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Abstract

We examine the monogamy relation of geometric quantum discord in photon added coherent states

of Greenberger-Horne-Zeilinger. The Hilbert-Schmidt norm is used as quantifier of pairwise quantum

correlations. The geometric quantum discord in all bipartite subsystems are explicitly given. The

behavior of geometric quantum discord and its monogamy property versus the excitation photon

number are discussed.
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1 Introduction

Entangled coherent states have found various applications in quantum information science (for a

recent review see [1]). In fact, they were shown to serve as valuable resource in quantum teleportation

[2, 3, 4, 5, 6, 7], quantum networks [8] , quantum logical encoding [9], quantum computation [10],

quantum information processing [11], and quantum metrology [12, 13]. The experimental production

of superposed coherent states constitutes in general a challenging task. However, despite their extreme

sensitivity to environmental effects, several schemes were proposed in the literature for their generation

[14, 15, 16, 17, 18]. One may quote for example the generation of entangled coherent states in atomic

Bose-Einstein condensates [19]. Usually coherent states are treated as continuous variable states.

Recently, the idea of encoding quantum information on coherent states has led to an interesting

proposal [?] in which Glauber coherent states |α⟩ and |−α⟩ (α ∈ C) are used to encode logical qubits.

In this scenario, balanced superpositions of n-partite Glauber coherent states of type

|α, α, · · · , α⟩ ± | − α,−α, , · · · ,−α⟩

can be mapped in n qubit states. They reduce for n = 2 to bipartite states commonly termed in the

literature quasi-Bell coherent states in analogy with the four Bell states defined for two dimensional

quantum systems. Also, in the special n = 3, one recovers the quasi-GHZ coherent states which are

the non orthogonal extensions of the usual Greenberger-Horne-Zeilinger three qubit states. Entan-

glement properties of quasi-Bell and quasi-GHZ coherent states were initially investigated using the

formalism of concurrence or equivalently entanglement of formation. Quantum discord which goes

beyond entanglement of formation was also considered to evaluate the pairwise quantum discord in

multipartite coherent states. It is also important to emphasize that the geometric variant of quantum

discord, based on the notion of Hilbert-Schmidt norm, was used as quantifier of bipartite correlations

in such states.

In the same spirit, using the formalism of photon added coherent states, bipartite correlations in

single mode excited entangled quasi-Bell and quasi-GHZ coherent states were investigated in ????.

The pairwise quantum correlations are quantified by means of Wootters concurrence. In this paper,

we shall be concerned with the derivation of pairwise geometric quantum discord in photon added

quasi-GHZ coherent states in order to investigate the distribution of quantum correlation among the

three modes. At this stage, it worth to notice that in multipartite quantum systems, one of the most

important properties is the monogamy relation which limits the free shareability and subsequently

imposes severe restrictions on the distribution of quantum correlations between the different parts of

the system. This concept was first discussed by Coffman, Kundo and Wootters in 2001 [?] for the

entanglement of formation in three qubits and latter generalized for N qubits [?]. It was also extended

to other measures (quantum discord. geometric quantum discord, ...) of quantum correlations [?],[?],

[?],[?], [?],[?].

The paper is organized as follows. In section 2, we introduce photon added coherent states of

Greenberger-Horne-Zeilinger type which interpolate continuously between the . In particular we dis-
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cuss the different bi-partitions of such tripartite states. Two scenario are considered: pure and mixed.

In each case, a suitable qubit mapping is defined. The pairwise geometric discord is derived in section

3. The influence of the photon addition process is discussed. A special attention is devoted to the

limiting case corresponding to photon added states of W -type. The monogamy relation of geometric

discord is examined in section 3 and the effects of the excitation are discussed. Concluding remarks

close this paper.

