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Abstract

We present a complete analysis of multipartite quantum discord of photon added three-mode

coherent states. We derive the explicit forms of pairwise quantum discord which characterize quantum

correlations in bipartite subsystems, showing the effect of the order of the photon addition process.

We also investigate the violation of the monogamy property
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1 Introduction

In the context of information processing and transmission, several theoretical and experimental results

certify the potential advantages of quantum protocols compared to their classical counterparts (see

for instance [1, 2, 3]). Quantum technology exploiting the intriguing phenomena of quantum world,

such as entanglement, offers secure ways for communication [4, 5] and potentially powerful algorithms

in quantum computation [6]. Originally, quantum information processing focused on discrete (finite-

dimensional) entangled states like the polarizations of a photon or discrete levels of an atom. But,

the extension from discrete to continuous variables has been proven beneficial for various kinds of

quantum tasks in coding and manipulating efficiently quantum information. Coherent states, which

constitute the prototypical instance of continuous-variables states, are expected to play a central role

in this context. They are appealing for their mathematical elegance (continuity and over-completion

property) and closeness to classical physical states of a quantum system (minimization of Heisenberg

uncertainty relation). Implementing a logical qubit encoding by treating entangled coherent states as

qubits in a two dimensional Hilbert space has been shown a promising strategy in performing success-

fully various quantum tasks such as quantum teleportation [7, 8], quantum computation [9, 10, 11],

entanglement purification [12] and errors correction [13]. In view of these potential applications, a

special attention was paid, during the last years, to the identification, characterization and quan-

tification of quantum correlations in bipartite coherent states systems (see for instance the papers

[14, 15, 16] and references therein). The bipartite treatment was extended to superpositions of mul-

timode coherent states [18, 19, 20, 21, 22] which exhibit multipartite entanglement as for instance in

GHZ (Greenberger-Horne-Zeilinger), W (Werner) states [23, 45] and entangled coherent state versions

of cluster states [25, 26, 27]. To quantify quantum correlations beyond entanglement in coherent states

systems, measures such as bipartite quantum discord [28, 29] and its geometric variant [30] were used.

Explicit results were derived for quantum discord [31, 32, 33, 34, 35, 36, 37] and geometric quantum

discord [38, 39, 40, 41] for some special sets of coherent states.

In other hand, decoherence is a crucial process to understand the emergence of classicality in quan-

tum systems. It describes the inevitable degradation of quantum correlations due to experimental and

environmental noise. Various decoherence models were investigated and in particular the phenomenon

of entanglement sudden death was considered in a number of distinct contexts (see for instance [42]

and reference therein). For optical qubits based on coherent states, the influence of the environment,

is mainly due to energy loss or photon absorption. The photon loss or equivalently amplitude damp-

ing in a noisy environment can be modeled by assuming that some of field energy and information

is lost after transmission through a beam splitter [36, 43]. Interestingly, it has been shown that a

beam spitting device with a coherent in the first input and a number state in the second input gen-

erates photon-added coherent coherent states. In this respect, understanding the influence of adding

photons process might be useful to develop the adequate strategies in improving the performance of
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noise reduction in quantum processing protocols. From a purely theoretical view, some some authors

considered the entanglement measure in photon added multipartite coherent states [44, 45].

In this work, we derive the analytical expression of pairwise quantum discord between the three

modes (parts) of the so-called quasi-GHZ coherent states. A special emphasis is devoted the process

of adding photons to the first mode. Mathematically, this is represented by the action of a suitable

creation operator on the the states of the first subsystem. The influence of this excitation on the quan-

tum correlations is investigated. Another important issue in photon added GHZ-type coherent states

concerns the distribution of quantum discord between the different parts of the whole system. In fact,

the free shareability of quantum correlations obey an restrictive inequality termed in the literature as

monogamy property [46] (see also [47, 48, 50, 51, 52]).

This paper is organized as follows. In section 2, basic definitions and equations related to photon

added coherent states are presented. In particular, we consider the quantum correlations as measured

by the concurrence in quasi-Bell states. In particular, we introduce the encoding mapping according

with one passes from continues variables (coherent states) to discrete variables (logical quantum bits).

