
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxa1 and yyyyb,c 2

aDepartment of Physics , Faculty of Sciences, University Ibnou Zohr,

Agadir , Morocco

bLPHE-Modeling and Simulation, Faculty of Sciences, University Mohammed V,

Rabat, Morocco

cCentre of Physics and Mathematics, CPM, CNESTEN,

Rabat, Morocco

Abstract

We study the evolution of geometric quantum discord (GMQD) of a two qubits system coupled

with two independent bosonic reservoirs. We consider sub-ohmic, ohmic and super-ohmic. A special

attention is devoled to Dicke states and their superpositions.
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1 Introduction

Entanglement has been attracting much attention from physicists in both theory and experiment

[1][2][3][4][5], as it plays an important role in quantum information processing such as quantum com-

munications [2] and quantum cryptography [6]. However, there are some exceptions. For instance,

quantum computation [7] based on one pure qubit does not employ entanglement, but it needs other

non-classical resources. This suggests that entanglement is not the unique resource but just one kind

of quantum correlation. In fact, there is another kind of quantum correlation named quantum discord.

Quantum discord, as a measure of bipartite non-classical correlation, is a promising candidate and

has generated a lot of interest. For a quantum state ρ in a composite Hilbert space H = HA ⊗HB,

the total amount of correlation can be quantified by quantum mutual information [8]:

I(ρAB) = H(ρA) +H(ρB)−H(ρAB) (1)

with H(ρ) = −Tr[ρ log2 ρ] the von Neumann entropy and ρA(B) = TrB(A)ρ the reduced density

matrix by tracing system B(A).

Quantum discord is a measure of nonclassical correlations that may include entanglement but

is an independent measure. We will document with simple examples that the amounts of classical

correlation, quantum discord and entanglement bear no simple relationship to each other. Taking

system A as the apparatus, the quantum discord is defined as follows:

D(ρAB) = I(ρAB)− C(ρAB) (2)

where C(ρAB) denotes the classical correlations of the state.

The optimization procedure involved in the calculation of quantum discord prevents one to write

an analytical expression for quantum discord even for simple two-qubit systems. Quantum discord

is analytically computed only for a few families of states including the Bell-diagonal states [9][10],

two-qubit X states [11][12], two-qubit rank-2 states [13], a class of rank-2 states of 4⊗ 2 systems [14],

and Gaussian states of the continuous variable systems [15]. Moreover, based on the optimization

of the conditional entropy, an algorithm to calculate the quantum discord of the two-qubit states is

presented in . It is also important to have some computable bounds on the quantum discord and some

authors have obtained such bounds [16],[17].

This paper is organized as follows. In section 2, we give general expression of GMQD for two

qubits in Bosonic Reservoirs and discuss the GMQD for a kind of X-state. In section 3, the Geometric

quantum discord. We study in section 4, the GMQD for Reservoirs with Ohmic-Like spectral densities

specially the GMQD for Dicke states and their superpositions (generalized W states and GHZ states,

the superpositions of two Dicke states). In section 4, the conclusion.
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2 Two spin in independent bosonic reservoirs

2.1 Bipartite states

Here, we consider an ensemble of N spin-1/2 particles described by the collective angular momentum

operators

Jα =
1

2

N∑
k=1

σkα, α = x, y, z. (3)

Since the QD is adopted to describe the nonlocal quantum correlation, it is necessary to derive the

pairwise density matrix. In this paper, we only study the pairwise correlations. For all collective spin

models, including the Dicke model and the LMG model, the pairwise reduced density matrix in the

standard basis, {|↓↓⟩, |↓↑⟩, |↑↓⟩, |↑↑⟩} (with σz|↑⟩ = |↑⟩ and σz|↓⟩ = −|↓⟩) [?], can be derived as

ρ =


v+ x∗+ x∗+ u∗

x+ w y x∗−
x+ y w x∗−
u x− x− v−

 . (4)

The detailed expressions for these elements are

v± =
N2 − 2N + 4⟨J2

z ⟩±4(N − 1)⟨Jz⟩
4N(N − 1)

, (5)

x± =
(N − 1)⟨J+⟩±⟨[J+, Jz]+⟩

2N(N − 1)
,

w =
N2 − 4⟨J2

z ⟩
4N(N − 1)

