscillator.

As the phase of the local oscillator can be varied continuously, it is convenient in quantum
optics to define the quadrature operator as

go = gcosf + psinb, (13)
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with § = go and p = G ;. Measurements of a quadrature are performed by mixing the
signal field with the coherent local oscillator field in an optical homodyne detection apparatus
[23-25], with the local oscillator field determining the phase 6.

In developing a theory of coherence for optical fields, Glauber employed the coherent
state [75], but instead of the variables being the position and momentum of a massive particle
in a harmonic potential, the canonically conjugate variables are the in-phase and out-of-phase
quadratures of each mode of the field. The two quadrature field operators are constructed from
the raising and lowering operators for the field mode with three-vector label k and polarization
index &, namely d;a and ay, respectively. Properties of the coherent state have been discussed
in subsection 2.1 and are investigated in detail by Klauder and Skagerstam [77].

Coherent states have served as a valuable tool for studying quantum optics, primarily
because of the convenience of these states as representations. In addition to a coherent state
being an eigenstate of the annihilation operator @, another critical property is that the product
coherent state is the unique state that transforms to a product coherent state under the action
of a linear mode coupler such as a beam splitter [79]. For the mode coupler transformation

given by
ap\ _ cos e sinf\ (a
<&,2) B <—e_i¢ sinf  cosf ) (ﬁz ’ (14)

aproduct coherent state then transforms to a product coherent state. This property is particularly
important in that a coherent state for the field remains a coherent state under any linear mode
transformation.

Whether coherent states can be considered as ontologically real has been the subject
of vigorous debate, both in the context of coherence of atomic Bose—Einstein condensates
[80-82] and with respect to quantum teleportation of coherent states [22, 83-86]. The
problem essentially concerns the establishment of the phase ¢ of the coherent state, either
through its creation from a source or by a phase-sensitive detection of the state. In practice,
phase-locking mechanisms exist that ensure that the phase of the coherent field is correlated
with a reference field, and treating that field as classical, provides classical meaning to
the parameter ¢. The importance of this issue is noted in section 5 along with relevant
references.

Given the indisputable value of the coherent state as a representation, there are two useful
ways to represent the density matrix p of the single-mode field in terms of coherent states.
One makes use of the Glauber—Sudarshan P-representation [76, 87] and the other makes
use of the Husimi distribution, or Q function [88] (not to be confused with the Mandel Q
[78]) whose advantages with respect to superpositions of coherent states were elaborated by
Milburn [3].

The density matrix can be expressed in these representations as

2
p= [ T @), Q) = el (15)
T T

for d>a := dRe(a) dIm(a). In quantum optics, the field is said to be semiclassical if P(a)
satisfies the axiomatic requirements of a probability density and is ‘quantum’ otherwise. In
contrast, the Q-function is always a probability density.

There is a continuum of these so-called quasiprobabilities introduced by Cahill and
Glauber [89], which are obtained through Gaussian convolution of the Glauber—Sudarshan
P(a) representation, ranging from the P function to the Wigner function W (g, p) to the Q
function. The Wigner function is an especially important case because, although it is not
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positive definite, integrals of the Wigner function yield the marginal distributions for position
and momentum. The generalized momentum marginal distribution is thus

P(go) = / W (Go. qosn2) Ao (16)

with gy a generalized canonical position parametrized by angle 6.

Titulaer and Glauber introduced ‘generalized coherent states’ as states that are fully
coherent with respect to the coherence functions but are not eigenstates of the annihilation
operator a [8]. These states have Poisson number distributions but allow an arbitrary phase
relationship between coefficients in the Fock representation of the state. For ¢ = (19,) a vector
of arbitrary phases,

\/_ /2 i 'l i0
Vi, #) =e™" — e |n)
n=0 m

27 d<0 oo
— —|\/ﬁe“") el(ﬁn_n‘/’)’ A7)
/(; 2 g

with the last line corresponding to the representation of the generalized coherent state as a
superposition of coherent states on a circle. This representation on a circle was introduced by
Biatynicki—Birula [9].

Spiridinov [44] showed that these generalized coherent states are eigenstates of a
generalized annihilation operator that holds the number operator 7 invariant. Physically
Spiridonov’s transformation corresponds to a number-sensitive rotation; optically we can
understand this transformation as a generalization of the ideal single-mode optical Kerr
nonlinearity, which affects a phase shift that is a function of field strength, or equivalently,
photon number for the single-mode field.