2 Adding photons to quasi-GHZ coherent states and three qubit

encoding

2.1 Excitations of quasi-GHZ coherent states

We are interested in tripartite quantum states involving Glauber coherent states |α⟩ and | − α⟩ with
the same amplitude α and phases differing by π. In this paper, we consider the GHZ-type entangled

coherent states of the form

|GHZk(α)⟩ = Ck(α)(|α, α, α⟩+ eikπ| − α,−α,−α⟩). (1)

where the normalization constant Ck is given by

C−2
k (α) = 2 + 2e−6|α|2 cos kπ. (2)

A single-mode of electromagnetic field is algebraically described by the Weyl-Heisenberg algebra

spanned by creation a+ and annihilation a− operators. The adding photons process is mathemat-

ically realized through successive applications of a+. Thus, m successive actions of creation operator

a+ on the Glauber coherent states |α⟩

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩, (3)

leads to the un-normalized states

||α,m⟩ =
(
a+

)m | α⟩ = e−
|α|2
2

∞∑
n=0

αn

n!

√
(n+m)! | n+m⟩. (4)

The vectors |n⟩ denote the Fock-Hilbert states of harmonic oscillator. The normalizedm-photon added

coherent states are defined by

|α,m⟩ = (a+)m|α⟩√
⟨α|(a−)m(a+)m|α⟩

, (5)

where

⟨α|(a−)m(a+)m|α⟩ = m!Lm(−|α|2). (6)

In the last expression Lm(x) is the Laguerre polynomial of order m defined by

Lm(x) =

m∑
n=0

(−1)nm!xn

(n!)2(m− n)!
. (7)
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Photon added coherent states interpolate between electromagnetic field coherent states (quasi-classical

states) and Fock states |n⟩ (purely quantum states). Furthermore, photon added coherent states

exhibit non-classical features such as squeezing, negativity of Wigner distribution and sub Poissonian

statistics. Their experimental generation using parametric down conversion in a nonlinear crystal was

reported in [?]. Photon-coherent states are not orthogonal each other. Indeed using the expression

⟨−α|(a−)m(a+)m|α⟩ = e−2|α|2m!Lm(|α|2), (8)

it is simply verified that the overlapping between the states |α,m) and | − α,m) is

⟨−α,m|α,m⟩ = e−2|α|2 Lm(|α|2)
Lm(−|α|2)

. (9)

The excitation of the first mode of the state (1), by adding m photon, leads to the tripartite state

||GHZk(α,m)⟩ = ((a+)m ⊗ I⊗ I) |GHZk(α)⟩, (10)

from which we introduce the normalized photon added quasi-GHZ coherent states as

|GHZk(α,m)⟩ = ||GHZk(α,m)⟩√
⟨GHZk(α,m)||GHZk(α,m)⟩

. (11)

Using the expressions (6) and (8), the vector (11) rewrites as

|GHZk(α,m)⟩ = Ck(α,m)(|m,α⟩ ⊗ |α⟩ ⊗ |α⟩+ eikπ|m,−α⟩ ⊗ | − α⟩ ⊗ | − α⟩). (12)

where the normalization factor is

C−2
k (α,m) = 2 + 2κme

−6|α|2 cos kπ. (13)

with

κm ≡ κm(|α|2) := Lm(|α|2)
Lm(−|α|2)

. (14)

The quantity κm, defined by (14), goes to unit for m = 0 so that the state |GHZk(α,m)⟩ (12)

reduces to |GHZk(α)⟩ (1). It is also important to note that for |α| large, the overlap between Glauber

coherent states |α⟩ and | − α⟩ approaches zero and then they are quasi-orthogonal. In this limiting

situation the state |GHZk(α)⟩ (1) reduces to an usual three qubit state of GHZ-type

|GHZk(∞)⟩ = 1√
3
(|0⟩ ⊗ |0⟩ ⊗ |0⟩+ eikπ|1⟩ ⊗ |1⟩ ⊗ |1⟩). (15)

where |0⟩ ≡ |α⟩ and |1⟩ ≡ |α⟩.
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2.2 Qubit encoding

In investigating the pairwise quantum discord in a tripartite system 1− 2− 3 described by a quantum

state of type |GHZk(α,m)⟩, one needs the reduced density matrices describing the two qubit subsys-

tems 1 − 2, 2 − 3 and 1 − 3. For the states |GHZk(α,m)⟩ (12), it is simply seen that the reduced

density matrices ρ12 = Tr3ρ123 and ρ13 = Tr2ρ123 are identical. The pure three mode density matrix

ρ123 is given

ρ123 = |GHZk(α,m)⟩⟨GHZk(α,m)|.

