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Abstract

The key ingredient of the approach, presented in this paper, is the factorization property of SU(2)

coherent states upon splitting or decay of a quantum spin system. In this picture, the even and odd spin

coherent states are viewed as comprising two, three or more spin subsystems. From this perspective,

we investigate the multipartite quantum correlations defined as the sum of the correlations of all

possible bi-partitions. The pairwise quantum correlations are quantified by entanglement of formation

and quantum discord. A special attention is devoted to tripartite splitting schemes. We explicitly

derive the sum of entanglement of formation for all possible bi-partitions. It coincides with the

sum of all possible pairwise quantum discord. The conservation relation between the distribution of

entanglement of formation and quantum discord, in the tripartite splitting scheme, is discussed. We

show that the entanglement of formation and quantum discord possess the monogamy property for

even spin coherent states, contrarily to odd ones which violate the monogamy relation when the the

overlap of the coherent states approaches the unity.
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1 Introduction

The characterization of nonclassical correlations and nonlocal correlations constitutes one of the main

issues intensively investigated in the field of quantum information science. The primary goal is to

provide the best way to understand the differences between quantum and classical physics. Quantum

correlations constitute a relevant resource to manage information in several ways [1, 2, 3]. Different

forms of measures to quantify the degree of quantumness in a multipartite quantum system were

introduced. In particular, entanglement of formation has been successfully employed in this sense.

However, this measure does not account for all nonclassical aspects of correlations and unentangled

mixed states can possess quantum correlations. In this respect, other measures beyond entanglement

were proposed in the literature like for instance quantum discord introduced in [4, 5]. It is defined

as the difference between the total correlation and classical correlation present in a bipartite system.

The quantum discord coincides with entanglement for pure states. For mixed states, the explicit

evaluation of quantum discord involves an optimization procedure which is in general a difficult task

to achieve. There are few two qubit systems [6, 7, 8, 9, 10, 11, 12] for which analytical results were

obtained. To overcome the difficulty in evaluating analytically quantum discord, a geometric method

was introduced in [13]. Nowadays, entanglement of formation [14], quantum discord [4, 5] and its

geometric variant [13] are typical examples of measures commonly used to decide about the presence

of quantum correlations between two different parts composing a bipartite quantum system.

In the recent years, the efforts in identifying and quantifying quantum correlations were extended

to correlated nonorthogonal states as for example Glauber coherent states, SU(2) and SU(1, 1) coher-

ent states [15, 16] (for a review see [17]). Subsequently, many works have been devoted to investigate

their role in quantum cryptography [18], quantum information processing [19] and quantum computing

[20, 21, 22]. This is mainly motivated by the possibility to encode quantum information in continuous

variables [23]. For example, the even and odd Glauber coherent states, termed also Shrödinger cat

states, can be considered as basis states of a logical qubit [24, 25] and provides a practical way to

implement experimentally optical quantum systems useful for quantum information.

In other hand, the structure of multipartite quantum systems is a complicated and challenging

subject that trigged off a lot of interest during the last decade (see [3] and references therein). In this

paper, we shall strictly focus on the study of quantum correlations present in odd and even SU(2) co-

herent state. In fact, by considering the property according to which a spin-j coherent state |j, η〉 can
be factorized as a tensorial product of two SU(2) coherent states |j1, η〉 and |j2, η〉 with (j = j1 + j2),

it is possible to construct a picture where even and odd spin coherent states might be viewed as

superpositions of two or more spin coherent systems. The idea of entanglement in a single particle,

caused by quantum correlations between its intrinsic degrees of freedom, was discussed in [26, 27, 28].

Consequently, it is seems natural to assume that a odd or even spin-j coherent state presents quan-
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tum correlations between its intrinsic parts resulting from the splitting of the spinj into two or more

subcomponents. In this scheme, one can analyze the properties of multipartite quantum correlations

in many spin systems. The best way to approach this question is the use of bipartite measures.

This approach has the advantage relying upon bipartite measures of entanglement of formation and

quantum discord that are physically motivated and analytically computable. Also, another important

question emerging in this context concerns the limitations of sharing quantum correlations. Indeed,

the distribution of quantum correlations among the subsystems of a multipartite quantum system

is constrained by the so-called monogamy relation. It was firstly proposed by Coffman, Kundo and

Wootters in 2001 [29] in analyzing the distribution of entanglement in a tripartite qubit system. Since

then, the monogamy relation was extended to other measures of quantum correlations. Unlike the

squared concurrence [29], the entanglement of formation does not satisfy the monogamy relation [29]

in a pure tripartite qubit system but it was reported in [30, 31] that it can be satisfied in multimode

Gaussian states. Furthermore, quantum correlations, measured by quantum discord, were shown to

violate monogamy for some specific quantum states [32, 33, 34, 35, 36]. Now there are many attempts

to establish the conditions under which a given quantum correlation measure is monogamous or not.

One may quote for instance the results obtained in [37] .

This paper is organized as follows. In Section 2 we give the definitions of the bipartite measures:

concurrence, entanglement of formation and quantum discord. We also introduce the measure of

multipartite correlations in a given system as the sum of all possible bipartite correlations. Section

3 concerns even and odd spin coherent states. We especially discuss the decomposition property of

spin coherent states according to which they split in multipartite spin or qubit systems. In Section

4, we derive the explicit expressions of pairwise quantum correlations present in even and odd spin

coherent states decomposed in a pure bipartite system. An appropriate qubit mapping is introduced.

The results of section 4 are extended in section 5 to the situation where the spin coherent state splits

in three spin sub-systems. A qubit mapping is realized for all possible bi-partitions of the system.

The total amount of entanglement of formation is derived in Section 6. Similarly, in Section 7, we

explicitly evaluate the total amount of quantum discord present in even and odd spin coherent states

viewed as a tripartite system. The sum of pairwise quantum discord is evaluated. It coincides with

the total amount of bipartite entanglement of formation in agreement with the result obtained in

[38]. This result originates from the conservation relation between the distribution of entanglement of

formation and quantum discord proved in [39]. Limitations to sharing entanglement of formation as

well as quantum discord are discussed. Some special cases to corroborate our analysis are numerically

examined. Concluding remarks close this paper.
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2 Quantum correlations

The theoretical investigation of quantum correlations in a multipartite quantum system is motivated by

the recent experimental progress in creating and manipulating highly correlated spin ensemble which

provide experimentally accessible systems for quantum information processing. In general the analysis

of the properties of quantum correlations in many spin systems is difficult. The simply way to approach

this problem is the use of bipartite measures that are explicitly computable such as entanglement of

formation and usual quantum discord. The definitions of each of these two measures is presented

here after. For an arbitrary tripartite state, the quantum correlations present in the system can be

computed by considering all possible bipartite splits. The whole system can be partitioned in two

different ways. In the first bi-partition scheme, the system splits into two subsystems, one containing

one particle and the second comprising the two remaining particles. The second bipartition is obtained

by tracing out the degrees of freedom of the third subsystem. In this picture, the total amount of

quantum correlations is given by the sum of all possible bipartite quantum correlations.

