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Abstract. Nonclassical states of light are of fundamental importance in quantum optics. The
properties of these states are due to the quantal nature of the electromagnetic field. In recent
years there have been many experimental demonstrations of the realizability of nonclassical
states in various physical schemes such as resonance fluorescence, four-wave mixing,
centre-of-mass motion of a trapped ion and manipulation of field in a cavity. It is of interest
to introduce new classes of nonclassical states and investigate their properties. In this context,
generalization of the concept of coherent states (CSs) has played a major role. New concepts
such as the nonlinear coherent states (NCSs) and interference in phase space have emerged
from such studies. In this tutorial review we are concerned with the construction of new
classes of nonclassical states by generalizing the notion of CSs. Our investigations on the
photon-added coherent states (PACSs) indicate that these states can be interpreted as NCSs.
Also, we introduce a new class of nonclassical states related to the PACSs. Having
introduced a realizable example of NCSs, we extend the notion of even and odd CSs to the
case of NCSs by introducing even and odd NCSs. With this new definition we interrelate
some of the well known states of light. We suggest a scheme to generate a class of even and
odd NCSs in the centre-of-mass motion of a trapped, laser-cooled, two-level ion.

Keywords: Nonlinear coherent states, squeezed states, photon statistics, raising operators,
even coherent states, odd coherent states

1. Introduction

An important concept which emerges from the study of the
quantum harmonic oscillator is the notion of coherent states
(CSs), introduced by Schrödinger [1] as wavepackets whose
dynamics resembles that of a classical particle in a quadratic
potential. These states are useful in various branches of
physics [2, 3]. The notion of CSs has been generalized in
very many ways. Motivations to generalize the concept have
arisen from symmetry considerations, algebraic aspects and
dynamics. Generalization based on symmetry considerations
has led to defining CSs for arbitrary Lie groups [4, 6]. CSs
for the deformed algebras have been introduced by extending
the algebraic definition [7, 8]. Based on dynamics, CSs
have been constructed for systems other than the harmonic
oscillator [9]. This tutorial article is organized as follows.
After a brief review of various CSs known in the literature,
nonlinear coherent states (NCSs), which can be classified as
an algebraic generalization of CSs, are introduced.

1.1. Coherent states of the harmonic oscillator

The harmonic oscillator is a well studied system in both
classical and quantum physics. In quantum physics the
description of the harmonic oscillator is most elegantly
achieved in terms of creation and annihilation operators.
These operators arise naturally in the process of factorizing

the harmonic oscillator Hamiltonian

Ĥ = 1
2 (p̂

2 + x̂2), (1)

in which x̂ and p̂ are the position and momentum operators
respectively. Here the mass and frequency of the oscillator
are set equal to unity. The operators x̂ and p̂ satisfy the
commutation relation [x̂, p̂] = i. We have set h̄ = 1.
Defining two non-Hermitian operators,

â = x̂ + ip̂√
2

(2)

and its conjugate

â† = x̂ − ip̂√
2
, (3)

which satisfy [â, â†] = 1, the Hamiltonian of the oscillator
can be written as

Ĥ = â†â + 1
2 . (4)

The eigenstates of Ĥ are represented as |n〉, n = 0, 1, 2, . . . .
The action of â and â† on the state |n〉 is given by

â|n〉 = √
n|n− 1〉, (5)

â†|n〉 =
√
n + 1|n + 1〉, (6)

with the condition that â annihilates the ground state |0〉.
The operators â and â† are respectively the annihilation and
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creation operators because of the way they act on the number
states.

Determining the form of a wavepacket whose dynamics
resembles that of a classical particle in a harmonic oscillator
potential is equivalent to determining the eigenstates of the
annihilation operator, â|α〉 = α|α〉 [10]. These eigenstates
are the CSs for the harmonic oscillator. The number state
expansion for the CSs, normalized to unity, is

|α〉 = exp

(−|α|2
2

) ∞∑
n=0

αn√
n!

|n〉, α ∈ C. (7)

Using the unitary operator D̂(α) = exp(αâ† −α∗â), the
CSs defined in equation (7) can be obtained as

|α〉 = exp(αâ† − α∗â)|0〉. (8)

The uncertainty in position x̂ is defined as

(
x) =
√

〈x̂2〉 − 〈x〉2 (9)

and a similar definition holds for the momentum. For the
harmonic oscillator CSs the uncertainties in x̂ and p̂ are
equal to

√
1/2. The product (
x)(
p) is 1/2 in units of h̄,

the minimum value allowed by the Heisenberg uncertainty
relation for any state. Hence, these states are minimum
uncertainty states (MUSs).

The CSs are defined in three ways:

(1) the eigenstate of â, which is the algebraic definition,
(2) the unitarily deformed vacuum state (refer to equa-

tion (8)), which is the group theoretic definition, and
(3) the MUS.

In the case of the simple harmonic oscillator the three
definitions are equivalent.

1.2. Hilbert space properties of coherent states

Some of the important features of the CSs [11] are the
following.

• Two CSs, say, |α〉 and |β〉, are not orthogonal to each
other:

|〈β|α〉|2 = exp(|α − β|2). (10)

• The most important property of the CSs is that they form
an overcomplete set:

1

π

∫
d2α |α〉〈α| = 1. (11)

The integration measure d2α represents the area element
d(Re α) d(Im α) and the integration is performed over
the entire complex plane.

• An arbitrary density operator ρ̂ can be expanded in terms
of CS projections as

ρ̂ = 1

π

∫
d2α P (α, α∗)|α〉〈α|. (12)

This expression gives the diagonal representation for the
operator ρ̂ in the CS basis. The function P(α, α∗) is
called the Glauber–Sudarshan or P function [12].

• As a consequence of the diagonal representation,
the expectation value of a normally ordered operator
Ô(â, â†), in which all the annihilation operators are to
the right of the creation operators, is given by

〈Ô〉 =
∫

d2α P (α, α∗)O(α, α∗). (13)

Here 〈· · ·〉 represents the expectation value in an arbitrary
state and P(α, α∗) is the P function for that state.

• The number distribution |〈n|α〉|2 for the CSs is

|α|2 = exp(−|α|2) |α|2n
n!

. (14)

This is a Poisson distribution whose mean and variance
are equal to |α|2.

1.3. Uses of coherent state representation

The diagonal representation, equation (12), provided by the
CSs is of great use in calculating various physical quantities
of interest.

• The expectation value of the operator (
x̂)2 = (x̂−〈x〉)2
can be written, after normal ordering, as

〈(
x̂)2〉 = 1
2 +

∫
d2α P (α, α∗)(|α|2 − 〈α〉 − 〈α∗〉)2.

(15)
Here equations (2) and (3) have been used to write x̂
as (â† + â)/

√
2. If the value of 〈(
x̂)2〉 is less than

1/2 for some state, then equation (15) would mean that
P(α, α∗) cannot be positive definite everywhere on the
complex plane. For such states the P function ceases
to be a meaningful probability density function. If the
uncertainty in x for a state is less than 1/2 (in the units
of h̄) the state is said to be ‘squeezed’ in x. A similar
argument holds for p.

• For a Poisson distribution the mean is equal to its
variance. If the variance of a distribution is less
(respectively, greater) than that of its mean, the
distribution is said to be sub-Poissonian (respectively,
super-Poissonian). Sub-Poissonian statistics for
the number distribution of a state means that the
corresponding P function is not positive definite [13].

• Yet another property of a state that can make the
underlying P function nonpositive is an oscillatory
number distribution, i.e. the distribution vanishes for
finite values of n [14].

Squeezing, sub-Poissonian statistics and oscillatory
number distribution are called nonclassical features as the
P function ceases to be a classical probability density for the
states exhibiting any of those features. A state with any of
the above features is said to be nonclassical.