, y =
⟨J2

x + J2
y ⟩ −N/2

N(N − 1)
,

u =
⟨J2

+⟩
N(N − 1)

,

where [A,B]+ = AB + BA. w = y, for
∑

α=x,y,z J
2
α = J2 = N

2 (
N
2 + 1). In particular, since the Dicke

and LMG models have symmetric ground states with parity conservation, we find x± = 0 [?, ?]. Hence

the pairwise reduced density matrix in X form is shown as

ρ =


v+ 0 0 u∗

0 w y 0

0 y w 0

u 0 0 v−

 . (6)

For the two-qubit states in X form, the QD may be derived analytically, according to Ref. [?].

2.2 Coupling to bosonic reservoirs

The model under consideration is a quantum system of two qubits coupled to two independant bosonic

reservoirs, the Hamiltonian of wich may be expressed as

H =

2∑
j=1

[
νj
2
σj,3 +

∑
k

ωj,kb
†
j,kbj,k +

∑
k

σj,3(gj,kb
†
j,k + g∗j,kbj,k], (7)
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where νj is the energy difference between the excited state |1⟩j and the ground state |0⟩j , and σj,3
is the Pauli matrix of qubit j with σj,3 |1⟩j = |1⟩j and σj,3 |0⟩j = − |0⟩j . b†j,k(bj,k) and ωj,k denote

the bosonic creation (annihilation) operator and the frequency of the kth mode of the reservoir of the

qubit j,respectively.gj,k denotes the coupling strength between the qubit j and the kth mode. The

Hamiltonian describes the spin-boson model without tunneling. A possible experiment setup is a

double-dot charge qubit placed in a freestanding semiconductor slab.

Suppose that the two qubits are initially writes in the X states,

ρs(0) =
1

4
(I ⊗ I + x3σ3 ⊗ I + y3I ⊗ σ3 +

3∑
i,j=1

Rijσi ⊗ σj), (8)

the reservoirs are in thermal equilibrium states at temperature T,

ρEj = exp(−β
∑
k

ωj,kb
†
j,kbj,k)/ZEj , (9)

and the whole system is in the product state,

ρ(0) = ρs(0)⊗ ρE1 ⊗ ρE2 (10)

where ci is a real number with 0 ≤ |ci| ≤ 1 for each i,ZEj is the partition function of the reservoir j

with ZEj = Tr(exp(−β
∑

k ωj,kb
†
j,kbj,k)) =

∏
k(1− e−βωj,k)−1, and β = 1/(kBT ). The whole system?s

state at time t is governed by

ρ(t) = exp(−iHt)ρ(0)exp(iHt), (11)

and the state of the two qubits at time t can be obtained by the partial trace

ρs(t) = TrE [exp(−iHt)ρ(0)exp(iHt)]. (12)

In order to calculate GMQD, we need to write ρs(t) in the form of Eq [?]. From Eq [?], the

elements of ρs(t) can be expressed as

⟨
mm′∣∣ ρs(t) ∣∣nn′⟩ = Tr[ξmn

1 (t)ξm
′n′

1 (t)ρ(0)]. (13)

where ξmn
1 (t) = eiHtξmn

1 e−iHt is the Heisenberg operator of qubit j, and ξmn
1 = |n⟩j ⟨m|. Noting

that [ξmn
1 ,H] = 0, we have ξmn

1 (t) = ξmn
1 . The operators ξmn

1 (t) for m ̸= n can be obtained by solving

the Heisenberg equations of motion,

i
d

dt
bj,k = ωj,kbj,k(t) + gj,kσj,3, (14)

i
d

dt
ξ01j (t) = −νjξ01j (t)− 2

∑
k

[gj,kb
†
j,k(t) + g∗j,kbj,k(t)]ξ

01
j (t) (15)

The solutions to the above differential equations are
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bj,k(t) = e−iωj,kt[bj,k +
1

2
αj,k(t)σj,3] (16)

ξ01j (t) = ξ01j exp

{
iνjt−

∑
k

[αj,k(t)b
†
j,k − αj,k(t)bj,k]