Along the same line of reasoning, this qubit encoding is extended, in section 3, to tripartite entangled

coherent states of GHZ-type. The pairwise quantum discord quantifying the amount of quantum

correlations existing in the system is analytically derived. We especially study the effect of adding

photon to the first mode. In section 4, we study the monogamy prperty of quantum discord. Numerical

illustrations of the violation of the monogamy relation are presented for some special cases. Concluding

remarks close this paper.

2 Photon added coherent states and qubit mapping

The basic objects in this work are the Glauber coherent states |α⟩ and | − α⟩ where α is a complex

number which determines the coherent amplitude of the electromagnetic field. Mathematically, a

single-mode quantized radiation field is represented by the harmonic oscillator algebra spanned by the

creation a+ and annihilation a− operators. The process of adding m photons to coherent states of

type |α⟩ and | − α⟩ is usually represented by the action of the operator (a+)m (m is a non negative

integer). This process leads to generation of nonclassical states from the coherent states [62]. Several

experimental as well theoretical studies were devoted to the generation and nonclassical properties of

photon-added coherent states [63] (for a recent review see [64]). Explicitly, m successive actions of

creation operator a+ on the Glauber coherent states

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩, (1)
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leads to the un-normalized states

||α,m⟩ =
(
a+

)m | α⟩ = e−
|α|2
2

∞∑
n=0

αn

n!

√
(n+m)! | n+m⟩. (2)

The normalized m-photon added coherent states are defined by

|α,m⟩ = (a+)m|α⟩√
⟨α|(a−)m(a+)m|α⟩

, (3)

where

⟨α|(a−)m(a+)m|α⟩ = m!Lm(−|α|2). (4)

In the last expression Lm(x) is the Laguerre polynomial of order m defined by

Lm(x) =

m∑
n=0

(−1)mm!xn

(n!)2(m− n)!
. (5)

Photon added coherent states interpolate between electromagnetic field coherent states (quasi-classical

states) and Fock states |n⟩ (purely quantum states). Furthermore, photon added coherent states

exhibit non-classical features such as squeezing, negativity of Wigner distribution and sub Poissonian

statistics. Their experimental generation using parametric down conversion in a nonlinear crystal was

reported in [63]. Photon-coherent states are not orthogonal each other. Indeed using the expression

⟨−α|(a−)m(a+)m|α⟩ = e−2|α|2m!Lm(|α|2), (6)

it is simply verified that the overlapping between the states |α,m) and | − α,m) is

⟨−α,m|α,m⟩ = e−2|α|2 Lm(|α|2)
Lm(−|α|2)

. (7)

Usually coherent states are treated as continuous variable states. Recently, the idea of encoding

quantum information on coherent states has led to an interesting proposal [11] in which superpositions

of Glauber coherent states are used to encode logical qubits. Accordingly, one can consider an encoding

scheme of type |α⟩ −→ |0⟩ and |−α⟩ −→ |1⟩ with two non orthogonal logical qubits. Alternatively, an

orthogonal qubit encoding scheme involving even and odd Glauber coherent states can be be defined

so that the coherent states are mapped in in C2⊗C2 Hilbert space. Hence, for photon added coherent

of type (3), one introduces the two dimensional basis spanned by two orthogonal qubits |+,m⟩ and

|−,m⟩ defined as even and odd superpositions of photon added coherent states (3)

|±,m⟩ = 1√
2± 2κme−2|α|2

(|α,m)± | − α,m)) (8)

where

κm :=
Lm(|α|2)
Lm(−|α|2)

. (9)