1.4. Coherent states of the electromagnetic field

In the process of quantizing the free electromagnetic field
one is led to introduce operators which have the same
commutation relation as the usual creation and annihilation
operators. As a result of quantization, each mode of the
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field can be regarded as an independent harmonic oscillator.
An arbitrary field distribution will have many modes and the
Hamiltonian for the field can be written as

Ĥ = ( 1
2 )

∞∑
k=0

(â
†
k âk + âkâ

†
k )ωk. (16)

Each term in the summation corresponds to one mode of
the field. The operators âk and â†

k satisfy [âk, â
†
k′ ] = δkk′ .

Here âk and â†
k are the annihilation and creation operators

respectively, for the oscillator corresponding to the kth mode,
and ωk is the frequency of the mode

In the context of electromagnetic fields, CSs were
introduced by Glauber [15, 16] as the eigenstates of
the annihilation operator â. These CSs have all the
Hilbert space properties of the harmonic oscillator CS. In
particular, the diagonal representation establishes the formal
equivalence of classical and quantal theories of photon-
counting distribution [12]. In the classical theory of radiation
the probability thatm counts are registered in a time interval
T is given by

P(m, T ) =
∫ ∞

0

(γ IT )m

m!
exp(−γ IT ) dI. (17)

In the above expression γ is a parameter which depends on
the detector sensitivity, spectral characteristics of the incident
radiation etc and I is the intensity of the incident radiation.
In quantum theoretic formulation the counting distribution is
given by

P(m, T ) =
〈
:
(γ T â†â)m

m!
exp(−γ T â†â) :

〉
. (18)

Here : .. : indicates that the operator is normally ordered.
This definition for P(m, T ) assumes that the detection of
photons is by absorption. Using the diagonal representation,
this expression can be written as

P(m, T ) =
∫
(γ T |α|2)m

m!
exp(−γ T |α|2) d2α. (19)

The quantal expression for the photon-counting distribution
equation (19) has a structure similar to the classical case
equation (17) that is based on analytic signal representation.

1.5. Coherent states for general potential

The notion of CSs can be generalized to systems other than
the harmonic oscillator [9,17]. The motivation is to construct
CSs for one-dimensional potentials with unequally spaced
energy levels. The construction is such that the resultant
states are localized, follow the classical motion and disperse
as little as possible in time. The idea is to rewrite the
Hamiltonian, for a particle moving in an arbitrary potential, in
the form of a harmonic oscillator Hamiltonian. Let V (x) be
a one-dimensional, local potential with one confining region.
The classical Hamiltonian for a particle of mass m in such a
potential is

H = p2

2m
+ V (x). (20)

Here x and p are canonically conjugate to each other. The
bounded motion of the particle with total energyE is periodic
with a period T given by

T =
√
m

2

∮
dx√

E − V (x)
. (21)

The integration is carried out around the branch cut separating
the two turning points. The frequency of oscillation is
ω = (2π)T −1. Defining two new variables

X = A sin(ωt) (22)

and

P = m
d

dt
X,

= p
d

dx
X

(23)

the Hamiltonian given by equation (20) can be rewritten as

H = P 2

2m
+
mω2X2

2
, (24)

= 1
2mω

2A2. (25)

Here A is the amplitude of X. The frequency ω and the
amplitude A are functions of energy. The Poisson bracket
of the new variables X and P is not unity and hence
the transformation from (x, p) to (X, P ) is noncanonical.
However, the advantage of the transformation is that any
Hamiltonian can be rewritten in the form of an oscillator
Hamiltonian in terms of the noncanonical variablesX and P .

The operators corresponding to the observables X and
P can be written as

X̂ = X, (26)

P̂ = −ih̄

2

[
d

dx

dX

dx
+

dX

dx

d

dx

]
. (27)

The commutation between the two operators becomes

[X̂, P̂ ] = ih̄

[
dX

dx

]2

(28)

and the corresponding uncertainty relation is

〈(
X̂)2〉〈(
P̂ )2〉
/〈[

dX

dx

]2
〉

� h̄2/4 . (29)

The CSs for the potential V (x) are defined as the states
which minimize the uncertainty relation equation (29). This
definition implies that these states, denoted as |X,P 〉, satisfy

[X̂ + iP̂ ]|X,P 〉 = (〈X〉 + i〈P 〉)|X,P 〉. (30)

The symbol 〈· · ·〉 represents the expectation value in the
state|X,P 〉. Making use of the above definition, CSs
have been constructed for the Poschl–Teller potential and
harmonic oscillator with a centripetal barrier [18]. The
procedure indicated above to construct CSs for confining
potentials can be extended to potentials which have both
a discrete and continuous spectrum. The Rosen–Morse
and Morse potentials are examples of such nonconfining
potentials and their respective CSs are known [19].
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1.6. Superposition of coherent states

The CSs of the harmonic oscillator are special in the sense
that only for these states is the P -function a delta function.
For any other pure state theP -function is more singular than a
delta function. Thus the CSs are the ones closest to a classical
state, i.e. the phase-space distribution is well localized in
both the position and momentum variables. However, when
two such classical states are superposed the resultant states
exhibit many nonclassical features. An important case is the
superposition of two CSs of same amplitude with their phases
differing by π . The symmetric combination |α〉 + | − α〉 is

|α,+〉 = 1√
(cosh(|α|2)

∞∑
n=0

α2n

√
(2n)!

|2n〉, α ∈ C.
(31)

The state |α,+〉 is called an even coherent state (ECS). The
antisymmetric superposition involves only the odd number
states and is given by

|α,−〉 = 1√
(sinh(|α|2)

∞∑
n=0

α2n+1

√
(2n + 1)!

|2n+1〉, α ∈ C.
(32)

This antisymmetric superposition of |α〉 and | − α〉 is called
an odd coherent state (OCS). The even and odd CSs and their
relation to the SU(1, 1) group is clarified in [20].

1.7. Nonlinear coherent states

Another class of CSs can be introduced by deforming
the basic commutation relation [â, â†] = 1. A well
studied system is the q-deformed oscillator, where the basic
commutation relation is taken to be ââ† − qâ†â = q−n̂, in
which n̂ is the number operator satisfying [n̂, â] = −â and
[n̂, â†] = −â†. This relation is said to be deformed as it
becomes the usual commutation relation when q = 1. The q-
deformation was originally introduced to integrate the Yang–
Baxter equation for the inverse quantum scattering [21–23].
In the context of the harmonic oscillators the q-deformation
was introduced [7, 8] by deforming the SU(2) algebra.

The understanding that deformation amounts to
introducing nonlinearity is due to Manko et al [24]. Define
two new operators Â and Â† by deforming the annihilation
and creation operators, that is

Â = f (n̂)â and Â† = â†f (n̂). (33)

The operator-valued function f (n̂) is the deforming function.

Set f (n̂) =
√

sinh(λn̂)
sinh(λ)n̂ with the parameter λ taken to be real.

If λ is defined in terms of another real number q through the
equation q = exp(λ), then the operators of equation (33) will
satisfy the commutation relation

ÂÂ† − qÂ†Â = q−â†â . (34)

The transformation â → Â is noncanonical as the
commutator [Â, Â†] �= 1.

To bring out the physical meaning of the above
transformation it is better to look at the underlying classical
system. The classical oscillator is described in terms of the
complex amplitudes α = (x + ip)/

√
2 and its conjugate α∗.

Their Poisson bracket, with respect to q and p, is {α, α∗} =
−i and the Hamiltonian for the oscillator becomes αα∗. To
describe the dynamics of the oscillator, or for that matter
any system, it is required to specify the Hamiltonian in a
suitable set of variables, and the Poisson bracket among those
variables. Systems other than the harmonic oscillator are to
be described by different Hamiltonians. Equivalently, the
Poisson bracket can be changed by making a noncanonical
transformation while preserving the form of the Hamiltonian
to be that of the harmonic oscillator. Such a prescription
would then describe a different physical system.