}
, (17)

with

αj,k = 2gj,k(1− eiωj,k(t))/ωj,k. (18)

with the help of Eqs.(8) and (12),we finally obtain

ρs(t) =
1

4
(I⊗I+T30σ3⊗I+T03I⊗σ3+T11σ1⊗σ1+T12σ1⊗σ2+T21σ2⊗σ1+T22σ2⊗σ2+T33σ3⊗σ3), (19)

Where

T11 = [R11cos(ν1t)cos(ν2t) +R22sin(ν1t)sin(ν2t)−R12cos(ν1t)sin(ν2t)−R21sin(ν1t)cos(ν2t)]e
−γ(t)

T12 = [R11cos(ν1t)sin(ν2t)−R22sin(ν1t)cos(ν2t) +R12cos(ν1t)cos(ν2t)−R21sin(ν1t)sin(ν2t)]e
−γ(t)

T21 = [R11sin(ν1t)cos(ν2t)−R22cos(ν1t)sin(ν2t)−R12sin(ν1t)sin(ν2t) +R21cos(ν1t)cos(ν2t)]e
−γ(t)

T22 = [R11sin(ν1t)sin(ν2t) +R22cos(ν1t)cos(ν2t) +R12sin(ν1t)cos(ν2t) +R21cos(ν1t)sin(ν2t)]e
−γ(t)

T30 = x3

T03 = y3

T33 = R33 (20)

and

γ(t) =

2∑
j=1

∑
k

4 |gj,k|2 ω−2
j,k coth(

βωj,k

2
)[1− cos(ωj,kt)]. (21)

ρs(t) =


ρ00(t) 0 0 ρ03(t)

0 ρ11(t) ρ12(t) 0

0 ρ21(t) ρ22(t) 0

ρ30(t) 0 0 ρ33(t)

 (22)

where

ρ00(t) = 1 + T30 + T03 + T33 = ρ00

ρ03(t) = T11 − T22 − iT12 − iT21 = e−γ(t)ρ03[cos(ν1t+ ν2t))− isin(ν1t+ ν2t)]

ρ11(t) = 1 + T30 − T03 − T33 = ρ11

ρ12(t) = T11 + T22 + iT12 − iT21 = e−γ(t)ρ12[cos(ν1t− ν2t)− isin(ν1t− ν2t)]

ρ21(t) = T11 + T22 − iT12 + iT21 = e−γ(t)ρ21[cos(ν1t− ν2t) + isin(ν1t− ν2t)]
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ρ22(t) = 1− T30 + T03 − T33 = ρ22

ρ30(t) = T11 − T22 + iT12 + iT21 = e−γ(t)ρ30[cos(ν1t+ ν2t) + isin(ν1t+ ν2t)]

ρ33(t) = 1− T30 − T03 + T33 = ρ33 (23)

These matrix elements can be written also as follows

ρ00(t) = ρ00

ρ03(t) = e−γ(t)e−i(ν1+ν2)tρ03

ρ11(t) = ρ11

ρ12(t) = e−γ(t)e−i(ν1−ν2)tρ12

ρ21(t) = e−γ(t)ei(ν1−ν2)tρ21

ρ22(t) = ρ22

ρ30(t) = e−γ(t)ei(ν1+ν2)tρ30

ρ33(t) = ρ33 (24)

2.3 Closest classical states to two qubit X states

To begin, we shall present the procedure leading to the closest classically correlated state to the

two-qubit X state (??). The Fano-Bloch representation (??) reads

ρ12 =
1

4

[
σ0 ⊗ σ0 + T03σ0 ⊗ σ3 + T30σ3 ⊗ σ0 +

∑
kl

Tklσk ⊗ σl

]
(25)

where the correlation matrix elements are obtainable from (??) modulo some obvious substitutions.

The geometric measure of quantum discord is defined as the distance the state ρ12 and its closest

classical-quantum state presenting zero discord [?]

