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1 Introduction

Entangled coherent states have found various applications in quantum information science (for a recent

review see [1]). In fact, they have been recognized as a valuable resource in quantum teleportation [2, 3,

4, 5, 6, 7], quantum networks [8], quantum logical encoding [9], quantum computation [10], quantum

information processing [11] and quantum metrology [12, 13]. Despite their extreme sensitivity to

environmental effects, several experimental schemes were proposed for their production [14, 15, 16, 17,

18, 19]. Many protocols for quantum information processing use coherent states as either continuous

or discrete variables. In a discrete setting, the information is encoded in superpositions of coherent

states [20] like for instance the encoding scheme of logical qubits in even and odd superpositions of

Glauber coherent states: |0⟩ −→ |α⟩+ |−α⟩ and |1⟩ −→ |α⟩−|−α⟩ (α ∈ C). In this picture, balanced

superpositions of n-partite Glauber coherent states of type [21]

|ψn⟩ v |α⟩1 ⊗ |α⟩2 ⊗ · · · ⊗ |α⟩n ± | − α⟩1 ⊗−|α⟩2 ⊗ · · · ⊗ | − α⟩n

provide a physical tool to encode n logical qubits system. This kind of multipartite Glauber states

includes the bipartite states (n = 2), commonly termed in the literature, quasi-Bell coherent states in

analogy with the four Bell states defined for two dimensional quantum systems [22]. For n = 3, the

states |ψn⟩ coincide with quasi-GHZ coherent states [23] which constitute the nonorthogonal analogue

of the usual Greenberger-Horne-Zeilinger three qubit states [24]. Entanglement properties of quasi-

Bell (n = 2) and quasi-GHZ coherent states (n = 3) were initially investigated using the formalism

of concurrence or equivalently entanglement of formation [21, 22]. Quantum discord, introduced in

[25, 26], which goes beyond entanglement of formation, was also considered to evaluate the pairwise

quantum discord in multipartite coherent states [27, 28, 29, 30]. The entropy-based quantum discord

involves optimization procedure that is, in general, challenging to achieve analytically. To avoid this

difficulty and to get computable expressions of bipartite quantum correlations a geometric variant of

quantum discord was proposed in [31]. It uses the Hilbert-Schmidt distance as a measure to distinguish

between quantum and classical correlations. This geometric quantifier was employed to determine the

pairwise correlations in multipartite states of type |ψn⟩ [30, 32, 33].
In the other hand, an important issue, in investigating multipartite entangled coherent states, concerns

the influence of the environment on the evolution of quantum correlations. In this context, bipartite

correlations in single mode excited entangled quasi-Bell [34, 35] and quasi-GHZ coherent states [36]

were investigated to analyze the effect of the photon excitations processes. Interesting results were

derived in [34, 35, 36] where the pairwise quantum correlations are quantified by means of Wootters

concurrence [37]. In this paper, we use the Hilbert-Schmidt distance as quantifier of bipartite quantum

correlations to study the distribution of quantum correlation in photon added quasi-GHZ coherent

states. Another important aspect is the monogamy property of the geometric discord which limits

the free shareability and subsequently imposes severe restrictions on the distribution of quantum

correlations between the different parts of the system. The monogamy property can be summarized as

follows. Let D12 denote the shared geometric quantum discord between the modes 1 and 2. Similarly,
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we denote by D23 the geometric measure of the quantum correlation between 2 and 3 and D1|23 the

correlation shared between the mode 1 and the composite subsystem 23 comprising 2 and 3. The

geometric quantum discord is monogamous if, and only if, the following inequality

D1|23 ≥ D12 +D23

is satisfied. In this respect, to establish the conditions under which the geometric quantum discord is

monogamous requires the determination of pairwise quantum correlations between the three modes. It

worth noticing that the concept of monogamy of quantum correlations was first discussed by Coffman,

Kundo and Wootters in 2001 [38] for the entanglement of formation in three qubits. It was generalized

after to multi-qubit systems [39] as well as other measures like quantum discord and its geometric

variant [40, 41, 42, 43, 44, 45].