Clearly, for m = 0, one has κ0 = 1 and the logical qubits (8) reduce to

|±⟩ = 1√
2± 2e−2|α|2

(|α⟩ ± | − α⟩), (10)
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which coincide with even and odd Glauber coherent states providing the qubit encoding scheme

introduced in [11]. It must be emphasized that such qubit encoding of paramount importance in

dealing with quantum correlation in photon added coherent states and to investigate the influence of

the photon adding excitation process. In this, we shall first consider the entanglement in quasi-Bell

states. The quasi-Bell states are very interesting in quantum optics and serve as valuable resource for

quantum teleportation and many others quantum computing operations. The quasi-Bell states

|Bk(α)⟩ = Nk(α)
[
|α⟩ ⊗ |α⟩+ eikπ| − α⟩ ⊗ | − α⟩

]
. (11)

with k = 0( mod 2) (resp. k = 1( mod 2)) stands for even (resp. odd) quasi-Bell states and the

normalization factors Nk(α) are

N−2
k (α) = 2 + 2e−4|α|2 cos kπ. (12)

By repeated actions of the creation operator on the first mode, the resulting excited quasi-Bell states

given by

||Bk(α,m)⟩ = Nk(α)

[[
(a+)m ⊗ I

]
|α⟩ ⊗ |α⟩+ eikπ

[
(a+)m ⊗ I

]
| − α⟩ ⊗ | − α⟩

]
. (13)

are un-normalized (I stands for the unity operator). In fact, one verifies

⟨Bk(α,m)||Bk(α,m)⟩ = m!
Lm(−|α|2) + e−4|α|2Lm(|α|2) cos kπ

1 + e−4|α|2 cos kπ
. (14)

It is more appropriate for our purpose to deal with sates involving superpositions of normalized vectors.

Thus, one introduces the normalized photon-added quasi-Bell states as

|Bk(α,m)⟩ = Nk(α,m)
[
|m,α⟩ ⊗ |α⟩+ eikπ |m,−α⟩ ⊗ | − α⟩

]
, (15)

in terms of the normalized photon added coherent state (3), with

N−2
k (α,m) = 2 + 2κme

−4|α|2 cos kπ. (16)

where κm is defined by (9). Form = 0, the normalization factor (16) reduces to (12) and the quasi-Bell

states (11) are recovered. Using the qubit mapping (8) for the first mode and (10) for the second, the

bipartite state (15) writes as a two qubit state

|Bk(α,m)⟩ = Nk(α,m)
∑
i=±

∑
j=±

Cij |i,m⟩ ⊗ |j⟩ (17)

where the vectors |i,m⟩ (resp. |j⟩) are defined by (8) (resp. (10)) and the expansion coefficients are

given by

C++ = c+mc
+(1 + eikπ), C−+ = c+c−m(1− eikπ), C+− = c+mc

−(1− eikπ), C−− = c−c−m(1 + eikπ).

where

c±m =

√
1± κme−2|α|2

2
c± =

√
1± e−2|α|2

2
.
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It is well established that in a pure bipartite system, the quantum discord coincides with entanglement

of formation. Thus, to discuss the effect of the photon excitation of quasi-Bell states, it is sufficient to

characterize the bipartite entanglement in the states (15) by means of the entanglement of formation.

We recall that for ρ12 the density matrix for a pair of qubits 1 and 2 which may be pure or mixed,

the entanglement of formation is defined by [?]

E(ρ12) = H(
1

2
+

1

2

√
1− |C(ρ12)|2) (18)

where H(x) = −x log2 x−(1−x) log2(1−x) is the binary entropy function and the concurrence C(ρ12)

is

C(ρ12) = max {λ1 − λ2 − λ3 − λ4, 0} (19)

for λ1 ≥ λ2 ≥ λ3 ≥ λ4 the square roots of the eigenvalues of the ”spin-flipped” density matrix

ϱ12 ≡ ρ12(σy ⊗ σy)ρ
⋆
12(σy ⊗ σy). (20)

In the last formula the star stands for complex conjugation and σy is the usual Pauli matrix. Thus

using (19), it easy to check that the concurrence is given by

C12 = 2N 2
k (α,m)|C++C−− − C+−C−+|, (21)

which rewrites explicitly as

C12 =

√
1− e−4|α|2

√
1− κ2me

−4|α|2

1 + κme−4|α|2 cos kπ
(22)

in terms of the coherent states amplitude |α| and the excitation order m. It follows that entanglement

of formation is

E12 = H

[
1

2
+
e−2|α|2(1 + κm cos kπ)

2 + 2κme−4|α|2 cos kπ

]
(23)