2.1 Bipartite measures of entanglement of formation and quantum discord

We shall first review briefly the concept of quantum discord [4, 5]. The total correlation is usually

quantified by the mutual information, usually expressed in term of von Neumann entropy, as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (1)

where ρAB is the state of a bipartite quantum system composed of the subsystems A and B, the

operator ρA(B) = TrB(A)(ρAB) is the reduced state of A(B) and S(ρ) is the von Neumann entropy of

a quantum state ρ. The mutual information I(ρAB) contains both quantum and classical correlations.

It decomposes as

I(ρAB) = D(ρAB) + C(ρAB),

and the quantum discord D(ρAB) is defined as the difference between the total correlation I(ρAB) and

the classical correlation C(ρAB) present in the bipartite system AB. The classical part C(ρAB) can

be determined by optimizing local measurement procedure as follows. Let us consider a von Neumann

type measurement, on the subsystem A, belonging to the set one-dimensional projectors M = {Mk}
with

∑
k Mk = I. The von Neumann measurement yields the statistical ensemble {pB,k, ρB,k} such

that

ρAB −→ (Mk ⊗ I)ρAB(Mk ⊗ I)

pB,k

where the measurement operation is written as [40]

Mk = U Πk U
† (2)

with Πk = |k〉〈k| (k = 0, 1) is the one dimensional projector for subsystem A along the computational

base |k〉, U ∈ SU(2) is a unitary operator and

pB,k = tr

[
(Mk ⊗ I)ρAB(Mk ⊗ I)

]
.
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The amount of information acquired about particle B is then given by

S(ρB)−
∑

k

pB,k S(ρB,k),

which depends on measurement M. To remove the measurement dependence, a maximization over

all possible measurements is performed and the classical correlation writes

C(ρAB) = maxM

[
S(ρB)−

∑
k pB,k S(ρB,k)

]

= S(ρB)− S̃min (3)

where S̃min denotes the minimal value of the conditional entropy

S̃ =
∑

k

pB,k S(ρB,k). (4)

When optimization is taken over all perfect measurement, the quantum discord is

D(ρAB) = I(ρAB)− C(ρAB) = S(ρA) + S̃min − S(ρAB). (5)

The explicit evaluation of quantum discord (5) requires the analytical computation of S̃min. This

quantity was explicitly derived only for few exceptional two-qubit quantum states. One may quote for

instance the results obtained in [7, 41] (see also [11, 12, 42]). In this paper, we shall mainly concerned

with two-rank quantum states for which the minimization of the conditional entropy (4) can be exactly

performed by purifying the density matrix ρAB and making use of Koashi-Winter relation [43] (see

also [44]). This relation establishes the connection between the classical correlation of a bipartite

state ρAB and the entanglement of formation of its complement ρBC . Hereafter, we discuss shortly

this method. We assume that the density matrix ρAB has two non vanishing eigenvalues (two-rank

matrix). It decomposes as

ρAB = λ+|φ+〉AB〈φ+|+ λ−|φ−〉AB〈φ−| (6)

where λ+ and λ− are the eignevalues of ρAB and the corresponding eigenstates are denoted by |φ+〉AB

and |φ−〉AB respectively. The purification of the mixed state ρAB is realized by attaching a qubit C

to the two-qubit system A and B. This yields

|φ〉ABC =
√

λ+|φ+〉AB ⊗ |0〉C +
√

λ−|φ−〉AB ⊗ |1〉C (7)

such that the whole system ABC is described by the pure density matrix ρABC = |φ〉ABC 〈φ| from
which one has the bipartite densities ρAB = TrCρABC and ρBC = TrAρABC . According to Koachi-

Winter relation [43], the minimal value of the conditional entropy coincides with the entanglement of

formation of ρBC :

S̃min = E(ρBC ) (8)

which is given by

S̃min = E(ρBC) = H(
1

2
+

1

2

√
1− |C(ρBC)|2) (9)
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where H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function and C(ρBC) is the

concurrence of the density matrix ρBC . We recall that for ρ12 the density matrix for a pair of qubits 1

and 2, which may be pure or mixed, the concurrence is [45]

C12 = max {λ1 − λ2 − λ3 − λ4, 0} (10)

for λ1 ≥ λ2 ≥ λ3 ≥ λ4 the square roots of the eigenvalues of the ”spin-flipped” density matrix

̺12 ≡ ρ12(σy ⊗ σy)ρ
⋆
12(σy ⊗ σy), (11)

where the star stands for complex conjugation in the basis {|00〉, |01〉, |10〉, |11〉} with the Pauli matrix

is σy = i|1〉〈0| − i|0〉〈1|. Nonzero concurrence traduces the entanglement between the qubits 1 and 2,

otherwise they are separable. Using the equations (5) and (9), the quantum discord writes as

DAB ≡ D→AB = SA − SAB + EBC . (12)

In the same manner, when the measurement is performed on the subsystem B, it is simply verified

that the quantum discord takes the form

DBA ≡ D←AB = SB − SAB + EAC (13)

Notice that for a pure density matrix ρAB , the quantum discord reduces to entanglement of formation

E(ρAB).

2.2 Multipartite quantum correlations

The measure of multipartite quantum correlations constitutes an important issue in the context of

quantum information. Some attempts to provide a precise way to quantify and characterize the genuine

multipartite correlations were discussed in the literature yielding different approaches [38, 46, 47, 48].

In particular, Rulli and Sarandy [48] defined the multipartite measure of quantum correlation as the

maximum of the quantum correlations existing between all possible bipartition of the multipartite

quantum system. In a similar way, Z-H Ma and coworkers [38] suggested a slightly different definition

to quantify the global multipartite quantum correlation. It is defined as the sum of the correlations in

all possible bi-partitions. In this paper, paralleling the treatment discussed in [38], we shall quantify

the global quantum correlations present in even and odd spin coherent states as follows. For a tripartite

spin coherent states system (j1j2j3) arising from the decomposition of a spin-j coherent state with

j = j1 + j2 + j3, the total amount of quantum correlation is defined by

Q(j1, j2, j3) =
1

12
(Qj1j2 +Qj2j1 +Qj1j3 +Qj3j1 +Qj2j3 +Qj3j2

+ Qj1(j2j3) +Q(j2j3)j1 +Qj2(j1j3) +Q(j1j3)j2 +Qj3(j1j2) +Q(j1j2)j3) (14)

where the bipartite measure Q stands for entanglement of formation or quantum discord. More details

concerning the remarkable splitting property of spin coherent states will be presented in the next
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section. In other hand, as we shall deal with tripartite quantum states, it is natural to investigate

the intriguing monogamy relation of quantum correlation present in spin coherent coherent states.

The concept of monogamy can be introduced as follows. Let QA|B denotes the shared correlation Q

between A and B. Similarly, let us denote by QA|C the measure of the correlation between A and C

and QA|BC the correlation shared between A and the composite subsystem BC comprising B and C.

The bipartite measure of correlations Q is monogamous if QA|BC is greater that the sum of QA|B and

QA|C :

QA|BC ≥ QA|B +QA|C . (15)

This inequality imposes severe limitations to sharing quantum correlations. The monogamy of en-

tanglement of formation and quantum discord in tripartite spin coherent states are examined in the

sections 6 and 7. It must be emphasized that the conditions under which any measure of quantum

correlations that comprise and go beyond entanglement of formation was discussed by Fanchini et al

in [49] for an arbitrary pure tripartite state. In particular, the authors developed an elegant opera-

tional approach based on the discrepancy between classical and quantum correlations to set up the

constraints that any pure tripartite state must satisfy such that the entanglement of formation follow

the monogamy property. This approach allows also to understand the result obtained by Giorgi [32]

according to which the entanglement of formation and quantum discord obey the same monogamous

relation.

