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Abstract

We introduce the single-mode excited entangled coherent states and studied their quantum entangle-

ment characteristics. Thus, we investigate the influence of photon excitations on quantum entangle-

ment by using the different measurement (i.e. the concurrence, quantum discord and its geometric

version). Therefor, To illustrate our results, we give the explicit expressions of the pairwise quantum

correlations presented in multipartite coherent states and the special case also is analyzed. We found

that the quantum discord and its geometrized variant does not follow the property of the concept of

the monogamy, except is some particular situations that we presented.
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1 Introduction

The entanglement properties of strongly correlated quantum systems is presently attracting great at-

tention in condensed matter physics [1],[2],[3],[4],[5]. Its understanding has led to the development of

communication protocols like quantum teleportation [6],[7] and quantum cryptography [8],[9]. Entan-

glement is a purely quantum mechanical property of multipartite systems and is measurable in terms

of nonclassical correlations of the subsystems. A system is entangled if its quantum state cannot be

described as a direct product of states of its subsystems. Famous examples of entanglement are the

Einstein-Podolsky-Rosen correlations between positions and momenta of two particles [10] and the

violation of the Bell inequalities by spin systems that are described by Bell states, [11] which means

that the existence of such states cannot be explained by any local theory. It has been known that

there exist at least two different types of multipartite entanglement, namely, the GHZ-type [12] en-

tanglement and the W-type entanglement [13]. However, most previous investigations have focused

on the entanglement orthogonal state. Recent research shows that nonorthogonality plays an impor-

tant role in quantum theory and quantum information such as quantum key distribution[14]. The

bipartite entangled non-orthogonal states is studies in [15]. The entangled coherent state is one of the

most important nonorthogonal states, and can be used to encode quantum information on continuous

variables[16]. The even and odd Glauber coherent states, termed also Shrödinger cat states, can be

considered as basis states of a logical qubit [17],[18] and provides a practical way to implement exper-

imentally optical quantum systems useful for quantum information. On the other hand, a coherent

state is the simplest continuous-variable state which is the closest analogue to a classical light field

and exhibits a Poisson photon number distribution. Coherent states possess well defined amplitude

and phase, whose uncertainties are the minimum permitted by the Heisenberg uncertainty principle.

Based on coherent states, two types of continuous-variable states, called photon-added coherent states

[19] and entangled coherent states [20],have been introduced and shown to have wide applications

in both quantum physics [21] and quantum information processing [22],[23],[24],[25]. To study the

distribution of quantum correlations in a quantum system among its different parts constitutes an

important issue. In this scene monogamy relations are important, as they may indicate a structure

for correlation in the multipartite setting [26],[27]. The concept of monogamy of entanglement was

first proved by Coffman, Kundo and Wootters in 2001 [28] for three qubits and latter generalized for

N qubits [29]. and since then it was extended to other measures of quantum correlations [30],[31],

[32],[33], [34],[35].

In this work we consider a superposition of two and three-system coherent states, we focus our study

to investigate the pairwise of quantum correlation for added tripartite coherent states, with two

special measures. The entropic measure [36],[37],[38],[39],[40],[41],[42] and the geometric measure

[43],[44],[45][46], as a function of the parameters involved. Our objective is study the dynamics of

single-mode excited entangled coherent states.

This paper is organized as follows. In Section 2 we introduce the Glauber coherent states. We also
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present the form of the Single-mode excited entangled coherent states which are obtained by actions

of creation operator and we study the evolution of the entanglement of Single-mode excited entangled

coherent states. The explicit expression of three modes GHZ based on Glauber coherent states is

derived in Section 3. Section 4 is devoted for study the evolution of the quantum correlations for

each bipartite subsystems and we obtained the explicit form of quantum discord. The some special

case is considered. Similar analysis are presented in Section 5 when the correlation are measured by

means of the geometric discord. In section 6 we study the monogamy relation of the two measures,

quantum discord and geometric discord. Finally, as illustration, some special cases are considered for

the monogamy relation. Concluding remarks close this paper.

2 Entanglement of photon added coherent states

2.1 Photon added coherent states

We start this section with a brief description of the coherent states generated by a canonical anni-

hilation and creation operators a and a+ respectively. They satisfy canonical commutation relation

[a, a+] = I. The coherent states are generated by translating the vacum state |0⟩,

|α⟩ = D(α)|0⟩. (1)

Where the operator of translation described by

D(α) = exp(−αa+ − α∗a). (2)

Therefore the usual Glauber coherent states is given by the expression

|α⟩ = exp(
−|α|2

2
)

∞∑
n=0

αn

√
n!
|n⟩, (3)

with |α|2 a complex dimensionless amplitude.

We consider m-photon excitations, by repeated application of the creation operator of m single mode

|α⟩, which are satisfied the following form:

|α;m⟩ =
(
a+

)m | α⟩ = exp(
− | α |2

2
)

∞∑
n=0

αn

n!

√
(n+m)! | n+m⟩, (4)

the norm of the vector (4) is given by

⟨α|
(
a−

)m (
a+

)m |α⟩ = exp(−|α|2)
∞∑
n=0

| α |2n

(n!)2
(n+m)!, (5)

we can easily obtain

⟨α|(a−)m(a+)m|α⟩ =
m∑
p=0

(m!)2

p!((m− p)!)2
|α|2(m−p), (6)

finally ⟨α|(a−)m(a+)m|α⟩ and ⟨−α|(a−)m(a+)m|α⟩ can be written respectively by
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{
⟨α|(a−)m(a+)m|α⟩ = m!Lm(−|α|2),
⟨−α|(a−)m(a+)m|α⟩ = exp(−2|α|2)m!Lm(|α|2),

(7)

where Lm(x) is the Laguerre polynomial of order m defined by

Lm(x) =
m∑

n=0

(−1)mm!xn

(n!)2(m− n)!
. (8)