For m = 0, one has

C12 =
1− e−4|α|2

1 + e−4|α|2 cos kπ
(24)

In order to observe the influence of the photon excitation on the quantum entan-

glement of a single mode excited bipartite entangled coherent states, we need to plot

the concurrence C(|α|,m) versus |α| for different values of the number of excited photon

m. Therefore, there are two case of k (even and odd) which are shown in figure 1, 2

respectively, we can see from the figure 1, after increasing of entanglement with |α|, it

approaches as the maximum value unit when |α| tends the infinity. In the other hand,

the entanglement degrees increases as |α| during a number of photon increases. We can

also observe in figure 2. That C(|α|,m) increases when |α| increase for different values

of m (m=0, 1, 2, 3, 4 and 10) respectively. Together the concurrence C(|α|,m) tends to

unit for the larger |α|.

6



Figure 1: The concurrence C (even) of SMEECS |ψ(|α|,m)⟩ versus |α| for the different number photon

excitations.

Figure 2: The concurrence C (odd) of SMEECS |ψ(|α|,m)⟩ versus |α| for the different number photon

excitations.

3 Photon added quasi-GHZ coherent states

The quasi-GHZ coherent states are defined by

|α, 0⟩ = N0(|α, α, α⟩+ eikπ| − α,−α,−α⟩). (25)

Where the normalization constant N0 is given by

N−2
0 = 2 + 2e−6|α|2 cos kπ, (26)

As in the previous section, we shall consider the excitation of the first mode by adding m photon.

Thus, the photon added quasi-GHZ coherent states have the form

|α,m⟩ = Na+m(|α, α, α⟩+ eikπ| − α,−α,−α⟩) = N
N0

a+m|α, 0⟩, (27)
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where the normalization factor is

N−2 = 2m!
[
Lm(−|α|2) + e−6|α|2 cos kπ Lm(|α|2)

]
. (28)

Clearly, for m = 0 the states |α,m⟩ (27) reduces to |α,m⟩ (25).
The tripartite state (27) can be re-equated as follows

|α,m⟩ = Ck(α,m) (|α,m)⊗ |α⟩ ⊗ |α⟩+ eikπ| − α,m)⊗ | − α⟩ ⊗ | − α⟩) (29)

so that the tree modes are described by normalized vectors. The factor C is defined by

C−2
k (α,m) = N−2(α,m)

[
⟨α|a−ma+m|α⟩

]−1

which rewrites

C−2
k (α,m) = 2 + 2e−6|α|2 cos kπ κm

with

κm =
Lm(|α|2)
Lm(−|α|2)

.

In investigating the pairwise quantum discord in a tripartite system 1−2−3, one needs the reduced

density matrices describing the two qubit subsystems 1 − 2, 2 − 3 and 1 − 3. For the states |α,m⟩
(29), it is simply seen that the reduced density matrices ρ12 = Tr3ρ123 and ρ13 = Tr2ρ123 are identical

(ρ123 = |α,m⟩⟨α,m|). They are given by

ρ12 = ρ13 =
C2
k(α,m)

N 2
k (α,m)

[(
1 + e−2|α|2

2

)
|Bk(α,m)⟩⟨Bk(α,m)|+

(
1− e−2|α|2

2

)
Z|Bk(α,m)⟩⟨Bk(α,m)|Z

]
(30)

in terms of photon added quasi-Bell states (15). The operator Z is the third Pauli generator defined

by

Z|Bk(α,m)⟩ = Nk(α,m)[|m,α)⊗ |α⟩ − eikπ|m,−α)⊗ | − α⟩]

Similarly, one obtains the reduced matrix density

ρ23 =
C2
k(α,m)

N 2
k (α, 0)

[(
1 + κme

−2|α|2

2

)
|Bk(α, 0)⟩⟨Bk(α, 0)|+

(
1− κme

−2|α|2

2

)
Z|Bk(α, 0)⟩⟨Bk(α, 0)|Z

]
(31)