3 Spin coherent states as multi-qubit systems

3.1 Multi-qubit structure of Bloch coherent spin states

An arbitrary spin system is described by the su(2) algebra generated by the operators J+, J− and J3

satisfying the following structure relations

[J3, J±] = ±J±, [J−, J+] = −2J3 . (16)

The different irreducible representations classes of the group SU(2) are completely determined by the

quantum angular momentum j which may take integer or half integer values ( j = 1
2 , 1,

3
2 , . . .). The

(2j + 1)-dimensional Hilbert space is spanned by the irreducible tensorial set {|j,m〉,m = −j,−j +

1, · · · , j − 1, j} characterizing the spin-j representations of the group SU(2). The standard SU(2)

coherent states are obtained by the action of an element of the coset space SU(2)/U(1)

Dj(ξ) = exp(ξJ+ − ξ∗J−) , (17)

on the extremal state |j,−j〉. This action gives the states

|j, η〉 = Dj(ξ)|j,−j〉 = exp(ξJ+ − ξ∗J−)|j,−j〉 = (1 + |η|2)−j exp(ηJ+)|j,−j〉 , (18)
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where η = (ξ/|ξ|) tan |ξ|. In the basis {|j,m〉}, they write

|j, η〉 = (1 + |η|2)−j
j∑

m=−j

[
(2j)!

(j +m)!(j −m)!

]1/2
ηj+m|j,m〉 . (19)

They satisfy the resolution to identity property

∫
dµ(j, η)|j, η〉〈j, η| = I , dµ(j, η) =

2j + 1

π

d2η

(1 + |η|2)2 . (20)

The spin coherent states are not orthogonal to each other:

〈j, η1|j, η2〉 = (1 + |η1|2)−j(1 + |η2|2)−j(1 + η∗1η2)
2j . (21)

The resolution to identity makes possible to expand an arbitrary state in terms of the coherent states

|j, η〉. In the special case j = 1
2 , the spin coherent states (19) reduce to

|η〉 = 1√
1 + η̄η

| ↓〉+ η√
1 + η̄η

| ↑〉. (22)

Here and in the following |η〉 is short for the spin-12 coherent state |12 , η〉 with | ↑〉 ≡ |12 , 12〉 and

| ↓〉 ≡ |12 ,−1
2〉). It is important to notice that the tensorial product of two SU(2) coherent states

|j1, η〉 and |j2, η〉 produces a spin-(j1 + j2) coherent state labeled by the same variable:

|j1, η〉 ⊗ |j2, η〉 = (Dj1 ⊗Dj2) (|j1, j1〉 ⊗ |j2, j2〉) = Dj1+j2 |j1 + j2, j1 + j2〉 = |j1 + j2, η〉. (23)

Only coherent states possess this remarkable property. It allows to write any spin-j coherent states

as a 2j tensorial product of spin-12 coherent states:

|j, η〉 = (|η〉)⊗2j =
(

1√
1 + η̄η

| ↓〉+ η√
1 + η̄η

| ↑〉
)⊗2j

= (1 + η̄η)−j
+j∑

m=−j

(
2j

j +m

) 1

2

ηj+m|j,m〉,

reflecting that a spin-j coherent state may be viewed as a multipartite state containing 2j qubits.

3.2 Even and odd coherent states

The even and odd spin coherent states are defined by

|j, η,m〉 = Nm(|j, η〉 + eimπ|j,−η〉) (24)

where the integer m ∈ Z takes the values m = 0 (mod 2) and m = 1 (mod 2). The normalization

factor Nm is

Nm =
[
2 + 2p2j cosmπ

]−1/2

where p denotes the overlap between the states |η〉 and | − η〉. It is given

p = 〈η| − η〉 = 1− η̄η

1 + η̄η
. (25)
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For j = 1
2 , the even and odd coherent states coincide with | ↑〉 and | ↓〉. They can be identified with

basis states for a logical qubit as |0〉 → | ↑〉 and |1〉 → | ↓〉. This line of reasoning can be extended

to higher spin values and provides scheme to encode information in superpositions of arbitrary spin

coherent states, especially even and odd ones. Indeed, the states |j, η, 0〉 and |j, η, 1〉 define a two-

dimensional orthogonal basis and give a first possible encoding scheme. Thus, one can identify the

even state |j, η, 0〉 and the odd state |j, η, 1〉 as basis of a logical qubit as

|j, η, 0〉 −→ |0〉j |j, η, 1〉 −→ |1〉j .

Others encoding schemes involving more qubits are also possible. They can be realized using the

factorization or the splitting property of spin coherent states (23). In fact, the states (24) can be also

expressed as

|j, η,m〉 = Nm(|j1, η〉 ⊗ |j2, η〉 + eimπ|j1,−η〉 ⊗ |j2,−η〉) (26)

with j = j1 + j2. They can rewritten as a two qubit states in the basis

|ji, η, 0〉 −→ |0〉ji |ji, η, 1〉 −→ |1〉ji , i = 1, 2.

defined by means of odd and even spin coherent associated with the angular momenta j1 and j2. This

construction is easily generalizable to three and more qubits. In this manner, the states |j, η,m〉 can
be viewed as multipartite fermionic coherent states:

|j, η,m〉 = Nm((|η〉)⊗2j + eimπ (| − η〉)⊗2j). (27)

Furthermore, the logical qubits |j, η, 0〉 (even) and |j, η, 1〉 (odd) spin coherent states behave like a

multipartite state of Greenberger-Horne-Zeilinger (GHZ) type [50] in the asymptotic limit p → 0. In

this special limiting case, the states |η〉 and |−η〉 approach orthogonality and an orthogonal basis can

be defined such that |0〉 ≡ |η〉 and |1〉 ≡ | − η〉. Thus, the state |j, η,m〉 becomes of GHZ-type

|j, η,m〉 ∼ |GHZ〉2j =
1√
2
(|0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉+ eimπ|1〉 ⊗ |1〉 ⊗ · · · ⊗ |1〉). (28)

The second limiting case corresponds to the situation when p → 1 (or η → 0 ). In this case it is simple

to check that the state |j, η,m = 0 (mod 2)〉 (27) reduces to ground state of a collection of 2j fermions

|j, 0, 0 (mod 2)〉 ∼ | ↓〉 ⊗ | ↓〉 ⊗ · · · ⊗ | ↓〉, (29)

and the state |j, η, 1 (mod 2)〉 becomes a multipartite state of W type [51]

|j, 0, 1 (mod 2)〉 ∼ |W〉2j =
1√
2j

(| ↑〉⊗| ↓〉⊗· · ·⊗| ↓〉+ | ↓〉⊗| ↑〉⊗ . . .⊗| ↓〉+ · · ·+ | ↓〉⊗| ↓〉⊗· · ·⊗| ↑〉) .
(30)

The even spin coherent states |j, η,m = 0 (mod 2)〉 interpolate continuously between GHZ2j states

(p → 0) and the completely separable state | ↓〉⊗| ↓〉⊗· · ·⊗| ↓〉 (p → 1). In the odd case, corresponding

to |j, η,m = 1 (mod 2)〉, we obtain states interpolating between states of GHZ2j type (p → 0) and

states of W2j type (p → 1).
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The decomposition property (23) provides us with a picture where even and odd spin coherent states

can be considered as comprising multipartite spin subsystems. This is our main motivation to investi-

gate the quantum correlations present in a single spin coherent state. This issue is discussed in what

follows.

