
Abstract

This paper deals with a Schwinger realization of polynomial su(2) algebras. It involves general-

ized Weyl-Heisenberg algebras Aκ(1) (κ characterizes the deviation from the usual boson algebra).

Hilberitian as well as analytical representations are defined. To show the interest for such algebras,

we investigate the dynamical symmetry of the Kepler system in a two-dimensional curved space

and we discuss their relevance in the super-symmetric quantum mechanics.
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I. INTRODUCTION

The generalized su(2) algebras developed in the context of the theory of quantum alge-

bras have attracted a lot of interest in the literature. This is especially by motivated their

relevance in different areas of physics as for instance exactly solvable quantum potentials,

statistical physics, Yang-Mills theory, field theory, two dimensional integrable models, quan-

tum optics, etc. [1-17]. Many variants of generalized algebras were investigated for different

purposes. The generalized su(2) algebras can be defined in a unified scheme. Indeed, n terms

of the raising and lowering generators J± and the diagonal one J3, the very well-known linear

su(2) algebra is characterized by the structure relations

[J3, J+] = J+, [J3, J−] = −J−, [J+, J−] = f(J3) (1)

where the structure function characterizes the deviation from the linear su(2) algebra.

Clearly, many different generalization schemes can be defined. of particular interest are

polynomial su(2) alegebras in which f(J3) is a polynomial in J3. For such algebras, the

Casimir operator is given by

C = J+J− + g(J3 − 1) = J−J+ + g(J3) (2)

with the function g(J3) satisfies

g(J3)− g(J3 − 1) = f(J3) (3)

Unitary irreducible representations were for some specific forms of the polynomial structure

function f(J3) (see for instance [14]). Coherent states associated with specific polynomial

su(2) algebras were defined [23-26]. Also bosonic realizations of such algebras by means of

generalized bosons were discussed in the literature [23-26]. They can classified into two main

categories. One, essentially based on Jackson’s q- calculus, uses the concept of q-deformed

boson algebra (q ∈ C) firstly proposed by Arik and Coon [28] and developed further by

Macfarlane [29] and Biedenharn [30] to provide bosonic and fermionic realizations of quan-

tum algebras. The second category involves new variants of generalized Weyl-Heisenberg

algebras [31-33]. The main characteristics of the these algebras is the fact that are not

related to ones defined in the framework of quantum algebras and the q-calculus. Among

them, we shall consider the single boson extended Weyl-Heisenberg algebra Aκ(1) [31]. It is
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generated by the operators a+, a− and N satisfying the following commutation relations

[a−, a+] = 1 + 2κN, [N, a†] = a†, [N, a] = −a, (4)

labeled by a real parameter κ. The usual boson algebra is recovered when κ goes to zero.

In this context, the main of this work is as follows. We shall introduce a one parameter

family of nonlinear su(2) algebras of type (1). This is realized à la Schwinger in terms of two

commuting copies of generalized Aκ(1) algebras (4). The representation spaces are defined

using the Fock representation of Aκ(1) algebras derived in [31]. To provide physical illustra-

tion of such polynomial generalized bosonic realizations, we give in the second section the

general procedure to derive the Casimir operator polynomial su(2) algebras of an arbitrary

order. Section III is devoted to the Schwinger realization of polynomial su(2) algebras and

the associated discrete representation spaces. In section IV, Fock-Bragmann representations

and coherent states are constructed. To exemplify the relevance of this family of nonlinear

algebras, some physical models are discussed in Section V. Closing remarks close this paper.

II. TWO Aκ-BOSON REALIZATION OF su(2) ALGEBRA

The two generalized boson construction discussed in this section is a straightforward

generalization of the usual Schwinger realization. We consider two commuting copies of the

generalized Weyl-Heisenberg algebra Aκ(1) (4). Each one is spanned by the three linear

operators a−i , a
+
i and Ni (i = 1, 2) satisfying the following relations

[a−i , a
+
i ] = I + 2κNi [Ni, a

±
i ] = ±a±i

(
a−i

)†
= a+i N †

i = Ni. (5)

We denote the Fock space finite or infinite dimensional

Fκ = F1 ⊗F2 = {|n1, n2⟩, n1, n2 ranging}. (6)

The actions of creation, annihilation and number operators on F are defined by

a+i |n1, n2⟩ =
√
F (ni + 1) |n1 + s−i , n2 + s+i ⟩,

a−i |n1, n2⟩ =
√
F (ni) |n1 − s−i , n2 − s+i ⟩, (7)

a−1 |0, n2⟩ = 0 a−2 |n1, 0⟩ = 0 Ni|ni⟩ = ni |ni⟩

where the quantity s±i is defined by

s±i =
1

2
(1± (−)i).