The reduced density matrices ρ12 and ρ13 are given by

ρ12 = ρ13 =
C2
k(α,m)

N 2
k (α,m)

[(
1 + e−2|α|2

2

)
|Bk(α,m)⟩⟨Bk(α,m)|+

(
1− e−2|α|2

2

)
Z|Bk(α,m)⟩⟨Bk(α,m)|Z

]
(16)

in terms of photon added quasi-Bell states defined by

|Bk(α,m)⟩ = Nk(α,m)
[
|m,α⟩ ⊗ |α⟩+ eikπ |m,−α⟩ ⊗ | − α⟩

]
, (17)

in terms of the normalized photon added coherent state (5), with

N−2
k (α,m) = 2 + 2κme

−4|α|2 cos kπ. (18)

where κm is defined by (14). For m = 0, the quasi-Bell states

|Bk(α)⟩ = Nk(α, 0)
[
|α⟩ ⊗ |α⟩+ eikπ| − α⟩ ⊗ | − α⟩

]
(19)

are recovered. The operator Z, in (16), is the third Pauli generator defined by

Z|Bk(α,m)⟩ = Nk(α,m)[|m,α)⊗ |α⟩ − eikπ|m,−α)⊗ | − α⟩]

Similarly, by tracing out the third mode, the reduced matrix density ρ23 takes the form

ρ23 =
C2
k(α,m)

N 2
k (α, 0)

[(
1 + κme

−2|α|2

2

)
|Bk(α, 0)⟩⟨Bk(α, 0)|+

(
1− κme

−2|α|2

2

)
Z|Bk(α, 0)⟩⟨Bk(α, 0)|Z

]
(20)

To derive the pairwise correlation between the components of the subsystems 1− 2, 2− 3 and 1− 3,

we assume that the information is encoded in even and odd Glauber coherent states (Shrödinger cat

states). In this sense, we introduce for the first mode the following qubit mapping

|m,±α) =

√
1 + κme−2|α|2

2
|0⟩1 ±

√
1− κme−2|α|2

2
|1⟩1 (21)

for the first mode. For the second and third modes, we consider the qubits defined by

| ± α⟩ =

√
1 + e−2|α|2

2
|0⟩i ±

√
1− e−2|α|2

2
|1⟩i i = 2, 3 (22)

Substituting (21) and (22) in (16) (resp. (20)), one can express the density matrix ρ12 (resp. ρ23) in

the two qubit basis {|0⟩1 ⊗ |0⟩2, |0⟩1 ⊗ |1⟩2, |1⟩1 ⊗ |0⟩2, |1⟩1 ⊗ |1⟩2} (resp. {|0⟩2 ⊗ |0⟩3, |0⟩2 ⊗ |1⟩3, |1⟩2 ⊗
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|0⟩3, |1⟩2 ⊗ |1⟩3}). The resulting density matrices, in this encoding scheme, have non vanishing entries

only along the diagonal and the anti-diagonal.

Usually coherent states are treated as continuous variable states. Recently, the idea of encoding

quantum information on coherent states has led to an interesting proposal [?] in which superpositions

of Glauber coherent states are used to encode logical qubits. Accordingly, one can consider an encoding

scheme of type |α⟩ −→ |0⟩ and |−α⟩ −→ |1⟩ with two non orthogonal logical qubits. Alternatively, an

orthogonal qubit encoding scheme involving even and odd Glauber coherent states can be be defined

so that the coherent states are mapped in in C2⊗C2 Hilbert space. Hence, for photon added coherent

of type (5), one introduces the two dimensional basis spanned by two orthogonal qubits |+,m⟩ and

|−,m⟩ defined as even and odd superpositions of photon added coherent states (5)

|±,m⟩ = 1√
2± 2κme−2|α|2

(|α,m)± | − α,m)) (23)

Clearly, for m = 0, one has κ0 = 1 and the logical qubits (23) reduce to

|±⟩ = 1√
2± 2e−2|α|2

(|α⟩ ± | − α⟩), (24)

which coincide with even and odd Glauber coherent states providing the qubit encoding scheme

introduced in [?]. It must be emphasized that such qubit encoding of paramount importance in

dealing with quantum correlation in photon added coherent states and to investigate the influence of

the photon adding excitation process. In this, we shall first consider the entanglement in quasi-Bell

states. The quasi-Bell states are very interesting in quantum optics and serve as valuable resource for

quantum teleportation and many others quantum computing operations.