2.2 Bipartite quasi-Bell states

The quasi-Bell states are very interesting in quantum optics and have been used in the field of quantum

teleportation and many others quantum computing operations. The Single-mode excited entangled

bipartite quasi-Bell states are obtained through actions of a creation operator on coherent states,

which are expressed by

|ψ±(α,m)⟩ = N±(α,m)[(a+)m|α⟩ ⊗ |α⟩ ± (a+)m| − α⟩ ⊗ | − α⟩], (9)

one can directly obtain the factor of normalization as N±(α,m)−2

N±(α,m)−2 = 2m![Lm(−|α|)2 ± exp(−4|α|2)Lm(−|α|)2], (10)

now, we consider the following state

|ψp(α,m)⟩ = Np(α,m)[(a+)m|α⟩ ⊗ |α⟩+ eikπ(a+)m| − α⟩ ⊗ | − α⟩], (11)

where the integer p (p ∈ Z). Thus, the state ψp(α,m) in terms of the photon-odded coherent states

can be rewritten as

|ψp(α,m)⟩ = Np(α,m)[|m;α⟩ ⊗ |α⟩+ eikπ|m;−α⟩ ⊗ | − α⟩], (12)

with  Np(α,m) = Np(α,m)
√

⟨α|(a−)m(a+)m|α⟩,
|m;±α⟩ = (a+)m|±α⟩√

m!Lm(−|α|2)
.

(13)

2.3 Entanglement of bipartite quasi-Bell states

In this subsection, we will calculate the entanglement of single-mode excited entangled coherent state

in the orthogonal bases. Here we adopt the concurence to characterize the entanglement of the state

|ψp(α,m)⟩ described by

|ψp(α,m)⟩ = Np(α,m)[|m;α⟩ ⊗ |α⟩+ eipπ|m;−α⟩ ⊗ | − α⟩], (14)

we will introduce two qubits |0⟩ and |1⟩ for each subsystem

|m,α⟩ = am|0⟩+ bm|1⟩; |m,−α⟩ = am|0⟩ − bm|1⟩
|a|2m + |b|2m = 1; |a|2m − |b|2m = ⟨m,α|m,−α⟩

(15)
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The overlapping function pm and p are defined by{
pm = ⟨m,α|m,−α⟩,
p = ⟨α| − α⟩,

(16)

and the two quantities am and bm described in equation (15), are defined as

am =

√
1 + pm

2
; bm =

√
1− pm

2
. (17)

The state describing the systems is defined by

|ψp(α,m)⟩ = Np(α,m))[ama(1 + eipπ)︸ ︷︷ ︸
C00

|0, 0⟩+abm(1− eipπ)︸ ︷︷ ︸
C10

|1, 0⟩+amb(1− eipπ)︸ ︷︷ ︸
C01

|0, 1⟩+bbm(1 + eipπ)︸ ︷︷ ︸
C11

|1, 1⟩].

(18)

Following the approach of [23] and considering Eqs.(13), (17) and (18) for the excited bipartite entan-

gled coherent states of photon excitations |ψp(a,m)⟩, the concurrence can be calculated as

C = 2Np(α,m)2|C00C11 − C01C10|, (19)

it is straightforward to check that the concurrence is given by

C = 2Np(α,m)2
√

1− p2
√

1− p2m, (20)

where

p = ⟨α| − α⟩ = exp(−2|α|2), (21)

and

pm = ⟨m,α|m,−α⟩ = exp(−2|α|2)Lm(|α|2)
Lm(−|α|2)

. (22)

Then submitting equations (21) and (22) into (20), we see that

C(α,m) =
Lm(−|α|2)

√
1− exp(−4|α|2)

√
1− exp(−4|α|2)( Lm(|α|2)

Lm(−|α|2))
2

(Lm(−|α|2) + exp(−4|α|2) cos(kπ)Lm(|α|2))
. (23)

In order to observe the influence of the photon excitation on the quantum entanglement of a single

mode excited bipartite entangled coherent states, we need to plot the concurrence C(|α|,m) versus

|α| for different values of the number of excited photon m. Therefore, there are two case of k (even

and odd) which are shown in figure 1, 2 respectively, we can see from the figure 1, after increasing of

entanglement with |α|, it approaches as the maximum value unit when |α| tends the infinity. In the

other hand, the entanglement degrees increases as |α| during a number of photon increases. We can

also observe in figure 2. That C(|α|,m) increases when |α| increase for differents values of m (m=0, 1,

2, 3, 4 and 10) respectively. Together the concurrence C(|α|,m) tends to unit for the larger |α|.
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Figure 1: The concurrence C (even) of SMEECS |ψ(|α|,m)⟩ versus |α| for the different number photon

excitations.

Figure 2: The concurrence C (odd) of SMEECS |ψ(|α|,m)⟩ versus |α| for the different number photon

excitations.

3 Single mode excited Tripartite GHZ coherent states

In this section, we are interested to study the tripartite quantum correlations present in single mode

excited entangled coherent states (27) and discuss their mathematical properties.

We recall that the three-mode GHZ coherent states are expressed as

|α, 0⟩ = N0(|α, α, α⟩+ exp(ikπ)| − α,−α,−α⟩). (24)

Where the normalization constant N0 is given by

N0 = (2 + 2p3 cos(kπ))−
1
2 , (25)

and p is the overlap between two states

p = ⟨α| − α⟩ = exp(−2|α|2). (26)
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We consider m-photon excitations of the mod-1

|α,m⟩ = Na+m(|α, α, α⟩+ exp(ikπ)| − α,−α,−α⟩) = N
N0

a+m|α, 0⟩, (27)

from the norm of this state ⟨α,m|α,m⟩ = 1, one can easily find that the normalization factor N is

given

N = [2m!(Lm(−|α|2) + p3coskπ(Lm|α|2)]
−1
2 . (28)

In general for reducing the total system described by the matrix ρij to its sub-system, is performed

by the trace on all other sub-systems. It is easy to see that reduced density matrices ρ12, ρ13 are

identical. Then, by tracing out systems 1 in the state |α,m⟩, we obtain the reduced density matrix