As an example consider the classical q-oscillator, which
is defined in terms of two new variables

β =
[√

sinh(λαα∗)
sinh(λ)αα∗

]
α (35)

and its conjugate β∗. The Hamiltonian is taken to be ββ∗.
The transformation defined by equation (35) is noncanonical
as {β, β∗} = −i λ

sinh(λ)

√
1 + sinh2(|α|2). In terms of the

original variables α and α∗, the Hamiltonian becomes
sinh(λαα∗)/ sinh(λ). The time evolution equation for the
variable β is

d

dt
β = {β,H } (36)

and its solution is

β(t) = β(0) exp

[
−it

λ

sinh(λ)
cosh(λαα∗)

]
. (37)

The quantity αα∗ is a constant of motion and hence the
frequency of oscillation ofβ in equation (37) can be identified
as

ω = λ

sinh(λ)
cosh(λαα∗). (38)

On applying the canonical quantization rule, α → â, to
equation (35) the variable β becomes the operator Â defined
in equation (33). The analysis of the underlying classical
system shows that q-deformation amounts to making the
frequency dependent on energy as given by equation (38).
In the limit λ → 0 the frequency ω → 1. This is to be
expected as the q-commutation relation becomes the usual
relation ââ† − â†â = 1 in the above limit.

So, the essential feature of deformation is that it is
associated with energy dependent frequency provided the
deforming function depends on the number operator. The
nonlinearity depends on the the form of f (n̂). Denoting an
arbitrarily deformed â by B̂, f -oscillators are defined by the
Hamiltonian

Hf = 1
2 [B̂B̂† + B̂†B̂]. (39)

The suffix f indicates that the operators are f -deformed.
The eigenstates of this Hamiltonian are the same as those of
the usual oscillator as the deforming function is a function
of the number operator. The energy-dependent frequency in
the classical case is seen as eigenvalues which are nonlinear
functions of n in the quantum case.

Although introduced as a mathematical generalization
of the basic commutation relation, the q-deformed oscillators
have found application in a large number of realistic physical
systems such as polyatomic molecules and matter–radiation
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interaction. The potential energy between the atoms of
a polyatomic molecule has anharmonic terms. Since
the deformed oscillators can be interpreted as anharmonic
oscillators [25], they are suitable to model the vibrations of
polyatomic molecules [26, 27].

The known physical models when subjected to q-
deformation predict results which are different from the
undeformed ones. This makes it possible to verify
experimentally the relevance of deformed algebras for
physics. Such studies have been carried out in the context of
determining form-factors for electron–photon scattering [28],
the effect of deformation on interference [29] etc. A
more realistic and experimentally verifiable consequence
of q-deformation has been suggested in the context of the
interaction of a two-level atom with an electromagnetic field.
The interaction can be described by the model due to Jaynes
and Cummings [30], in which the atom is treated as a dipole
and the field is treated as an oscillator. An extension of
this model considers intensity-dependent coupling between
the field and the atom [31, 32]. The q-analogue of
this nonlinear interaction model predicts a ‘revivals and
collapses’ phenomenon which is quantitatively different from
what is expected from the undeformed model [33]. The
revival time becomes shorter with increasing value of q. This
result can be verified experimentally.

A nonlinear oscillator whose frequency depends on
energy provides the physical motivation to introduce
deformed annihilation operators. CSs for such systems are
defined in [34] as the eigenstates of B̂. These states, denoted
as |α, f 〉, obey

B̂|α, f 〉 = α|α, f 〉. (40)

These eigenstates are called NCSs. Expanding the states in
the number state basis as

|α, f 〉 =
∞∑
n=0

cn|n〉 (41)

and substituting in equation (40) yields

cn = αn√
n!(f (n))!

c0, (42)

in which (f (n))! = f (0)f (1)f (2), . . . , f (n). Normaliza-
tion of the state |α, f 〉 determines the value of |c0| as

|c0|−2 =
∞∑
n=0

|α|2
n![(f (n))!]2

. (43)

The constant c0 should satisfy 0 < |c0| < ∞. This implies

|α| � lim
n→∞ n[f (n)]2. (44)

Depending on the form of the deforming function, the range
of α may be restricted to a finite disc on the complex plane.
If f (n̂) vanishes for any value of n other than n = 0, then the
deformed annihilation operator becomes nilpotent. That is,
the deformed annihilation operator raised to some positive
power vanishes identically. If N is the maximum value of
n for which f (n) vanishes, the NCS is constructed on the
Hilbert space spanned by the set |N〉, |N + 1〉, . . . .

An example of an NCS which is defined for finite values
of α is the harmonious state [35]. These are the eigenstates
of an operator b̂ whose action on the number state is given
by

b̂|n〉 = |n− 1〉, n = 1, 2, 3, . . . (45)

and it annihilates the vacuum state |0〉. These eigenstates are
NCSs corresponding to the deforming function 1/

√
1 + â†â.

Using this form for f (n) in equation (44) implies that the
harmonious states are defined on the disc |α| � 1. The usual
CS |α〉 and q-CS [36] are defined for all values of α.

Similar to the states |α〉, the NCSs have the following
Hilbert space properties.

• The scalar product between two NCSs corresponding to
two different values of the eigenvalue is

〈α, f |β, f 〉 = NαNβ

∞∑
n=0

(α∗β)n

n![(f (n))!]2
. (46)

Here Nα and Nβ are the normalization constants for the
states |α, f 〉 and |β, f 〉 respectively.

• The resolution of identity can be written as∫
dµ (α)|α, f 〉〈α, f | = 1. (47)

Here dµ is a suitable measure to be determined. Setting
α = ρ exp(iθ) and substituting the number state
expansion for |α, f 〉 gives

∫ ρ ′

0
ρ2n+1|c0|2µ(ρ) dρ = n!([f (n)]!)2. (48)

These are the moment equations for the measure µ. If a
function µ(ρ) exists which satisfies the above equation
for all n, then the identity can be resolved in terms of
|α, f 〉. The integration limit ρ ′ is the maximum value of
|α|, as restricted by equation (44), for which the states
|α, f 〉 converge.

Eigenstates of generalized annihilation operators have
been introduced in various other contexts: generalized
bosonic operators which satisfy the Heisenberg–Weyl algebra
and their CSs [37–39], squeezing [40]; factorization
of Hamiltonian and isospectral oscillators [41, 42] and
description of the stationary states of a trapped, sideband-
cooled two-level atom [43].

In section 2 of this paper we introduce a physically
realizable example of NCSs, namely, the photon-added
coherent states (PACSs), and extend its definition further to
construct a new of class of NCSs. Section 3 of the paper
deals with the extension of the notion of NCSs to the case of
even and odd CSs, leading to the definition of even and odd
NCSs. As a consequence of the definition we establish that
the squeezed vacuum and the squeezed first excited states can
be interpreted as even and odd NCSs respectively. In section 4
we discuss the possibility of generating a class of even and
odd NCSs in the interaction of a harmonically trapped two-
level ion interacting with two external laser fields of suitable
frequencies.
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2. Photon-added coherent states as nonlinear
coherent states

PACSs |α,m〉 are defined [44] as

|α,m〉 = â†m|α〉√
〈α|âmâ†m|α〉

, (49)

where m is a non-negative integer. The states |α,m〉
exhibit nonclassical features such as phase squeezing and
sub-Poissonian statistics. These states are produced in the
interaction of a two-level atom, having a ground state |g〉 and
an excited state |e〉, with a single-mode cavity field. The
Hamiltonian which describes the atom–field interaction, in
the rotating wave approximation (RWA), can be written as

Ĥint = h̄g(σ̂+â + σ̂−â†). (50)