Dg(ρ12) = min
χ12

||ρ12 − χ12||2 (26)

where the Hilbert-Schmidt norm is defined by ||X||2 = Tr(X†X) and the minimization is taken over

the set of all classical states. When the measurement is performed on the qubit 1, the classical states

write

χ12 = p1|ψ1⟩⟨ψ1| ⊗ ρ21 + p2|ψ2⟩⟨ψ2| ⊗ ρ22 (27)

where {|ψ1⟩, |ψ2⟩} is an orthonormal basis related to the qubit 1, pi (i = 1, 2) stands for probability

distribution and ρ2i (i = 1, 2) is the marginal density of the qubit 2. The classically correlated states

χ12 can also be written as

χ12 =
1

4

[
σ0 ⊗ σ0 +

3∑
i=1

tei σi ⊗ σ0 +

3∑
i=1

(s+)i σ0 ⊗ σi +

3∑
i,j=1

ei(s−)j σi ⊗ σj

]
(28)
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where

t = p1 − p2, ei = ⟨ψ1|σi|ψ1⟩, (s±)j = Tr
(
(p1ρ

2
1 ± p2ρ

2
2)σj

)
.

It follows that the distance between the density matrix ρ12 and the classical state χ12, as measured

by Hilbert-Schmidt norm, is then given by

||ρ12 − χ12||2 =
1

4

[
(t2 − 2te3T30 + T 2

30) +
3∑

i=1

(T0i − (s+)i)
2 +

3∑
i,j=1

(Tij − ei(s−)j)
2

]
(29)

The minimization of the distance (29), with respect to the parameters t, (s+)i and (s−)i, gives

t = e3T30

(s+)1 = 0 (s+)2 = 0 (s+)3 = T03

(s−)i =
3∑

j=1

ejTji. (30)

Inserting these solutions in (29), one has

||ρ12 − χ12||2 =
1

4

[
TrK − e⃗tKe⃗

]
(31)

where the matrix K is defined by

K = xx† + TT † (32)

with

x† = (0, 0, T30) T =

 T11 T12 0

T21 T22 0

0 0 T33

 .

From equation (31), one see that the minimal value of Hilbert-Schmidt distance (31) is reached for

the largest eigenvalue of the matrix K. We denote by λ1, λ2 and λ3 the eigenvalues of the matrix K

(32) corresponding to the X state (??) or equivalently (25). They are given by

λ1 = 4(|ρ14|+ |ρ23|)2, λ2 = 4(|ρ14| − |ρ23|)2, λ3 = 2[(ρ11 − ρ33)
2 + (ρ22 − ρ44)

2]. (33)

To get the minimal value of the Hilbert-Schmidt distance (31) and subsequently the amount of geo-

metric quantum discord, one compares λ1, λ2 and λ3. As λ1 is always greater than λ2, the largest

eigenvalue λmax is λ1 or λ3. It follows that the geometric discord is given by

Dg(ρ12) =
1

4
min{λ1 + λ2, λ2 + λ3}. (34)

To write down the explicit expressions of the closest classical state χ12 to ρ12, one has to determine the

eigenvector e⃗max associated with the largest eigenvalue λmax. In this respect, two cases ( λmax = λ1

and λmax = λ3) are separately discussed. We begin by density matrices ρ12 (??) whose entries satisfy
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the condition λmax = λ3. The associated eigenvector is given by e⃗3 = (0, 0, 1). Replacing in the set of

constraints (30), one has

χ3
12 =

1

4

[
σ0 ⊗ σ0 + T30 σ3 ⊗ σ0 + T03 σ0 ⊗ σ3 + T33 σ3 ⊗ σ3

]
(35)

In the second situation, the eigenvector corresponding to λ1 is given by e⃗1 = (cos ϕ
2 ,− sin ϕ

2 , 0) where

eiϕ = ρ14ρ23
|ρ14||ρ23| . Reporting the components of e⃗1 in (30), one gets the closest classical state

χ1
12 =

1

4

[
σ0 ⊗ σ0 + T30 σ3 ⊗ σ0 +

2∑
i=1

2∑
j=1

T̃ij σi ⊗ σj

]
(36)

where

T̃11 = cos
ϕ

2
(cos

ϕ

2
T11 − sin

ϕ

2
T21) T̃12 = cos

ϕ

2
(cos

ϕ

2
T12 − sin

ϕ

2
T22)

T̃21 = − sin
ϕ

2
(cos

ϕ

2
T11 − sin

ϕ

2
T21) T̃22 = − sin

ϕ

2
(cos

ϕ

2
T12 − sin

ϕ

2
T22).

2.4 Evolution of geometric quantum discord

3 Geometric measure of quantum discord under quantum decoher-

ence channels

A quantum channel can be described in the Kraus representation

E(ρ) =
∑
µ

KµρK
†
µ, (37)

where Kµ are Kraus operators satisfying
∑

µK
†
µKµ = σ0. As we discussed in the previous section, to

obtain the GMQD, we need to know the expectation values of the Pauli matrices of the two qubits for

the state E(ρ). So we turn to the Heisenberg picture to describe quantum channels via the map [?]