ρ23 as follows

ρ23 = tr1ρ123, (29)

Where

ρ123 = |α,m⟩⟨α,m|, (30)

in this follows case, we note

a+m|α⟩ ≡ |α;m⟩; a+m| − α⟩ ≡ | − α;m⟩. (31)

Indeed, the reduced density matrice ρ12 take this form

ρ12 = N 2(|α;m,α⟩⟨α;m,α|+ | − α;m,−α⟩⟨−α;m,−α|

+ e−ikπp|α;m,α⟩⟨−α;m,−α|+ eikπp| − α;m,−α⟩⟨α;m,α|), (32)

in the same way, we obtain that

ρ12 = ρ13. (33)

Thus, we get

ρ12 = N 2[|α, α⟩⟨α, α|⟨α|a−ma+m|α⟩+ | − α,−α⟩⟨−α,−α|⟨−α|a−ma+m| − α⟩

+ |α, α⟩⟨−α,−α|e−ikπ⟨−α|a−ma+m|α⟩+ | − α,−α⟩⟨α, α|eikπ⟨α|a−ma+m| − α⟩], (34)

note that

⟨α|a−ma+m|α⟩ = ⟨−α|a−ma+m| − α⟩ = m!Lm|α|2, (35)

and

⟨−α|a−ma+m|α⟩ = pm!Lm|α|2, (36)

concerning the reduced density matrix ρ2,3 can easily obtain as follows

ρ2,3 = N 2[|α, α⟩⟨α, α|m!Lm(−|α|2) + | − α,−α⟩⟨−α,−α|m!Lm(−|α|2)

+ |α, α⟩⟨−α,−α|e−ikπpm!Lm|α|2 + | − α,−α⟩⟨α, α|eikπpm!Lm|α|2], (37)
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which can be written also as

ρ2,3 = N 2m!Lm(−|α|2)[|α, α⟩⟨α, α|+ | − α,−α⟩⟨−α,−α|

+
pLm|α|2

Lm(−|α|2)
|α, α⟩⟨−α,−α|e−ikπ + | − α,−α⟩⟨α, α|eikπ]. (38)

To study the tripartite quantum correlations present in eq.(27), a new formalism is used to describe

our system

|ψ⟩123 = N ′
(|ψ1⟩ ⊗ |ψ2⟩ ⊗ |ψ3⟩+ eimπ|ϕ1⟩ ⊗ |ϕ2⟩ ⊗ |ϕ3⟩), (39)

the constant of normalization N ′
can be written in the form

N ′
= (2 + 2cosp1p2p3cos(mπ))

− 1
2 , (40)

recall that the general form of reduced density matrix in the bipartite system can be written as

ρij = N 2[|ψiψj⟩⟨ψiψj |+ |ϕiϕj⟩⟨ϕiϕj |+ eikπqij |ϕiϕj⟩⟨ψiψj |+ e−ikπqij |ψiψj⟩⟨ϕiϕj |]. (41)

The quantity qij mentioned in the eq. (41) is defined by

qij = p1p2...p̆i...p̆j ...pn, (42)

one can see that the density ρij take the following compact form

ρij =
N 2

N 2
ij

[a2ij |ψij⟩⟨ψij |+ b2ijZ|ψij⟩⟨ψij |Z], (43)

with

|ψij⟩ = Nij(|ψi, ψj⟩++eimπ|ϕiϕj⟩, (44)

|ψi⟩ and |ϕi⟩ is written as

|ψi⟩ = ai(|0i⟩+ bi |bi⟩, (45)

|ϕi⟩ = ai(|0i⟩+−bi |bi⟩, (46)

where

ai =

√
1 + pi

2
; bi =

√
1− pi

2
. (47)

Similarly for the subsystem j.

The state ψ12 is defined by the following expression:

|ψ12⟩ = N12(|α;m⟩|α⟩+ eimπ| − α;m⟩| − α⟩), (48)

for the subsystem 1

|α;m⟩ = a1(|0⟩1 + b1 |1⟩1; | − α;m⟩ = a1(|0⟩1 − b1 |1⟩1, (49)

with

a1 =

√
1 + p1

2
; b1 =

√
1− p1

2
, (50)
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and

p1 = ⟨α;m| − α;m⟩ = ⟨α|(a−)m(a+)m| − α⟩, (51)

for the subsystem 2

|α⟩ = a2(|0⟩2 + b2|1⟩1; | − α;m⟩ = a2(|0⟩2 − b2|1⟩2, (52)

with

a2 =

√
1 + p2

2
; b2 =

√
1− p2

2
, (53)

and

p2 = ⟨α| − α⟩. (54)

Substituting the eqs.(52) and (49) into (5), we obtain the density matrix

ρ12 = N 2
m

 2a21a
2
2(1+p cos kπ) 0 0 2a1a2b1b2(1−p cos kπ))

0 2a21b
2
1(1−p cos kπ) 2a1a2b1b2(1−p cos kπ)) 0

0 2a1a2b1b2(1−p cos kπ) 2a22b
1
1(1−p cos kπ)) 0

2a1a2b1b2(1−p cos kπ) 0 0 2b21b
2
2(1+p cos kπ)

 , (55)

with

Nm =

√
m!Lm(−|α|2)

2m!(Lm(−|α|2 + p3 cos(kπ)Lm(|α|2)))
. (56)

For the matrix ρ23

|ψ23⟩ =
N 2

N 2
23

(|α⟩|α⟩+ eimπ| − α⟩| − α⟩), (57)

in this case we have

p = p1 = p2 = ⟨α| − α⟩, (58)

with

a = a1 = a2 =

√
1 + p

2
; b = b1 = b2 =

√
1− p

2
, (59)

for ρ23, we obtain the density matrix

ρ23 = N 2
m

 2a4(1+q23 cos kπ) 0 0 2a2b2(1−q23 cos kπ))