Here â and â† are the annihilation and creation operators
respectively for the field in the cavity. The operator σ̂+ is the
flip operator corresponding to the atomic transition |g〉 → |e〉
and its conjugate σ̂− corresponds to the transition |e〉 → |g〉.
The operator σ̂+ (respectively, σ̂−) annihilates the state |e〉
(respectively, |g〉). Let the initial state of the atom + field
system be |α〉|e〉, where |α〉 is a CS of the cavity field. The
state |ψ(t)〉 of the system at a later time t is given by

|ψ(t)〉 = exp(−iĤintt/h̄)|α〉|e〉. (51)

If the coupling constant g is small, the state of the atom–field
at time t , such that gt � 1, can be written as

|ψ(t)〉 � |α〉|e〉 − iĤintt

h̄
|α〉|e〉. (52)

In writing the above equation we have expanded the
exponential in the RHS of equation (51) and retained only
the terms which are first order in gt . On using equation (50)
for the interaction Hamiltonian, the state |ψ(t)〉 becomes
|α〉|e〉 − igtâ†|α〉|g〉. If the atom, on its exit from the cavity,
is detected to be in the ground state |g〉, then the cavity
field is in the state â†|α〉. This state has to be normalized
as it is has been obtained after truncating the unitary time-
evolution operator in equation (51) to first order in gt . If the
interaction is a multiphoton process, â(â†) → âm(â†m), the
cavity field will be produced in a state proportional to â†m|α〉.
It is also possible to produce such states in the conditional
measurement on the output of a beam-splitter [45].

To show that PACSs are NCSs [46] we begin with the
definition of CSs. The states |α〉 satisfy, by definition,

â|α〉 = α|α〉. (53)

Premultiplying both sides of this equation by â†m (m is a
non-negative integer) and using the commutation relation
[â, â†m] = mâ†m−1, the above equation is written as

(ââ†m −mâ†(m−1))|α〉 = αâ†m|α〉. (54)

Using identity 1
1+â†â

ââ† = 1 leads to(
â − m

1 + â†â
â
)
â†m|α〉 = αâ†m|α〉. (55)

Equation (55) gives the expression for f (n̂,m) as

f (n̂,m) = 1 − m

1 + â†â
. (56)

This shows that the PACSs can be interpreted as NCSs with
the deformation function 1 − m/(1 + â†â). A more general
result is that the action of â† on any NCS is again an NCS [50].

2.1. |α, m〉 as deformed number state

The PACSs are the eigenstates of f (n̂,m)â with f (n̂,m)
given by equation (56). The operator f (n̂,m)â annihilates
the vacuum state |0〉 and the m-photon state |m〉. The states
in between the vacuum and the m-photon states are not
annihilated by this operator. In this sense it is different from
the m-photon annihilation operator âm which annihilates all
the number states |i〉, i = 0, 1, 2, . . . , m. To write |α,m〉 as
a nonunitarily deformed number state, let

B̂ =
(

1 − m

1 + â†â

)
â. (57)

The adjoint of B̂ is given by

B̂† = â†
(

1 − m

1 + â†â

)
. (58)

A sector S0 is constructed in the harmonic oscillator Hilbert
space H by repeatedly applying B̂† on the vacuum state
|0〉. The sector S0 is the space spanned by the Fock states
{|i〉, i = 0, 1, 2, . . . , m − 1} and it is finite dimensional.
Starting with |m〉, also annihilated by B̂, we construct another
sector Sm in H by the repeated application of B̂† on it. The
sector Sm is the set {|i〉, i = m,m+ 1, . . .} and it is of infinite
dimension. Using the method given in the appendix, we
construct an operator Ĝ† such that [B̂, Ĝ†] = 1 holds in the
sector Sm. To carry out the construction we set p = 1 and
j = m in equation (135) and this yields

Ĝ† = â†. (59)

Thus, on the sector Sm we have [B̂, â†] = 1. Hence the
PACSs, which are the eigenstates of Â given in equation (57),
can be written as exp(αâ†)|m〉 but for a multiplicative
normalization constant. However, this is not a unitary
deformation since exp(αâ†) exp(α∗â) �= 1.

2.2. Eigenstates of f (n̂, m)â with negative m

The definition of f (n̂,m), given by equation (56) can be
extended to include negative values for m.

Expression for f (n̂,m). Denoting the NCSs
corresponding to negative m by |α,−m〉, the equation to
determine them is(

1 +
m

1 + â†â

)
â|α,−m〉 = α|α,−m〉. (60)

The normalized |α,−m〉 is given by

|α,−m〉 = Nm!
∞∑
n=0

αn√
n!(n + 1)(n + 2) · · · (n +m)

|n〉;

N−1 = m!

√√√√ ∞∑
n=0

|α|2nn!

(n +m)!2

=
√

2F2(1, 1,m + 1,m + 1, |α|2).
(61)
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Here 2F2(1, 1,m + 1,m + 1, |α|2) is the generalized
hypergeometric function [47]. Setting f (n) = 1 +m/(1 +n)
in equation (44), we can infer that the states are normalizable
for all values of α.

The number state expansion for the state |α,m〉 [44] is

|α,m〉 = exp(−|α|2/2)√
Lm(−|α|2)m!

∞∑
n=0

αn
√
(m + n)!

n!
|n +m〉, (62)

whereLm(x) is a Laguerre polynomial of orderm defined by

Lm(x) =
m∑
n=0

(−x)nm!

(n!)2(m− n)!
. (63)

The state |α,−m〉 given by equation (61) involves a
superposition of all the Fock states starting with the vacuum
state |0〉. In the number state expansion of |α,m〉 the states
|0〉, |1〉 · · · |m−1〉 are not present. This important difference
leads to different limiting cases of the states |α,m〉 and
|α,−m〉 as α → 0. In the limit α → 0 the state |α,−m〉
becomes the vacuum state |0〉 irrespective of the value of
m and the state |α,m〉 becomes the number state |m〉. In the
limitm → 0 the states |α,m〉 and |α,−m〉 become |α〉. Thus,
|α,−m〉 (respectively, |α,m〉) is a state that is intermediate
between the vacuum state (respectively, the number state |m〉)
and the CS.

The PACSs are obtained by the action of â†m on |α〉.
The states |α,−m〉 can be written in a similar form using
the inverse operators â−1 and â†−1 [48]. These operators are
defined in terms of their action on the number state |n〉 as
follows:

â−1|n〉 = 1√
n + 1

|n + 1〉, (64)

â†−1|n〉 = 1√
n
|n− 1〉 for n �= 0, (65)

â†−1|0〉 = 0. (66)

The operator â−1 is the right inverse of â and â†−1 is the left
inverse of â†. Using these inverse operators and equation (61)
the state |α,−m〉 is written as

|α,−m〉 = Nâ†−mâ−m|α〉. (67)

The states |α,−m〉 correspond to the NCSs with −m
replacing m in f (n̂,m). However, they are obtained by the
action of â†−mâ−m on |α〉 and not â†−m on |α〉.

In the case of |α,m〉 the annihilation operator given by
equation (57) has two vacua, namely, the vacuum and the
m-photon state. When m is made negative in equation (57)
the operator annihilates only the vacuum state |0〉. Setting
p = 1, j = 0 and B̂ = (1+ m

1+â†â
)â in equation (135), we find

that the corresponding raising operator is Ĝ† = â† 1+â†â
1+m+â†â

.
Hence, the state |α,−m〉 is written as

|α,−m〉 = eαĜ
† |0〉. (68)

The state |α,−m〉 is obtained by deforming the vacuum state
|0〉 while the state |α,m〉 is obtained from them-photon state
|m〉.
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Figure 1. Uncertainty in p as a function of α(real) for m = 1, 5
and 10 for the state |α,−m〉. The real α is represented as r .

2.3. Squeezing in |α, −m〉
The state |α,−m〉 exhibits squeezing in both x- and p-
quadratures. The operators corresponding to the x- and p-
quadratures are given in terms of â and â† by

x̂ = â + â†

√
2
, p̂ = â − â†

i
√

2
. (69)

The expectation values of the relevant operators in the
state |α,−m〉 are

〈â〉 = αN2m!2
∞∑
n=0

|α|2nn!