bipartition pure

we introduce the orthogonal basis {|0⟩1, |1⟩1} defined by

|0⟩1 =
|α,m⟩+ |α,m⟩√
2(1 + κme−2|α|2)

|1⟩1 =
|α,m⟩ − |α,m⟩√
2(1− κme−|α|2)

, (25)

for the first subsystem. For the modes (23), grouped into a single subsystem, we introduce the

orthogonal basis {|0⟩23, |1⟩23} given by

|0⟩23 =
|α, α⟩+ | − α,−α⟩√

2(1 + e−4|α|2)
|1⟩23 =

|α, α⟩+ | − α,−α⟩√
2(1 + e−4|α|2)

. (26)

Inserting(25) and (26) in GHZk(α,m) , we get the form of the pure state GHZk(α,m) in the basis

{|0⟩1 ⊗ |0⟩23, |0⟩1 ⊗ |1⟩23, |1⟩1 ⊗ |0⟩23, |1⟩1 ⊗ |1⟩23}. Explicitly, it is given by

|GHZk(α,m)⟩ =
∑
α=0,1

∑
β=0,1

Cα,β|α⟩1 ⊗ |β⟩23 (27)

where the coefficients Cα,β are

C0,0 = Ck(α,m)(1 + eikπ)c+1 c
+
23, C0,1 = Ck(α,m)(1− eikπ)c+1 c

−
23
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C1,0 = Ck(α,m)(1− eikπ)c+23c
−
1 , C1,1 = Ck(α,m)(1 + eikπ)c−1 c

−
23.

in terms of the quantities

c±1 =

√
1± κme−2|α|2

2
c±23 =

√
1± e−4|α|2

2

3 Geometric measure of quantum discord in photon added coherent

states

3.1 Closest classical states to two qubit X states

To begin, we shall present the procedure leading to the closest classically correlated state to the

two-qubit X state given by

ρ12 =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

 . (28)

The state (28) reads in Fano-Bloch representation as

ρ12 =
1

4

[
σ0 ⊗ σ0 + T03σ0 ⊗ σ3 + T30σ3 ⊗ σ0 +

∑
kl

Tklσk ⊗ σl

]
(29)

where the correlation matrix elements are given by ??????. The geometric measure of quantum discord

is defined as the distance the state ρ12 and its closest classical-quantum state presenting zero discord

[?]

Dg(ρ12) = min
χ12

||ρ12 − χ12||2 (30)

where the Hilbert-Schmidt norm is defined by ||X||2 = Tr(X†X) and the minimization is taken over

the set of all classical states. When the measurement is performed on the qubit 1, the classical states

write

χ12 = p1|ψ1⟩⟨ψ1| ⊗ ρ21 + p2|ψ2⟩⟨ψ2| ⊗ ρ22 (31)

where {|ψ1⟩, |ψ2⟩} is an orthonormal basis related to the qubit 1, pi (i = 1, 2) stands for probability

distribution and ρ2i (i = 1, 2) is the marginal density of the qubit 2. The classically correlated states

χ12 can also be written as

χ12 =
1

4

[
σ0 ⊗ σ0 +

3∑
i=1

tei σi ⊗ σ0 +

3∑
i=1

(s+)i σ0 ⊗ σi +

3∑
i,j=1

ei(s−)j σi ⊗ σj

]
(32)

where

t = p1 − p2, ei = ⟨ψ1|σi|ψ1⟩, (s±)j = Tr
(
(p1ρ

2
1 ± p2ρ

2
2)σj

)
.