4 Bipartite splitting and bipartite correlations

In this section, we first discuss the bipartite splitting described by the equation (26). In this scheme,

the entire system contains two subsystems characterized by the angular momenta j1 and j2 such that

j = j1 + j2. Accordingly, (2j − 1) possible bipartite splitting are possible:

j1 = j − s

2
j2 =

s

2
s = 1, 2, · · · , 2j − 2, 2j − 1,

and subsequently it is interesting to compare the pairwise quantum correlations in each possible

bipartite splitting.

4.1 Bipartite entanglement of formation

As discussed in the previous section, for each bipartition s (s = 1, 2, · · · , 2j − 1), the coherent state

|j, η,m〉 can be expressed as a state of two logical qubits. In this sense, for each subsystem, an

orthogonal basis {|0〉l, |1〉l}, with l = j1 or j2, can be defined as

|0〉l =
|l, η〉+ |l,−η〉√

2(1 + p2l)
|1〉l =

|l, η〉 − |l,−η〉√
2(1 − p2l)

. (31)

The bipartite density matrix ρ = |j, η,m〉〈j, η,m| is pure. In this situation, the quantum discord for

the pure state ρAB ≡ ρ coincides with the entanglement of formation. It is given by the von Neumann

entropy of the subsystem characterized by the spin j1:

D(ρ) = E(ρ) = S(ρj1) (32)

where ρj1 = Trj2(ρ) is the reduced density matrix of the first subsystem obtained by tracing out the

spin j2 . Thus, the quantum discord writes as

D(ρ) = −λ+ log2 λ+ − λ− log2 λ− (33)

in term of the eigenvalues of the reduced density matrix ρj1 given by

λ± =
1

2

(
1±

√
1− C2

)
. (34)

In Eq.(34), C is the concurrence between the two subsystems given by

C =

√
1− p4j1

√
1− p4j2

1 + p2j cosmπ
(35)
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that is simply obtained by using the qubit mapping (31). It follows that the entanglement of formation

writes

Ej1,j2 ≡ E(ρ) = H

(
1

2
+

1

2

p2j1 + p2j2 cosmπ

1 + p2j cosmπ

)
, (36)

where H stands for the binary entropy defined above. Notice that the entanglement of formation

satisfies the symmetry relation

Ej1,j2 = Ej2,j1 (37)

as expected. For p → 0, the state (26) reduces to a bipartite state of GHZ type which is maximally

entangled (C = 1) and the entanglement of formation is E(ρ) = 1. The limiting case p → 1 is slightly

different. In fact, we have E(ρ) = 0 for m even (i.e. symmetric pure states). The odd spin coherent

states (i.e. m odd) become of W type when p → 1 and the bipartite concurrence writes

C = 2

√
j1j2

j1 + j2
.

It follows that the corresponding pairwise quantum entanglement takes the form

E(ρ) = D(ρ) = H

(
1

2
+

1

2

j1 − j2
j1 + j2

)
.

The entanglement of formation in W states is maximal when j1 = j2 (E(ρ) = 1). In other hand, in a

splitting scheme such as j2 ≪ j1 or j1 ≪ j2, the states of W type are unentangled (E(ρ) = 0).

4.2 Illustration

To exemplify the above results, we consider the even and odd coherent states associated with the spin

j = 2. The three possible bipartite splitting schemes are

(j1 =
3

2
, j2 =

1

2
) (j1 = 1, j2 = 1) (j1 =

1

2
, j2 =

3

2
)

Using the equation (36) and the relation (37), one gets

E 3

2
, 1
2

= E 1

2
, 3
2

= H

(
1

2
+

p

2

p2 + cosmπ

1 + p4 cosmπ

)
(38)

and

E1,1 = H

(
1

2
+

p2

2

1 + cosmπ

1 + p4 cosmπ

)
(39)

The behavior of the entanglement of formation E 3

2
, 1
2

and E1,1 versus the overlap p is plotted in the

figures 1 and 2 corresponding respectively to even (m = 0) and odd (m = 1) spin coherent states. As

seen from the figures, in both cases the entanglement of formation in the splitting scheme 2 −→ (1, 1)

is greater than one existing between the spin subsystems arising from the decomposition 2 −→ (32 ,
1
2)

for any value of p. In general, for a given spin j, the maximal value of entanglement of formation

Ej1,j2 is reached in the bipartition where j1 = j2 = j
2 . In figure 2, for odd spin coherent states, we

have E1,1 = 1 as it can be verified from the expression (39).
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FIG. 1: The pairwise entanglement of formation E = Ej1,j2 versus the overlap p for (j1 = 3
2 , j2 =

1
2) and

(j1 = 1, j2 = 1) with m = 0 .

FIG. 2: The pairwise entanglement of formation E = Ej1,j2 versus the overlap p for (j1 = 3
2 , j2 =

1
2) and

(j1 = 1, j2 = 1) with m = 1 .

5 Three modes splitting and qubit mapping

Analogously to the bipartite case, we consider in this section the tripartite splitting of even and odd

spin coherent states (24). The entire system decays into three subsystems, one subsystem describing

a particle of spin j1, the second refers to a particle of spin j2 and the remaining particle is of spin

j3 = j − j1 − j2. In this scheme, the state |j, η,m〉 writes as

|j, η,m〉 = Nm(|j1, η〉 ⊗ |j2, η〉 ⊗ |j3, η〉 + eimπ|j1,−η〉 ⊗ |j2,−η〉 ⊗ |j3,−η〉). (40)

To evaluate the bipartite quantum correlations present coherent states decomposed as in (40), two

different bi-partitions are considered. The first one yields pure bipartite states and the second one

involves mixed two-qubit states.

12



5.1 Bipartite pure states

The pure bi-partitions of the state (40) can be introduced in three different ways. In the first one, the

state |j, η,m〉 is written as

|j, η,m〉j1|j−j1 = Nm(|j1, η〉 ⊗ |j − j1, η〉 + eimπ|j1,−η〉 ⊗ |j − j1,−η〉). (41)

Similarly, the state (40) can be also partitioned as

|j, η,m〉j2|j−j2 = Nm(|j2, η〉 ⊗ |j − j2, η〉 + eimπ|j2,−η〉 ⊗ |j − j2,−η〉). (42)

The third bipartition is given by

|j, η,m〉j3|j−j3 = Nm(|j3, η〉 ⊗ |j − j3, η〉 + eimπ|j3,−η〉 ⊗ |j − j3,−η〉). (43)

For each bipartition, the state |j, η,m〉 can be converted into a state of two logical qubits. This is

achieved by introducing, for the first subsystem, the orthogonal basis {|0〉l, |1〉l}, with l = j1, j2 or j3,

defined as

|0〉l =
|l, η〉+ |l,−η〉√

2(1 + p2l)
|1〉l =

|l, η〉 − |l,−η〉√
2(1 − p2l)