The paper is organized as follows. In section 2, we introduce photon added coherent states of

Greenberger-Horne-Zeilinger type. In particular we discuss the different bi-partitions of this class of

tripartite states. For each bipartite subsystem a suitable qubit mapping is defined. The pairwise

quantum correlations, quantified by Hilbert-Schmidt distance, in quasi-GHZ coherent states are de-

rived in section 3. The influence of the photon addition processes is discussed. A special attention

is devoted to the limiting case corresponding to photon added states of W -type (|α| −→ ∞). The

monogamy relation of geometric discord is examined in section 3. A special emphasis is devoted to

the evolution of the geometric quantum discord deficit versus photon excitations number. Concluding

remarks close this paper.

2 Photon added coherent states of GHZ type and qubit encoding

2.1 Excitations of quasi-GHZ coherent states

An interesting class of nonclassical states in quantum optics consists of the photon-added coherent

states [46]. They result through successive applications of the creation operator a+ on the Glauber

coherent state

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩. (1)

Denoting by m the number of added quanta, the explicit form of a normalized m-photon added

coherent state in the Fock states basis {|n⟩, n ∈ N} is

|α,m⟩ = (a+)m|α⟩√
⟨α|(a−)m(a+)m|α⟩

, (2)

where

⟨α|(a−)m(a+)m|α⟩ = m!Lm(−|α|2). (3)

The Laguerre polynomial Lm(x) of order m is defined by

Lm(x) =

m∑
n=0

(−1)nm!xn

(n!)2(m− n)!
. (4)
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Photon added coherent states interpolate between coherent states (quasi-classical states) and Fock

states and exhibit non-classical features such as squeezing, negativity of Wigner distribution and sub

Poissonian statistics. Their experimental generation using parametric down conversion in a nonlinear

crystal was reported in [47]. Photon-coherent states are not orthogonal each other. Indeed using the

result

⟨−α|(a−)m(a+)m|α⟩ = e−2|α|2m!Lm(|α|2), (5)

it is simply verified that the overlapping between the states |α,m⟩ and | − α,m⟩ (2) is

⟨−α,m|α,m⟩ = e−2|α|2 Lm(|α|2)
Lm(−|α|2)

. (6)

Now, we consider a single mode excitation of the GHZ-type entangled coherent states defined by [23]

|GHZk(α)⟩ = Ck(α)(|α, α, α⟩+ eikπ| − α,−α,−α⟩). (7)

where k ∈ Z and the normalization constant Ck is given by

C−2
k (α) = 2 + 2e−6|α|2 cos kπ. (8)

Mathematically, the m photon excitation process of the first mode, is realized as follows

||GHZk(α,m)⟩ = ((a+)m ⊗ I⊗ I) |GHZk(α)⟩, (9)

from which we introduce the normalized photon added quasi-GHZ coherent states as

|GHZk(α,m)⟩ = ||GHZk(α,m)⟩√
⟨GHZk(α,m)||GHZk(α,m)⟩

. (10)

In equation (9), I is the identity operator. Using the expressions (3) and (5), the state (10) rewrites

as

|GHZk(α,m)⟩ = Ck(α,m)(|m,α⟩ ⊗ |α⟩ ⊗ |α⟩+ eikπ|m,−α⟩ ⊗ | − α⟩ ⊗ | − α⟩). (11)

where the normalization factor is

C−2
k (α,m) = 2 + 2κme

−6|α|2 cos kπ, (12)

with

κm ≡ κm(|α|2) := Lm(|α|2)
Lm(−|α|2)

. (13)

The quantity κm (13) goes to unit for m = 0 and the state |GHZk(α,m)⟩ (11) reduces to |GHZk(α)⟩
(7). It is also important to note that for |α| large, the overlap between Glauber coherent states |α⟩
and | − α⟩ approaches zero and then they are quasi-orthogonal. In this limiting situation, the state

|GHZk(α)⟩ (7) reduces to an usual three qubit state of GHZ-type [24]

|GHZk(∞)⟩ = 1√
3
(|0⟩ ⊗ |0⟩ ⊗ |0⟩+ eikπ|1⟩ ⊗ |1⟩ ⊗ |1⟩). (14)

where |0⟩ ≡ |α⟩ and |1⟩ ≡ | − α⟩.
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2.2 Qubit encoding

To derive the pairwise quantum discord in the three modes system 1− 2− 3 described by the state

ρ123 = |GHZk(α,m)⟩⟨GHZk(α,m)|,

one needs the reduced density matrices corresponding to the two qubit subsystems 1 − 2, 2 − 3 and