It follows that the distance between the density matrix ρ12 and the classical state χ12, as measured

by Hilbert-Schmidt norm, is then given by

||ρ12 − χ12||2 =
1

4

[
(t2 − 2te3T30 + T 2

30) +

3∑
i=1

(T0i − (s+)i)
2 +

3∑
i,j=1

(Tij − ei(s−)j)
2

]
(33)
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The minimization of the distance (33), with respect to the parameters t, (s+)i and (s−)i, gives

t = e3T30

(s+)1 = 0 (s+)2 = 0 (s+)3 = T03

(s−)i =

3∑
j=1

ejTji. (34)

Inserting these solutions in (33), one has

||ρ12 − χ12||2 =
1

4

[
TrK − e⃗tKe⃗

]
(35)

where the matrix K is defined by

K = xx† + TT † (36)

with

x† = (0, 0, T30) T =

 T11 T12 0

T21 T22 0

0 0 T33

 .

From equation (35), one see that the minimal value of Hilbert-Schmidt distance (35) is reached for

the largest eigenvalue of the matrix K. We denote by λ1, λ2 and λ3 the eigenvalues of the matrix K

(36) corresponding to the X state (28) or equivalently (29). They are given by

λ1 = 4(|ρ14|+ |ρ23|)2, λ2 = 4(|ρ14| − |ρ23|)2, λ3 = 2[(ρ11 − ρ33)
2 + (ρ22 − ρ44)

2]. (37)

To get the minimal value of the Hilbert-Schmidt distance (35) and subsequently the amount of geo-

metric quantum discord, one compares λ1, λ2 and λ3. As λ1 is always greater than λ2, the largest

eigenvalue λmax is λ1 or λ3. It follows that the geometric discord is given by

Dg(ρ12) =
1

4
min{λ1 + λ2, λ2 + λ3}. (38)

To write down the explicit expressions of the closest classical state χ12 to ρ12, one has to determine the

eigenvector e⃗max associated with the largest eigenvalue λmax. In this respect, two cases ( λmax = λ1

and λmax = λ3) are separately discussed. We begin by density matrices ρ12 (28) whose entries satisfy

the condition λmax = λ3. The associated eigenvector is given by e⃗3 = (0, 0, 1). Replacing in the set of

constraints (34), one has

χ3
12 =

1

4

[
σ0 ⊗ σ0 + T30 σ3 ⊗ σ0 + T03 σ0 ⊗ σ3 + T33 σ3 ⊗ σ3

]
(39)

In the second situation, the eigenvector corresponding to λ1 is given by e⃗1 = (cos ϕ
2 ,− sin ϕ

2 , 0) where

eiϕ = ρ14ρ23
|ρ14||ρ23| . Reporting the components of e⃗1 in (34), one gets the closest classical state

χ1
12 =

1

4

[
σ0 ⊗ σ0 + T30 σ3 ⊗ σ0 +

2∑
i=1

2∑
j=1

T̃ij σi ⊗ σj

]
(40)
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where

T̃11 = cos
ϕ

2
(cos

ϕ

2
T11 − sin

ϕ

2
T21) T̃12 = cos

ϕ

2
(cos

ϕ

2
T12 − sin

ϕ

2
T22)

T̃21 = − sin
ϕ

2
(cos

ϕ

2
T11 − sin

ϕ

2
T21) T̃22 = − sin

ϕ

2
(cos

ϕ

2
T12 − sin

ϕ

2
T22).

3.2 Pairwise geometric discord in tripartite quasi-GHZ coherent states

In this section, we are interested to study the tripartite quantum correlations present in single mode

excited entangled coherent states (12). Using the qubit mapping (23) and (24), the bipartite density

matrix ρ12 = Tr3ρ123 writes in Fano-Bloch form as

ρ12 =
1

4

[
σ0 ⊗ σ0 +R12

03σ0 ⊗ σ3 +R12
30σ3 ⊗ σ0 +

∑
k=1,2,3

R12
kkσk ⊗ σk

]
(41)

R12
00 = 1

R12
03 = 2C2

k(α,m) (e−2|α|2 + κme
−4|α|2 cos kπ)

R12
30 = 2C2

k(α,m) (κme
−2|α|2 + e−4|α|2 cos kπ)

R12
11 = 2C2

k(α,m)

√
(1− κ2me

−4|α|2)(1− e−4|α|2)

R12
22 = −2C2

k(α,m)

√
(1− κ2me

−4|α|2)(1− e−4|α|2) e−2|α|2 cos kπ

R12
33 = 2C2

k(α,m) (κme
−4|α|2 + e−2|α|2 cos kπ) (42)