, (44)

and, for the second subsystem, the orthogonal basis {|0〉j−l, |1〉j−l} given by

|0〉j−l =
|j − l, η〉 + |j − l,−η〉√

2(1 + p2(j−l))
|1〉j−l =

|j − l, η〉 − |j − l,−η〉√
2(1 − p2(j−l))

. (45)

Reporting the equations (44) and (45) in (41), (42) and (43), one has the expression of the pure state

|j, η,m〉l|j−l in the basis {|0〉l ⊗ |0〉j−l, |0〉l ⊗ |1〉j−l, |1〉l ⊗ |0〉j−l, |1〉l ⊗ |1〉j−l}. It is given by

|j, η,m〉l|j−l =
∑

α=0,1

∑

β=0,1

Cα,β|α〉l ⊗ |β〉j−l (46)

where the coefficients Cα,β are

C0,0 = Nm(1 + eimπ)alaj−l, C0,1 = Nm(1− eimπ)albj−l

C1,0 = Nm(1− eimπ)aj−lbl, C1,1 = Nm(1 + eimπ)blbj−l.

in terms of the quantities

ak =

√
1 + p2k

2
, bk =

√
1− p2k

2
for k = l, j − l

involving the overlap p (25) which is related to the non-orthogonality of two spin coherent states of

equal amplitude and opposite phase.
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5.2 Bipartite mixed states

The second class of bipartite density matrices can be realized from the state (40) by considering the

reduced density matrices ρl1l2 that are obtained by tracing out the degrees of freedom of the third

subsystem. There are three different density matrices ρj1j2 , ρj2j3 and ρj1j3 . Explicitly, they are given

by

ρl1l2 = Trl3(|j, η,m〉〈j, η,m|)
= N 2

m(|η, η)(η, η| + | − η,−η)(−η,−η| + eimπq| − η,−η)(η, η| + e−imπq|η, η)(−η,−η|) (47)

with q ≡ p2(j−l1−l2) = p2l3 and

| ± η,±η) = |l1,±η〉 ⊗ |l2,±η〉.

It is interesting to note that the density matrix ρl1l2 is a two-rank operator. Indeed, it rewrites as

ρl1l2 =
1

2
(1 + q)

N 2
m

N 2
+

|φ+〉〈φ+|+
1

2
(1− q)

N 2
m

N 2
−

|φ−〉, 〈φ−| (48)

where

|φ±〉 = N±(|l1, η〉 ⊗ |l2, η〉 ± eimπ|l1,−η〉 ⊗ |l2,−η〉)

and

N 2
± = 2± 2p2(l1+l2) cosmπ.

In this case, the density matrix ρl1l2 can be also converted into a two-qubit system by an appropriate

qubit mapping. For this, we introduce an orthogonal pair {|0〉l, |1〉l} as

|0〉l =
|l, η〉+ |l,−η〉√

2(1 + p2l)
|1〉l =

|l, η〉 − |l,−η〉√
2(1 − p2l)

. (49)

where l = l1 for the first subsystem and l = l2 for the second. Substituting the equation (49) into

(47), we obtain the density matrix

ρl1l2 = N 2




2a2
1
a2
2
(1+q cosmπ) 0 0 2a1b1a2b2(1+q cosmπ)

0 2a2
1
b2
2
(1−q cosmπ) 2a1b1a2b2(1−q cosmπ) 0

0 2a1b1a2b2(1−q cosmπ) 2a2
2
b2
1
(1−q cosmπ) 0

2a1b1a2b2(1+q cosmπ) 0 0 2b2
1
b2
2
(1+q cosmπ)


 (50)

in the basis {|0l1 , 0l2〉, |0l1 , 1l2〉, |1l1 , 0l2〉, |1l1 , 1l2〉} where the quantities a1, b1, a2, b2 are defined by

ai =

√
1 + p2li

2
, bi =

√
1− p2li

2
for i = 1, 2

6 Quantum entanglement in the three splitting scheme

6.1 Entanglement of formation

In the pure bipartite splitting scheme, the concurrence is given by

C(ρk1|k2k3) ==

√
1− p4k1

√
1− p4(j−k1)

1 + p2j cosmπ
(51)
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where the triplet (k1, k2, k3) stands for (j1, j2, j3) , (j2, j1, j3) and (j3, j1, j2) corresponding respectively

to the states (41), (42) and (43). Subsequently, the entanglement of formation writes

E(ρk1|k2k3) = H

(
1

2
+

1

2

p2k1 + p2(j−k1) cosmπ

1 + p2j cosmπ

)
. (52)

For mixed bipartite states belonging to the second bi-partitioning class (47), the concurrence is given

by

C(ρl1l2) = p2(j−l1−l2)
√

(1− p4l1)(1− p4l2)

1 + p2j cosmπ
(53)

where the reduced density matrix ρl1l2 stands for ρj1j2 , ρj2j3 and ρj1j3 . The entanglement of formation

writes

E(ρl1l2) = H

(
1

2
+

1

2

√

1− p4(j−l1−l2)(1− p4l1)(1 − p4l2)

(1 + p2j cosmπ)2

)
. (54)

6.2 Multipartite entanglement of formation

When the bipartite quantum correlations are quantified by the entanglement of formation, the defini-

tion (14) gives

E(j1, j2, j3) =
1

6
(E(ρj1j2) + E(ρj1j3) + E(ρj2j3) + E(ρj1|j2j3) + E(ρj2|j1j3) +E(ρj3|j1j2)) (55)

Using the results (52) and (54), the total amount of quantum entanglement is explicitly given by

E(j1, j2, j3) =
1

6

[
H

(
1

2
+

1

2

p2j1 + p2(j2+j3) cosmπ

1 + p2j cosmπ

)
+H

(
1

2
+

1

2

√

1− p4j1(1− p4j2)(1− p4j3)

(1 + p2j cosmπ)2

)

+ H

(
1

2
+

1

2

p2j2 + p2(j1+j3) cosmπ

1 + p2j cosmπ

)
+H

(
1

2
+

1

2

√
1− p4j2(1− p4j1)(1− p4j3)

(1 + p2j cosmπ)2

)

+ H

(
1

2
+

1

2

p2j3 + p2(j1+j2) cosmπ

1 + p2j cosmπ

)
+H

(
1

2
+

1

2

√

1− p4j3(1− p4j1)(1− p4j2)

(1 + p2j cosmπ)2

)]
(56)

which is completely symmetric in j1, j2 and j3. This quantity will be compared with the sum of

pairwise quantum discord of all possible bi-partitions of the state (40) and its behavior in terms of

the overlap p in some particular cases is examined in Section 7.