Using the following mapping

|m,±α) =

√
1 + κme−2|α|2

2
|0⟩1 ±

√
1− κme−2|α|2

2
|1⟩1 (32)

for the first mode. For the second and third modes, have

| ± α⟩ =

√
1 + e−2|α|2

2
|0⟩i ±

√
1− e−2|α|2

2
|1⟩i i = 2, 3 (33)

Substituting (32) and (33) in (30) (resp. (31)), one can express the density matrix ρ12 (resp. ρ23) in

the two qubit basis {|0⟩1 ⊗ |0⟩2, |0⟩1 ⊗ |1⟩2, |1⟩1 ⊗ |0⟩2, |1⟩1 ⊗ |1⟩2} (resp. {|0⟩2 ⊗ |0⟩3, |0⟩2 ⊗ |1⟩3, |1⟩2 ⊗
|0⟩3, |1⟩2 ⊗ |1⟩3} )
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4 Quantifying the quantum discord

4.1 Bipartite measures of entanglement of formation and quantum discord

For the density matrix ρ12, the total correlation is quantified by the mutual information

I12 = S1 + S2 − S12, (34)

where ρ1(2) = Tr2(1)(ρ12) is the reduced state of 1(2) and S(ρ) is the von Neumann entropy of a

quantum state ρ. The mutual information I12 contains both quantum and classical correlations. It

can be decomposed as

I12 = D12 + C12.

Consequently, for a bipartite quantum system, the quantum discord D12 is defined as the difference

between total correlation I12 and classical correlation C12. The classical part C12 can be determined by

a local measurement optimization procedure. To remove the measurement dependence, a maximization

over all possible measurements is performed and the classical correlation writes

C12 = S(ρ2)− S̃min (35)

where S̃min denotes the minimal value of the conditional entropy. When optimization is taken over all

measurements, the quantum discord is

D12 = I12 − C12 = S1 + S̃min − S12. (36)

Thus, the derivation of quantum discord requires the minimization of conditional entropy. This consti-

tutes a complicated issue when dealing with an arbitrary mixed state. The explicit analytical expres-

sions of quantum discord were obtained only for few exceptional two-qubit quantum states, especially

ones of rank two. One may quote for instance the results obtained in [32, ?] (see also [36, 37, 41]). The

density matrix ρ12 is of rank two and in this case the minimization of the conditional entropy (??)

can be performed by purifying the density matrix ρ12 and making use of Koashi-Winter relation [53]

(see also [33]). This relation establishes the connection between the classical correlation of a bipartite

state ρ12 and the entanglement of formation of its complement ρ23. Indeed, the minimal value of the

conditional entropy coincides with the entanglement of formation of ρ23. It is given by

S̃min = E(ρ23). (37)

It follows that the Koaschi-Winter relation and the purification procedure provide us with a computable

expression of quantum discord

D12 = S1 − S12 + E23 (38)

when the measurement is performed on the subsystem 1.
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4.2 Pairwise quantum discord

The pairwise quantum discord present in the mixed states ρ12, and equivalently in ρ13, can be com-

puted using the procedure presented in the previous subsection. As result, when the measurement is

performed on the subsystem A ≡ 1, the quantum discord is

D12 = S1 − S12 + E23 (39)

where k stands for the third subsystem traced out to get the reduced matrix density ρij . The von

Neumann entropy of the reduced density ρi is

S1 = H

(
1

2

(1 + κme
−2|α|2)(1 + e−4|α|2 cos kπ)

1 + κme−6|α|2 cos kπ

)
, (40)

and the entropy of the bipartite density ρ12 is explicitly given by

S12 = H

(
1

2

(1 + κme
−4|α|2 cos kπ)(1 + e−2|α|2)

1 + κme−6|α|2 cos kπ

)
. (41)

It important to emphasize that the entanglement of formation measuring the entanglement of the

subsystem 2 with the ancillary qubit, required in the purification process to minimize the conditional

entropy, is exactly the entanglement of formation measuring the degree of intricacy between the

subsystem 2 and the traced out qubit 3. The concurrence in the subsystem 2− 3 takes the following

form

C23 = κme
−2|α|2

√
(1− e−4|α|2)(1− e−4|α|2)

1 + κme−6|α|2 cos kπ
. (42)