(n +m)!2

(n + 1)

(n +m + 1)
, (70)

〈â2〉 = α2N2m!2
∞∑
n=0

|α|2nn!

(n +m)!2

(n + 1)(n + 2)

(n +m + 1)(n +m + 2)
,

(71)
and

〈â†â〉 = N2m!2
∞∑
n=0

|α|2nn!

(n +m)!2
n. (72)

The expectation values of â† and â†2 are obtained by taking
the complex conjugates of 〈â〉 and 〈â2〉 respectively. The
expectation value of (
p̂)2 is

〈p2〉 − 〈p〉2 = 1
2 [1 + 2〈â†â〉 − 〈â2〉 − 〈â†2〉

+〈â〉2 + 〈â†〉2 − 2〈â〉〈â†〉]. (73)

In figure 1 the quantity 〈(
p̂)2〉 is shown as a function
of real α for various values ofm. As expected the uncertainty
in p is close to 1

2 , the uncertainty in p for the vacuum state,
when α is close to zero. In the case of |α,m〉 the variance
is close to m + 1

2 when α is close to zero. For real values of
α the p-quadrature is always squeezed for the state |α,−m〉.
For large values of α the variance in p approaches that of |α〉.
The depth of squeezing increases with increasing m. Also,
the value of |α| for which the maximum squeezing occurs
increases with increasing m.

The expectation values of â2 and â†â given by
equations (71) and (72), respectively, do not change when
α is replaced by −α. This implies that the uncertainty in x is
the same for states |α,−m〉 and |−α,−m〉. This result is true
for the p̂-quadrature too. Thus, whenever the state |α,−m〉
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exhibits squeezing in a quadrature the state | − α,−m〉 also
exhibits the same amount of squeezing in the quadrature. It
may be noted that replacing α by −α amounts to rotating by
π in the complex plane.

If α is substituted with iα, the expression for the variance
in p̂ for the state |α,−m〉 becomes that in x̂ for the state
|iα,−m〉. Multiplying by i effects rotation by π/2 in the
complex plane. Since there is squeezing inp for real values of
α, the states |α,−m〉 will exhibit squeezing in x for imaginary
values of α.

2.4. Photon statistics of |α, −m〉
The photon number distribution p(n) for the state |α,−m〉 is

p(n) = |〈n|α,−m〉|2,

= N2m!2 |α|2nn!

(n +m)!2
.

(74)

Form = 0 the distribution becomes a Poissonian distribution
whose mean is |α|2.

The mean and the variance are numerically equal for
a Poisson distribution. A measure of deviation from this
behaviour is given by the Mandel q-parameter [49],

q = 〈(
n̂)2〉 − 〈n̂〉
〈n̂〉 . (75)

The value of q is zero for the CSs of the harmonic oscillator.
A negative value of q indicates that the distribution p(n) is
sub-Poissonian. The PACSs |α,m〉 exhibit sub-Poissonian
statistics for all values of m. For the state |α,−m〉 the mean
values of n̂ and n̂2 are given by

〈n̂〉 = N2m!2
∞∑
n=0

|α|2nn!

(n +m)!2
n, (76)

〈n̂2〉 = N2m!2
∞∑
n=0

|α|2nn!

(n +m)!2
n2. (77)

In figure 2 we have shown the q-parameter, calculated
using equations (75)–(77), as a function of |α| for the state
|α,−m〉. The value of the q-parameter is always greater than
zero, indicating the super-Poissonian nature of the photon
distribution. For small values of α the q-parameter is close
to zero. This is to be expected as |α,−m〉 becomes the usual
CS |α〉 as α → 0. It is interesting to note that action of â† on
any NCS yields another NCS [50].

3. Even and odd nonlinear coherent states

In this section we extend the notion of even and odd CSs to
the case of NCSs. From the definition of even and odd NCSs
it is evident that they are eigenstates of the square of the
annihilation operator. The operators â2, â†2 and â†â form
a closed algebra, i.e. the commutator of any two of these
operators is the remaining operator but for a multiplicative
constant. As a consequence a unitary operator S(z) can be
constructed as

ˆS(z) = exp[ 1
2 (zâ

†2 − z∗â2)], (78)

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16

r

q

m=1

m=5

m=10

Figure 2. Mandel’s q-parameter as a function of |α| for m = 1, 5
and 10. |α| is represented as r .

where z is complex. There are two vacua for â2, namely,
the ground state |0〉 and the first excited state |1〉 and the
corresponding CSs are obtained by the action of ˆS(z) on the
vacua. The number state expansions [51] of these CSs are

|z, 0〉 = ˆS(z)|0〉

= (cosh |z|)−1/2
∞∑
n=0

√
(2n)!

2nn!
(eiθ tanh |z|)n|2n〉, (79)

and

|z, 1〉 = ˆS(z)|1〉 = (sinh |z|)−1/2

×
∞∑
n=0

√
(2n + 1)!

2nn!
(eiθ tanh |z|)n|2n + 1〉. (80)

Here z ∈ C. These states are not the eigenstates of â2 as
[â2, â†2] �= 1. The state |z, 0〉 is a MUS. However, the
uncertainties of the individual quadratures x̂ and p̂ are not
the same as those of the vacuum state. Uncertainty in one of
the quadratures is squeezed below the vacuum limit at the cost
of increased uncertainty in the other quadrature and hence the
state is nonclassical. The operator ˆS(z) is called the squeeze
operator and |z, 0〉 is the squeezed vacuum [52, 53]. This
state has been extensively studied as it has reduced noise in
one of the quadratures. Because of this special property, it has
been shown to be of use in gravitational wave detection [54],
enhancement and suppression of spontaneous emission [55],
optical communication [56–58] etc. The ECSs and OCSs
can also be thought of as the CSs for the SU(1, 1) algebra
satisfied by the operators â2, â†2 and â†â.

A possible extension of the notion of the even and odd
CSs to NCSs is to define states which are linear combinations
of |α, f 〉 and | − α, f 〉 [59, 61]. While the states |α, f 〉 and
| − α, f 〉 are eigenstates of f (n̂)â, their linear combinations
are eigenstates of (f (n̂)â)2. Another way to generalize the
concept of even and odd CSs is to consider the eigenstates of a
deformed two-photon annihilation operator, the deformation
being premultiplying â2 by an operator-valued function of
the number operator [62]. Even and odd NCSs are defined
as the eigenstates of the operator F(n̂)â2, where F(n̂) is
an operator-valued function of the number operator n̂. We
denote the eigenstates as |α, F 〉 and they satisfy

F(n̂)â2|α, F 〉 = α|α, F 〉, α ∈ C. (81)
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Expanding |α, F 〉 in terms of the Fock states |n〉 of the
harmonic oscillator as

|α, F 〉 =
∞∑
n=0

cn|n〉 (82)

and substituting in equation (81) yields

c2n = αn
c0

F(2(n− 1))!!
√
(2n)!

, (83)

c2n+1 = αn
c1

F(2n− 1)!!
√
(2n + 1)!

, (84)

where F(2(n− 1))!! = F(0)F (2)F (4) . . . F (2(n− 1)) and
F(2n−1)!! = F(1)F (3)F (5) . . . F (2n−1). Here c0 and c1

are constants to be fixed by normalization of the states |α, F 〉.
If we choose c1 = 0 (respectively, c0 = 0), the state

|α, F 〉 involves the superposition of even (respectively, odd)
number states and represents the even (respectively, odd)
NCS (ENCS (ONCS)). The ENCS is denoted as |α, F,+〉
and the ONCS as |α, F,−〉.

The ENCS has the number state expansion

|α, F,+〉 = c0

∞∑
n=0

αn

F (2(n− 1))!!
√
(2n)!

|2n〉, (85)

with

|c0|−2 =
∞∑
n=0

|α|2n
[F(2(n− 1))!!]2(2n)!