2.3. Superpositions of coherent states

Whereas the coherent state is regarded as the closest quantum optical description to a classical
coherent field, superpositions of coherent states exemplify the strangeness of quantum theory.
In general any pure state of the field |¢) can be written as a superposition of coherent states
according to the expression

d2
) =/7“<oe|w>|a>. (18)

As the coherent states form an overcomplete basis, it is not surprising that every state can be
expressed as a superposition of coherent states.

Interestingly, the overcompleteness of the coherent-state basis allows quite different ways
of writing the superposition. One particularly important case is the superposition of coherent
states on the circle, which we have encountered in subsection 2.2, in studying the Titulaer—
Glauber generalized coherent states [8]. Other states can also be expressed in this way. For
example, the Fock number state has the appealing representation [9, 16, 90]

p—— - RN T (19)

M,(m) ) 27

with IT the Poisson distribution (7). Expression (19) is a superposition over coherent states

with complex amplitude restricted to having modulus ./m. States can also be expressed as
superpositions of coherent states on lines or other subspaces of the o parameter space.

The evolution of a coherent state under an ideal optical Kerr nonlinearity

(1) = wh + Aw*h? (20)
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yields a particular form of generalized coherent state [3, 4, 91]. Yurke and Stoler [5, 6] showed
that a superposition of two coherent states could be obtained under this evolution, and its
generalization to ¥ () oc 7% could be expressed as a finite superposition of coherent states
with different phases for certain evolution times. In fact the Titulaer—Glauber generalized
coherent [8] can be expressed as a superposition of a finite number of coherent states on the
circle for ¥,y = ¥, for some N and for all n [9, 10].

Spirodonov [44] identified two other interesting cases of generalized coherent states:
g-deformed coherent states, for which ¥,y = g9, and parity coherent states ¥, = nz. The
parity operator is exp{in 7}, and the (unnormalized) parity coherent state is given by

e Ma) + e —a), @1

which is a special case of the superpositions of coherent states with equal complex field
amplitudes and equal phase separations studied by Biatynicki-Birula [9] and Stoler [10].

Superpositions of coherent states on a circle can arise via the evolution of a coherent state
according to a generalized Kerr nonlinearity, yielding an evolution operator exp{i® ()}. The
equally weighted superposition of two coherent states that are 7 out of phase with each other
(21), introduced by Yurke and Stoler [5], has been termed a ‘Schrodinger cat state’, or ‘cat state’
for short, because the coherent state is regarded as being an essentially classical field state,
and the superposition of two highly distinct coherent states is reminiscent of Schrodinger’s cat
being described as being in the state |‘live’) + |‘dead’).

The term ‘Schrodinger cat state’ has also been applied to the ‘even’ and ‘odd’ coherent
states [42],

lo)+ = Ny (o) = |—x)) (22)
for

exp(la?) N — exp(la?) 23)

2/cosha|?’ 2/sinh |2

The even—odd terminology refers to the fact that the photon number distribution is non-zero
only for even photon number in the case of the even coherent state o), and is non-zero
only for odd photon number in the case of the odd coherent state |o)_. As this state does
not have a Poisson number distribution, it cannot be evolved via a generalized unitary Kerr
evolution from the coherent state but is a Titulaer—Glauber generalized coherent state [8]
for which @ (@ + 21) = ¢ (71). Even and odd coherent states may arise by a conditional
Jaynes—Cummings evolution [38, 92].

Detection of Schrodinger cat states may be achieved by optical homodyne detection,
with the measurement results converging to the marginal distributions for canonical position
and momentum [5, 6] even in the presence of decoherence [30, 31]. Let us consider the
‘balanced cat’ of equation (21) with its equally weighted superposition of two coherent states
7 out of phase. If the local oscillator is in phase with either of the coherent states, the marginal
distribution is equivalent to that for an incoherent mixture of such coherent states. The marginal
distribution for the conjugate quadrature exhibits interference fringes that yield information
on how coherent, or pure, the superposition state is.

So far we have considered superpositions of single-mode coherent states, but a
superposition of multimode coherent states of type (12) is also allowed. Such a state can
be written as

N+=

/ A () f(@)let) 24)

for which the measure du(a) can be over the entire parameter space or over subspaces for
which the set {a} is an overcomplete basis. Before proceeding to studies of this superposition
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of multimode coherent states, we consider how coherent states and their superpositions are
generalized to Lie groups and algebras other than the Heisenberg—Weyl group for simple
harmonic oscillators.

