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We study two different models of optomechanical systems where a temperature gradient between
two radiation baths is exploited for inducing self-sustained coherent oscillations of a mechanical
resonator. Viewed from a thermodynamic perspective, such systems represent quantum instances
of self-contained thermal machines converting heat into a periodic mechanical motion and thus
they can be interpreted as nano-scale analogues of macroscopic piston engines. Our models are
potentially suitable for testing fundamental aspects of quantum thermodynamics in the laboratory
and for applications in energy efficient nanotechnology.

The research on quantum thermodynamics received
large attention since the beginning of quantum physics.
Its main task is understanding to what extent the laws
of thermodynamics are valid in the quantum regime [1–
10]. In particular one of the main questions which are
currently considered is how much can thermal machines
(heat engines and refrigerators) be miniaturized while re-
taining their essential feature of producing work or ex-
tracting heat [5, 8, 11–14].

In this paper we propose simple models of micro-
scopic piston engines based on quantum optomechanical
systems [15, 16], i.e. devices composed of micro/nano-
scale mechanical resonators coupled to optical or mi-
crowave modes. In the last few years exceptional levels of
quantum control over optomechanical systems have been
reached. For example important milestones like ground
state cooling of a mechanical resonator [17–19], squeez-
ing [20] and optomechanical entanglement [21] have been
recently experimentally achieved. These facts suggest
that the research level on optomechanics is sufficiently
advanced to allow implementations of quantum thermo-
dynamics ideas with near-future technology.

Our specific contribution is the proposal of two op-
tomechanical setups, that we call single cavity engine and
cascade engine, in which a temperature gradient between
two thermal baths is exploited for inducing self-sustained
oscillations of a mechanical resonator. The emergence of
persistent mechanical oscillations in a system which is
subject to friction and dissipation can be interpreted as
a continuous production of thermodynamic work. Alter-
natively the oscillating degree of freedom can be used as
a resource for producing work on some additional exter-
nal system, in analogy with common macroscopic piston
engines. In our analysis we first give a proof-of-principle
demonstration of the possibility of inducing mechanical
self-sustained oscillations from thermal noise and with-
out external forces. Then we estimate the power of the
engines from a thermodynamic perspective and we also
underline the differences between classical and quantum
optomechanical motors. We stress that, since our de-
vices are in contact with independent baths at different
temperatures, the spontaneous emergence of persistent
self-sustained oscillations is not an example of any para-
doxical perpetual motion and does not violate the second
law of thermodynamics.
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Figure 1. (a) Scheme of a heat engine: input heat Qin, output heat Qout and output work W .

(b) Model of a quantum optomechanical thermal motor.

FIG. 1: (a) Scheme of a general heat engine: input heat
Qin is absorbed, output heat Qout is dissipated and output
work W is produced. (b) Model of an equivalent quan-
tum optomechanical thermal motor. Heat is absorbed from a
hot optical/microwave thermal bath. This energy is partially
used to excite the coherent motion of a mechanical resonator
(work) and the rest is dissipated into a cold optical/microwave
bath.

In the last years other models of optomechanical en-
gines have been proposed, in which the systems are driven
by periodic coherent lasers and undergo thermodynamic
cycles [22–24]. Instead, the key feature characterizing our
optomechanical engines is that they are self-contained
since they are driven by pure heat and not by external
forces. In this sense our approach is similar to the analy-
sis of the finite dimensional thermal machines introduced
in [12, 25], to the “cooling by heating” setup proposed
in [26] and to the concept of Brownian motors reviewed
in [27, 28]. In the field of optomechanics our work set-
tles in the framework of opto-mechanical lasing [29–33]
where, however, the effect is usually induced by coher-
ent external drivings. Our results are also related to the
experiment reported in Ref. [34] where classical colored
noise has been applied to excite oscillations of a non-
linear mechanical system in the classical regime. The
thermodynamic interpretation of a lasing (optical or mi-
crowave) system as a quantum heat engine can be traced
back to the seminal work by Scovil and Schulz-DuBois
[35] and has been studied more recently in the context of
hybrid (continous-descrete) systems [8, 36–38].