. (86)

The state is normalizable provided the constant |c0| is nonzero
and finite. This means that the terms in the summation for
|c0|−2 should be such that

|α|2 � lim
n→∞ [F(2n)]2(2n + 1)(2n + 2). (87)

If F(n) decreases faster than n−1 for large n, then the range
of α for which the state |α, F,+〉 is normalizable is restricted
to values satisfying equation (87) and in other cases the range
of α is unrestricted.

The number state expansion for the ONCS is

|α, F,−〉 = c1

∞∑
n=0

αn

F (2n− 1)!!
√
(2n + 1)!

|2n + 1〉. (88)

Normalization of the state gives

|c1|−2 =
∞∑
n=0

|α|2n
[(F (2n− 1))!!]2(2n + 1)!

. (89)

The range of α for which the ONCS is defined is given by
the inequality

|α|2 � lim
n→∞ [F(2n + 1)]2(2n + 2)(2n + 3). (90)

In the linear limit, F(n̂) = 1, the ENCS (respectively,
ONCS) becomes the ECS (respectively, OCS) and the range
of α is unrestricted. Depending on the form of F(n̂) the even
and odd NCS states may exhibit many of the nonclassical
features. Now, we choose specific forms forF(n̂) and discuss
the properties of their respective even and odd NCS.

3.1. Even and odd nonlinear coherent states with
F (n̂) = 1

1+kn̂

If we take the operator function F(n̂) to be 1
1+kn̂ , where

k � 0, the number state expansion for the ENCS, using
equation (85), is

|α, F,+1〉 = c+1

∞∑
n=0

αn(1 + k(2n− 2))!!√
(2n)!

|2n〉,

|c+1|−2 =
∞∑
n=0

|α|2n ((1 + k(2n− 2))!!)2

(2n)!
.

(91)

The ONCS has the number state expansion

|α, F,−1〉 = c−1

∞∑
n=0

αn(1 + k(2n− 1))!!√
(2n + 1)!

|2n + 1〉, (92)

|c−1|−2 =
∞∑
n=0

|α|2n ((1 + k(2n− 1))!!)2

(2n + 1)!
. (93)

Using F(n) = 1/(1 + kn̂) in equations (87) and (90), the
range of α is obtained as |α| � 1/k.

In the linear limit of F(n̂), obtained by setting k = 0,
the state |α, F,+1〉 becomes the ECS and the state is defined
for all values of α. In the limit of k becoming unity the state
|α, F,+1〉 becomes

|α, F,+1〉 = c+1

∞∑
n=0

αn
√
(2n)!

2nn!
|2n〉, (94)

and the state is defined for |α| < 1. It is interesting to note
that the above state is the squeezed vacuum |z, 0〉 defined in
equation (79). Comparing equations (79) and (94) we find
that

|α, F,+1〉 = |z, 0〉, (95)

where the eigenvalue α is related to z by

α = eiθ tanh |z|. (96)

Here θ is the argument of z. The transformation given by
equation (96) maps the unit disc on the α-plane to the whole
of the z-plane. This implies that the range of the squeeze
parameter z is not restricted as the entire z-plane is scanned
by the transformation.

3.2. Squeezing properties of |α, F , +1〉
The state |α, F,+1〉 has the ECS and the squeezed vacuum
as its limiting cases. It is natural, therefore, to study the
squeezing property of the states for cases other than the
special limits indicated above. For the states |α, F,+1〉 the
expectation values of â and â† vanish and we have

〈â†â〉 = |c+1|2
∞∑
n=0

|α|2n[(1 + k(2n− 2))!!]2

(2n)!
2n, (97)

〈â2〉 = α|c+1|2
∞∑
n=0

|α|2n (1 + k(2n− 2))!!(1 + 2kn)!!

(2n)!
.

(98)
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Figure 3. 〈p2〉–〈p〉2 as a function of k for α = 0.5 for the state
|α, F,+1〉.

The expectation value of 〈â†2〉 is the complex conjugate of
〈â2〉.

In figure 3 the variation of 〈(
p̂)2〉 with respect to k
is shown when α = 1/2. It is clear from figure 3 that the
states |α, F,+1〉 exhibit squeezing and the depth of squeezing
increases with increasing k. As k varies from zero to unity
the amount of squeezing in p̂ for the state |α, F,+1〉 varies
from that of the ECS to that of the squeezed vacuum. The
squeezing properties of the states |α, F,+1〉 are intermediate
between the ECS and the squeezed vacuum. The squeezed
vacuum limit is reached when k = 1. Increasing k beyond
unity squeezes 〈(
p̂)2〉 further.

3.3. Even and odd nonlinear coherent states with
F (n̂) = 1

2+kn̂

If we set F(n̂) to be 1
2+kn̂ with k � 0, the eigenstates satisfy

1

2 + kn̂
â2|α, F,±2〉 = α|α, F,±2〉, (99)

where + and − indicate the even and odd NCSs respectively.
The ENCS in terms of the number states |n〉 is

|α, F,+2〉 = c+2

∞∑
n=0

αn(2 + k(2n− 2))!!√
(2n)!

|2n〉,

|c+2|−2 =
∞∑
n=0

|α|2n ((2 + k(2n− 2))!!)2

(2n)!
.

(100)

and the ONCS is

|α, F,−2〉 = c−2

∞∑
n=0

αn(2 + k(2n− 1))!!√
(2n + 1)!

|2n + 1〉, (101)

|c−2|−2 =
∞∑
n=0

|α|2n ((2 + k(2n− 1))!!)2

(2n + 1)!
. (102)

The even and odd NCSs defined above are normalizable for
those values of α which satisfy |α| � 1/k.

In the linear limit of F(n̂), i.e. when k = 0, the state
|α, F,−2〉 becomes the OCS. In the limit of k becoming
unity the state |α, F,−2〉 becomes

|α, F,−2〉 = c−2

∞∑
n=0

αn
√
(2n + 1)!

2nn!
|2n + 1〉. (103)
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Figure 4. Mandel’s q-parameter as a function of k for α = 0.5 for
the state |α, F,−2〉.

Transforming from α to z using equation (96) it is evident
that |α, F,−2〉 is the squeezed first excited state defined in
equation (80).

3.4. Statistical properties of |α, F , −2〉
The photon number distribution of the OCS is oscillatory,
becoming zero for even values of n. The photon number
distribution p(n) for the ONCS |α, F,−2〉 is

p(2n + 1) = |c−2|2 |α|2n[(2 + k(2n− 1))!!]2

(2n + 1)!
, (104)

p(2n) = 0. (105)

When k = 1 the distribution is that of the squeezed first
excited state and when k = 0 the distribution is that of the
OCS.

In figure 4 the q-parameter of the state |α, F,−2〉
is shown as a function of k for α = 1/2. It is seen
that for a range of k the q parameter becomes negative,
implying that the states given by equation (101) exhibit sub-
Poissonian statistics in their photon number distribution for
some values of k. With respect to the q-parameter, the states
|α, F,−2〉 are intermediate between the OCS, whose photon
number distribution is sub-Poissonian, and the squeezed first
excited state, whose photon number distribution is not sub-
Poissonian.

3.5. Relation to other two-photon coherent states

As we have seen, the squeezed vacuum and the squeezed
first excited states can be classified as even and odd NCSs
respectively. New classes of two-photon CSs have been
defined [48] by constructing the eigenstates of â†−1â and
ââ†−1. Considering the action of the inverse operators on
number states, as given in equations (64) and (65), we
recognize the following:

â−1 = â† 1

1 + â†â
(106)

â†−1 = 1

1 + â†â
â. (107)
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Therefore,

â†−1â = 1

1 + â†â
â2, (108)

ââ†−1 = 1

2 + â†â
â2. (109)

These relations, in turn, imply that the eigenstates of â†−1â

(respectively, ââ†−1) are the special cases of |α, F,±1〉
(respectively, |α, F,±2〉) when k = 1.