2.4. Lie coherent states and their superpositions

The term ‘generalized coherent state’ has been used in subsection 2.3 to refer to a loosening
of the phase relation between elements of the coherent state expressed as a superposition
in the Fock basis; I refer to these as ‘Titulaer—Glauber generalized coherent states’ [8]. The
term ‘generalized coherent state’ has also been applied to establishing coherent states for
general Lie groups. Here I refer to Lie group and algebra generalizations of coherent states as
‘Lie coherent states’. Where the specific Lie algebra is specified, the notation for the algebra
replaces ‘Lie’, e.g. ‘su(2) coherent state’. For N simple harmonic oscillators, the operator
algebra is hto(N) given in equation (11), and the Lie coherent state for hto(N) is the multimode
product coherent state (12).

Whereas hro(V) coherent states are (i) displaced vacuum states (orbits of the vacuum state
under the action of the displacement operator D(e)), (ii) eigenstates of the lowering operator a
and (iii) minimum-uncertainty states, some sacrifices must be made in defining coherent states
for other Lie groups. A basis set of operators for a Lie algebra can be expressed as lowering
operators analogous to @, the conjugate raising operators and the Cartan subalgebra, which is
a set of mutually commuting elements of the algebra.

A Lie algebra generates a k-parameter Lie group with the dimension of the Cartan
subalgebra being k. Studies of superpositions and entanglement of coherent states have so
far focused primarily on one-parameter Lie groups (with the exception of one study on su(3)
coherent states [93]), so we restrict our attention to that case; in fact we can concentrate on
su(2) and su(l, 1).

Entanglement of su(2) and su(1, 1) coherent states was studied by Wang and Sanders
[65]. The corresponding algebras are

Ui, J1=20, [ Jal = £/, (25)
and
[Ki. K_1= 2K, [K,, K] = K., (26)

respectively for su(2) and su(1, 1), with J used for the compact SU(2) group and K used for
the non-compact SU(1,1) group. The Cartan subalgebras are J, for su(2) and K, for su(1, 1).
The Casimir invariants are J2 with spectrum j(j 4 1) for irreducible representation, or irreps,
indexed by j € {0,1/2,1,3/2, ...}, and K? with spectrum k(k — 1) for irreps indexed by

ke{l1/2,1,3/2,2,...}. 27)
Within a given irrep, an orthonormal basis is given by

{ljmiim=—j j+1,....j} (28)
such that

Jljimy=j—m+1]jm—1) (29)
with |[jm—1) =0ifm = —jand {|kn);n = 0, 1,2, ...} for su(2). The su(l, 1) can be
constructed in a similar way.

For non-compact groups, there are two inequivalent ways to construct coherent states:

(i) as eigenstates of the lowering operator and (ii) as orbits of a minimum uncertainty state,
analogous to the orbit of the vacuum state under the displacement operator (8). Highest
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or lowest weight states (states that are annihilated by the raising and lowering operators,
respectively) are typical choices of minimum-uncertainty states for the two groups under
consideration.

In 1971, Barut and Girardello [11] introduced ‘new coherent states’ for non-compact
groups based on criterion (ii). They identified the lowering operator(s) and found eigenstates
for this operator. For su(1, 1), the lowering operator is I%_, and the Barut—Girardello su(1, 1)

coherent state is
k—1/2
In] Z (30)
Dr—12In) vn'F(n+2k

which satisfies K_ |k n)sG = nlkn)sa, for I (x) the modified Bessel function of the first kind.

For the case of the compact group su(2), the usual minimum-uncertainty state is the
highest-weight state | j j) although the lowest-weight state is used sometimes as well. Similarly,
for su(1, 1), the lowest-weight state |k 0) is used. For SU(2), the analog to the displacement
operator is the ‘rotation operator’

L] N N
R0, ¢) = {E[CWJ_ - e"”h]} , (3D
and for SU(1,1), the analog is the ‘squeeze operator’ [94]
S(&) = exp{éK; — £"K_}. (32)

The term ‘rotation operator’ applies for SO(3), which is the rotation group in three-dimensional
Euclidean space, and the term has been extended to apply to SU(2), which is a double covering
group of SO(3). The term ‘squeeze operator’ is used here because the two-boson realizations
of su(l, 1) are
K. =& (k=1/4), K_=abk=3/4), (33)

and either of these realizations of su(1, 1) converts the unitary operator (32) to the usual
one-mode and two-mode squeeze operators in quantum optics for k = 1/4 and k = 3/4,
respectively.

The su(2) coherent states were first introduced as ‘atomic coherent states’ [12]. These
states are given by

1j:0,¢) =R, 9)|j j) (34
and form an overcomplete basis of the Hilbert space [13, 14]. The coherent states are orbits
of the minimum-uncertainty state under the action of a group element. Perelomov undertook
a general analysis of such coherent states for any Lie group, and these Lie coherent states are
known as Perelomov coherent states [15].