E23 = H

(
1

2
+

1

2

√
1− κ2me

−4|α|2(1− e−4|α|2)(1− e−4|α|2)

(1 + κme−6|α|2 cos kπ)2

)
. (43)

The pairwise quantum discord present in the mixed states ρ23 can be computed using the procedure

presented in the previous subsection. As result, when the measurement is performed on the subsystem

A ≡ 2, the quantum discord is

D23 = S2 − S23 + E13 (44)

where k stands for the third subsystem traced out to get the reduced matrix density ρ23. The von

Neumann entropy of the reduced density ρi is

S2 = H

(
1

2

(1 + e−2|α|2)(1 + κme
−4|α|2 cos kπ)

1 + κme−6|α|2 cos kπ

)
, (45)

and the entropy of the bipartite density ρ23 is explicitly given by

S23 = H

(
1

2

(1 + e−4|α|2 cos kπ)(1 + κme
−2|α|2)

1 + κme−6|α|2 cos kπ

)
. (46)

It important to emphasize that the entanglement of formation measuring the entanglement of the

subsystem 3 with the ancillary qubit, required in the purification process to minimize the conditional

entropy, is exactly the entanglement of formation measuring the degree of intricacy between the
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subsystem 3 and the traced out qubit 1. The concurrence in the subsystem 1− 3 takes the following

form

C13 = e−2|α|2
√

(1− κ2me
−4|α|2)(1− e−4|α|2)

1 + κme−6|α|2 cos kπ
. (47)

E13 = H

(
1

2
+

1

2

√
1− e−4|α|2(1− κ2me

−4|α|2)(1− e−4|α|2)

(1 + κme−6|α|2 cos kπ)2

)
. (48)

4.3 Some special cases

• Reduced density matric ρ12

The quantum discord in the state ρ12 is

D12 = H

(
1

2

(1 + κme
−2|α|2)(1 + e−4|α|2 cos kπ)

1 + κme−6|α|2 cos kπ

)
(49)

− H

(
1

2

(1 + κme
−4|α|2 cos kπ)(1 + e−2|α|2)

1 + κme−6|α|2 cos kπ

)
+ H

(
1

2
+

1

2

√
1− κ2me

−4|α|2(1− e−4|α|2)(1− e−4|α|2)

(1 + κme−6|α|2 cos kπ)2

)
,

We start with the special case m = 0 (see figure 3), the state ρ12 is coincides with three-mode

coherent states. At this point, we have p1 = p and L0(| α2 |) = 1, then the explicit expression of

quantum discord for the density ρ12 is in term of the overlap p. This expression of discord is equivalent

with the discord given by [?] for n = 3, and the discord for symmetric (antisymmetric) states m even

(m odd) as shown in the figure 1. Gives a plot of quantum discord versus the overlap p for the mixed

state ρ12. It must be noticed that for k = 0 , we find the maximum of discord obtained for the value

p equal to 1/2. However, for k = 1, the quantum discord takes the maximum value for p→ 1 and the

discord increase with p increase.

The figure 4 gives a plot of quantum discord versus the number of photon for symmetric added

entangled coherent states (i.e.k even) and for different value of m. As seen from the figure, after an

initial increasing, the quantum discord decreases to vanish when the amplitude of photon | α2 |→ 2.

The minimum value of discord is obtained when has no photon excitation (i.e.m = 0) and the maximum

of quantum discord is obtained for m=10, we also found that the discord is depends on the number of

the excitation photon. However, this maximum increases as m increases. In figure 5, we give a plot

of the quantum discord for the antisymmetric case and for different excitation of photon number. It

is remarkable that for antisymmetric quantum states the maximal value of quantum discord increases

as m decreased contrarily to the symmetric states.

• Reduced density matric ρ23

For the state ρ23, the quantum discord is
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Figure 3: The quantum discord of SMEECS |ψ(|α|,m)⟩ versus |α|2 for (even) and (odd) states.

Figure 4: The quantum discord (even) of reduced density matric ρ12 versus |α|2 for the different

number photon excitations.