0 2a2b2(1−q23 cos kπ) 2a2b2(1−q23 cos kπ)) 0

0 2a2b2(1−q23 cos kπ) 2a2b2(1−q23 cos kπ)) 0

2a2b2(1−q23 cos kπ) 0 0 2b4(1+q23 cos kπ)

 , (60)

where

q23 = p× Lm(|α|2)
Lm(−|α|2)

. (61)

4 Quantifying the quantum discord

It has recently been shown that quantum discord can only be calculated for the limiting case of a

quantum state has two qubits, but for analytical expression of a more general quantum state are not

known until now. We have shown in this subsection the explicit form of quantum discord applied

on the reduced density matricx described in (55) and (60) respectively, for which the discord can be

evaluated in a simple way.
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4.1 Generalities

The total correlation is usually quantified by the mutual information, usually expressed in term of von

Neumann entropy as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (62)

where ρAB is the state of a bipartite quantum system composed of the subsystems A and B, the

operator ρA(B) = TrB(A)(ρAB) is the reduced state of A(B) and S(ρ) is the von Neumann entropy of

a quantum state ρ.

Clearly, the mutual information I(ρAB) contains both quantum and classical correlations. Therefore,

it is natural to decompose total correlations as

I(ρAB) = D(ρAB) + C(ρAB).

Let B = Bi be a POVM, then Bi should be a positive valued operator. Given the bipartite state ρAB

a possible measure of the classical correlation between subsystems A and B is

CB(ρAB) = maxB[S(ρA)−
∑
i

piS(ρ
i
A)], (63)

B is a POVM and the sum over i runs over all its elements Bi . The conditional density matrix ρiA

is the density matrix of A after performing the measurement Bi on B:

ρiA =
(Bi ⊗ II)ρAB(Bi ⊗ II)

pi
, (64)

where pi = tr(Bi ⊗ II)ρAB(Bi ⊗ II) is the probability of A being in the state ρiA.

It follows that, for a bipartite quantum system, the quantum discord is defined as the difference

between total correlation and classical correlation([47], [48], [49]).

D(ρAB) = I(ρAB)−maxB[S(ρA)−
∑
i

piS(ρ
i
A)]. (65)

4.2 Quantum discord

For the X−states ρAB (rank 2), which are writing in the form

ρAB =


ρ00 0 0

√
ρ00ρ33

0 ρ11
√
ρ11ρ22) 0

0
√
ρ11ρ22 ρ22 0

√
ρ00ρ33 0 0 ρ33

 . (66)

the quantum discord DAB = D(ρAB) is given by the main equation

DAB = H(ρ00 + ρ11)−H(ρ00 + ρ33) +H(
1

2
+

1

2

√
1− 4(

√
ρ00ρ11 −

√
ρ22ρ33)2), (67)
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calculating the quantum discord in the states ρ12 as well as the states ρ13, we resulting

D12 = H(N 2
m(1 + p cos kπ)(1 + pp1)) (68)

− H(N 2
m(1 + p1)(1 + p2 cos kπ)) (69)

+ H(
1

2
+

1

2

√
1− 4N 4

m(1− p2)2p21). (70)

Clearly, D13 = D12. Then, the explicit expression of quantum discord D(ρ23)in the states ρ23 is given

by the expression

D23 = H(N 2
m(1 + p)(1 + pq23 cos kπ)) (71)

− H(N 2
m(1 + q23 cos kπ)(1 + p2)) (72)

+ H(
1

2
+

1

2

√
1− 4N 4

m(1− p2)(1− q223)). (73)

4.3 Special case

• Reduced density matric ρ12

We start with the special case m = 0 (see figure 3), the state ρ12 is coincides with three-mode coherent

states. At this point, we have p1 = p and L0(| α2 |) = 1, then the explicit expression of quantum

discord for the density ρ12 is

D12 = H(
1

2

(1 + p cos kπ)(1 + p2)

(1 + p3 cos kπ)
) (74)

− H(
1

2

(1 + p)(1 + p2 cos kπ)

1 + p3 cos kπ)
) (75)

+ H(
1

2
+

1

2

√
1− (1− p2)2p2

(1 + p3 cos kπ)2
), (76)

in term of the overlap p. This expression of discord is equivalent with the discord given by [46] for n

= 3, and the discord for symmetric (antisymmetric) states m even (m odd) as shown in the figure 1.

Gives a plot of quantum discord versus the overlap p for the mixed state ρ12. It must be noticed that

for k = 0 , we find the maximum of discord obtained for the value p equal to 1/2. However, for k = 1,

the quantum discord takes the maximum value for p→ 1 and the discord increase with p increase.

The figure 4 gives a plot of quantum discord versus the number of photon for symmetric added

entangled coherent states (i.e.k even) and for different value of m. As seen from the figure, after an

initial increasing, the quantum discord decreases to vanish when the amplitude of photon | α2 |→ 2.

The minimum value of discord is obtained when has no photon excitation (i.e.m = 0) and the maximum

of quantum discord is obtained for m=10, we also found that the discord is depends on the number of

the excitation photon. However, this maximum increases as m increases. In figure 5, we give a plot

of the quantum discord for the antisymmetric case and for different excitation of photon number. It

is remarkable that for antisymmetric quantum states the maximal value of quantum discord increases

as m decreased contrarily to the symmetric states.
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Figure 3: The quantum discord of SMEECS |ψ(|α|,m)⟩ versus |α|2 for (even) and (odd) states.

Figure 4: The quantum discord (even) of reduced density matric ρ12 versus |α|2 for the different

number photon excitations.

Figure 5: The quantum discord (odd) of reduced density matric ρ12 versus |α|2 for the different number

photon excitations.
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• Reduced density matric ρ23

The explicit expression of quantum discord of reduced matric ρ23 in the special case m = 0 take the

same result obtained for ρ12.