E†(A) =
∑
µ

K†
µAKµ (38)

with A an arbitrary observable. Then the expectation value of A can be obtained through ⟨A⟩ =

Tr [AE(ρ)] = Tr
[
E†(A)ρ

]
. Because an arbitrary Hermitian operator on C2 can be expressed by A =∑3

i=0 riσi with ri ∈ R, then a quantum channel for a qubit can be characterized by the transmission

matrix M defined through

E†(σi) =
∑
j

Mijσj or Mij =
1

2
Tr

[
E†(σi)σj

]
. (39)

Since Tr[E†(σi)ρ] =
∑

j MijTr[σjρ], Mij actually describes the transformation of the polarized vector

Pi ≡ Tr[σjρ].
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Now we consider the case of two qubits under local decoherence channels, i.e., ρ = [EA ⊗ EB](ρ0).
To obtain the GMQD of the output state ρ through the channel, we need to get the expectation matrix

R. With the Heisenberg picture, we have

Rij = Tr(E†
A(σi)⊗ E†

B(σj)ρ0) = (MAR0M
T
B )ij , (40)

where R0 is the expectation matrix under ρ0, i.e., (R0)ij = Tr(σi ⊗ σjρ0), and MA(B) is the transfor-

mation matrix characterizing the quantum channel EA(B). So we obtain R =MAR0M
T
B .

For simplicity, we assume EA and EB be identical, hereafter. Next, we consider three typical kinds of

decoherence channels: the amplitude damping channel (ADC), the phase damping channel (PDC), and

the depolarizing channel (DPC). They are described by the set of Kraus operators respectively [?, ?]:

KADC =
{√

s|0⟩⟨0|+ |1⟩⟨1|, √p|1⟩⟨0|
}
, (41)

KPDC =
{√

sσ0,
√
p|0⟩⟨0|, √p|1⟩⟨1|

}
, (42)

KDPC = {1
2

√
1 + 3s σ0,

1

2

√
p σx,

1

2

√
p σy,

1

2

√
p σz}, (43)

with s ≡ 1−p. Here the real parameter p ∈ [0, 1] may be time-dependent in some realistic setup [?, ?].

For instance, for the PDC, the parameter s may be like exp(−γt) with γ the rate of damping.

From Eqs. (39), (41), (42), and (43), the transmission matrixM of each channel can be got through

the transformation of the Pauli matrices in the Heisenberg picture [?] as

MADC =


1 0 0 0

0
√
s 0 0

0 0
√
s 0

−p 0 0 s

 , MPDC =


1 0 0 0

0 s 0 0

0 0 s 0

0 0 0 1

 , MDPC =


1 0 0 0

0 s 0 0

0 0 s 0

0 0 0 s

 . (44)

For the density matrix under consideration, the eigenvalues of the matrix k are given by

λ1 ≡ λ1(t) = 4(|ρ12(t)|+ |ρ03(t)|)2

λ2 ≡ λ2(t) = 4(|ρ12(t)| − |ρ03(t)|)2

λ3 ≡ λ3(t) = 2
[
(ρ00(t)− ρ22(t))

2 + (ρ11(t)− ρ33(t))
2
]

finally, we find:

λ1(t) = 4(
∣∣∣e−γ(t)e−i(υ1−υ2)tρ12

∣∣∣+ ∣∣∣e−γ(t)e−i(υ1+υ2)tρ03

∣∣∣)2 = e−2γ(t)λ1(0)

λ2(t) = 4(
∣∣∣e−γ(t)e−i(υ1−υ2)tρ12

∣∣∣+ ∣∣∣e−γ(t)e−i(υ1+υ2)tρ03

∣∣∣)2 = e−2γ(t)λ2(0)

λ3(t) = 2[(ρ00 − ρ22)
2 + (ρ11 − ρ33)

2] = λ3(0)