The possibility of realizing heat powered microscopic
piston engines could find interesting technological appli-
cations in the current research on energetically efficient
nano-scale devices [38–40]. At the same time, in the same
spirit of other previous proposals [22, 24, 26, 41], the sys-
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tems introduced in this work could be used as convenient
toy models for testing fundamental aspects of quantum
thermodynamics in the laboratory.
Single cavity engine – The first system that we consider
involves a mechanical resonator of frequency ωc coupled
by radiation pressure to two radiation modes of frequency
ωa and ωb respectively. The corresponding Hamiltonian
is

H = ~ωaa†a+ ~ωbb†b+ ~ωcc†c
−~g(a+ b)†(a+ b)(c+ c†), (1)

where a, b, c are the bosonic annihilation operators of the
three modes and g is the optomechanical coupling con-
stant. The last term in Eq. (1) is proportional to the
position of the mechanical resonator and to the intensity
of the cavity field. For example this Hamiltonian could
describe the radiation pressure of a cavity field on a mov-
ing mirror [15, 16], but the same model well represents
extremely different systems like toroidal micro-cavities
[42], opto-mechanical crystals [17], cold atoms [43], etc..
This model applies as well to electro-mechanical systems
where the radiation modes a and b have frequencies in
the microwave range [18, 21].

The three modes are put in contact with three inde-
pendent environments, which can possess different tem-
peratures. The corresponding dynamics of the open sys-
tem, in the weak coupling limit, is well described by the
following master equation [44]:

ρ̇ = − i
~

[H, ρ] +κa(Na + 1)Da(ρ) + κaNaDa†(ρ)

+κb(Nb + 1)Db(ρ) + κbNbDb†(ρ)

+κc(Nc + 1)Dc(ρ) + κcNcDc†(ρ), (2)

where the Dx(·) is the Lindblad dissipator Dx(ρ) =
xρx† − 1

2{x
†x, ρ} associated with the modes x = a, b, c,

κx is the decay rate, and Nx depends on the temperature
Tx of the respective environment according to the Bose-

Einstein statistics Nx = [e
~ωx

kBTx − 1]−1. The quantity Nx
is a monotonously increasing function of Tx and in what
follows we parametrize the temperature in terms of Nx.

As we are going to show, if the resonance ωb − ωa =
ωc is satisfied and if the thermal noise parameter Nb is
large enough, then it is possible to excite mechanical self-
sustained oscillations of the mode c. Before presenting
the results in details, let us first introduce also the second
model of optomechanical engine.
Cascade engine – In the previous model (single cavity
engine) two optical modes were supported by the same
optomechanical cavity. For technical reasons it may be
more practical to realize a cascade engine where the mode
b is associated with an independent optical filter (e.g. a
Fabry-Pérot resonator) whose output is fed into a stan-
dard optomechanical system based on a single optical
mode. It turns out that this setting provides results
which are qualitatively equivalent to the single cavity
setup and, at the same time, it could be experimentally

easier to realize. For example the required tuning of the
resonance condition ωb−ωa = ωc should be much simpler
if the two modes a and b are supported by two separeted
devices.

The Hamiltonians associated with the first and second
cavities are respectively:

H1 = ~ωbb†b, (3)

H2 = ~ωaa†a+ ~ωcc†c− ~ga†a(c+ c†). (4)

In addition to the dissipative channels that we introduced
in the single cavity engine, here we also have to take into
account that the output of the first cavity is fed into the
second one. The corresponding master equation can be
derived using the quantum optics framework of cascaded
quantum systems [44, 45], obtaining

ρ̇ = − i
~

[H1 +H2, ρ]

+κa(Na + 1)Da(ρ) + κaNaDa†(ρ)

+κc(Nc + 1)Dc(ρ) + κcNcDc†(ρ)

+γ1Db(ρ) + γ2Da(ρ)−√γ1γ2([a†, bρ] + [ρb†, a])

+
Nb
2

[
[
√
γ1b+

√
γ2a, ρ],

√
γ1b
† +
√
γ2a
†]

+
Nb
2

[
[
√
γ1b
† +
√
γ2a
†, ρ],

√
γ1b+

√
γ2a

]
. (5)