1 − 3. It is simple to check that the reduced density matrices ρ12 = Tr3ρ123 and ρ13 = Tr2ρ123 are

identical. They write

ρ12 = ρ13 =
C2
k(α,m)

N 2
k (α,m)

[(
1 + e−2|α|2

2

)
|Bk(α,m)⟩⟨Bk(α,m)|+

(
1− e−2|α|2

2

)
Z|Bk(α,m)⟩⟨Bk(α,m)|Z

]
(15)

where |Bk(α,m)⟩ are the photon added quasi-Bell states defined by

|Bk(α,m)⟩ = Nk(α,m)
[
|m,α⟩ ⊗ |α⟩+ eikπ |m,−α⟩ ⊗ | − α⟩

]
, (16)

in terms of the normalized photon added coherent state (2). The factor Nk is given

N−2
k (α,m) = 2 + 2κme

−4|α|2 cos kπ. (17)

where κm is defined by (13). The operator Z, in (15), is the third Pauli generator defined by

Z|Bk(α,m)⟩ = Nk(α,m)[|m,α)⊗ |α⟩ − eikπ|m,−α)⊗ | − α⟩].

In the absence of photon excitation (m = 0), the states |Bk(α,m)⟩ (16) reduce to the ordinary quasi-

Bell states [22]

|Bk(α)⟩ = Nk(α, 0)
[
|α⟩ ⊗ |α⟩+ eikπ| − α⟩ ⊗ | − α⟩

]
. (18)

Similarly, by tracing out the first mode, the reduced matrix density ρ23 takes the form

ρ23 =
C2
k(α,m)

N 2
k (α, 0)

[(
1 + κme

−2|α|2

2

)
|Bk(α, 0)⟩⟨Bk(α, 0)|+

(
1− κme

−2|α|2

2

)
Z|Bk(α, 0)⟩⟨Bk(α, 0)|Z

]
.(19)

According to [20], the bipartite states ρ12, ρ13 and ρ23 can be converted in two qubit states by encoding

information in even and odd Glauber coherent states (Shrödinger cat states). To realize such encoding

scheme, we introduce the following qubit mapping

|m,±α) =

√
1 + κme−2|α|2

2
|0⟩1 ±

√
1− κme−2|α|2

2
|1⟩1 (20)

for the first mode. For the second and third modes, we consider the logical qubits defined by

| ± α⟩ =

√
1 + e−2|α|2

2
|0⟩i ±

√
1− e−2|α|2

2
|1⟩i i = 2, 3 (21)

Substituting (20) and (21) in (15) (resp. (19)), one can express the density matrix ρ12 = ρ13 (resp.

ρ23) in the two qubit basis {|0⟩1 ⊗ |0⟩2, |0⟩1 ⊗ |1⟩2, |1⟩1 ⊗ |0⟩2, |1⟩1 ⊗ |1⟩2} (resp. {|0⟩2 ⊗ |0⟩3, |0⟩2 ⊗

5



|1⟩3, |1⟩2 ⊗ |0⟩3, |1⟩2 ⊗ |1⟩3}). One can verify that the density matrices ρ12, ρ13 and ρ23 have non

vanishing entries only along the diagonal and the anti-diagonal. They resemble to the alphabet X

and thus belong to the family of so called X-states that have been of interest in a variety of contexts

in the field of quantum information [48].

As the main of this paper concerns the monogamy property of geometric discord in the state |GHZk(α,m)⟩,
we consider the bipartition of the state (11) in which the modes 2 and 3 are grouped in a single qubit.

For the first mode, the information is encoded in the logical qubits {|0⟩1, |1⟩1} (20) given by defined

by

|0⟩1 =
|m,α⟩+ |m,α⟩√
2(1 + κme−2|α|2)

|1⟩1 =
|m,α⟩ − |m,α⟩√
2(1− κme−|α|2)

. (22)

For the modes (23), viewed as a single subsystem, we introduce the orthogonal basis {|0⟩23, |1⟩23} as

follows

|0⟩23 =
|α, α⟩+ | − α,−α⟩√

2(1 + e−4|α|2)
|1⟩23 =

|α, α⟩ − | − α,−α⟩√
2(1− e−4|α|2)

. (23)