6.3 Monogamy of entanglement of formation

The entanglement shared by more than two parties constitutes a subtle issue in investigating mul-

tipartite correlations. Thus, considering the limitations of sharing entanglement in the orthogonal

case, we study the monogamy of entanglement of formation in tripartite spin coherent states. In this

respect, we analyze the situations where the following inequality

E(ρl1l2) +E(ρl1l3) ≤ E(ρl1|l2l3)
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is satisfied or violated. The notations are as above. Clearly, to decide if the entanglement of formation

is monogamous or not in spin coherent states, we shall treat some particular cases. We first consider

the splitting j1 = j2 = j3 = 1
2 which arises from the decomposition of even and odd coherent states

associated with the spin j = 3
2 . The behavior of the entanglement of formation difference :

∆E = E(ρj1|j2j3)− E(ρj1j2)− E(ρj1j2),

for even and odd spin coherent states, are reported in the figure 3. They show that the entanglement

of formation satisfies always the monogamy relation in the even case (m = 0) but ceases to be

monogamous in the odd case (m = 1) when the overlap p is greater than 0.8. This indicates also

that the monogamy relation is violated in three qubit states of W type obtained in the limiting case

p −→ 1. Similarly, we also considered the two tripartite splitting (j1 = 1
2 , j2 = 1

2 , j3 = 1) and

(j1 = 1, j2 = 1
2 , j3 = 1

2) which can originate from the splitting of the spin j = 2. The figures 4

reveals that the monogamy relation is satisfied for even spin coherent states (m = 0). However, for

odd spin coherent states (m = 1), the entanglement of formation does not follow the monogamy as p

approaches the unity (see figure 4). This agrees with the result of figure 3 and confirms that in a W

state comprising three qubits, the monogamy of entanglement of formation is violated.

FIG. 3: The function ∆E versus the overlap p when j1 = j2 = j3 =
1
2 for m = 0 and m = 1.
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FIG. 4: The function ∆E versus the overlap p when (j1 = 1
2 , j2 = 1

2 , j3 = 1) and

(j1 = 1, j2 = 1
2 , j3 =

1
2) for m = 0.

FIG. 5: The function ∆E versus the overlap p when (j1 = 1
2 , j2 = 1

2 , j3 = 1) and

(j1 = 1, j2 = 1
2 , j3 =

1
2) for m = 1.

7 Quantum discord in the three splitting scheme

7.1 Quantum discord

In the pure bipartite splitting scheme defined by (41), (42) and (43), the quantum discord and entan-

glement of formation as measure of bipartite quantum correlations are identical and we have

D(ρj1|j2j3) = E(ρj1|j2j3) D(ρj2|j1j3) = E(ρj2|j1j3) D(ρj3|j1j2) = E(ρj1|j1j2) (57)

where the entanglement of formation is given by (52) modulo some obvious substitutions.

To get the explicit expressions of quantum discord in bipartite mixed states ρl1l2 of the form (50),

we evaluate the mutual information entropy and the minimum of conditional entropy according to

the general algorithm discussed in Section 2. We first calculate the mutual information. The non

vanishing eigenvalues of the density matrix ρl1l2 are

λ± =
1

2

(1± p2(j−l1−l2))(1± p2(l1+l2) cos(mπ))

1 + p2j cos(mπ)
, (58)

and the joint entropy is

S(ρl1l2) = h(λ+) + h(λ−) = H(λ+). (59)

The eigenvalues of the marginal ρl1 = Trl2ρl1l2 are

λ1,± =
1

2

(1± p2(j−l1))(1± p2l1 cos(mπ))

1 + p2j cos(mπ)
,

and the marginal entropy reads

S(ρl1) = h(λ1,+) + h(λ1,−) = H(λ1,+). (60)
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The eigenvalues of the marginal ρl2 = Trl1ρl1l2 are

λ2,± =
1

2

(1± p2(j−l2))(1± p2l2 cos(mπ))

1 + p2j cos(mπ)
,

and the corresponding entropy is given by

S(ρl2) = h(λ2,+) + h(λ2,−) = H(λ2,+). (61)

It follows that the mutual information defined by (1) takes the form

I(ρl1l2) = H(λ1,+) +H(λ2,+)−H(λ+). (62)

The second important step in deriving pairwise quantum discord requires the explicit calculation of

the minimal amount of the conditional entropy (4). According the general discussion presented in

the second section, it is necessary to purify the density matrix ρl1l2 and determine the entanglement

of formation of its complement. This algorithm can be achieved as follows. The matrix ρl1l2 is a

two-qubit state and subsequently decomposes as

ρl1l2 = λ+|φ+〉〈φ+|+ λ−|φ−〉〈φ−| (63)

where the eigenvalues λ+ and λ− are given by (58) and the corresponding eigenstates |φ+〉 and |φ−〉
write as

|φ+〉 =
√

(1 + pl1)(1 + pl2)√
2(1 + pl1+l2)

|0l1 , 0l2〉+
√

(1− pl1)(1 − pl2)√
2(1 + pl1+l2)

|1l1 , 1l2〉 (64)

|φ−〉 =
√

(1 + pl1)(1 − pl2)√
2(1(−pl1+l2)

|0l1 , 1l2〉+
√

(1− pl1)(1 + pl2)√
2(1 − pl1+l2)

|1l1 , 0l2〉 (65)

in the basis (49). Attaching a qubit 3 to the two-qubit system (12) ≡ (l1l2), we write the purification

of ρl1l2 as

|φ〉 =
√
λ+|φ+〉 ⊗ |0〉 +

√
λ−|φ−〉 ⊗ |1〉 (66)

such that the whole system (123) is described by the pure density matrix ρl1l23 = |φ〉〈φ|. Using the

Koashi-Winter relation (9), we have

S̃min = E(ρ23) = H(
1

2
+

1

2

√
1− |C(ρ23)|2) (67)

where the concurrence of the density matrix ρ23 ≡ ρl23 is

|C(ρl23)|2 =
p4l1(1− p4l2)(1− p4(j−l1−l2))

(1 + p2j cosmπ)2
.

It follows that the quantum discord is then given by

D(ρl1l2) = S(ρl1)− S(ρl1l2) + E(ρl23). (68)
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Using the equations (59), (60) and (67), it rewrites explicitly as

D→(ρl1l2) = H

(
1

2

(1 + p2l1)(1 + p2(j−l1) cos(mπ))

1 + p2j cos(mπ)

)

− H

(
1

2

(1 + p2(j−l1−l2))(1 + p2(l1+l2) cos(mπ))

1 + p2j cos(mπ)

)
(69)

+ H

(
1

2
+

1

2

√

1− p4l1(1− p4l2)(1− p4(j−l1−l2))

(1 + p2j cosmπ)2

)

where the pair (l1, l2) stands for (j1, j2), (j1, j3) and (j2, j3). Similarly, the measure of quantum discord

obtained by measuring the second qubit B ≡ l2 is

D←(ρl1l2) = H

(
1

2

(1 + p2l2)(1 + p2(j−l2) cos(mπ))

1 + p2j cos(mπ)

)

− H

(
1

2

(1 + p2(j−l1−l2))(1 + p2(l1+l2) cos(mπ))

1 + p2j cos(mπ)

)
(70)

+ H

(
1

2
+

1

2

√

1− p4l2(1− p4l1)(1 − p4(j−l1−l2))

(1 + p2j cosmπ)2

)
.

It is interesting to note that

D→(ρl1l2) = D←(ρl2l1). (71)

It is clear that for l1 = l2, the quantum discord is symmetric, i.e. D→(ρll) = D←(ρll). Using the

equation (69), one obtains the following conservation relations

D→(ρj1j2) +D→(ρj3j2) = Ej2j3 + Ej2j1 ,

D→(ρj2j1) +D→(ρj3j1) = Ej1j3 + Ej1j2 , (72)

D→(ρj1j3) +D→(ρj2j3) = Ej3j2 + Ej3j1 .

Similar conservations relations hold for the measures of quantum discord given by (70). They can be

easily derived from the relation (71). Using the conservation relations (72), we have

D→(ρj1j2) +D→(ρj2j3) +D→(ρj3j1) = Ej1j2 + Ej1j3 + Ej2j3 .