For convenience of the reader, we comment that Eq. (5)
is basically equal to Eq. (12.1.16) of Ref. [44]. The first
three lines of Eq. (5) are analogous to the previous model.
The last three lines instead describe a cascade setup in
which the light exiting the first cavity with a rate γ1 is
fed into the second cavity with a rate γ2. In the following
we will set for simplicity γ1 = γ2 = κa, considering a sce-
nario in which the filter and the optomechanical system
consist on two Fabry-Pérot cavities with equal finesse.
Classical engine – In order to investigate the difference
between classical and quantum thermal machines we will
also compare the single-cavity engine with its own classi-
cal version. The classical model is obtained interpreting
the Hamiltonian of Eq. (1) as being described by classical
position and momentum quadratures. The effect of ther-
mal fluctuations is then included by simulating stochastic
noise in the equations of motion. More details are given
in the Supplemental Material.
Self-sustained oscillations powered by heat – The possibil-
ity of inducing coherent self-sustained oscillations in op-
tomechanical systems has been theoretically [29–32] and
experimentally demonstrated [33, 34], and it is nowadays
a well established technique. However in our optome-
chanical engines there is not a driving term in the Hamil-
tonian and the only source of energy is provided by the
incoherent absorption of heat. It is therefore not guaran-
teed that coherent oscillations can emerge in our setups
and the main task of this work is to give a proof of princi-
ple demonstration that this effect is actually possible. In
a second step we will study some thermodynamic aspects
of the engines and compare the classical and quantum
versions of the motors.
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FIG. 2: From left to right, phonon number distributions and
Wigner functions (insets) for different values of the thermal
noise parameter Nb = 0.17, 0.33, 0.5 (Nb = 0 trivially gives
the vacuum state). The first line refers to the single cavity
engine with parameters Na = Nc = 0, ωb−ωa = ωc = 1, κa =
κb = 0.2, κc = 0.005 and g = 0.06. The second line refers to
the cascade engine with κa = γ1 = γ2 = 0.15, κc = 0.003 and
g = 0.1. The third line instead represents the classical version
of the single cavity engine (see Supplemental Material).

In the standard theory of optomechanical limit cycles,
the driving laser is chosen with a frequency larger than
the cavity resonance and such that the detuning matches
the frequency of the mechanical resonator. From this fact
we learn that, if we wish to have self-sustained oscillations
in our engines, energy should be put in the radiation
mode of larger frequency while the other mode should
be as pure as possible in order to absorb and dissipate
the photons scattered by the mechanical resonator. The
optimal choice of temperatures is therefore Na = Nc = 0
and Nb > 0. For the other system parameters we con-
sider typical values which are known to allow limit cycles
in the presence of a coherent laser [31, 32] and, as we
are going to show, these values remain suitable also in
our dissipative setups. The specific parameters are re-
ported in the caption of Fig. 2 and are consistent with
the recent experimental advances in strongly coupled op-
tomechanical systems [17, 18, 21, 43]. We then vary the
temperature of the bath of the mode b (i.e. we increase
Nb) and we numerically solve the steady state condition
ρ̇ = 0 associated to the master equation of the single cav-
ity engine (2) and of the cascade engine (5). The steady
state is found exactly (without rotating wave approxima-
tions) in a truncated Fock space of up to 3 photons for
the modes a and b and 20 phonons for the mode c.

The numerics has been performed using the open-
source toolbox QuTiP2 [46], and the results are shown in
Fig. 2. From the sequence of Wigner functions evaluated
for increasing values of Nb it is clear that the mechanical

resonator is initially heated up in a thermal state and
above a given threshold it develops a limit-cycle with the
characteristic ring shape in phase space. The same effect
is evident also in the probability distribution of the num-
ber of phonons in the system (diagonal elements of ρ in
the Fock basis), where the transition is from a Gibbs dis-
tribution to a Poissonian one typical of a coherent state.
We can thus claim that, in this regime our optomechan-
ical engines are effectively behaving as quantum piston
engines converting heat into coherent mechanical oscilla-
tions.