4. Generation of even and odd nonlinear coherent
states

A simple and solvable model to describe the atom–field
interaction was proposed by Jaynes and Cummings [30], in
which the atom is treated as a dipole of constant dipole-
moment. This model assumes that the spatial variation of
the field is insignificant over the dimensions of the dipole,
and hence for practical purposes the field can be taken
to be constant. An appropriate model for the interaction
should include the influence of the spatially varying electric
field on the dipole moment of the atom [63]. A system
where the spatial variation must be included is the case of
a two-level ion trapped in an external harmonic oscillator
potential. Apart from interacting with the external potential
the two-level ion interacts with external laser fields also. The
spatial variation of the electric field due to the lasers can
be tailored so as to have different forms for the interaction
Hamiltonian. This, in turn, makes the dipole moment of
the ion a function of position. Inclusion of such a position
dependent dipole moment gives rise to ion–field interactions
which depend nonlinearly on the number operator n̂ for
the vibronic state of the ion in the external harmonic
trap. This system has been studied in very many contexts:
NCS [43], vibronic Jaynes–Cummings interaction [64],
nonlinear Jaynes–Cummings interaction [65], generation of
even and odd CS [66], quantum signatures of chaos [67],
quantum nondemolition measurements [68], quantum logic
operations [70], engineering of Hamiltonian [69] and
generation of amplitude-squared squeezed states [71]. In this
section the possibility of generating a class of even and odd
NCSs in the above system is explored. It turns out that the
stationary states of the vibronic motion (in the harmonic trap)
of the ion are indeed even or odd NCSs [72]. The nonclassical
properties of the ENCS and ONCS produced by the system
are studied.

4.1. Description of the system

Consider a two-level ion, having an electronic transition
frequency ω and a lower (second) vibrational sideband with
respect to that frequency, trapped in a harmonic oscillator
potential of frequency ν. Two laser fields, one of frequency
ω and the other corresponding to the vibrational sideband
transition frequency ω − 2ν, interact with the ion. The
Hamiltonian of this system is

Ĥ = Ĥ0 + Ĥint(t), (110)

with
Ĥ0 = h̄νâ†â + h̄ωσ̂22. (111)

Here, â† and â are respectively the raising and lowering
operators for the eigenstates of the external harmonic trap.
The internal states, namely, the ground state |g〉 and the
excited state |e〉, are the eigenstates of σ̂22 with respective
eigenvalues zero and ω. The free Hamiltonian Ĥ0 describes
the free motion of the internal and external degrees of
freedom. Here internal degree of freedom refers to the
electronic levels of the two-level ion and the external degree
of freedom refers to the vibrational state of the ion in
the external harmonic oscillator potential. The interaction
Hamiltonian

Ĥint(t) = λ[E0e[−i(k0 x̂−ωt)] + E1e[−i(k1x̂−(ω−2ν)t)]]σ̂− + h.c.,
(112)

describes the interaction of the ion with the two laser fields.
The operator σ̂− and its adjoint σ̂+ are the electronic flip
operators corresponding to the transition |e〉 → |g〉 and
|g〉 → |e〉 respectively. These operators are defined by their
action on the internal states of the ion:

σ̂−|g〉 = 0, σ̂−|e〉,= |g〉 (113)

σ̂+|e〉 = 0, σ̂+|g〉 = |e〉. (114)

The constant λ is the electronic coupling matrix element and
k0, k1 are the wavevectors of the laser fields. The operator x̂
for the position of the centre of mass of the ion is

x̂ = η

kL
(â + â†), (115)

where η is the Lamb–Dicke (LD) parameter and kL � k0 �
k1 is the wavevector of the driving laser field. The LD
parameter is defined as

η = kL
√
h̄/(2Mν), (116)

where M is the mass of the ion. The frequency of the laser
field of amplitude E0 is the same as the electronic transition
frequency ω. The second laser field of amplitude E1 is
of frequency ω − 2ν and this corresponds to the second
vibrational sideband frequency. Note that the operator x̂ that
occurs in the exponentials multiplying the field amplitudes is
the centre-of-mass position operator. It is important to realize
that the external laser fields are treated classically. With these
definitions the interaction Hamiltonian becomes

Ĥint(t) = λ[E0e[−i(η(â†+â)−ωt)]

+E1e[−i(η(â†+â)−(ω−2ν)t)]]σ̂− + h.c. (117)

Expanding the exponentials in the Hamiltonian as a power
series in η and retaining only first-order terms in η gives
the usual Jaynes–Cummings Hamiltonian for the ion–field
interaction.

The fast and slow rotating terms in the Hamiltonian can
be identified by writing it in a suitable interaction picture. The
interaction picture is defined by the unitary transformation

exp(− iĤ0t

h̄
) and under this transformation the interaction

Hamiltonian Ĥint becomes

Ĥ ′
int = exp

(
− iĤ0t

h̄

)
Ĥint(t) exp

(
iĤ0t

h̄

)
, (118)

= h̄81 exp(−η2/2)σ̂−Ĝ + h.c. (119)
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in which

Ĝ =
[ ∞∑
k,l=0

(iη)k+l

k!l!
ei(k−l−2)νt â†kâl +

80

81

×
∞∑

k,l=0

(iη)k+l

k!l!
ei(k−l)νt â†kâl

]
. (120)

Here8i = λEi
h̄
(i = 1, 2) are the Rabi frequencies of the two

laser fields tuned to the electronic transition and the second
sideband respectively.

The interaction Hamiltonian of equation (119) is exact.
Now, we make the RWA with respect to the vibronic
frequency ν. This amounts to neglecting the terms rotating
with frequencies ν or more. Under this approximation, the
interaction picture Hamiltonian becomes

Ĥ ′
int = h̄81 exp(−η2/2)σ̂+F̂ + h.c., (121)

with

F̂ =
∞∑
k=0

(iη)2k+2

k!(k + 2)!
â†kâk+2 +

80

81

∞∑
k=0

(iη)2k

k!2
â†kâk. (122)

The Hamiltonian given in equation (121) describes the ion–
field interaction after making the vibronic RWA.

4.2. Time evolution of the system

The time evolution of the system (the two-level ion interacting
with the two external laser fields), when coupled to an
external harmonic oscillator bath at absolute zero, is governed
by the master equation for its density operator ρ̂,

d

dt
ρ̂ = − i

h̄
[Ĥ ′

int, ρ̂] +
:

2
(2σ̂−ρ̂ ′σ̂+ − σ̂22ρ̂ − ρ̂σ̂22). (123)

The external laser fields in the interaction Hamiltonian
are treated as classical fields and hence, in the limit of
vanishing amplitudes for the external fields, there will be no
spontaneous emission. The vacuum fluctuations are required
to induce the atom to emit spontaneously. The second term
in the master equation accounts for the spontaneous decay
in a phenomenological way. The energy relaxation rate via
spontaneous emission is : and

ρ̂ ′ = 1
2

∫ 1

−1
dy W(y)eiη(â+â†)y ρ̂e−iη(â+â†)y, (124)

accounts for changes in the vibrational energy due to
spontaneous emission. W(y) gives the angular distribution
of spontaneous emission.

The steady state solution ρ̂s of equation (123) is obtained
by setting d

dt ρ̂ = 0 and it satisfies

i

h̄
[Ĥ ′

int, ρ̂s] = :

2
(2σ̂−ρ̂ ′

s σ̂+ − σ̂22ρ̂s − ρ̂s σ̂22). (125)

ρ ′
s is obtained from equation (124) by replacing ρ with ρs .