The behavior of quantum discord of the reduced matric ρ23 versus |α|2 for symmetric (antisymmetric

case )respectively is given in the figure 6 and 7 respectively. As seen from this figures, after an

initial increasing, the quantum discord decreases to vanish when |α|2 −→ 2. It is clearly seen that

the quantum discord increases with the photon excitation number is increases in the symmetric case.

Otherwise, for the antisymmetric states, the quantum discord is decreases when the photon excitation

number increases.

We observed that, the minimum value (m = 2) of quantum discord for the reduced matric ρ12 is higher

than the maximum value (m = 10) obtained for the reduced matric ρ23.

Figure 6: The quantum discord (odd) of reduced density matric ρ23 versus |α|2 for the different number

photon excitations.

Figure 7: The quantum discord (odd) reduced density matric ρ23 versus |α|2 for the different number

photon excitations.
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5 Geometric measure of quantum discord

The main step in evaluating the quantum discord is the minimization of conditional entropy to get

an explicit expression of the quantum discord in tripartite system. this process constitutes a hard

task, even for two-qubit systems in a general state. This motivated the introduction of an alternative

measure, which was named geometric quantum discord. The geometric measure of quantum discord

has been recently proposed as a simple and intuitive quantifier of general non-classical correlations in

bipartite quantum states, which can be exactly reformulated as the minimal disturbance, measured in

terms of the squared Hilbert-Schmidt distance between the given quantum state ρ and the classical-

quantum state χ, reading

Dg = minχ∥ρ− χ∥2, (77)

where χ denotes the set of zero-discord states and ∥ρ−χ∥2 = Tr(ρ−χ)2 is the Hilbert?Schmidt norm.

Here, the measurement is performed on the subsystem A, the structure of the zero-discord state χ is

defined by

χ = Σi=1,2pi|ψi⟩⟨ψi| ⊗ ρi, (78)

ρi is the density operator and pi is a probability distribution. Also, {|ψ1⟩⟨ψ2|} is an arbitrary or-

thonormed vector set.

For two-qubit systems, a general state can be written with Fano Bloch decomposition

ρAB =
1

4
[1⊗ 1 + Σ3

i (xiσ
A
i ⊗ 1 + yi1⊗ 1⊗ σBi ) + Σi,jRijσ

A
i ⊗ σBj ], (79)

with x = xi, y = yi and Rij the real parameters and σi=1,2,3 the Pauli matrices. We introduce a

correlation matrix define by

R =

[
1 yT

x R

]
, (80)

with x = xi, y = yi (i=1,2,3) are the components in three dimension of local Bloch vectors and R a

3× 3 matrix with the matrix elements Rij form tak the following form

Rij = Tr(ρσAi ⊗ σBj ) for i, j = 0, 1, 2, 3. (81)

Therefor, the concrete form of the geometric measure of quantum discord is defined by

Dg(ρ) =
1

4
(∥x∥2 + ∥R∥2 − kmax). (82)

Where Kmax is the largest eigenvalue of the matrix k which can be written as k = xxT + RRT , and

the quantity given by ∥x∥2 + ∥R∥2 present the summation of the eigenvalues of k.

So, we conclude that the GMQD can be analytically computed as following

Dg(ρ) =
1

4
min{λ1 + λ2, λ1 + λ3, λ2 + λ3}. (83)

Noting that {λ1, λ2, λ3} present the eigenvalues of the matrix K, and the comparison of these eigenval-

ues is a key factor in the calculation of minimization procedure for GMQD. Specially, we concentrate
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on the bipartite mixed density mentioned in () and (55), these kinds of states belong to the so-called

X-states whose algebraic characterization is presented in [50]. Thus, it can be written in the Bloch

representation as follows

ρij =
∑
αβ

Rαβσα ⊗ σα (84)

.

• Reduced density matrix ρ12

The correlation matrix elements Rα,β (α, β=0, 1, 2, 3) are given by

R00 = 1, R11 = 2N 2
m

√
(1− p2m)((1− p2)), R22 = −2N 2

m

√
(1− p2m)((1− p2))p cos kπ,

R33 = 2N 2
mp(pm + cos kπ), R03 = 2N 2

mp(1 + pm cos kπ), R30 = 2N 2
m(pm + p2 cos kπ).

With

Nm =

√
m!Lm(−|α|2)

2m!(Lm(−|α|2+p3 cos(kπ)Lm(|α|2))) ,

pm = p×
Lm(−|α|2)
Lm(−|α|2)

.
(85)

Having mapped the bipartite system (ρ12 = ρ13) into a pair of two qubit presented in the previous

subsection, we obtained the final expression of MGQD from a special comparison of the eigenvalues

given by the matrix K, which are defined by

λ1 = 4N 4
m[(1 + p2)(p2m + p2) + 4p2pm cos kπ], (86)

λ2 = 4N 4
m(1− p2m)(1− p2), (87)

λ3 = 4N 4
m(1− p2m)(1− p2)p2. (88)

In the case, we obtained always λ2 ≥ λ3,n and the maximum of the eigenvalues is λ1 or λ2. Thus, the

equation (83) is reduced to a simpler expression

Dg =
1

4
min{λ1 + λ3, λ2 + λ3}. (89)

So, we need only to compare the two eigenvalues λ1 and λ2, for this we have two explicit expression

of geometric quantum discord

Dg = N 2
m [2p2 + p2m(1 + p4) + p2pm cos kπ], (90)

when the condition λ1 < λ2 is satisfied.

Otherwise, the form of quantum discord is given by

Dg = N 2
m [(1− p2m)(1− p4)]. (91)

We will discuss the result obtained in equations.(90) and (91) in special cases m=0 and k=0, 1

respectively. Noting that for symmetric states (i.e k even) and m = 0, the condition which satisfied

(λ1 < λ2) is 0 ≤ p ≤
√
2 − 1, and the form of geometric measure of quantum discord described in

equation (90) become

Dg =
1

4

p2(1 + p2)(2 + (1− p2)2)

(1 + p3)2
. (92)
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In other hand, the condition obtained (
√
2 − 1 ≤ p ≤ 1) in the situation (λ2 < λ1) ensured that the

MGQD stated in equation (91) can be rewritten in a simple structure.