A remark should be made about the notion of “coher-
ent” oscillations. From the shape of the Wigner function
one can see that the steady state of the mechanical oscil-
lator is actually phase randomized and the density matrix
is essentially diagonal in the Fock basis. The randomiza-
tion of the phase is the unavoidable consequence of the
rotation symmetry of the system and corresponds exactly
to the same feature possessed by the steady states of stan-
dard optical lasers. The notion of coherence which then
applies in our case is the standard criterion used in quan-
tum optics for distinguishing between thermal and coher-
ent radiation, namely the equal-time normalized second-
order coherence function [44]: g2 = 〈c†c†cc〉/〈c†c〉2. Basi-
cally g2 measures how likely it is to consecutively detect
two phonons at a given instant of time. For thermal
states one has g2 = 2 (bounching statistics), while for
coherent states g2 = 1 (Poissonian statistics). In general
if the quantity g2 decreases from the thermal threshold of
2 towards lower values, then this is a hint that the field
is developing some level of coherence and therefore that
a lasing effect is happening in the system. In Fig. 3.a the
quantity g2 is plotted for different values of Nb, quantita-
tively showing the transition of the quantum state of the
mechanical resonator from an incoherent to a coherent
one.
Power of the quantum engine – As noticed in [35] and
further investigated in [36–38, 47], the energy of a coher-
ent field can be interpreted as thermodynamic work and
the lasing device as a heat engine. However a quantita-
tive and rigorous analysis of the work produced by the
engine is a non-trivial fundamental problem. The task of
quantifying the maximum work (or power) extractable
form a quantum system is still subject to a significant
research effort [1–5, 7–9, 48]. The dynamics of our mo-
tors is non-cyclic and open (non-unitary) and it is not
obvious what is the amount of work produced by a me-
chanical resonator which is continuously sustained in a
non equilibrium steady state. We then adopt a prag-
matic approach and try to give an estimate of the power
by indirectly considering the energy dissipated by the
mechanical resonator into its environment. This can be
explicitly computed [36] giving :

P = −Tr{~ωcc†c
[
κc(Nc + 1)Dc(ρ) + κcNcD

†
c(ρ)

]
}

= ~ωκc(〈c†c〉 −Nc). (6)

The dissipated power, has some obvious problems since
it does not distinguishes between useless energy (heat)
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FIG. 3: (a) Equal-time second order coherence function g2
and (b) dissipated power P (in units of ~ωc per second) with
respect to the thermal noise parameter Nb. The other param-
eters are the same as those used in Fig. 2. In (c) and (d), the
same quantities are plotted with respect to the mechanical
bath mean phonon number Nc, for Nb = 0.33. In (e) and
(f), g2 and the external power PL (in units of ~ωc per sec-
ond) are evaluated with respect to the load damping rate κL.
The maxima of PL are highlighted by black circles. For all
plots the legend is: single cavity engine (blue circles), cascade
engine (green triangles), classical engine (red stars).

resulting from Brownian fluctuations and useful energy
(work) (a similar issue has been discussed in Ref. [37]).
Nonetheless at least when we are in the lasing regime, i.e.
when the motion of the mechanical mode is coherent, the
dynamics is similar to a classical harmonic oscillator ro-
tating in a deterministic circular phase-space orbit. For
a classical oscillator it is clear that the energy of the limit
cycle can be easily converted into useful work. Then we
can argue that, if a system is in a coherent limit cycle,
the dissipated power is a reasonable figure of merit of the
work extractable form the system. It would be an inter-
esting problem to understand how a quantum mechanical
limit cycle can be rectified in order to lift a “weight” (ex-
cite a work medium) in the quantum regime, in the same
spirit of [7, 48, 49]. This and other quantitative ther-
modynamic analysis are, however, outside the “proof of
principle” approach of this work and will be investigated
elsewhere.

In Fig. 3.b the dissipated power is shown as a function
of Nb for the single-cavity, the cascade, and the clas-
sical engines. We observe that the two quantum mod-
els are qualitatively equivalent even if the single cavity

engine performs quantitatively better for fixed values of
the parameters. For large Nb the classical engine seems
more powerful than the quantum counterpart. Interest-
ingly however, due to a sharper lasing transition, the
classical engine is not able to excite the mechanical res-
onator for small values of Nb. These discrepancies could
be associated to the presence of quantum fluctuations in
the dynamics of the quantum engine: these fluctuations
are deleterious for large Nb but, by smoothing the lasing
transition, they became advantageous for small values of
Nb. Finally in Fig. 3(c) and 3(d) we report the quantities
g2 and P for non-zero values of temperature of the me-
chanical bath. The dissipated power is slightly modified
for larger values of Nc, while the quantity g2 is instead
increased towards thermal-like statistics. A possible in-
terpretation of this fact is that, for Nc 6= 0, a larger
fraction of power is dissipated in the form of heat rather
than work.