This reflects that the sum of pairwise quantum discord for all bipartite mixed states coincides with

the sum of entanglement of formation. It must be noticed that the conservation relations of type (72)

involving entanglement of formation and quantum discord were first derived in [38].

7.2 Multipartite quantum correlations

Based on the asymmetric definition of quantum discord, two interesting quantities were defined by

Fanchini et al [52]. In our context, they write

∆+
l1|l2

=
1

2

(
D→(ρl1l2) +D→(ρl2l1)

)
, (73)
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and

∆−l1|l2 =
1

2

(
D→(ρl1l2)−D→(ρl2l1)

)
. (74)

The sum ∆+
l1|l2

is the average of locally inaccessible information when the measurements are performed

on the subsystems l1 and l2. It quantifies the disturbance caused by any local measurement. The

difference ∆−l1|l2 is the balance of locally inaccessible information and quantifies the asymmetry between

the subsystems in responding to the measurement disturbance. Using the equation (69), it is easy to

verify that the average and the balance of quantum discord satisfy the following identities

∆+
j1|j2

+∆+
j1|j3

+∆+
j2|j3

= Ej1j2 + Ej1j3 +Ej2j3 , (75)

and

∆−j1|j2 +∆−j1|j3 +∆−j2|j3 = 0. (76)

Using the main definition (14), it is interesting to note that the total amount of quantum discord

present in the state (40) can be simply written in terms of the average of locally inaccessible information

(73). Indeed, we have

D(j1, j2, j3) =
1

6

(
∆+

j1|j2
+∆+

j1|j3
+∆+

j2|j3
+∆+

j1|(j2j3)
+∆+

j2|(j1j3)
+∆+

j3|(j1j2)

)
(77)

where the quantity ∆+
k1|(k2k3)

coincides with the entanglement of formation E(ρk1|k2k3) given by (52).

Furthermore, using the conservation relation (75), one gets

D(j1, j2, j3) = E(j1, j2, j3) (78)

where E(j1, j2, j3) is given by (56). This result coincides with one obtained in [38]. It reflects that the

sum of quantum discord present in all possible bi-partitions is exactly the total amount of bipartite

entanglement of formation in the entire system.

Since for a spin-j coherent state there are different tripartite splitting possibilities denoted here by

(j1, j2, j3) such that j1 + j2 + j3 = j, it is seems natural to compare the total amount of multipartite

correlations in each splitting scheme. As illustration, we consider the situation where j = 3. The

tripartite quantum discord D(j1, j2, j3) (78) is totally symmetric in j1, j2 and j3. Thus, for j = 3,

three inequivalent splitting schemes are of special interest. They correspond to (j1 = 1, j2 = 1, j3 = 1)

, (j1 = 1
2 , j2 = 1

2 , j3 = 2) and (j1 = 1
2 , j2 = 1, j3 = 3

2 ). In figures 6 and 7, we plot the quantity

D(j1, j2, j3) as function of the overlap p for each case.
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FIG. 6: The multipartite quantum correlations for j = 3 versus the overlap p for m = 0.

FIG. 7: The multipartite quantum correlations for j = 3 versus the overlap p for m = 1.

From figures 6 and 7, one can see that the tripartite quantum discord D(j1 = 1, j2 = 1, j3 = 1),

D(j1 = 1
2 , j2 = 1

2 , j3 = 2) and D(j1 = 1
2 , j2 = 1, j3 = 3

2) are all equals for p ≃ 0.5. Note also that for

p ≤ 0.5, the sum of all pairwise quantum discord obtained in the spitting scheme (j = 3) −→ (j1 =

1, j2 = 1, j3 = 1) is minimal in comparison with the two others. This behavior changes when p ≥ 0.5

and the quantity D(j1 = 1, j2 = 1, j3 = 1) becomes maximal. For even spin coherent states (m = 0),

the measure of tripartite quantum correlations vanishes when p −→ 1 as expected (see equations (56)

and (78)).

7.3 Monogamy of quantum discord

In the pure tripartite state (40), the quantum discord satisfy the monogamy relation when the following

condition

D→(ρj1j2) +D→(ρj1j3) ≤ D→(ρj1|j2j3)

is satisfied. As for entanglement of formation, we shall focus on some special cases to determine the

positivity of the function

∆D = D→(ρj1|j2j3)−D→(ρj1j2)−D→(ρj1j3)
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when the overlap vary from 0 to 1. We first consider the situation where (j1 = 1
2 , j2 = 1

2 , j3 = 1
2).

The function ∆D is plotted in figure 8. In this case the quantum discord is monogamous for even

spin coherent state. However, for odd spin coherent state, the monogamy relation is satisfied only

when p ≤ 0.8. We also consider the situations where (j1 = 1, j2 = 1
2 , j3 = 1

2), (j1 = 1
2 , j2 = 1, j3 = 1

2)

and (j1 = 1
2 , j2 = 1

2 , j3 = 1) associated to the spin j = 2. The behavior of the function ∆D for

even coherent states (m = 0) is reported in the figure 9. Clearly, the monogamy relation is satisfied.

The figure 10, representing the function ∆D for odd case (m = 1), reveals that the quantum discord

ceases to be monogamous for p approaching the unity. Remark that in the figures 9 and 10, we have

∆D(12 , 1,
1
2 ) = ∆D(12 ,

1
2 , 1) as expected. It is interesting to note that the behavior of ∆D versus p is

identical to the ones obtained for ∆E in the previous section (figures 3, 4 and 5). This is essentially

due to the conservation relations between quantum discord and entanglement of formation (72) [38].

Finally, it is interesting to note that the odd tripartite coherent states (m = 1) interpolate continuously

between the three-qubit Greenberger-Horne-Zeilinger (GHZ3) states when p → 0 and W3 states for

p → 1. It follows from figure 10 that the GHZ3 states follow monogamy and W3 states do not.

FIG. 8: The function ∆D versus the overlap p when j1 = j2 = j3 =
1
2 for m = 0 and m = 1.

FIG. 9: The function ∆D versus the overlap p when (j1 = 1, j2 = 1
2 , j3 =

1
2) and
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(j1 =
1
2 , j2 =

1
2 , j3 = 1) for m = 0.

FIG. 10: The function ∆D versus the overlap p when (j1 = 1, j2 = 1
2 , j3 = 1

2) and

(j1 =
1
2 , j2 =

1
2 , j3 = 1) for m = 1.

8 Concluding remarks

The main motivation in investigating the multipartite quantum correlations in even and odd coherent

states is the decomposition (or factorization) property given by (23). In this way, a single j-spin co-

herent state is viewed as comprising two, three or in general 2j qubits. Moreover, this decomposition

property allows us to investigate the pairwise quantum correlations in a in a single spin coherent state.