3



In (), the positive function is given by [31]

F (ni) = ni[1 + κ(ni − 1)] i = 1, 2. (8)

It is quadratic in ni except the special case κ = 0 where it reduces to a linear function.

The Hilbertian representation of Aκ(1) was investigated in [31]. Indeed, it has been shown

that for κ ≥ 0, the Fock space F is infinite dimensional. It follows that for two generalized

bosons of type (4), the Fock state is

Fκ≥0 ≡ F+ = {|n1, n2⟩, n1 ∈ N, n2 ∈ N}.

For κ < 0, the algebra Aκ(1) admits finite dimensional Hilbert space [31]. Indeed, it is

simply verified from (8) that for κ < 0, the function F (ni) is positive for the integers

ni ≤ d − 1 where d stands for the integer part of −1
κ
. Thus, in this case, the Fock space is

finite dimensional

Fκ<0 ≡ F− = {|n1, n2⟩, n1 = 0, 1, · · · , d− 1; n2 = 0, 1, · · · , d− 1},

and the dimension is d2.

As we are interested in nonlinear extension of su(2) using a Schwinger procedure based

on the generalized Weyl-Heisenberg algebra Aκ(1), we decompose the Fock spaces in angular

momentum subspaces. In this respect, we introduce the quantum numbers j and m defined

as

j =
1

2
(n1 + n2) m =

1

2
(n1 − n2)

and we set the following correspondence

|n1, n2⟩ ≡ |n1 + n2

2
,
n1 − n2

2
⟩ = |j,m⟩

It follows that one can write the Fock spaces F+ and F− as

F+ =
∞⊕
j=0

Fj =
∞⊕
j=0

{|j,m⟩, m = −j,−j + 1, · · · , j − 1,+j}

and

F− =
d⊕

j=0

Fj =
d−1⊕
j=0

{|j,m⟩, m = −j,−j + 1, · · · , j − 1,+j}

Clearly, for κ < 0, the Schwinger realization produces only angular momentum with j =

0, 1
2
, 1, · · · d − 1 such that dimF− = d2. This constitutes the main difference with the case
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where κ is positive including the case κ = 0 which gives the standard Schwinger realization

of su(2) algebra where all possible values of j can be generated. In the Schwinger picture,

the su(2) operators are realized as

J3 =
1

2
(N2 −N1), J0 =

1

2
(N2 +N1)

J+ = a†2a1, J− = a2a
†
1, (9)

This gives

[J+, J−] = 2J3

(
1− κ+ 2κJ0(1 + κJ0)

)
+ 4κ2J2

3 . (10)

and the Casimir operator

C = 2J−J+ + 2J3(J3 + 1)
(
1− κ+ 2κJ0(1 + κJ0)

)
+ 2κ2J2

3 (J3 + 1)2 (11)

To simplify the notations in deriving the coherent states in the following subsection a suitable

basis for the subspaces Fj is introduced as follows. We set

|j,m⟩ = |n⟩ with n = j +m.

In this basis, the actions of the generalized su(2) algebra rewrites

J−|n⟩ =
√
f(n)|n− 1⟩

J−|n⟩ =
√
f(n+ 1)|n+ 1⟩

J3|n⟩ = (n− j)|n+ 1⟩

where

f(n) = F (n)F (2j − n+ 1)

in terms of the structure function of the generalized Weyl-Heisenberg algebra Aκ(1) given

by (8). Notice that the function f(N) is of order 4 in N and the obtained non linear su(2)

algebra can be idenified with polynomial Weyl-Heisenberg algebra of order 4 introduced in

[32].

III. BARGMANN REALIZATION AND COHERENT STATES

According to Bargmann prescription, the coherent states provides the analytical realiza-

tions of a given algebra. For the nonlinear algebra su(2) discussed above, for a representation
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j, the coherent states are of the form

|z⟩ =
2j∑
n=0

anz
n|n⟩ (12)

where z is a complex variable, n = j +m and the an coefficients to be determined. In the

Bargmann realization any vector is realized as follows

|n⟩ −→ anz
n ≡ ⟨z̄|n⟩ (13)

and the operator J− is assumed acts as a derivation according to

J− −→ d

dz
. (14)

Thus, using the expression of the action of J− on the Fock space and the Bargamnn corre-

spondence, it is simple to see that the coefficients an satisfy the recursion relation

nan =
√
f(n)an−1 (15)

where

f(n) = F (2j − n+ 1)F (n).

This yields

an = a0

√
f(n)!

n!
(16)

where f(n)! = f(1)f(2) · · · f(n) with f(0)! = 1. The coefficient ao is obtained from the

normalization condition of the coherent states . As result, one gets

|z⟩ = N−1
2j∑
n=0

√
f(n)!

n!
zn|n⟩ (17)

where the N normalization factor is given by the sum

|N |2 =
2j∑
n=0

f(n)!