Maximum external power – The quantity P is the in-
trinsic power needed by the mechanical resonator to con-
tinuously sustain its coherent oscillations. However, in
analogy with macroscopic engines, one could imagine to
use these oscillations for doing work on an external load.
This load, will act as an additional friction force damping
the mechanical mode. Then we can model a generic load
substituting κc → κc+κL in Eq.s (2) and (5), where κL is
the damping constant due to the load. The power PL ex-
ternally dissipated by the load will be given by the same
expression of Eq. (6) but with the substitution κc → κL.
It is clear that the external power is zero in the two limits
κL = 0 and κL → ∞, then there must exist an optimal
load κL maximizing PL. This behavior is confirmed by
our numerical results presented in Fig. 3.f. We also com-
puted the g2 function with respect to the load parameter
κL (Fig. 3.e) and, as expected, the load tends to destroy
the coherence of the mechanical mode.

Discussion – We proposed two different models of op-
tomechanical engines based on a single cavity and a cas-
cade setup respectively. In both cases we have shown
that random thermal fluctuations of optical or microwave
fields can be exploited for inducing self-sustained coher-
ent oscillations of a mechanical resonator. In this regime,
our systems behave as nano-scale analogues of macro-
scopic piston engines driven by thermal energy. We esti-
mated the dissipated power of the optomechanical mo-
tors and highlighted the differences between quantum
and classical engines.

We believe that our analysis, together with other re-
cent ideas [22, 24, 26, 41], could pave the way for the de-
velopment of fundamental experiments on quantum ther-
modynamics based on optomechanical systems. At the
same time the paradigm of piston engines presented in
this work could find practical technological applications
in the fabrication of micro-mechanical motors [27, 28] and
energy efficient nano-scale devices [39, 40].
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edges support from GR13 of SNS.
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Supplemental Material: Quantum optomechanical piston engines powered by heat

A. Mari1, A. Farace1 and V. Giovannetti1
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In this supplemental material we describe the classical
analogue of the quantum single cavity engine presented
in the main text.
Classical single cavity engine – The single cavity engine
involves a mechanical resonator of frequency ωc coupled
by radiation pressure to two radiation modes of frequency
ωa and ωb respectively. For the quantum case we have
the Hamiltonian (1) (see main text) which gives the fol-
lowing Heisenberg equations for the bosonic annihilation
operators a, b, c of the three modes:

ȧ = −i∆a+ ig(a+ b)(c† + c),

ḃ = +ig(a+ b)(c† + c),

ċ = −iωcc+ ig(a+ b)†(a+ b). (S1)

Please note that we expressed the radiation operators
in a frame rotating with frequency ωb. We also de-
fined the detuning ∆ = ωa−ωb and set it to be ∆ = −ωc.

We obtain the classical counterpart of Eq.s (S1) by de-
moting the operators a, b, c to classical dynamical com-
plex amplitudes α, β, γ (essentially reversing the stan-
dard quantization procedure):

α̇ = −i∆α+ ig(α+ β)(γ∗ + γ),

β̇ = +ig(α+ β)(γ∗ + γ),

γ̇ = −iωcγ + ig|α+ β|2. (S2)

The three oscillators are put in contact with three inde-
pendent environments, which can possess different tem-
peratures. We then add friction terms and classical
Brownian noises to Eq.s (S2), turning them into classical
Langevin equations:

α̇ = −i∆α+ ig(α+ β)(γ∗ + γ)− κa
2
α+ ξa,

β̇ = +ig(α+ β)(γ∗ + γ)− κb
2
β + ξb,

γ̇ = −iωcγ + ig|α+ β|2 − κc
2
γ + ξc. (S3)

In the above expressions κa, κb and κc are the dissipa-
tion rates (we keep the same values as in the quantum

engine), while ξa = (ξax + iξay )/
√

2, ξb = (ξbx + iξby)/
√

2

and ξc = (ξcx + iξcy)/
√

2 are independent complex
zero-mean Gaussian white noises with correlations
〈ξνx(t)ξνx(t′)〉 =

〈
ξνy (t)ξνy (t′)

〉
= κνNνδ(t− t′) (ν = a, b, c).