In this paper, we mainly focused on bipartite and tripartite decomposition. For each case, the spin

coherent states were mapped to two or three qubits system. We have considered the multipartite

quantum correlation in even and odd spin coherent states measured by entanglement of formation

and quantum discord. We defined the total amount of quantum correlation in spin coherent states,

viewed as multi-components system, as the sum of all pairwise quantum correlations. We explicitly

derived the expressions of multipartite entanglement of formation and quantum discord for even and

odd spin coherent states. The sum of all possible pairwise entanglement of formation in an even or

odd spin coherent, viewed as a pure tripartite state, is explicitly derived and it coincides with sum of

pairwise quantum discord of all possible bi-partitions as it has been shown in [38]. This peculiar result

originates from the conservation relation between the entanglement of formation and quantum discord

given by (72). We also examined the monogamy relation of entanglement of formation and quantum

discord. Remarkably, in the simplest cases that we considered, these two measures are monogamous for

even spin coherent contrarily to odd case where the monogamy relation is violated for states involving

an overlap p approaching the unity. In particular, we have shown that the entanglement of formation

and quantum discord follow the monogamy relation in the three qubit Greenberger-Horne-Zeilinger

states contrarily to the three qubit states of W type. As prolongation of the present work, it will be

an important issue to extend the present approach to others coherent and squeezed states. Further
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thought in this direction might be worthwhile in investigating genuine multipartite quantum correla-

tions. Finally, it is interesting to examine the relation between the spin coherent states factorization

(23) and the tensor product decomposition of two fermions developed in [53].
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[2] O. Gühne and G. Tóth, Phys. Rep. 474 (2009) 1.

[3] K. Modi, A. Brodutch, H. Cable, T. Paterek and V. Vedral, Rev. Mod. Phys. 84 (2012) 1655.

[4] H. Ollivier and W.H. Zurek, Phys. Rev. Lett. 88 (2001) 017901.

[5] L. Henderson and V. Vedral, J. Phys. A 34 (2001) 6899.

[6] S. Luo, Phys. Rev. A 77 (2008) 042303; Phys. Rev. A 77 (2008) 022301.

[7] M. Ali, A.R.P. Rau and G. Alber, Phys. Rev. A 81 (2010) 042105.

[8] M. Shi, W. Yang, F. Jiang and J. Du, J. Phys. A: Math. Theor. 44 (2011) 415304.

[9] D. Girolami and G. Adesso, Phys. Rev. A 83 (2011) 052108.

[10] M. Shi, F. Jiang, C. Sun and J. Du, New J. Phys. 13 (2011) 073016.

[11] M. Daoud and R. Ahl Laamara, J. Phys. A: Math. Theor. 45 (2012) 325302.

[12] M. Daoud and R. Ahl Laamara, Int. J. Quantum Inform. 10 (2012) 1250060.

[13] B. Dakic, V. Vedral and C. Brukner, Phys. Rev. Lett. 105 (2010) 190502.

[14] C.H. Bennett, D.P. DiVincenzo, J. Smolin and W.K. Wootters, Phys. Rev. A 54 (1997) 3814.

[15] B.C. Sanders, Phys. Rev. A 45 (1992) 6811.

[16] B.C. Sanders, Phys. Rev. A 46 (1992) 2966.

[17] B.C Sanders, J. Phys. A: Math. Theor. 45 (2012) 244002.

[18] C.A. Fuchs, Phys. Rev. Lett. 79 (1997) 1162.

[19] H. Jeong, M.S. Kim and J. Lee, Phys. Rev. A 64, (2001) 052308.

[20] S.D. Bartlett, H. de Guise and B.C. Sanders, Phys. Rev. A 65 (2002) 052316.

[21] H. Jeong and M.S. Kim, Phys. Rev. A 65 (2002) 042305.

24



[22] T.C. Ralph, W.J. Munro and G.J. Milburn, Phys. Rev. A 68(2003) 042319 .

[23] S. Lloyd and S.L. Braunstein, Phys. Rev. Lett. 82 (1999) 1784.

[24] P.T. Cochrane, G.J. Milburn and W.J. Munro, Phys. Rev. A 59 (1999) 2631.

[25] M.C. de Oliveira and W.J. Munro, Phys. Rev. A 61 (2000) 042309.

[26] M.A. Can , A. Klyachko and A. Shumovsky, J. Opt. B: Quantum Semiclass. Opt. 7 (2005) L1.

[27] S. Binicioglu, M.A. Can, A.A. Klyachko and A.S. Shumovsky, Found. Phys. 37 (2007) 1253.

[28] M.O. Terra Cunha, J.A. Dunningham and V. Vedral, Proc. R. Soc. A 463 (2007) 2277.

[29] V. Coffman, J. Kundu and W.K. Wootters, Phys. Rev. A 61 (2000) 052306.

[30] G. Adesso and F. Illuminati, New J. Phys. 8 (2006) 15.

[31] T. Hiroshima, G. Adesso and F. Illuminati, Phys. Rev. Lett. 98 (2007) 050503.

[32] G.L. Giorgi, Phys. Rev. A 84 (2011) 054301.

[33] R. Prabhu, A.K. Pati, A.S. De and U. Sen, Phys. Rev. A 86 (2012) 052337.

[34] Sudha, A.R. Usha Devi and A.K. Rajagopal, Phys. Rev. A 85 (2012) 012103.

[35] M. Allegra, P. Giorda and A. Montorsi, Phys. Rev. B 84 (2011) 245133.

[36] X.-J. Ren and H. Fan, Quant. Inf. Comp. 13 (2013) 0469.

[37] A. Streltsov, G. Adesso, M. Piani and D. Bruss, Phys. Rev. Lett. 109 (2012) 050503.

[38] Z-H Ma, Z-H Chen and F.F. Fanchini, New J. Phys. 15 (2013) 043023.

[39] F.F. Fanchini, M.F. Cornelio, M.C. de Oliveira and A.O. Caldeira, Phys. Rev. A 84 (2011)

012313.

[40] S. Luo, Phys. Rev. A 77 (2008) 042303; Phys. Rev. A 77 (2008) 022301.

[41] G. Adesso and A. Datta, Phys. Rev. Lett. 105 (2010) 030501; G. Adesso and D. Girolami, Int.

J. Quantum Inform. 9 (2011) 1773.

[42] M. Daoud and R. Ahl Laamara, Phys. Lett. A 376 (2012) 2361.

[43] M. Koachi and A. Winter, Phys. Rev. A 69 (2004) 022309.

[44] M. Shi, W. Yang, F. Jiang and J. Du, J. Phys. A: Math. Theor. 44 (2011) 415304.

[45] S. Hill and W.K. Wootters, Phys. Rev. Lett. 78 (1997) 5022.

25



[46] M. Okrasa and Z. Walczak, Eur. Phys. Lett. 96 (2011) 60003.

[47] I. Chakrabarty, P. Agrawal and A.K. Pati, Eur. Phys. J. D 65 (2011) 605.

[48] C.C. Rulli and M.S. Sarandy, Phys. Rev. A 84 (2011) 042109.

[49] F.F. Fanchini, M.C. de Oliveira, L.K. Castelano and M.F. Cornelio, Phys. Rev. A 87 (2013)

032317.

[50] D.M. Greenberger, M.A. Horne and A. Zeilinger, Physics Today 46 (1993) 22.

[51] W. Dür, G. Vidal and J.I. Cirac, Phys. Rev. A 62 (2000) 062314.

[52] F.F. Fanchini, L.K. Castelano, M.F. Cornelio and M.C. de Oliveira, New J. Phys. 14 (2012)

013027.

[53] P. Caban, K. Podlaski, J. Rembieliński, K. A. Smoliński and Z. Walczak, J. Phys. A: Math. Gen.
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