Clearly, the eigenvalue λ1 is larger than λ2.
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3.1 GMQD for dicke and their superpositions

we consider a state of two qubits which have been extracted from the whole ensemble. Specifically,

we concentrate on the states with exchange symmetry and parity, whose two-qubit reduced density

matrix can be written as

ρAB =


υ+ 0 0 u∗

0 y y 0

0 y y 0

u 0 0 υ−

 (45)

in the basis of |00⟩ , |01⟩ , |10⟩ , |11⟩, with υ+, υ−. and y real, and u∗. the complex conjugate

of u. The elements of the density matrix can be represented by the expectation values of the spin

components

υ± =
N2 − 2N + 4

⟨
J2
z

⟩
± 4 ⟨Jz⟩ (N − 1)

4N(N − 1)
, (46)

y =
N2 − 4

⟨
J2
z

⟩
4N(N − 1)

, u =

⟨
J2
+

⟩
N(N − 1)

(47)

3.1.1 Dicke states

The so-called Dicke states under consideration are defined as

|n⟩N ≡ |N/2,−N/2 + n⟩ , n = 0, ....., N, (48)

As we have discussed in the previous section, to obtain the GMQD, we need to calculate the

expectation values of the spin components for the stats |n⟩N , which are

⟨Jz⟩ = n− N

2
,

⟨
J2
z

⟩
= (n− N

2
)2,

⟨
J2
+

⟩
=

⟨
J2
−
⟩
= 0. (49)

λ1 ≡ λ1(t) = e−2γ(t)λ1(0) = e−2γ(t) 4n
2(N − n)2

N2(N − 1)2

λ2 ≡ λ2(t) = e−2γ(t)λ2(0) = e−2γ(t) 4n
2(N − n)2

N2(N − 1)2

λ3 ≡ λ3(t) = λ3(0) =
(N − 2n)2

N2
+

[(N − 2n)2 −N ]2

N2(N − 1)2

λ1(t) = λ2(t) and the maximum of the eigenvalues is λ1(t) or λ3(t)
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3.1.2 Generalized GHZ states

Now we discuss the GMQD of the generalized GHZ states which are superpositions of two special

Dicke states. The generalized GHZ states which are important in the research of quantum mechanics

are states in the following form:

|ψ⟩GHZ = cosθ |0⟩N + eiϕsinθ |N⟩N . (50)

For such states, the spin expectation values are

⟨Jz⟩ = −N
2
cos2θ,

⟨
J2
z

⟩
=
N2

4
,⟨

J2
+

⟩
= 0. (51)

λ1 ≡ λ1(t) = e−2γ(t)λ1(0) = 0

λ2 ≡ λ2(t) = e−2γ(t)λ2(0) = 0

λ3 ≡ λ3(t) = 2
[
(ρ00(t)− ρ22(t))

2 + (ρ11(t)− ρ33(t))
2
]
= λ3(0) = 1 + cos22θ

which lead to

Dg(ρ) = 0 (52)

3.1.3 Superpositions of Dicke states

In this subsection, weinvestigate a more general superposition of Dicke states, which reads

|ψ⟩SD = cosθ |n⟩N + eiϕsinθ |n+ 2⟩N , n = 0, ....., N − 2 (53)

with the angle θϵ[0, π) and relative phase φϵ[0, 2π). Then the expressions of the relevant spin

expectation values are

⟨Jz⟩ = (n− N

2
)cos2θ(n+ 2− N

2
)sin2θ,⟨

J2
z

⟩
= (n− N

2
)2cos2θ(n+ 2− N

2
)2sin2θ,⟨

J2
+

⟩
=

1

2
eiϕsin2θ

√
µn.

(54)

Where

µN = (n+ 1)(n+ 2)(N − n)(N − n− 1). (55)
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The GMQD for these states can be obtained by repeating the previous processing step. AsDG is

not a function of ?, we discuss the GMQD versus ? in the following. Specifically, when n = 0

λ1 ≡ λ1(t) = e−2γ(t)λ1(0) = 4e−2γ(t)[
2(N − 2)

N(N − 1)
sin2θ +

|sin2θ|√
2N(N − 1)

]2

λ2 ≡ λ2(t) = e−2γ(t)λ2(0) = 4e−2γ(t)[
2(N − 2)

N(N − 1)
sin2θ − |sin2θ|√

2N(N − 1)
]2

λ3 ≡ λ3(t) = 2
[
(ρ00(t)− ρ22(t))