We stress that this model should not be interpreted as
a semi-classical approximation of the quantum system.
Instead it represents a purely classical description of the
optomechanical system which, in principle, one could de-
rive directly form classical electromagnetism. Indeed our

aim is not to approximate the quantum model with the
classical one but, on the contrary, to understand the dif-
ferences between the quantum and the classical optome-
chanical engines.
Simulation – The differential equations (S3) make sense
only with respect to stochastic integration [S1]. In
simple words, for simulating the dynamics, we must take
finite increments over a small time step dt:

dα=
[
−i∆α+ ig(α+ β)(γ∗ + γ)−

κa

2
α
]
dt+

dWa
x + idWa

y√
2

,

dβ=
[
+ig(α+ β)(γ∗ + γ)−

κb

2
β
]
dt+

dW b
x + idW b

y√
2

, (S4)

dγ=
[
−iωcγ + ig|α+ β|2 −

κc

2
γ
]
dt+

dW c
x + idW c

y√
2

.

where now dW ν
x and dW ν

y (ν = a, b, c) are independent
random increments sampled from Gaussian distributions
with zero mean and variances equal to

√
κνNνdt. It

is convenient to recast Eq.s (S4) in terms of the real
adimensional position and momentum variables Xν , Yν
(ν = α, β, γ), defined such that α = (Xα + iYα)/

√
2,

β = (Xβ + iYβ)/
√

2 and γ = (Xγ + iYγ)/
√

2. In this way
we obtain a system of real stochastic equations which
can be efficiently numerically simulated:

dXα =
{

∆Yα − g
√

2(Yα + Yβ)Xγ −
κa

2
Xα
}
dt+ dWa

x ,

dYα =
{
−∆Xα + g

√
2(Xα +Xβ)Xγ −

κa

2
Yα
}
dt+ dWa

y ,

dXβ =
{
−g
√

2(Yα + Yβ)Xγ −
κb

2
Xβ

}
dt+ dW b

x ,

dYβ =
{

+g
√

2(Xα +Xβ)Xγ −
κb

2
Yβ

}
dt+ dW b

y ,

dXγ =
{
ωcYγ −

κc

2
Xγ
}
dt+ dW c

x , (S5)

dYγ =

{
−ωcXγ+

g
√

2

[
(Xα+Xβ)2+(Yα+Yβ)2

]
−
κc

2
Yγ

}
dt+ dW c

y ,

We then fix dt = 10−3/ωc (1/ωc being the smallest
timescale in the system). Starting with initial conditions
Xα(0) = Yα(0) = Xβ(0) = Yβ(0) = Xγ(0) = Yγ(0) = 0,
we add 107 subsequent increments so that the to-
tal evolution time becomes T = 107dt = 104/ωc �
1/κa, 1/κb, 1/κc and the final points are distributed
consistently with the stationary state of the system.
Collecting 104 different trajectories, we can finally
reconstruct the steady-state distribution in phase-space
(which is shown in Fig. 2 in the main text) and extract
all the desired statistics.

In Fig. S1 we plot five of these classical trajectories,
simulated for Na = 0, Nb = 0.5 and Nc = 0 (this
corresponds to the rightmost column of Fig. 2 in the
main text, where all other parameters are also specified).
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step time (dt) 10−3/ωc

number of steps per trajectory 107

number of trajectories 104

TABLE I: Parameters used in the simulation of the classical
stochastic equations. Other system parameters are specified
in the main text.

To highlight the asymptotic regime, only the last 20000
points are plotted. Since the frequency of the oscillator
b is brought to zero in the rotating frame, the Brownian
nature of the motion becomes evident. On the contrary,
the oscillator c clearly shows limit cycles of fixed ampli-
tude and random phase.

FIG. S1: Five different simulations of the classical stochastic
equations (S5), with Na = 0, Nb = 0.5 and Nc = 0 (cor-
responding to the rightmost column of Fig. 2 in the main
text). For each trajectory, only the last 20000 points (i.e. the
asymptotic regime) are shown. Final points are marked by a
star. Other parameters are specified in the main text.

[S1] C. W. Gardiner, Handbook of stochastic methods for
physics, chemistry, and the natural sciences, (Springer,

Berlin, 1994)
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