Having mapped the bipartite system (ρ12 = ρ13) into a pair of two qubit presented in the previous

subsection, we obtained the final expression of MGQD from a special comparison of the eigenvalues

given by the matrix K, which are defined by

λ121 =
(1− κ2me

−4|α|2)(1− e−4|α|2)

(1 + κme−6|α|2 cos kπ)2
, (43)

λ122 = e−4|α|2 (1− κ2me
−4|α|2)(1− e−4|α|2)

(1 + κme−6|α|2 cos kπ)2
, (44)

λ123 = e−4|α|2 (1 + κ2m)(1 + e−4|α|2) + 4κme
−2|α|2 cos kπ

(1 + κme−6|α|2 cos kπ)2
. (45)

ρ23 =
1

4

[
σ0 ⊗ σ0 +R23

03σ0 ⊗ σ3 +R23
30σ3 ⊗ σ0 +

∑
k=1,2,3

R23
kkσk ⊗ σk

]
(46)

R23
00 = 1

R23
03 = 2C2

k(α,m) (e−2|α|2 + κme
−4|α|2 cos kπ)

R23
30 = 2C2

k(α,m) (e−2|α|2 + κme
−4|α|2 cos kπ)

R23
11 = 2C2

k(α,m)

√
(1− e−4|α|2)(1− e−4|α|2)
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R23
22 = 2C2

k(α,m)

√
(1− e−4|α|2)(1− e−4|α|2) κme

−2|α|2 cos kπ

R23
33 = 2C2

k(α,m) (e−4|α|2 + κme
−2|α|2 cos kπ) (47)

λ231 =

(
1− e−4|α|2

1 + κme−6|α|2 cos kπ

)2

, (48)

λ232 = κ2me
−4|α|2

(
1− e−4|α|2

1 + κme−6|α|2 cos kπ

)2

, (49)

λ233 = e−4|α|2 (1 + κ2m)(1 + e−4|α|2) + 4κme
−2|α|2 cos kπ

(1 + κme−6|α|2 cos kπ)2
. (50)

Now we consider the case of the pure bi-partitioning scheme of type 1|23. Using the Schmidt

decomposition, the state (27) rewrites as

|GHZk(α,m)⟩1|23 =
√
λ+|+⟩1 ⊗ |+⟩23 +

√
λ−|−⟩1 ⊗ |−⟩23 (51)

where |±⟩1 (resp. |±⟩23) denotes the eigenvectors of the reduced density matrix ρ1 (resp. ρ23 viewed

as a single qubit state). The eigenvalues λ+ and λ− are given by

λ± =
1

2

[
1± e−2|α|2 κm + e−2|α|2 cos kπ

1 + κme−6|α|2 cos kπ

]
(52)

The Fano-Bloch representation of the state ρ1|23 takes the form

ρ1|23 =
1

4

[
σ0 ⊗ σ0 +R

1|23
03 σ0 ⊗ σ3 +R

1|23
30 σ3 ⊗ σ0 +

∑
k=1,2,3

R
1|23
kk σk ⊗ σk

]
(53)

where

R
1|23
00 = R

1|23
33 = 1

R
1|23
03 = R

1|23
30 = e−2|α|2 κm + e−2|α|2 cos kπ

1 + κme−6|α|2 cos kπ

R
1|23
11 = −R1|23

22 =

√
1− κ2me

−4|α|2
√

1− e−8|α|2

1 + κme−6|α|2 cos kπ
(54)

The eigenvalues

λ
1|23
1 =

(1− κ2me
−4|α|2)(1− e−8|α|2)

(1 + κme−6|α|2 cos kπ)2
, (55)

λ
1|23
2 =

(1− κ2me
−4|α|2)(1− e−8|α|2)

(1 + κme−6|α|2 cos kπ)2
, (56)

λ
1|23
3 = 2− (1− κ2me

−4|α|2)(1− e−8|α|2)

(1 + κme−6|α|2 cos kπ)2
. (57)
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Limiting cases