We refer to the Lie coherent state using the notation |[££) with £ the irrep parameter
(not required for the hto(n) algebra) and & the orbit parameter. This notation applies equally
to eigenstates of the lowering operator (as for the Barut—Girardello states) and for orbits of
minimum-uncertainty states (as for the Perelomov states). The multipartite Lie coherent state
is designated by |£ &), which is a product of Lie coherent states |£ £;) all from the same irrep.

So far we have only considered entangled coherent states where each party in the state
has the same coherent-state structure. For example, the entangled coherent state can be a
superposition of a tensor product of hro(1) coherent states or a superposition of tensor product
of su(2) coherent states or so on. On the other hand, a ‘hybrid’ entangled coherent state could
be constructed as a superposition of tensor products of coherent states, with coherent states
in the tensor-product space corresponding to different types of coherent states. Such hybrid
coherent states have not been studied but have been realized experimentally in a limited way:
hybrid hro(1)-su(2) entangled coherent states are realized in cavity quantum electrodynamics
experiments as entangled atom—field states [18, 38, 95].
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2.5. Entangled coherent states
A superposition of mutimode or mutipartite coherent states can be expressed in general as [65]

/ A () fu(E)]8) (35)

with the state |¢€) the Lie coherent state. For the usual case of harmonic oscillators,
corresponding to the algebra hro(N), the index ¢ is superfluous, and we let & be replaced
by « to obtain (24). This superposition is not entangled if there exists any representation for
the pure state, such that the state can be expressed as a product state over the modes. Otherwise
the state is entangled. Entangled coherent states are thus a special case of superpositions of
multimode coherent states, but a rather large and especially interesting class of states.

The entangled state (35), which is expressed as an integral of product coherent states, can
be reduced to a sum if the function f;(§) can be expressed as a sum of delta functions

fi®) =" fulE)SE — &). (36)
Then l
[ @ r@ien =3 rees. &)

1
In the single-particle (equivalently single-mode) case, such states are the Titulaer—Glauber
coherent states [8].

As an interesting example of discrete bipartite entangled coherent states, van Enk studied

the discrete ‘multidimensional entangled coherent states’ [59]
M= . .

1) - elqb[, a equ/M’ o e27r1q/M , 38

On) = = ; | ) (38)
which are generated by an ideal nonlinear Kerr evolution (20), to characterize the entangling
power. van Enk shows that such states have infinite entanglement after infinitesimally short
evolution times 7 and finite entanglement after finite (i.e. non-infinitesimal) times. Finite
discrete superpositions can serve as a resource for quantum teleportation. Specifically van
Enk demonstrated that, for very small losses for multidimensional entangled coherent states,
approximately 2.89 ebits are lost per absorbed photon, which could be useful for creating
entangled coherent states with a fixed amount of entanglement [96].

Entangled coherent states overlap conceptually with the pair coherent state, which
was introduced as the joint eigenstate of the two-mode annihilation operator a;d, and the
number difference operator n1; — 7y [27, 28, 97]. The pair coherent state is defined by |¢, g),
with ¢ the eigenvalue of the pair annihilation operator and ¢ the eigenvalue of the photon
number difference operator. These states exhibit sub-Poissonian statistics, correlated number
fluctuations, squeezing and violations of photon Cauchy—Schwarz inequalities.

Pair coherent states are an example of su(1, 1) coherent states, represented as two-boson
realizations. The pair annihilation operator can be expressed according to algebra (26): the
pair annihilation operator is K_ and the photon number difference operator is I%Z.

The pair coherent state is an example of an entangled coherent state, which is evident by
expressing the pair coherent state as

2w 1)
d(p N el
L q) = i —iy 39

& /0 27 [JT e]e If IWee™) (39)
with the g-dependent normalization constant

g9/
Ny= ——, (40)
1,(21¢1)

for I, the modified Bessel function of the first kind, as expressed by Gerry and Grobe [98].

12
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The Schrodinger cat state concept, which corresponds to a superposition of coherent states,
was extended to a superposition of pair coherent states by Gerry and Grobe [98]. Specifically
the superposition of two pair coherent states can be expressed as

1, 9) +e%1—¢.q)
12.9.¢) = , (41)

5 oo (=D)f¢n
\/2 +2NZcosd 300 Srorar

which is an eigenstate of the squared pair annihilation operator with eigenvalue |¢|>. This
superposition of pair coherent states is also an entangled coherent state, which is a superposition
of two entangled coherent states of type (39).

3. Implementations

Entangled coherent states are fragile due to the fragility of their entanglement but are
nonetheless implementable if the conditions are right. Furthermore, the states serve as a
resource for quantum information processing so they have utility and value, hence are worth
making. Many theoretical proposals exist for constructing entangled coherent states in the
laboratory but so far the paramount experimental demonstration uses a photon-subtraction
technique on two approximate Schrodinger cat states, so that the source of the photon is
indeterminate [74, 99].