Inserting(22) and (23) in |GHZk(α,m)⟩, one obtains the expansion of the pure state |GHZk(α,m)⟩ in
the basis {|0⟩1 ⊗ |0⟩23, |0⟩1 ⊗ |1⟩23, |1⟩1 ⊗ |0⟩23, |1⟩1 ⊗ |1⟩23}. Explicitly, one has

|GHZk(α,m)⟩ =
∑
α=0,1

∑
β=0,1

Cα,β|α⟩1 ⊗ |β⟩23 (24)

where the coefficients Cα,β are

C0,0 = Ck(α,m)(1 + eikπ)c+1 c
+
23, C0,1 = Ck(α,m)(1− eikπ)c+1 c

−
23

C1,0 = Ck(α,m)(1− eikπ)c+23c
−
1 , C1,1 = Ck(α,m)(1 + eikπ)c−1 c

−
23.

in terms of the quantities

c±1 =

√
1± κme−2|α|2

2
c±23 =

√
1± e−4|α|2

2
.

It is interesting to note that using the Schmidt decomposition, one can shows that the density matrix

ρ123 ≡ ρ1|23 = |GHZk(α,m)⟩⟨GHZk(α,m)| (25)

is also X shaped. This point will be clarified in the following subsection.

2.3 Fano-Bloch representations

By encoding information in the qubits (20) (21) and (23), the arising density matrices ρ12 = ρ23 (15)

and ρ1|23 (25) take, in Fano-Bloch representation, the following form

ρAB =
1

4

[
σ0 ⊗ σ0 + TAB

03 σ0 ⊗ σ3 + TAB
30 σ3 ⊗ σ0 +

∑
k=1,2,3

TAB
kk σk ⊗ σk

]
(26)

where σ0 is the identity, σk are the Pauli matrices and the correlation matrix elements are given by

TAB
αβ = Tr

(
ρAB σα ⊗ σβ

)
.
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Explicitly, the correlation matrix elements entering in Fano-Bloch expression of the bipartite density

matrix ρ12 = Tr3ρ123 (15) write as

T 12
03 = 2C2

k(α,m) (e−2|α|2 + κme
−4|α|2 cos kπ)

T 12
30 = 2C2

k(α,m) (κme
−2|α|2 + e−4|α|2 cos kπ)

T 12
11 = 2C2

k(α,m)

√
(1− κ2me

−4|α|2)(1− e−4|α|2)

T 12
22 = −2C2

k(α,m)

√
(1− κ2me

−4|α|2)(1− e−4|α|2) e−2|α|2 cos kπ

T 12
33 = 2C2

k(α,m) (κme
−4|α|2 + e−2|α|2 cos kπ) (27)

Similarly, for ρ23 (19) one obtains

T 23
03 = 2C2

k(α,m) (e−2|α|2 + κme
−4|α|2 cos kπ)

T 23
30 = 2C2

k(α,m) (e−2|α|2 + κme
−4|α|2 cos kπ)

T 23
11 = 2C2

k(α,m)(1− e−4|α|2)

T 23
22 = 2C2

k(α,m)(1− e−4|α|2)κme
−2|α|2 cos kπ

T 23
33 = 2C2

k(α,m) (e−4|α|2 + κme
−2|α|2 cos kπ) (28)

Using the Schmidt decomposition, the state (24) rewrites as

|GHZk(α,m)⟩1|23 =
√
λ+|+⟩1 ⊗ |+⟩23 +

√
λ−|−⟩1 ⊗ |−⟩23 (29)

where |±⟩1 (resp. |±⟩23) denotes the eigenvectors of the reduced density matrix ρ1 (resp. ρ23 viewed

as a single qubit state). The Schmidt eigenvalues λ+ and λ− are given by

λ± =
1

2

[
1± e−2|α|2 κm + e−2|α|2 cos kπ

1 + κme−6|α|2 cos kπ

]
. (30)

In the basis {|+⟩1 ⊗ |+⟩23, |+⟩1 ⊗ |−⟩23, |−⟩1 ⊗ |+⟩23, |−⟩1 ⊗ |−⟩23}, the density ρ1|23 (25) is X shaped

and takes the form (26). The associated correlation matrix elements are given by

T
1|23
33 = 1

T
1|23
03 = T

1|23
30 = 2C2

k(α,m)e−2|α|2(κm + e−2|α|2 cos kπ)