2 + (ρ11(t)− ρ33(t))
2
]
= (1− 4

N
sin2θ)2 + [1− 8(N − 2)

N(N − 1)
sin2θ]2

4 numerical analysis

4.1 Dicke states

For the density matrix under consideration, the eigenvalues of the matrix k are given by

λ1 ≡ λ1(t) = e−2γ(t)λ1(0) = e−2γ(t) 4n
2(N − n)2

N2(N − 1)2

λ2 ≡ λ2(t) = e−2γ(t)λ2(0) = e−2γ(t) 4n
2(N − n)2

N2(N − 1)2

λ3 ≡ λ3(t) = λ3(0) =
(N − 2n)2

N2
+

[(N − 2n)2 −N ]2

N2(N − 1)2

λ1(t) = λ2(t) and the maximum of the eigenvalues is λ1(t) or λ3(t)

Therefore, for these X-states, equation (23) is reduced to a simpler form

DG(ρ) =
1

4
(min{λ1(t), λ3(t)}+ λ2(t)) (56)

Specifically, When N = 15 n = 0, ......, 15

• For n = 0, ..., 4 and n = 11, ...., 15

The geometric quantum discord ρ12 is

Dρ =
1

2
(λ1) =

1

2
e−2γ(t) 4n

2(N − n)2

N2(N − 1)2
(57)

when λ3 > λ1 (*)

• For n = 5 and n = 10 the condition (*) is satisfied for t0 < t. In this situation, the geometric

quantum discord is

DG =
1

2
e−2γ(t) 4n

2(N − n)2

N2(N − 1)2
(58)

when the transmission parameter t satisfies t0 > t

we have λ3 < λ1 and the geometric quantum discord is given by

DG =
1

4
(λ3 + λ2) =

1

4
(
(N − 2n)2

N2
+

[(N − 2n)2 −N ]2

N2(N − 1)2
+ e−2γ(t) 4n

2(N − n)2

N2(N − 1)2
) (59)
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• For n = 6, 7 and n = 8, 9

the geometric quantum discord ρ12 is

DG =
1

4
(λ3 + λ2) =

1

4
(
(N − 2n)2

N2
+

[(N − 2n)2 −N ]2

N2(N − 1)2
+ e−2γ(t) 4n

2(N − n)2

N2(N − 1)2
) (60)

whenλ3 < λ1

Figure 1: (a) Dynamics of GMQD for the sub-Ohmic reservoirs of Dicke states with N fixed

(N = 15) and (n = 1, .., 4) s = 0.5, λ = 0.1,Ωβ = 1 (numerical calculation with the upper bound of

m being 105).
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Figure 1: (b) Dynamics of GMQD for the sub-Ohmic reservoirs of Dicke states with N fixed

(N = 15) and (n = 5, 6, 7) s = 0.5, λ = 0.1,Ωβ = 1 (numerical calculation with the upper bound of m

being 105).

Figure 2: (a) Dynamics of GMQD for the Ohmic reservoirs of dicke states with N fixed (N = 15)

and (n = 1, .., 4) s = 0.5, λ = 0.1,Ωβ = 1 (numerical calculation with the upper bound of m being

105).

.
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.

Figure 2: (b) Dynamics of GMQD for the Ohmic reservoirs of dicke states with N fixed (N = 15)

and (n = 5, 6, 7) s = 0.5, λ = 0.1,Ωβ = 1 (numerical calculation with the upper bound of m being

105).

Figure 3: (a) Dynamics of GMQD for the super-Ohmic reservoirs of Dicke states with N fixed

(N = 15) and (n = 1, .., 4) s = 1.5, λ = 0.2 (numerical calculation with the upper bound of m being

105).
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Figure 3: (b) Dynamics of GMQD for the super-Ohmic reservoirs of Dicke states with N fixed

(N = 15) and (n = 5) s = 1.5, λ = 0.2 (numerical calculation with the upper bound of m being 105).

Figure 3: (c)Dynamics of GMQD for the super-Ohmic reservoirs of Dicke states with N fixed

(N = 15) and (n = 0, .., 15) s = 1.5, λ = 0.2 (numerical calculation with the upper bound of m being

105).