Dg =
1

4

p2(1 + p2)(1− p2)2

(1 + p3)2
. (93)

Therefore, for antisymmetric states (i.e. k odd) the result produced (0 < p < 1) when (λ1 < λ2)

provided to define the MGQD as the following form

Dg =
1

4

p2(2 + (1 + p)2)(1− p)2

(1 + p3)
. (94)

The behavior of geometric quantum discord for special case is given in the figure 8. This figure gives

a plot the geometric quantum discord versus the overlapping p for symmetric and antisymmetric

SMEECSs. As seen from the figure (k=0), after an initial increasing, the quantum discord decreases

to vanish when p = 1. The maximum value of quantum discord occurs when λ1 and λ2 coincide.

It is remarkable that for antisymmetric quantum states take the maximum value when p = 1. The

Figure 8: The GMQD for reduced density matric (ρ12) of SMEECS versus p for m=0.

geometric measure of quantum discord for symmetric and antisymmetric states versus |α|2 are plotted.
From the figure 9 symmetric SMEECSs (k even). We observe that when |α|2 → 1 the quantum discord

decreases to vanish. Thus, in the middle region λ1 coincide with λ2. Therefore, the quantum discord is

maximal. We also observe that this maximum increases as the photon excitation number m increases.

We can also observe through the figure 10, in the case m=2 the geometric quantum discord decreases

rapidly from a maximum value to vanish if |α|2 → 1.3. However, for the case m ≥ 3, the quantum

discord starts increasing to reach its maximal value (i.e.λ1 = λ2) and diminished when |α|2 = 1, 3.

The result obtained is that, for antisymmetric quantum states containing more than particles, the

maximal value of quantum discord increases as m increases contrarily to the symmetric states (see

figure 9).
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Figure 9: The GMQD for reduced density matric (ρ12) of symmetric states of SMEECS versus |α| for
the different number photon excitations.

Figure 10: The GMQD for reduced density matric (ρ12) of antisymmetric states of SMEECS versus

|α| for the different number photon excitations.

• Reduced density matrix ρ23

for calculated the eigenvalue of the reduced density matric ρ23, we have follow the same procedure

studied in reduced density matric.(ρ12). Finaly we obtianed λ1, λ2 and λ3 of the matrix ρ23 as

λ1 = 4N 4
m[(1 + p2) + (p2 + q223) + 4p2pm cos kπ], (95)

λ2 = 4N 4
m(1− p2)(1− p2), (96)

λ3 = 4N 4
m(1− p2)(1− p2)q223. (97)

The explicit expression of quantum discord of reduced matric ρ23 in the special case m = 0 take the

same result obtained for ρ12.

The curve of geometric quantum discord of the reduced matric ρ23 versus |α|2 for symmetric and

antisymmetric case is given in the figure 11, 12 respectively. As seen from this figures, after an initial

17



increasing, the quantum discord decreases to vanish when |α|2 −→ 1, 3. Thus, in the middle region

λ1 coincide with λ2. Therefore, the quantum discord is maximal. It is clearly seen that the quantum

discord decreases with the photon excitation number is increases in the symmetric case. Also, for the

antisymmetric states, the quantum discord is decreases when the photon excitation number increases.

Figure 11: The GMQD for reduced density matric (ρ23)of symmetric states of SMEECS versus |α|2

for the different number photon excitations.

Figure 12: The GMQD for reduced density matric (ρ23) of antisymmetric states of SMEECS versus

|α|2 for the different number photon excitations.

6 Monogamy of quantum discord for a three-qubit entangled state

Monogamy of quantum correlations is a property satisfied by certain entanglement measures in a

multipartite scenario. Given a tripartite state ρ123, the monogamy condition for a bipartite quantum

correlation measure Q assures that the bipartite quantum correlations in the density operator ρ1|23

are distributed in such a way that the following inequality is satisfied

Q(ρ1|23) ≥ Q(ρ12) +Q(ρ13). (98)
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Violation of the above inequality will imply that the quantity Q is polygamous for the corresponding

state. Otherwise, this inequality is sufficient for quantum discord to be monogamous.

To illustrate the above analysis, we will investigate the properties of quantum discord monogamy in

two different ways (quantum discord and geometric quantum discord using norm 2).

• Monogamy of quantum discord

To investigate the monogamy relation of quantum discord measured in quantum systems involving

three qubits, Coffman et al [28] introduced the so called tripartite state equation (30). It is defined as

D(ρ1|23) ≥ D(ρ12) +D(ρ13), (99)

where 1, 2 and 3 mean the respective parts of a tripartite system. Note that here D1|23 is given by

the entanglement between qubit (1) and the joint qubits (23). The quantum discord coincides with

the entanglement of formation

D(ρ1|23) = H(
1

2
+

1

2

√
1− C2(ρ1|23)) = E(ρ1|23), (100)

with

C(ρ1|23) = (
Lm(−|α|2)

Lm(−|α|2) + cos(kπ)e−6|α|2Lm(|α|2)
) (1− (e−8|α|2)) (1− (e−2|α|2 Lm(|α|2)

Lm(−|α|2)
)2). (101)

We will now present the conditions that signal whether a tripartite quantum state is monogamous

in nature with respect to quantum discord. In figure 13, the monogamy quantity D123 is plotted

as functions of overlapping p, for symmetric state the inequality mentioned as the above is satisfied.

Otherwise, for the antisymmetric state (i.e.k=1) the monogamy relation is violated during the interval

0 ≤ p ≤ 1.