T
1|23
11 = −T 1|23

22 = 2C2
k(α,m)

√
(1− κ2me

−4|α|2)(1− e−8|α|2). (31)
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3 Geometric quantum discord in photon added coherent states

3.1 Hilbert-Schmidt measure of quantum discord

The qubit encoding introduced in the previous section is of paramount importance in deriving the

geometric quantum discord in photon added coherent states (11) and analyzing the influence of the

photon excitation process. According to the procedure developed in [31], the geometric measure

of quantum discord is the distance between the state ρAB and its closest classical-quantum state

presenting zero discord

DAB = min
χAB

||ρAB − χAB||2 (32)

where the Hilbert-Schmidt norm is defined by ||X||2 = Tr(X†X) and the minimization is taken over

the set of all classical states. When the measurement is performed on the qubit A, the classical states

write

χAB = p1|ψ1⟩⟨ψ1| ⊗ ρB1 + p2|ψ2⟩⟨ψ2| ⊗ ρB2 (33)

where {|ψ1⟩, |ψ2⟩} is an orthonormal basis related to the qubit A, pi (i = 1, 2) stands for probability

distribution and ρBi (i = 1, 2) is the marginal density of the qubit B. The classically correlated states

χAB can also be written as

χAB =
1

4

[
σ0 ⊗ σ0 +

3∑
i=1

tei σi ⊗ σ0 +

3∑
i=1

(s+)i σ0 ⊗ σi +

3∑
i,j=1

ei(s−)j σi ⊗ σj

]
(34)

where

t = p1 − p2, ei = ⟨ψ1|σi|ψ1⟩, (s±)j = Tr
(
(p1ρ

B
1 ± p2ρ

B
2 )σj

)
.

It follows that the distance between the density matrix ρAB and the classical state χAB, as measured

by Hilbert-Schmidt norm, is then given by

||ρAB − χAB||2 =
1

4

[
(t2 − 2te3T

AB
30 +

(
TAB
30

)2
) +

3∑
i=1

(TAB
0i − (s+)i)

2 +

3∑
i,j=1

(TAB
ij − ei(s−)j)

2

]
. (35)

The minimization of the distance (35), with respect to the parameters t, (s+)i and (s−)i, gives

t = e3T
AB
30 , (s−)i =

3∑
j=1

ejT
AB
ji ,

(s+)1 = (s+)2 = 0, (s+)3 = TAB
03 . (36)

Inserting the solutions (36) in (35), one has

||ρAB − χAB||2 =
1

4

[
TrK − e⃗tKe⃗

]
(37)

where the diagonal matrix K is defined by

K = diag
(
λAB
1 , λAB

2 , λAB
3

)
(38)
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with

λAB
1 =

(
TAB
11

)2
, λAB

2 =
(
TAB
22

)2
, λAB

3 =
(
TAB
30

)2
+ (TAB

33 )2. (39)

From the expressions (27), we obtain the eigenvalues

λ121 =
(1− κ2me

−4|α|2)(1− e−4|α|2)

(1 + κme−6|α|2 cos kπ)2
,

λ122 = e−4|α|2 (1− κ2me
−4|α|2)(1− e−4|α|2)

(1 + κme−6|α|2 cos kπ)2
, (40)

λ123 = e−4|α|2 (1 + κ2m)(1 + e−4|α|2) + 4κme
−2|α|2 cos kπ

(1 + κme−6|α|2 cos kπ)2
.

corresponding to the state ρ12. Reporting (28) in (39), the eigenvalues entering in the determination

of the bipartite geometric quantum discord in the state ρ23 are

λ231 =

(
1− e−4|α|2

1 + κme−6|α|2 cos kπ

)2

,

λ232 = κ2me
−4|α|2

(
1− e−4|α|2

1 + κme−6|α|2 cos kπ

)2

, (41)

λ233 = e−4|α|2 (1 + κ2m)(1 + e−4|α|2) + 4κme
−2|α|2 cos kπ

(1 + κme−6|α|2 cos kπ)2
.