3.1. Parametric amplification and photodetection

Consider two physically separated states of light of the type |«) 4+ |—«). These two fields are
each passed through a separate beam splitter so that each field loses a small fraction of its
energy. The extracted part of each field is brought together after using a phase shifter to impose
a ¢ phase difference between the two beams. The fields are combined at a beam splitter with
a photon counter at one output port. The effect of this final beam splitter is to ensure that the
detected photon is equally likely to have come from either beam. The resultant two-mode state
conditioned on registering a single photon count is

L@ ¢ ¢ .. P
—isin E|oe)|a) — cos §|—a)|oz) + cos §|a)|—a) + isin E' —a)|—a). 42)

This is the concept behind the successful experimental creation of a close approximation of
this state, and the success of the process is verified by optical homodyne tomography on the
resultant state [74].

The actual experiment involves using a pulsed optical parametric amplifier as a source
of squeezed vacua. The cat state with small amplitude «, known as a ‘kitten state’, can be
prepared by subtracting a single photon [19, 100]. Using this principle, the two output-mode
squeezed vacua of orthogonal polarizations are recombined at a polarizing beam splitter. A
small fraction of each field goes to the photon counter, which conditions the rest of the field
going out of the other beam-splitter port into the entangled coherent state (42). The state is
then tomographically characterized.

3.2. Nonlinear optics

The earliest proposals for creating entangled coherent states were expressed in the context
of quantum optical fields interacting via a third-order optical nonlinearity known as a Kerr
nonlinearity [101]. The optical Kerr nonlinearity features a refractive index ny + n,I, which
is the sum of a linear refractive index ny and a second term that is proportional to the field

13
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strength, typically characterized by ‘intensity’ I. The Kerr effect, as a third-order optical
nonlinearity, is a special case of four-wave mixing.

The term ‘cross-Kerr nonlinearity’ is ubiquitous in the entangled coherent state literature
and refers to the phenomenon that one field experiences a phase-shift component that is
proportional to the strength of the other field. The cross-Kerr effect thus leads to ‘cross-phase
modulation’, which is specifically the phase shift of one field due to the intensity of the other.
In the quantum analysis, the phase shift depends on the photon number in the other beam.
Of course the phase shift of the beam also depends on its own strength, and this is known as
‘self-phase modulation’.

The first proposal for generating entangled coherent states was introduced by Yurke and
Stoler in 1986 [5, 6] followed by the work of Mecozzi and Tombesi in 1987 [30, 31] and then
by others [32, 33]. The entangled coherent state became the chief object of interest in work
by Sanders a few years later with a proposed implementation that inserted a Kerr nonlinearity
into one path of a Mach—Zehnder interferometer (often called a ‘nonlinear interferometer’
for short) [35, 36] and has been the subject of further study [32, 33, 102, 103]. Related
to this approach, if an appropriate superposition of two coherent states is provided, then a
beam-splitter transformation alone suffices to produce an entangled coherent state from this
resource [104].

A Kerr nonlinearity can be used to create an entangled coherent state with one of the two
coherent states in the entangled state being in the vacuum state. Such an entangled coherent
state was generalized by Luis to show how to create any bipartite entangled state with one of
the two states being the vacuum state [105]. Wang showed how a nonlinearity coupled with
linear optical elements can be employed to generate general bipartite entangled non-orthogonal
states [106].

Variants of nonlinear interacting propagating-field realizations of entangled coherent
states have been studied. Slow light in a medium with double electromagnetically induced
transparency could be used to enable entangled coherent state generation [107, 108].
Entanglement could first be prepared in matter qubits and then transferred to fields to make
entangled coherent states by exploiting a cross-Kerr nonlinearity [109]. Nonlocal preparation
of a bipartite entangled coherent state, where ‘nonlocal’ means that the two fields being
entangled never meet or directly interact, could be produced by sending a photon through a
Mach-Zehnder interferometer with a nonlinear Kerr medium in each of its two paths, and
separate coherent states could be sent through each of these two nonlinear media [110]. The
bipartite entangled coherent state is post-selected by detecting from which port the photon
leaves: whichever port the photon leaves from post-selects the nonlocal two-mode field in one
of two entangled coherent states.

The generation of various exotic forms of entangled coherent states has been investigated.
Greenberger—Horne—Zeilinger and W types of entangled coherent states could be produced
with propagating fields using linear optics and Kerr nonlinearities [53, 54]. Similarly, cluster-
type entangled coherent states can be generated with a nonlinear medium and a laser driving
field [57, 111, 112].