Figure 5: The quantum discord (odd) of reduced density matric ρ12 versus |α|2 for the different number

photon excitations.
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D23 = H

(
1

2

(1 + e−2|α|2)(1 + κme
−4|α|2 cos kπ)

1 + κme−6|α|2 cos kπ

)
(50)

− H

(
1

2

(1 + e−4|α|2 cos kπ)(1 + κme
−2|α|2)

1 + κme−6|α|2 cos kπ

)
+ H

(
1

2
+

1

2

√
1− e−4|α|2(1− κ2me

−4|α|2)(1− e−4|α|2)

(1 + κme−6|α|2 cos kπ)2

)
,

The explicit expression of quantum discord of reduced matric ρ23 in the special case m = 0 take

the same result obtained for ρ12.

The behavior of quantum discord of the reduced matric ρ23 versus |α|2 for symmetric (antisymmetric

case )respectively is given in the figure 6 and 7 respectively. As seen from this figures, after an

initial increasing, the quantum discord decreases to vanish when |α|2 −→ 2. It is clearly seen that

the quantum discord increases with the photon excitation number is increases in the symmetric case.

Otherwise, for the antisymmetric states, the quantum discord is decreases when the photon excitation

number increases.

We observed that, the minimum value (m = 2) of quantum discord for the reduced matric ρ12 is higher

than the maximum value (m = 10) obtained for the reduced matric ρ23.

Figure 6: The quantum discord (odd) of reduced density matric ρ23 versus |α|2 for the different number

photon excitations.

5 Monogamy of quantum discord for a three-qubit entangled state

Monogamy of quantum correlations is a property satisfied by certain entanglement measures in a

multipartite scenario. Given a tripartite state ρ123, the monogamy condition for a bipartite quantum

correlation measure Q assures that the bipartite quantum correlations in the density operator ρ1|23

are distributed in such a way that the following inequality is satisfied

Q(ρ1|23) ≥ Q(ρ12) +Q(ρ13). (51)
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Figure 7: The quantum discord (odd) reduced density matric ρ23 versus |α|2 for the different number

photon excitations.

Violation of the above inequality will imply that the quantity Q is polygamous for the corresponding

state. Otherwise, this inequality is sufficient for quantum discord to be monogamous.

To illustrate the above analysis, we will investigate the properties of quantum discord monogamy in

two different ways (quantum discord and geometric quantum discord using norm 2).

• Monogamy of quantum discord

To investigate the monogamy relation of quantum discord measured in quantum systems involving

three qubits, Coffman et al [?] introduced the so called tripartite state equation (??). It is defined as

D(ρ1|23) ≥ D(ρ12) +D(ρ13), (52)

where 1, 2 and 3 mean the respective parts of a tripartite system. Note that here D1|23 is given by

the entanglement between qubit (1) and the joint qubits (23). The quantum discord coincides with

the entanglement of formation.

The pure tripartite state |α,m⟩ can be partitioned as bipartite system and can be expressed by

means of two logical qubits. This scenario can be achieved as follows. We introduce, for the first

subsystem, the orthogonal basis {|0⟩1, |1⟩1} defined by

|0⟩1 =
|α,m) + |α,m)√
2(1 + κme−2|α|2)

|1⟩1 =
|α,m)− |α,m)√
2(1− κme−|α|2)

. (53)

For the modes (23), viewed as a single subsystem, we introduce the orthogonal basis {|0⟩23, |1⟩23}
given by

|0⟩23 =
|α, α⟩+ | − α,−α⟩√

2(1 + e−4|α|2)
|1⟩23 =

|α, α⟩+ | − α,−α⟩√
2(1 + e−4|α|2)

. (54)

Inserting(53) and (54) in |α,m⟩ , we get the form of the pure state |α,m⟩ in the basis {|0⟩1⊗|0⟩23, |0⟩1⊗
|1⟩23, |1⟩1 ⊗ |0⟩23, |1⟩1 ⊗ |1⟩23}. Explicitly, it is given by

|α,m⟩ =
∑
α=0,1

∑
β=0,1

Cα,β|α⟩1 ⊗ |β⟩23 (55)
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where the coefficients Cα,β are