For the pure state ρ1|23, we use the expressions (31) to obtain

λ
1|23
1 =

(1− κ2me
−4|α|2)(1− e−8|α|2)

(1 + κme−6|α|2 cos kπ)2
,

λ
1|23
2 =

(1− κ2me
−4|α|2)(1− e−8|α|2)

(1 + κme−6|α|2 cos kπ)2
, (42)

λ
1|23
3 = 2− (1− κ2me

−4|α|2)(1− e−8|α|2)

(1 + κme−6|α|2 cos kπ)2
.

From the equation (37), it is clear that the minimal value of Hilbert-Schmidt distance is reached for

the largest eigenvalue of the matrix K (38). Hence, to get the minimal value of the Hilbert-Schmidt

distance (37) and subsequently the amount of geometric quantum discord, one should compare λAB
1 ,

λAB
2 and λAB

3 . From the results (40), (41) and (42), it is simply verified that λAB
1 is always greater

than λAB
2 . This implies that the largest eigenvalue λAB

max is λAB
1 or λAB

3 . Accordingly, the geometric

discord is given by

DAB =
1

4
min{λAB

1 + λAB
2 , λAB

2 + λAB
3 }. (43)

To write down the explicit expressions of the closest classical state χAB to ρAB, one has to determine

the eigenvector e⃗max associated with the largest eigenvalue λmax. In this respect, two cases ( λmax =

λ1 and λmax = λAB
3 ) are separately discussed. In the case where λmax = λAB

1 , the corresponding

eigenvector is given by e⃗1 = (1, 0, 0) and using (36), one gets the closest classical state

χ1
AB =

1

4

[
σ0 ⊗ σ0 + TAB

30 σ3 ⊗ σ0 + TAB
11 σ1 ⊗ σ1

]
(44)
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In the second situation where λmax = λAB
3 , the associated eigenvector is given by e⃗3 = (0, 0, 1).

Reporting this result in the set of constraints (36), one shows

χ3
AB =

1

4

[
σ0 ⊗ σ0 + TAB

30 σ3 ⊗ σ0 + TAB
03 σ0 ⊗ σ3 + TAB

33 σ3 ⊗ σ3

]
(45)

3.2 Pairwise geometric discord in tripartite quasi-GHZ coherent states

To analyze the influence of the photon excitation on the pairwise geometric discord present in the

state (11), we consider first the evolution of the correlation between the first and the second mode

described by the state (15). From equation (43), we have

D12 =
1

4
(λ122 +min{λ121 , λ123 }). (46)

where λ12i (i = 1, 2, 3) are given by (40). The behavior of D12 in (46) is plotted, in figures 1 and 2,

as function of |α|2 for different values of photon excitation order m. In figure 1, corresponding to

symmetric case, it is clearly seen that the geometric quantum discord D12 exhibits a pick. This pick

is moving from the right to the left. In particular, the height of the pick, reflecting the maximal

amount of quantum discord, increases as the photon excitation order m increases. Also, the photon

excitation induces a quick decreases of quantum discord as the optical strength |α| becomes large.

For antisymmetric states (k = 1), the quantum discord D12, depicted in figure 2, shows that the

quantum discord corresponding to m = 0, 1, 2 does not present peak and it decreases monotonically

as |α| increases. This is not the case for m ≥ 3. In fact, the geometric discord starts increasing to

reach a maximal value for α, different from zero, to decrease after quickly as the Glauber coherent

state amplitude becomes large. It must be noticed that for symmetric as well as antisymmetric states

the quantum discord D12 vanishes when α→ ∞ independently of photon excitation number m. This

limiting case corresponds to usual GHZ states (14). Another interesting limiting case concerns the

antisymmetric states |GHZ1(α,m)⟩ when |α| → 0. In this case, it simply verified that the state (11)

reduces to

|GHZ1(0,m)⟩ = 1√
m+ 3

(
√
m+ 1|m+ 1, 0, 0⟩+ |m, 1, 0⟩+ |m, 0, 1⟩) (47)

which coincides with the three qubit W states for m = 0 [49]. In this limit the first qubit is encoded

in the Fock states |m⟩ and |m+ 1⟩ and the two other modes are encoded in the states |0⟩ and |1⟩. In
the limit |α| −→ 0, the Laguerre function (4) behaves like Lm(|α|2) ≃ 1−m|α|2 and the quantity κm

(13) writes

κm ≃ 1− 2m|α|2. (48)

It follows that the eigenvalues (40) reduce to

λ121 −→ 4
m+ 1

(m+ 3)2
, λ122 −→ 4

m+ 1

(m+ 3)2
, λ123 −→ 2

m2 + 1

(m+ 3)2
. (49)
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This shows that the quantum discord D12 is m-dependent for states of W-type (47) and one has

D12 −→
(m+ 1)2 + 2

2(m+ 3)2
for m ≤ 2

D12 −→ 2
m+ 1

(m+ 3)2
for m > 2.