In the figures 14 and 15, corresponding respectively to symmetric and antisymmetric added coherent

states, we plot the monogamy quantity as a function of |α|2. We examine the positivity of the following

inequality

D123 = D123(m, |α|2) = D(ρ1|23)−D(ρ12)−D(ρ13), (102)

defined in terms of the bipartite quantum discord. We shall restrict our discussion in what follows to the

interval 0 ≤ |α|2 ≤ 1, 3. Clearly, for symmetric states (see figure 14) the function described by (102)is

non positive when 0 ≤ |α|2 ≤ 0.644, consequently the quantum discord is non monogamous. Otherwise,

if |α|2 ≥ 0.644 the quantum discord is monogamous whatever the photon excitations number m. Thus,

for the antisymmetric states (figure 15) the plotted curve indicates that the inequality of monogamy

(102) is not satisfied if 0 ≤ |α|2 ≤ 0.4, Otherwise, for |α|2 ≥ 0.4 the quantity D123 is positive and the

quantum discord is monogamous for everything values m.

• Monogamy of geometric quantum discord
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Figure 13: Monogamy D123 versus the overlapping p when m=0

Figure 14: Monogamy D123 of symmetric states versus |α|2 for different number photon excitations.

Figure 15: MonogamyD123 of antisymmetric states versus |α|2 for different number photon excitations.

In this part, we will examine whether the geometric quantum discord of a tripartite state ρ123 wich

satisfy the following inequality

Dg(ρ1|23 ≥ Dg(ρ12) +Dg(ρ13). (103)
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In the pure bi-partitioning scheme 123, it is easy to check, using the method presented in [27], that

the geometric discord is related to the concurrence of the state ρ(1|23) as follows

Dg(ρ1|23) =
1

2
C2
1|23. (104)

Figure 16: Monogamy Dg(123) of geometric quantum discord as a function of overlapping for .

Figure 17: Monogamy of geometric quantum discord versus |α|2 for symmetric states and for different

values of m.

Using the result obtained in the previous subsection. Thus, We treat first the Monogamy of the

geometric quantum discord for symmetric states (k = 0, 1 respectively) and for the special case( m =

0), we have

Dg(ρ12) = Dg(ρ13) =
3p2 − 4p3 + p6

4(1 + p3)
, (105)

for 0 ≤ p ≤
√
2− 1 and

Dg(ρ12) = Dg(ρ13) =
(1− p2)(1− p4)

4(1 + p3)
, (106)

if the condition
√
2− 1 ≤ p ≤ 1 is satisfied. we have also

Dg(ρ1|23) =
1

2

(1− p4)?2(1− p2m)2

(1 + p3)2
, (107)
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Figure 18: Monogamy of geometric quantum discord versus |α|2 for antisymmetric states and for

different values of m.

for 0 ≤ p ≤ 1. So, we can define the quantity Dg(123) as the following form

Dg(123) = Dg(ρ1|23)−Dg(ρ12)−Dg(ρ13). (108)

The quantity indicate whether above is plotted in figure 16 versus the overlap p. Clearly, the geometric

quantum discord is monogamous for the tripartite states with p such that 0 ≤ p ≤ 0.388. Contrariwise,

the geometric quantum discord is discord polygamous.

For antisymmetric states(k = 1), the quantum discord take the following form

Dg(ρ13) = Dg(ρ12) =
1

4
[
3p2 − 4p3 + p6

4(1− p3)2
], (109)

when the condition 0 ≤ p ≤ 1 is satisfied. And for Dg(ρ1/23), we have

Dg(ρ1|23) =
1

2
[
(1− p2)2(1− p4)2

4(1− p3)2
], (110)

for 0 ≤ p ≤ 1. Therefor, the numerical results reported in figure 16 show that the geometric discord

is monogamous when p such that 0 ≤ |α|2 ≤ 0.61649. Otherwise, the geometric quantum discord is

polygamous.

Thereafter, we plot the quantity Dg(123) for the different values m and investigate the influence of

photon excitations on monogamy of geometric discord. So, for symmetric case (figure 17) the behaviour

of quantum discord the monogamy inequality is not satisfied for 0 ≤ |α|2 ≤ 0.524. In the case where

|α|2 > 0.524 the monogamy quantity is monotonically increasing for everything values m and the

geometric quantum discord is monogamous. In the other hand, for antisymmetric states(i.e.k=1)

with different value m (see figure 18), the monogamy is satisfied when |α|2 ≥ 0.53, and this quantity

becomes violated for everything values m if 0 ≤ |α|2 ≤ 0.53.
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7 Concluding remarks

Summarizing, we have presented in the early of this paper a class of the single mode excited entangled

coherent states (SMEECSs)|ψp(α,m)⟩ , which are obtained through actions of creation operator on the

entangled coherent states. Then, we have exhibited the important properties of quantum entanglement

by using different ways (specially, the concurrence, quantum discord and its version geometric). The

first way, we have studied the concurrence for bipartite systems and investigated the influence of

phonon excitations numbers on quantum entanglement. We also employed the other process for

studied the quantum correlation of add coherent states for tripartite quantum states (see the equations

(60) and (55) by the quantum discord. Thus, we found two explicit analytic expressions of this

measure and the results obtained are discussed. Another way which treated the quantum correlations

by introducing the geometric version of quantum discord, at this stage we derived a necessary and

sufficient condition. Specially, for the case of three-qubit states we have proposed in the our discussion,

two version(i.e.symmetric, antisymmetric states, respectively) and the result obtained is explained in

terms of different number photon excitations(i.e.the influence of m on geometric quantum discord).

To close our work, we have employed the concept of quantum monogamy corresponding to quantum

discord and its geometric version. In particular, we have investigated the relation between discord

monogamy and a genuine tripartite entanglement measure for three-qubit pure states. Therefor,

We have demonstrated that the quantum correlations examined by the entropic measure, geometric

measure respectively does not satisfy the monogamy relation(98). A very important result is derived

in this work, from a value determined of |α|2, we see that no effect of the addition of the photon can

be found on the measurement of monogamy. The analysis presented in this letter can be extended to

the effect of subtracting the photon of tripartite GHZ coherent states.