C0,0 = Ck(α,m)(1 + eikπ)c+1 c
+
23, C0,1 = Ck(α,m)(1− eikπ)c+1 c

−
23

C1,0 = Ck(α,m)(1− eikπ)c+23c
−
1 , C1,1 = Ck(α,m)(1 + eikπ)c−1 c

−
23.

in terms of the quantities

c±1 =

√
1± κme−2|α|2

2
c±23 =

√
1± e−4|α|2

2

The concurrence between the two qubits 1 and 23 is given by

C1|23 =
√

(1− κ2me
−4|α|2)(1− e−8|α|2)

1 + κme−6|α|2 cos kπ
, (56)

from which we obtain

D1|23 = E1|23 = H

(
1

2
+

1

2

κme
−2|α|2 + e−4|α|2 cos kπ

1 + κme−6|α|2 cos kπ

)
, (57)

We will now present the conditions that signal whether a tripartite quantum state is monogamous

in nature with respect to quantum discord. In figure 13, the monogamy quantity D123 is plotted

as functions of overlapping p, for symmetric state the inequality mentioned as the above is satisfied.

Otherwise, for the antisymmetric state (i.e.k=1) the monogamy relation is violated during the interval

0 ≤ p ≤ 1.

In the figures 14 and 15, corresponding respectively to symmetric and antisymmetric added coherent

states, we plot the monogamy quantity as a function of |α|2. We examine the positivity of the following

inequality

∆123 = D123(m, |α|2) = D1|23 −D12 −D13, (58)

defined in terms of the bipartite quantum discord. We shall restrict our discussion in what follows to

the interval 0 ≤ |α|2 ≤ 1, 3. Clearly, for symmetric states (see figure 14) the function described by (58)is

non positive when 0 ≤ |α|2 ≤ 0.644, consequently the quantum discord is non monogamous. Otherwise,

if |α|2 ≥ 0.644 the quantum discord is monogamous whatever the photon excitations number m. Thus,

for the antisymmetric states (figure 15) the plotted curve indicates that the inequality of monogamy

(58) is not satisfied if 0 ≤ |α|2 ≤ 0.4, Otherwise, for |α|2 ≥ 0.4 the quantity D123 is positive and the

quantum discord is monogamous for everything values m.

6 Concluding remarks

Summarizing, we have presented in the early of this paper a class of the single mode excited entangled

coherent states (SMEECSs)|ψp(α,m)⟩ , which are obtained through actions of creation operator on the

entangled coherent states. Then, we have exhibited the important properties of quantum entanglement

by using different ways (specially, the concurrence, quantum discord and its version geometric). The
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Figure 8: Monogamy D123 versus the overlapping p when m=0

Figure 9: Monogamy D123 of symmetric states versus |α|2 for different number photon excitations.

Figure 10: MonogamyD123 of antisymmetric states versus |α|2 for different number photon excitations.

first way, we have studied the concurrence for bipartite systems and investigated the influence of

phonon excitations numbers on quantum entanglement. We also employed the other process for

studied the quantum correlation of add coherent states for tripartite quantum states (see the equations
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(??) and (??) by the quantum discord. Thus, we found two explicit analytic expressions of this

measure and the results obtained are discussed. Another way which treated the quantum correlations

by introducing the geometric version of quantum discord, at this stage we derived a necessary and

sufficient condition. Specially, for the case of three-qubit states we have proposed in the our discussion,

two version(i.e.symmetric, antisymmetric states, respectively) and the result obtained is explained in

terms of different number photon excitations(i.e.the influence of m on geometric quantum discord).

To close our work, we have employed the concept of quantum monogamy corresponding to quantum

discord and its geometric version. In particular, we have investigated the relation between discord

monogamy and a genuine tripartite entanglement measure for three-qubit pure states. Therefor,

We have demonstrated that the quantum correlations examined by the entropic measure, geometric

measure respectively does not satisfy the monogamy relation(51). A very important result is derived

in this work, from a value determined of |α|2, we see that no effect of the addition of the photon can

be found on the measurement of monogamy. The analysis presented in this letter can be extended to

the effect of subtracting the photon of tripartite GHZ coherent states.
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