Figure 1. The quantum discord D12 versus |α|2 for k = 0 and different values of photon excitation

number m.

Figure 2. The quantum discord D12 versus |α|2 for k = 1 and different values of photon excitation

number m.

In the subsystem described by the density matrix (19), the quantum discord (43) gives

D23 =
1

4
(λ232 +min{λ231 , λ233 }). (50)

where λ23i (i = 1, 2, 3) are given by (41). In the figures 3 and 4 are depicted the geometric measures of

quantum correlation between the modes 2 and 3 in the states |GHZk(α,m)⟩ (11) as function of |α|2.
From figure 3, one observes that the height of the quantum discord D23 diminishes as the photon

excitation order m increases, contrarily to what happens with the pairwise quantum discord D12

(figure 1). The peaks move from the right to the left. In increasing the number of added photons, D23

becomes almost identical. The behavior of D23 for symmetric states (figure 3) is different from one in

the antisymmetric states (figure 4). In particular, the quantum discord decreases monotonically for

11



m ≤ 1. The first peak appears for m = 2 and it moves to the right for m ≥ 3. The quantum discord

vanishes quickly, as |α| increases, under the effect of photon excitation. The quantum discord D23, in

antisymmetric states (k = 1), depends on the photon excitation order m when |α| approaches zero.

Indeed, from equations (41), one shows that

λ231 −→ 4

(m+ 3)2
, λ232 −→ 4

(m+ 3)2
, λ233 −→ 2

m2 + 1

(m+ 3)2
, (51)

and subsequently one obtains the results

D23 −→
m2 + 3

2(m+ 3)2
for m ≤ 2

D23 −→
2

(m+ 3)2
for m > 2

which give the amount of pairwise quantum discord between the modes 2 and 3 in the photon added

W states (47) and confirms analytically the results reported in the figure 4.

Figure 3. The quantum discord D23 versus |α|2 for k = 0 and different values of photon excitation

number m.

Figure 4. The quantum discord D23 versus |α|2 for k = 1 and different values of photon excitation

number m.

Finally, we discuss the evolution of D1|23 in the bi-partitioning scheme (25). From (42) it is simple to

verify that the maximal eigenvalue is λ
1|23
3 . Thus, the quantum geometric measure of quantum discord

12



between the first qubit and the qubit grouping the modes 2 and 3 is given by

D1|23 =
1

2

(1− κ2me
−4|α|2)(1− e−8|α|2)

(1 + κme−6|α|2 cos kπ)2
. (52)

The behavior of D1|23 versus |α|2 for symmetric GHZ states for different values of added photons

is reported in figure 5. In the weak regime, the geometric quantum discord increases quickly as m

increases. For high values of |α|, one obtain D1|23 = 0.5 independently of m. This result is easily

verified from (52). Similar behavior, when |α| is large, is obtained with antisymmetric GHZ states

(see figure 6). From figure 6, it is clearly seen that in the weak regime, the pairwise quantum D1|23

is strongly influenced by the photon excitation. In particular, when |α| → 0, the eigenvalues (42)

become

λ
1|23
1 −→ 8

m+ 1

(m+ 3)2
, λ

1|23
2 −→ 8

m+ 1

(m+ 3)2
, λ

1|23
3 −→ 2− 8

m+ 1

(m+ 3)2
, (53)

and the explicit expression of quantum discord D1|23 as function of m is

D1|23 −→ 4
m+ 1

(m+ 3)2
. (54)

Figure 5. The quantum discord D1|23 versus |α|2 for k = 0 and different values of photon excitation

number m.