3.3. Cavity quantum electrodynamics

Entangled coherent states can be created in cavity fields rather than in propagating fields,
which has the advantage of large effective nonlinearities. The nonlinearity in the medium
could be a macroscopic optical Kerr medium or one or more multilevel atoms. For example,
a multimode entangled coherent state can be prepared by letting a single atom traverse two or
more single-mode cavities, each occupied initially by a coherent state, and then post-selecting
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on the atomic state [38, 51, 56, 113—-115]. An unbalanced (i.e. unequally weighted) entangled
coherent state could be produced in a double-cavity system [49]. Alternatively just one cavity
that supports a multimode field is an alternative to the multiple-cavity generation of entangled
coherent states [113, 116-119].

Matter-wave interferometry could assist in preparing entangled coherent states. If a two-
mode cavity can be prepared in a pair coherent state, then this state can be transformed into
an entangled coherent state by the following procedure. Atoms are sent through a double
slit and then interact with the two-mode cavity field. Atomic-position detection subsequently
post-selects the two-mode field into an entangled coherent state [120].

Artificial atoms, such as quantum dots [121] or Cooper-pair boxes [122], can replace
real atoms to produce entangled coherent states in cavity quantum electrodynamics. The
microwave regime could prove to be quite appropriate for generating entangled coherent
states with Rydberg atoms in millimeter-wave superconducting cavities [123, 124].

As with propagating fields interacting with a Kerr medium, exotic entangled coherent
states, such as Greenberger—Horne—Zeilinger, W [125] and cluster-type entangled coherent
states, can also be created in cavities [54, 56, 126—128]. Modified entangled coherent states,
such as ‘single-mode excited entangled coherent states’, could also be created in a cavity
quantum electrodynamics setting [72].

3.4. Motional degrees of freedom

Instead of creating entangled coherent states in electromagnetic field modes, motional degrees
of freedom can be used instead. Vibrational degrees of freedom for a single trapped ion in
two dimensions [129] or of two trapped ions [52, 130, 131], or for collective modes (e.g.
center-of-mass or breathing modes) of many trapped ions [132, 133] can be transformed into
entangled coherent states. Ion traps can be combined with cavity quantum electrodynamics set-
ups to make hybrid entangled coherent states between electromagnetic and motional degrees
of freedom [134, 135].

As an example of creating an entangled coherent state in the vibrational degrees of freedom
of a single trapped ion in two dimensions, consider the interaction Hamiltonian [129]

Hy = —hx(@'a—b'by (6, +6.) (43)

with d and b the annihilation operators for each of the two vibrational modes, x a coupling
coefficient and 6, = 67 the electronic-energy lowering operator. Both vibrational modes are
initialized in coherent states |«) and |8) and the ion in the ground state |g). At time ¢, the
combined (unnormalized) state for the atom and the two vibrational states is

&) (e e, Bei) + o e, feT)) + fe) (e, Be') — e, feTH)) (44)

for |e) the excited state of the atom. The entangled coherent state can be created post-selectively
by measuring the electronic state of the ion.

Ion traps could be used to create multipartite entangled coherent states using entanglement
swapping operations [52]. Consider two identical ions with each initially prepared in a
superposition of ground and excited states and the center-of-mass and breathing modes each
initially prepared in coherent states with the same amplitude and phase. Then two distinct
Raman beams are directed at the two ions independently. One beam is directed at the first ion
in order to couple it to the fundamental mode, and the second beam is directed at the second
ion in order to couple it to the breathing mode.

This selective coupling of ion electron levels to motional modes is achieved by choosing
judicious Raman parameters. Subsequently, Bell-state measurements of the two-ion electronic
states result in the two motional modes ‘collapsing’, or being post-selected, into entangled
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coherent states. This principle is readily extended to the multimode entangled coherent state
case by extending the number of ions from two to as many as desired, naturally accompanied
by as many vibrational modes. The multi-ion electronic state is projected onto a maximally
entangled state (generalized Bell measurement) thereby resulting in the vibrational modes
being in a multimode (or ‘multipartite’ entangled coherent state) [52].

Other physical realizations that are amenable to creating entangled coherent states
in motional degrees of freedom include nano-cantilevers [122] and movable nano-mirrors
[136, 137]. More pointedly, entangled coherent states can in principle be realized in any
system that can be described as harmonic oscillators with appropriate nonlinear coupling and
sufficiently low loss and decoherence.