(n!)2
|z|2n. (18)

In this realization, the operators J3 and J+ act, respectively, as follows

N −→ z
d

dz
− j J+ −→ z

(
1 + κz

d

dz

)(
2j − z

d

dz

)(
1 + 2jκ− κz

d

dz

)
. (19)

Any state |Ψ⟩

|Ψ⟩ =
2j∑
n=0

Ψn|n⟩
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corresponds to an analytical function given by the following correspondence

|Ψ⟩ −→ Ψ(z) = N⟨z̄|Ψ⟩ =
2j∑
n=0

Ψnfn(z) (20)

where the monomials fn(z) are the analytical functions associated with the vectors n

fn(z) = N⟨z̄|2n⟩ =

√
f(n)!

n!
zn. (21)

It easy to check

J3fn(z) = (j − n)fn(z)

J+fn(z) =
√
f(n+ 1)fn+1(z)

J−fn(z) =
√
f(n)fn−1(z)

It is simple to verify that, in the limiting case κ → 0, one recovers the su(2) coherent

states and the standard Bargamnn realization based on spin coherent states.

A. The A{κ} algebra

We start with the generalized Weyl-Heisenberg algebra on C spanned by the linear oper-

ators a− (annihilation operator), a+ (creation operator) and N (number operator) satisfying

the commutation relations

[a−, a+] = G(N) [N, a−] = −a− [N, a+] = +a+ (22)

and the Hermitian conjugation conditions

a+ = (a−)† N = N †. (23)

The G function in (22) is such that

G(N) = (G(N))†. (24)

Of course, the case G(N) = I, where I is the identity operator, corresponds to the usual

Weyl-Heisenberg algebra or harmonic oscillator algebra. Various realizations of G are known

in the literature [? ? ? ? ? ? ? ? ? ? ]. In the present paper, we shall be concerned with

a class of polynomial Weyl-Heisenberg algebras characterized by

G(N) = F (N + I)− F (N) (25)
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with the F function defined by

F (N) = N [I + κ1(N − I)][I + κ2(N − I)] · · · [I + κr(N − I)] (26)

where the κi’s (i = 1, 2, · · · , r) are real parameters (for instance, see [? ]). We noteA{κ}, with

{κ} ≡ {κ1, κ2, · · · , κr}, the generalized Weyl-Heisenberg algebra (or generalized oscillator

algebra) defined via (22)-(26).

The F (N) polynomial of order r + 1 with respect to N can be developed as

F (N) = N
r∑

i=0

si(N − I)i (27)

in terms of the coefficients (totally symmetric under permutation group Sr)

s0 = 1 si =
∑

j1<j2<···<ji

κj1κj2 · · ·κji (i = 1, 2, · · · , r) (28)

where the indices j1, j2, · · · , ji take the values 1, 2, · · · , r. Then, the G(N) operator can be

written

G(N) = I +
r∑

i=1

si

[
(N + I)N i −N(N − I)i

]
(29)

which clearly indicates that A{κ} with {κ} ≡ {0, 0, · · · , 0} coincides with the usual Weyl-

Heisenberg algebra.

The A{κ} r-parameter algebra covers the cases of (i) the extended harmonic oscillator

algebra [? ], (ii) the fractional oscillator algebra [? ], and (iii) the Wk algebra introduced

in the context of fractional supersymmetric quantum mechanics of order k [? ? ]. As a

particular case, algebra A{κ} with κ1 = κ and r = 1 is nothing but the Aκ algebra worked

out in [? ] and corresponding to

G(N) = I + 2κN. (30)

Algebra Aκ defined by (22), (23) and (30) turns out to be of particular interest when dealing

with dynamical symmetries of some exactly solvable quantum systems. More precisely, Aκ=0

corresponds to the usual oscillator system while Aκ<0 and Aκ>0 are relevant to the Morse

and Pöschl-Teller systems, respectively [? ? ]. Note also that the Aκ one-parameter algebra

provides a unified scheme to deal with the su(2) algebra (for κ < 0), the su(1, 1) algebra

(for κ > 0), and the usual Weyl-Heisenberg algebra (for κ = 0) [? ? ]. More generally,

the A{κ} algebra can be viewed as a special class of the polynomial extensions of su(2) and

su(1, 1) discussed in [? ] and [? ], respectively.
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IV. CONCLUDING REMARKS

In this paper, we discussed the realization of polynomial su(2) algebra by generalizing

the standard Schwinger realization. In this generalized realization, we used two generalized

boson characterized by the extended Weyl-Heisenberg algebra Aκ(1) [31]. Other kinds of

extended algebras were recently introduced in the literature and in this respect, we believe

that the procedure developed in this work can be easily adapted to generate other variants

of polynomial su(2) algebras. In the same spirit, the Bargmann realization discussed here

may be naturally applied to construct the associated coherent states.
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