It can also be seen that there are two classes of the evolution of GMQD. (a)DG is a monotonic

decreasing function of time t with the limit zero, if λ3 > λ1. (b)DG is a piecewise monotonic decreasing

function with one turning point at the time t = t defined by λ3 = λ1 and then has the limit zero as t

tends to infinity, if λ3 < λ1. These two classes of the evolution of DG are plotted in fig 1 and 2.

In the figure 3, there are two possible classes of the evolution of DG.(a)and (b) DG is a monotonic

decreasing function of time with a constant limit (1/2)λ1 or (1/4)(λ3 + λ2), if λ3 > λ1, or if λ3 < λ1.

(b)DG is a piecewise monotonic decreasing function with one turning point at the time t = t defined

by λ3 = λ1, and then has a constant limit as t tends to infinity, if λ3 < λ1.

4.2 Superpositions of Dicke states

For the density matrix under consideration

λ1 ≡ λ1(t) = e−2γ(t)λ1(0) = 4e−2γ(t)[
2(N − 2)

N(N − 1)
sin2θ +

|sin2θ|√
2N(N − 1)

]2
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λ2 ≡ λ2(t) = e−2γ(t)λ2(0) = 4e−2γ(t)[
2(N − 2)

N(N − 1)
sin2θ − |sin2θ|√

2N(N − 1)
]2

λ3 ≡ λ3(t) = 2
[
(ρ00(t)− ρ22(t))

2 + (ρ11(t)− ρ33(t))
2
]
= (1− 4

N
sin2θ)2 + [1− 8(N − 2)

N(N − 1)
sin2θ]2 (61)

It is noted that DG is a periodic function of θ with period π. Accordingly, we plot the GMQD

versus ? within one period. To compare the eigenvalues λ1 and λ3, we find that there are two cases.

Figure 5: The GMQD of the superpositions of Dicke states verus θ when n = 0 with N = 3 and

k = 0.1, ....0.9.

Figure 7: The GMQD of the superpositions of Dicke states verus θ when n = 0 with N = 8 and

k = 0.1, ....0.9.

When N < 8, as can be seen in figure 4 (N=3), the maximum eigenvalue is λ1 in the middle region

and λ3 at the edge near 0 and π for k = 0.6, 0.7, 0.8, 0.9 and for k = 0.1, 0.2, 0.3, 0.4 the maximum

eigenvalue is λ3 in the middle region and at the edge near 0 and π and λ1 between the middle region

and at the edge near 0.

In figure 5, there are three local maxima of DG. The first and third maxima display just at the

point when λ2 = λ3. While the second one accurs at θ = π
2 which is due to the symmetry of equation

(61). We also observe that there exist two special values of θ, θ = π/3 and θ = 2π/3, where the

GMQD is zero. These zero values of the GMQD are induced by λ2 = λ3 = 0 at these two points

(while λ1 is the maximum).

However,When N ≥ 8 as is shown in fig 6, λ3 > λ1 no matter what θ is. Consequently, DG has

only one maximum at θ = π/2, as is shown in figure 7, and it can analytically be written as
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DG = e−2γ(t)[
8(N − 2)2sin4θ

N2(N − 1)2
+

sin22θ

N(N − 1)
] (62)

5 Conclusion

In this paper, in order to investigate the pairwise quantum correlations, we have studied the dynamics

of GMQD The model under consideration consists of two qubits coupled with two independent bosonic

reservoirs described by Ohmic-like spectral densities. The Hamiltonian of the model is described

as Eq (7), and the two-qubit system is initially in the X states decoupled from the environments,

described by Eq (8). We examine the evolution of GMQD for the three types of reservoirs, sub-ohmic,

ohmic, and super-ohmic particularly the Dicke states and their superpositions. DG is a monotonic

decreasing function of time t or a poiecewise monotonic decreasing function with one turning point

before becoming frozen phenomenon.
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[14] J. Maziero, L. C. Celèri, R. M. Serra, and V. Vedral, Phys, Rev A 80, 044102 (2009).

[15] S. Luo, Phys. Rev. A 77, 042303 (2008).

18



[16] T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, Phys. Rev. A 80, 024103 (2009).

[17] R. F. Werner, Phys. Rev. A 40, 4277 (1989).

[18] D. Girolami, and G. Adesso, Phys. Rev. A 83, 052108 (2011).

19