3.5. Bose—Einstein condensates

Bose-Einstein condensates have an inherently high nonlinearity due to atomic collision terms,
and it is possible to prepare two separate Bose—Einstein condensates of three-level atoms
(corresponding to different electronic states of the same atoms) into phase-locked coherent
states, and couple them together via a Raman interaction [138]. This approach could be used to
entangle two Bose—Einstein condensates with one of the two coherent states in the entangled
coherent state being the ground state [105]. Alternatively entangled coherent states could be
generated in Raman-coupled Bose—Einstein condensates [139].

Nonlocal preparation of distant entangled coherent states could be possible using
electromagnetically induced transparency [140]. In this scheme, two strong coupling laser
beams and two entangled probe laser beams prepare two distant Bose—Einstein condensates in
electromagnetically induced, transparency-coherent population states, which are then forced to
interact. The two Bose—FEinstein condensates are initially in a product coherent state while the
probe lasers are initially entangled. The final preparation step involves performing projective
measurements upon the two outgoing probe lasers.

4. Nonclassical properties

Entangled coherent states are highly nonclassical states but are peculiar in that they are
expressed as an entanglement of the most classically well-behaved states we know: coherent
states. Thus, entangled coherent states are especially intriguing in studies of nonclassicality
because the state represents an entanglement of classically meaningful descriptions of objects.

Nonclassicality is studied through a variety of measures including squeezing
[33,41, 141], sub-Poissonian photon statistics [41], violations of Cauchy—Schwarz inequalities
[41], complementarity between particle-like and wave-like features of entangled coherent
states [103], violations of the Bell inequality [35, 36, 40, 123, 124, 142, 143] or Leggett’s
inequality [144] for testing nonlocal realism, and entanglement properties such as index of
correlation [65], entanglement of formation [145] and other measures [141]. Nonclassicality
of generalized entangled coherent states, such as su(2) and su(1,1) states [65, 66] and photon-
added entangled coherent states [71], has been studied as well.

4.1. Complementarity

Complementarity in double-slit [146] and two-channel interferometery [147] studies is well
understood for single-particle inputs. Single photons exit wholly from either one or the other
port of a beam splitter but exhibit strong fringe visibility when the experiment is modified by
replacing the beam splitter by an interferometer [39]. Complementarity may be understood by
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thinking of the photon’s path state as entangled: a superposition of the photon traversing one
path (e.g. through one slit or down one channel of the interferometer) and a vacuum state in
the other path and the reverse case. Now consider that, instead of a photon in one path and a
vacuum in the other, we have a coherent state in one path and a vacuum in the other. Would
complementarity be manifested and observable in that case?

Rice and Sanders showed that, in principle, a form of complementarity is present, but the
notion of a phase shifter, which is a simple linear optical element for a photon, is complicated
for a coherent state, yet necessary to observe the undularity of the coherent state in the context
of entangled coherent states [103]. Joint photodetection at the two interferometer output ports
[49] can reveal anticorrelation of the nonlinear Mach—Zehnder interferometer output, thereby
revealing ‘corpuscularity’ of the coherent state analogous to the anticorrelation revealing
corpuscularity for a single photon [103]. The coherent state is thus ‘seen’ to follow one path
or another and not be split.

The ideal coherent state phase shifter would correspond to the unitary transformation
exp(—ig|a)(a|) for the imposed phase shift ¢ and could be created in approximate form
in a highly nonlinear medium with appropriate parameters [148]. The creation of this phase
shifter would enable other types of tests of complementarity such as performing two-coherent-
state interferometry, even with large numbers of photons. Two-coherent-state interferometry
is analogous to two-particle quantum interferometry but with the single-particle Fock state
replaced by a coherent state [148].

4.2. Entanglement

The nomenclature ‘entangled coherent state’ demands quantification of the degree of
entanglement of such states. There is more than one way to study entanglement of such
states. One can consider Bell inequalities or generalizations thereof, perhaps to test local
realism or just to show non-factorizability. Another approach to studying entanglement of
these states is to recognize that unentangled coherent states have Gaussian statistics and then
use the covariance properties to quantify the degree of entanglement in such states [149].
An alternative approach considers the entangling power of operations that produce entangled
coherent states [59]. Each of these approaches is challenging because the Hilbert spaces are
infinite-dimensional and the entanglement is between non-orthogonal states [40, 106].

Quantifying entanglement can instead be studied in the context of performing a quantum
information processing task such as quantum teleportation [60]. Teleportation enables a qubit
to be sent from one party to another through a classical channel by sending instead two bits of
information and consuming one ‘ebit’, or entangled bit (two maximally entangled qubits) of
a prior shared entanglement resource.