To solve equation (125) we make the ansatz that ρ̂s is given
by

ρ̂s = |g〉|ζ 〉〈ζ |〈g|, (126)

where |ζ 〉 is the vibrational state of the ion. Using
equations (121) and (126) in the master equation (125), we
arrive at the following condition on the state |ζ 〉:

F̂ |ζ 〉 = 0. (127)

Making use of the operator expansion for F̂ given by
equation (122) we obtain

〈n + 2|ζ 〉 = 80

81η2

(n + 1)(n + 2)L0
n(η

2)√
(n + 1)(n + 2)L2

n(η
2)

〈n|ζ 〉, (128)

where Lmn is an associated Laguerre polynomial defined by

Lmn (x) =
n∑
l=0

(
n +m
n− l

)
(−x)l
l!

. (129)

Here 〈n + 2|ζ 〉 are the expansion coefficients for the state |ζ 〉
in the Fock states basis. Comparing with equations (83), (84)
indicates that the state |ζ 〉 is an even or odd NCS with

α = 80

81η2
, (130)

and

F(n) = L2
n(η

2)[(n + 1)(n + 2)L0
n(η

2)]−1. (131)

In the limit η → 0 the function F(n) → 1/2 for all
n. Hence in the small-η limit the even and odd NCSs
become the ECS and OCS respectively. In particular,
the state |α, F,+〉 (respectively, |α, F,−〉) becomes |2α,+〉
(respectively, |2α,−〉) in the limit η → 0.

The master equation, which governs the time evolution
of the system, only contains the even powers of â and â†. This
ensures that the parity of the initial vibronic state of the system
is preserved during the time evolution. If the initial vibronic
state of the ion is a combination of even (respectively, odd)
number states then the state of the system at later times
will only involve a superposition of even (respectively, odd)
number states.

4.3. The even nonlinear coherent state and its properties

If the initial state of the ion is the vacuum state then the
stationary state of the system is an ENCS given by

|α, F,+〉 = N

∞∑
n=0

αn√
(2n)!F(2n− 2)!!

|2n〉,

N−1 =
√√√√ ∞∑

n=0

|α|2n
(2n)!(F (2n− 2)!!)2

,

(132)

where α and F(n) are defined by equations (130) and (131)
respectively. This state is the ENCS for the vibrational
motion of the centre of mass of the ion in the harmonic
potential. The behaviour of the expansion coefficients
〈n|α, F,+〉 is highly oscillatory, becoming zero for odd n.
This oscillatory behaviour is one of the nonclassical features.

In figure 5 the uncertainty in p is shown as a function of
η. From the figure it is clear that the states exhibit squeezing
in p quadrature.
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Figure 5. 〈p2〉–〈p〉2 as a function of η for 80
81

= 0.001 (solid
curve) and 0.0001 (dashed curve) for the state |α, F,+〉. η is
represented as r .
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Figure 6. Occupation number distribution p(n) as a function of n
for the state |α, F,+〉 for various η values and 80

81
= 0.0001:

(a) η = 0.008, (b) η = 0.012, (c) η = 0.02 and (d) η = 0.1.

As η increases the uncertainty in p̂ approaches that
of the vacuum state. The reason for this behaviour is the
following. As η increases the occupation number distribution
p(n) = |〈n|α, F,+〉|2 starts peaking near n = 0. To make
this explicit we have shown in figure 6 the occupation number
distribution p(n) as a function of n for various values of η.

The occupation number distribution for the ECS is
always super-Poissonian, meaning that the variance in n̂ is
larger than its mean. For the ENCS defined by equation (132),
the distribution p(n) can have negative q for suitable values
of η and α. In figure 7 we have shown the variation of q with
respect to the LD parameter η for α = 1.0. It is evident that
the ENCS can have features which are absent from the ECS.

In the limit η → 0 the ENCS becomes the ECS, which
is a cat state. In actual experiments such a limit may be
difficult to achieve. Therefore it is required to study the
behaviour of the ENCS wavefunction for values other than
η = 0. In figure 8 we have plotted the wavefunction of the
ENCS, given by equation (132), as a function of the centre-
of-mass coordinate x for various values of η. For the sake
of comparison the ECS wavefunction (dashed curve) is also
shown. It is seen that the ENCS of equation (132) is indeed
close to the ECS. The deviation from the ECS wavefunction
increases slowly as the value of η increases.
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Figure 7. Mandel’s q-parameter as a function of η for the state
|α, F,+〉. The solid curve is for α = 1.0 and the dashed curve for
α = 2.0. r represents η.
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Figure 8. Position basis wavefunction corresponding to the state
|α, F,+〉 with α = 2.0: (a) η = 0.0, (b) η = 0.15, (c) η = 0.30
and (d) η = 0.5. The dashed curve corresponds to the ECS
wavefunction and is the same as (a).

4.4. The odd nonlinear coherent state and its properties

If the initial state of the ion is the first excited state of the
harmonic trap then the state of the system at later times will
only involve odd number states. The resultant stationary state
of the system is an ONCS given by

|α, F,−〉 = N

∞∑
n=0

αn√
(2n + 1)!F(2n− 1)!!

|2n + 1〉, (133)

N−1 =
√√√√ ∞∑

n=0

|α|2n
(2n + 1)!(F (2n− 1)!!)2

, (134)

where F(n) and α are again defined by equations (130)
and (131) respectively.

The occupation number distribution of the ONCS
defined in equation (133) is oscillatory, becoming zero for
even n, and exhibits sub-Poissonian character. Figure 9
shows the Mandel q-parameter as a function of η for the states
given by equation (133). The state |α, F,−〉, equation (133),
exhibits sub-Poissonian statistics for those values of η for
which q is negative. It is interesting to note that the q-
parameter approaches −1 (the value of q for the first excited
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Figure 9. Mandel’s q-parameter as a function of η for 80
81

= 0.001
for the state |α, F,−〉. Here r represents η.

of the harmonic oscillator) when η becomes large, the reason
being that the occupation number distribution peaks at n = 1
as η increases.

5. Summary

The concept of NCSs is a generalization of the algebraic
definition of the CSs, namely, the eigenstates of the
annihilation operator. This is a very apt definition of CSs for
nonlinear systems, in particular for systems whose frequency
depends on energy. An important and realizable example for
NCSs in the context of electromagnetic fields is the PACSs.
As an extension of the concept of even and odd CSs, the even
and odd NCSs are defined as the eigenstates of deformed two-
photon annihilation operator. The squeezed vacuum and the
squeezed first excited states can be interpreted as even and
odd NCSs respectively with suitable choice for the deforming
function. It is possible to realize such states in the vibrational
motion of a harmonically trapped two-level ion interacting
with external laser fields.
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Appendix

In this appendix a brief review of the method of Shantha
et al [73] to construct raising operators for a given generalized
annihilation operator is presented.

Consider an ‘annihilation operator’ B̂ which annihilates
a set of number states |ni〉, i = 1, 2, . . . , k. Then we can
construct a sector Si by repeatedly applying B̂†, the adjoint
of B̂, on the number state |ni〉. Thus we have k sectors
corresponding to the states that are annihilated by B̂. A given
sector may turn out to be either finite or infinite dimensional.
If a sector, say Sj , is of infinite dimension then we construct

an operator Ĝj

†
such that the commutator [B̂, Ĝj

†
] = 1

holds in that sector. Then the eigenstates of B̂ can be written

as eαĜj
† |nj 〉. Let operator B̂ be of the form f (n̂)âp, where

p is a non-negative integer and f (n̂) is an operator-valued
function of the number operator â†â, such that it annihilates

the number state |j〉. Then Ĝj

†
is constructed as

Ĝj

† = 1

p
B̂† 1

B̂B̂†
(â†â + p − j). (135)

Since [B̂, Ĝj

†
] = 1 we obtain another relation by taking the

adjoint of the commutation relation and arrive at [Ĝj , B̂
†] =

1. Thus another pair of raising and lowering operators on the
sector Sj is generated.
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