Figure 6. The quantum discord D1|23 versus |α|2 for k = 1 and different values of photon excitation

number m.
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3.3 Monogamy of geometric quantum discord in quasi-GHZ states

The quantum discord, in the states |GHZk(α,m)⟩ (11), is monogamous if and only if the quantum

monogamy deficit defined by

∆123 = ∆123(m, |α|2) = D1|23 −D12 −D13, (55)

is positive. In other words, the monogamy property is satisfied when the quantum discord D1|23 (52)

between the first mode and the modes 2-3 (viewed as a single subsystem) exceeds the sum of pairwise

quantum discord D12 and D13 (46). Using (40) and (46), one shows that

D12 = D13 =
1

4

(1− κ2me
−4|α|2)(1− e−8|α|2)

(1 + κme−6|α|2 cos kπ)2
, (56)

when λ121 ≤ λ123 . Conversely, for photon excitation order m and optical strength |α| satisfying the

condition λ121 ≥ λ123 , one gets

D12 = D13 =
1

4
e−4|α|2 2 + κ2me

−8|α|2 + 4κme
−2|α|2 cos kπ

(1 + κme−6|α|2 cos kπ)2
. (57)

Using the expressions (52), (56) and (57), it is easy to check that the quantum monogamy deficit (55)

vanishes

∆123 = 0, (58)

for λ121 ≤ λ123 and it is given by

∆123 =
1

2

1−
[
(2− 3κ2m) + (e−2|α|2 + 2κm cos kπ)2

]
e−4|α|2

(1 + κme−6|α|2 cos kπ)2
, (59)

when λ121 ≥ λ123 .

The quantum discord deficit is depicted in figures 7 and 8. It is always positive reflecting that

the geometric quantum discord is monogamous. In figure 7 corresponding to the symmetric states

(k = 0), ∆123 is initially zero (see equation (58)) reflecting that the condition λ121 ≤ λ123 is satisfied.

By increasing the optical strength |α|, λ121 becomes greater than λ123 and the quantum discord deficit

increases to reach its maximal value 0.5 for |α| large. In this situation, it is intersecting to note that,

according to the equation (57), D12 = D13 vanishes and ∆123 coincides with the pairwise quantum

discord D1|23 independently of photon excitation order m.
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Figure 7. The geometric quantum discord deficit ∆123 versus |α|2 for k = 0 and different values of

photon excitation number m.

It is clearly seen from figure 8 that the quantum discord deficit is non zero for m = 0, 1, 2, in particular

when |α| −→ 0 in contrast with the states with m ≥ 3. This result can be confirmed analytically.

Indeed, when |α| approaches zero, the antisymmetric states (11) reduces to photon added tripartite

states of W-type (47) and using the results (49) and (53), the geometric quantum discord deficit ∆123

tends to zero for m > 2 and

∆123 −→
2− (m− 1)2

(m+ 3)2

for m = 0, 1, 2. The photon addition process does not affect the monogamy property (∆123 is positive

for any value ofm), but modifies the distribution of geometric quantum discord among the three modes

in the states (11). In fact, in the case when m ≥ 3 and for small values of |α|, one have ∆123 = 0

reflecting that the geometric discord D1|23 is exactly the sum of the pairwise quantum correlations

D12 and D13 in contrast with the cases where m ≤ 2 for which we have ∆123 > 0 for any value of |α|.

Figure 8. The geometric quantum discord deficit ∆123 versus |α|2 for k = 1 and different values of

photon excitation number m.

4 Concluding remarks

In conclusion, we have addressed the question of the influence of photon excitation on pairwise quantum

correlations in balanced superpositions of tripartite Glauber coherent states of type GHZ. This family

of nonorthogonal states include Greenberger-Horne-Zeilinger and W states. By encoding information

in even and odd coherent states, we derived the pairwise quantum discord D12 (46), D23 (50) and

D1|23 (52). We have used the Hilbert-Schmidt distance as quantifier of quantum correlations. We

have analyzed their behaviors as functions of the coherent states amplitude α. A special attention

were devoted to photon added states of W type corresponding to the limiting case α −→ 0 for which

the explicit expressions of the pairwise geometric discord are derived. We have shown that the photon

excitation does not affect the monogamy property of geometric quantum discord in the quasi-GHZ

states (11). But, it modifies the distribution of quantum discord among the three optical modes,
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especially when the Glauber coherent states have small amplitudes. Finally, as prolongation of this

work, we think that it would be interesting to analyze the distribution of quantum correlations in

photon added coherent states comprising four or more modes. We hope to report on this issue in a

forthcoming work.
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