Entanglement can then be quantified by determining how well entangled coherent states
serve as the ‘quantum channel’ (i.e. the consumable prior shared resource) for teleporting
another state. This other state could be a qubit corresponding to a superposition of single-
mode coherent states (‘a cat state’) [58, 64, 104, 150-153]. The entangled coherent state
can supply an entire ebit of resource despite being an entanglement of non-orthogonal states
[58, 61, 63]. An alternative approach to studying quantum resources considers how well a
given a resource serves to teleport all or part of an entangled coherent state [61, 62, 154—160].

Entanglement has been studied for various exotic forms of entangled coherent states. Both
the Greenberger—Horne—Zeilinger type of entangled coherent states [53, 61, 151, 156, 161]
and the W type of entangled coherent states [53, 161-163] have been studied as well as the
cluster type of entangled coherent states [164].
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The effect of dissipation and decoherence on entanglement and nonlocality is also the
subject of intensive investigation for all types of entangled coherent states, including the
robustness or fragility of the entanglement [165]. Probabilistic teleportation of coherent
states via an entangled coherent-state quantum channel in an open system has been studied
and characterized [145]. Non-Markovian decoherence dynamics is important for entangled
coherent states, and An, Feng and Zhang obtain an exact master equation with and without
environmental memory using influence-functional theory [166].

Strategies to mitigate decoherence of entangled coherent states, for example by squeezing
[69], are of practical value. Entanglement purification for mixed entangled coherent states is
also a promising approach [167, 168]. Park and Jeong compare the dynamics of entangled
coherent states against entangled photon pair states under decoherence and inefficient detection
[169]. They discover that entangled coherent states are more robust as quantum channels for
teleportation, whereas entangled photon pair states are better with respect to photodetection
inefficiency.

5. Applications and implications

Entangled coherent states have several applications as discussed earlier in this paper.
For example, entangled coherent states can serve as a resource for quantum teleportation
[58, 61, 63] or for quantum networks [170, 171]. A ‘cat state’ superposition of two coherent
states readily serves as a qubit for quantum logical encoding [172].

The ‘cat state’ qubit also serves as the logical basis for performing universal quantum
computation [173], and entangled coherent states play an important role in such quantum
information processing [150]. In particular, this encoding leads to entangled qubits (ebits)
corresponding to entangled coherent states [48].

Entangled coherent states also serve an important role in quantum metrology, which
harnesses quantum resources such as entanglement to surpass the standard quantum limit (due
to partition noise in particle interferometry, which applies to atomic clocks and displacement
measurements inter alia) [94]. Multimode even/odd coherent states are especially amenable
for quantum metrology [46]. Entangled coherent states are known to outperform other popular
two-mode entangled states in quantum metrology [174—177], but perhaps their benefit is
strongest for digital parameter discrimination [178].

The entangled coherent state representation [22] plays a key role in resolving fundamental
issues concerning superselection of angular momentum [21], charge [21] and phase
[22, 80-86]. Essentially, the entangled coherent state representation captures, in a
mathematically simple and conceptually appealing way, namely how superselection can be
obviated by adding an extra degree of freedom and splitting the state to provide a reference
frame.

6. Summary and conclusions

This paper provides a comprehensive summary of results concerning entangled coherent
states and their generalizations since the inception of entangled coherent states by Aharonov
and Susskind in 1967 to obviate superselection. Coherent states are appealing for their
mathematical elegance as representations and their closeness to classical physical states,
and entangled coherent states build on these elegant representation properties.

Furthermore, entangled coherent states have a richness due to entanglement between these
seemingly classical coherent states. Entangled coherent states have many beautiful nonclassical
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properties and generalize beyond the Heisenberg—Weyl algebra of harmonic oscillators to the
cases of spin, squeezing, pair coherent states and beyond.

Remarkably, entangled coherent states have been created and observed experimentally.
These exquisitely fragile states can be manifested in the laboratory given sufficient guile.
Up to now the only successful experimental realization relies on parametric amplification in
two modes and photon subtraction. Other realizations could be possible if large low-loss Kerr
nonlinearities are created for propagation or for cavity fields. Ion traps could also be promising
for realizing entangled coherent states between vibrational modes, and nanotechnology could
open new vistas for entangling coherent states of motion.

Multipartite entanglement is a vast topic of research, and entangled coherent states play an
important role in this area. Various multipartite entangled states such as Greenberger—Horne—
Zeilinger, W and cluster states are studied for their rich properties and applications, and each
of these states has nontrivial analogs with entangled coherent states.

In summary, entangled coherent states have been important from superselection arguments
in 1967 to today’s applications in quantum information processing. This review paper can serve
as a resource to propel studies and applications of entangled coherent states in the coming
decades, which hold further revelations and surprises.
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