The behavior of the pairwise geometric quantum discord is very interesting in antisymmetric states

|GHZ1(α,m)⟩ in the limiting case |α| −→ 0. In this case, it simply verified that the state (12) reduces

to

|GHZ1(0,m)⟩ = 1√
m+ 3

(
√
m+ 1|m+ 1, 0, 0⟩+ |m, 1, 0⟩+ |m, 0, 1⟩) (58)

which coincides with the usual three qubit W states for m = 0 [?]. The state (58) is expressed in

the Fock-Hilbert basis. In this limit the first qubit is encoded in the Fock states |m⟩ and |m + 1⟩
and the two other modes are encoded in the states |0⟩ and |1⟩. In the limit |α| −→ 0, one has

Lm(|α|2) ≃ 1−m|α|2 and the quantity κm (14) writes

κm ≃ 1− 2m|α|2. (59)

It follows that the eigenvalues (43) reduce, in this limit, to

λ121 −→ 4
m+ 1

(m+ 3)2
, (60)

λ122 −→ 4
m+ 1

(m+ 3)2
, (61)

λ123 −→ 2
m2 + 1

(m+ 3)2
. (62)

Similarly, for the reduced density matrix ρ23 (20) with k = 1, it is simple to check that the

eigenvalues (48) are given by

λ231 −→ 4

(m+ 3)2
, (63)

λ232 −→ 4

(m+ 3)2
, (64)

λ233 −→ 2
m2 + 1

(m+ 3)2
. (65)

Finally, for the state ρ1|23 (53), viewed as a two qubit system, the corresponding take the following

form

λ
1|23
1 −→ 8

m+ 1

(m+ 3)2
, (66)

λ
1|23
2 −→ 8

m+ 1

(m+ 3)2
, (67)

λ
1|23
3 −→ 2− 8

m+ 1

(m+ 3)2
, (68)

and the pairwise quantum discord is

D1|23 −→ 4
m+ 1

(m+ 3)2
, (69)
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4 Monogamy of geometric quantum discord in quasi-GHZ states

Monogamy of quantum correlations is a property satisfied by certain entanglement measures in a

multipartite scenario. Given a tripartite state ρ123, the monogamy condition for a bipartite quantum

correlation measure Q assures that the bipartite quantum correlations in the density operator ρ1|23

are distributed in such a way that the following inequality is satisfied

Q(ρ1|23) ≥ Q(ρ12) +Q(ρ13). (70)

Violation of the above inequality will imply that the quantity Q is polygamous for the corresponding

state. Otherwise, this inequality is sufficient for quantum discord to be monogamous.

To illustrate the above analysis, we will investigate the properties of quantum discord monogamy in

two different ways (quantum discord and geometric quantum discord using norm 2).

5 Concluding remarks

Summarizing, we have presented in the early of this paper a class of the single mode excited entangled

coherent states (SMEECSs)|ψp(α,m)⟩ , which are obtained through actions of creation operator on the

entangled coherent states. Then, we have exhibited the important properties of quantum entanglement

by using different ways (specially, the concurrence, quantum discord and its version geometric). The

first way, we have studied the concurrence for bipartite systems and investigated the influence of

phonon excitations numbers on quantum entanglement. We also employed the other process for

studied the quantum correlation of add coherent states for tripartite quantum states (see the equations

(??) and (??) by the quantum discord. Thus, we found two explicit analytic expressions of this

measure and the results obtained are discussed. Another way which treated the quantum correlations

by introducing the geometric version of quantum discord, at this stage we derived a necessary and

sufficient condition. Specially, for the case of three-qubit states we have proposed in the our discussion,

two version(i.e.symmetric, antisymmetric states, respectively) and the result obtained is explained in

terms of different number photon excitations(i.e.the influence of m on geometric quantum discord).

To close our work, we have employed the concept of quantum monogamy corresponding to quantum

discord and its geometric version. In particular, we have investigated the relation between discord

monogamy and a genuine tripartite entanglement measure for three-qubit pure states. Therefor,

We have demonstrated that the quantum correlations examined by the entropic measure, geometric

measure respectively does not satisfy the monogamy relation(70). A very important result is derived

in this work, from a value determined of |α|2, we see that no effect of the addition of the photon can

be found on the measurement of monogamy. The analysis presented in this letter can be extended to

the effect of subtracting the photon of tripartite GHZ coherent states.
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