23



References

[1] G. Vidal, J. I. Latorre, E. Rico and A. Kitaev, Phys. Rev. Lett., 90 227902 (2003);J. I. Latorre,

E. Rico and G. Vidal, Quant. Inf. and Comp. 4 048 (2004).

[2] P. Calabrese and J. Cardy, JSTAT P06002 (2004)

[3] G. Refael and J.E. Moore, Phys. Rev. Lett., 93 260602 (2004)

[4] L. Amico, R. Fazio, A. Osterloh and V. Vedral, preprint, quant-ph/0703044.

[5] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge

University Press, Cambridge, U.K., 2000.))))

[6] C. H. Bennett, G. Brassard, C. Cr?epeau, R. Jozsa, A. Peres, and W. K. Wooters, Phys. Rev.

Lett. 70, 1895 (1993)

[7] P. Agrawal and A. Pati, Phys. Rev. A 74, 062320 (2006).

[8] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

[9] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys. 81(2009) 865

[10] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47 (1935) 777.)

[11] J. Bell, Physics (Long Island City, N. Y.) 1 (1964) 195.

[12] D. M. Greenberger , M. A. Horne, and A. Zeilinger, Bell?s theorem, Quantum theory, and Con-

ceptions of the the Universe, ed. M. Kafatos, Kluwer, Dordrecht, 69 (1989);

[13] W. D?ur, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).

[14] Fuchs C A 1997 Phys. Rev. Lett. 79 1162

[15] X G 2002 J. Phys. A: Math. Gen. 35 165; Rungta P et al 2001 Phys. Rev. A 64 042315; Xiaoguang

Wang J. Phys. A: Math. Gen. 35 (2002) 165?173

[16] Gerardo Adesso, Sammy Ragy, Antony R. Lee Open Syst. Inf. Dyn. 21, 1440001 (2014)

[17] P.T. Cochrane, G.J. Milburn and W.J. Munro, Phys. Rev. A 59 (1999) 2631.

[18] M.C. de Oliveira and W.J. Munro, Phys. Rev. A 61 (2000) 042309

[19] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492

[20] Zavatta A, Viciani S and Bellini M 2004 Science 306 660 Zavatta A, Viciani S and Bellini M 2005

Phys. Rev. A 72 023820.

[21] Sanders B C 1992 Phys. Rev. A 45 6811

24



[22] Jeong H and Kim M S 2002 Phys. Rev. A 65 042305

[23] van Enk S L and Hirota O 2001 Phys. Rev. A 64 022313

[24] Munro W J, Milburn G J and Sanders B C 2000 Phys. Rev. A 62 052108

[25] Wang X G 2002 J. Phys. A: Math. Gen. 35 165 Wang X G 2001 Phys. Rev. A 64 022302

[26] F. F. Fanchini, M. C. de Oliveira, L. K. Castelano, M. F. Cornelio, Phys. Rev. A 87, 032317

(2013)

[27] M. Daoud, R. Ahl Laamara, R. Essaber, International J. Quantum information Vol.11, No. 6

(2013) 1350057.

[28] V. Coffman, J. Kundu and W.K. Wootters, Phys. Rev. A 61 (2000)052306.

[29] Tobias J. Osborne and Frank Verstraete, Phys. Rev. Lett. 96, 220503 (2006).

[30] G.L. Giorgi, Phys. Rev. A 84 (2011) 054301.

[31] R. Prabhu, A. K. Pati, A.S. De and U. Sen, Phys. Rev. A 86 (2012) 052337.

[32] Sudha, A.R. Usha Devi and A.K. Rajagopal, Phys. Rev. A 85 (2012) 012103.

[33] M. Allegra, P. Giorda and A. Montorsi, Phys. Rev. B 84 (2011) 245133.

[34] X.-J. Ren and H. Fan, Quant. Inf. Comp. Vol. 13 (2013) 0469.

[35] A. Streltsov, G. Adesso, M. Piani and D. Bruss, Phys. Rev. Lett. 109 (2012) 050503.

[36] S. Luo, Phys. Rev. A 77 (2008) 042303; Phys. Rev. A 77 (2008) 022301.

[37] M. Ali, A.R.P. Rau and G. Alber, Phys. Rev. A 81 (2010) 042105.

[38] M. Shi, W. Yang, F. Jiang and J. Du, J. Phys. A: Mathematical and Theoretical 44 (2011) 415304.

[39] D. Girolami and G. Adesso, Phys. Rev. A 83 (2011) 052108.

[40] M. Shi, F. Jiang, C. Sun and J. Du, New Journal of Physics 13 (2011) 073016. 19

[41] M. Daoud and R. Ahl Laamara, J. Phys. A: Math. Theor. 45 (2012) 325302.

[42] M. Daoud and R. Ahl Laamara, International Journal of Quantum Information 10 (2012) 1250060.

[43] G. Adesso and A. Datta, Phys. Rev. Lett. 105 (2010) 030501; G. Adesso and D. Girolami, Int. J.

Quant. Info. 9 (2011) 1773.

[44] P. Giorda and M.G.A. Paris, Phys. Rev. Lett. 105 (2010) 020503.

[45] X. Yin, Z. Xi, X-M Lu, Z. Sun and X. Wang, J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 245502.

25



[46] M.Daoud and R. Ahl Laamara, Phys. Lett. A 376 (2012) 2361.

[47] L. Henderson and V. Vedral, J. Phys. A. Math. Gen. 34, 6899 (2001).

[48] H. Ollivier and W. Zurek, Phys. Rev. Lett. 88, 017901 (2002).

[49] S. Hamieh, R. Kobes, and H. Zaraket, Phys. Rev. A 70 (2004) 052325

[50] Xiaolei Yin, Zhengjun Xi, Xiao-Ming Lu, Zhe Sun and Xiaoguang Wang, Geometric measure of

quantum discord for superpositions of Dicke states, J. Phys. B: At. Mol. Opt. Phys. 44 (2011)

245502.

26


