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Abstract

The Hilbert-Schmidt distance between a mixed three qubits state and its closest state is used to
quantify the amount of pairwise quantum correlations in a tripartite system. Analytical expressions
of geometric quantum discord are derived. A particular attention is devoted to two special classes of
three qubit X states. They include three qubit states of W, GHZ and Bell type. We also discuss the

monogamy property of geometric quantum discord in some mixed three qubit systems.
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1 Introduction

Quantum correlations in multipartite systems have been intensively investigated during the last two
decades in the context of quantum information science. This is mainly motivated by the fact that
quantum correlations constitute a key ressource for many quantum information processing tasks (see
for instance [1, 2, 3, 4]). Also, the understanding of the basic features of quantum correlations is
essential to provide a comprehensive way to distinguish the frontier between quantum and classical
physics. Nowadays, quantum correlations have become an important tool in studying several aspects
in many-body systems such as quantum phase transition in strongly correlated systems. A rigorous
quantitative and qualitative way to decide about the existence of quantum correlation, between the
compounds of a composite system, remains an open problem. Various measures to quantify the degree
of quantumness in multipartite quantum systems have been discussed in the literature from different
perspectives and for several purposes (for a recent review see [5]). Among these several quantifiers
of non-classicality, concurrence and entanglement of formation [6, 7] have attracted considerable at-
tention. But, recently it was realized that entanglement of formation does not reveal all non classical
aspects of quantum correlations. In this sense, quantum discord was introduced to capture the es-
sential of quantum correlations in composite quantum systems. This measure, which goes beyond
entanglement of formation, is defined as the difference between the total amount of nonclassical mu-
tual information and classical correlation present in a bipartite system [8, 9]. The explicit expression
of quantum discord requires an optimization procedure that is in general a challenging task. To over-
come this problem, a geometric variant of quantum discord was proposed in [10]. Geometric quantum
discord was explicitly evaluated between qubit-qubit as well as qubit-qudit systems (see [11] and ref-
erences therein). In the literature, a particular attention was devoted to quantum correlations in the
so-called two-qubit X states [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27]. In the compu-
tational basis, these states have non-zero entries only along the diagonal and anti-diagonal and look
like the alphabet X. Their algebraic structures [28] simplify many analytical calculation in deriving
entanglement of formation [29] and quantum discord [14, 25, 30]. Interestingly, algebraic aspects of
multi-qubit states have been generalized to describe X states of quantum systems encompassing more
than two qubits [31]. The generalized X states cover a large class of multi-qubit states including W
[32, 33], GHZ [34] and Dicke states [35].

The study of genuine correlations in multipartite quantum systems is complex from conceptual
as well as computational point of view. Various approaches, inspired by the results obtained of bi-
partite systems, were discussed in the literature to tackle this issue. In this paper, we extend the
geometric measure of quantum discord for two qubits, to tripartite systems comprising three qubits.
The focus will be maintained strictly on two special families of three qubit X states for which the
explicit expressions of quantum discord are explicitly derived using the Hilbert-Schmidt norm. In

other hand, another important question in systems, comprising more than two parts, concerns the



distribution of quantum correlations among the subsystems and it is constrained by the the so-called
monogamy relation. In fact, for a tripartite system 1 — 2 — 3, the sum of quantum correlations Qo
(the shared correlation @ between 1 and 2) and Q)3 (the shared correlation @ between 1 and 3) is
always less or equal to the correlation (123 shared between 1 and the composite subsystem 23. The
concept of monogamy was introduced by Coffman, Kundo and Wootters in 2001 [36] in investigating
the distribution of entanglement in three qubit systems. The monogamy property was analyzed for
other measures of quantum correlations to understand the distribution of correlations in multipar-
tite systems and to establish the conditions limiting the shareability of quantum correlations. The
entanglement of formation [37, 38], quantum discord [39, 40, 41, 42, 43] and its geometrized variant

[45, 44, 46] do not follows in general the monogamy property, contrarily to squared concurrence [36].

This paper is organized as follows. In section 2, we introduce two families of three qubit X states.
The first one is given by three qubit states where a subsystem comprising two qubits possesses parity
invariance. The second class corresponds to the situation where the three qubits are all invariant under
parity symmetry. In section 3, we derive the geometric measure of quantum discord. We also give
the explicit forms of classical tripartite states presenting zero discord. To investigate the monogamy
property in three qubit X states, we give the general expression of geometric quantum discord in
reduced states containing two qubits after tracing-out the third qubit in the global quantum state.
The explicit expressions of resulting pairwise quantum discord are derived in section 4. To illustrate our
calculations, we consider some special instances of three qubit systems for which geometric quantum
correlations are given. In addition, we discuss the distribution of geometric quantum discord to decide
about the monogamy property. Illustrations for some specify three qubit mixed states are given.

Concluding remarks close this paper.

2 Three-qubit X-states

In Fano-Bloch representation, a two qubit state writes as

4

P12 = ia%;OTagaa ®oga (1)
where the Fano-Bloch parameters are given by T,g = Tr(p1204 ® 0g) and o, are the Pauli matrices.
The symmetry of two qubit systems is fully characterized by the algebra su(4) spanned by the 4 X
4 Pauli matrices (see [28, 29, 30] and references therein). An interesting family of two-qubit states
which is relevant in several problems of quantum optics and quantum information is the subset whose
density matrices resemble the letter X. They especially arise in physical systems possessing parity
symmetry such as Werner, Bell-diagonal and Dicke states. The X-states are parameterized by seven
real parameters (three real parameters along the diagonal and two complex parameters at off-diagonal

positions). The underlying symmetry is characterized by the sub-algebra su(2) x u(1) x su(2) C su(4)



spanned by seven linearly independent generators. Specifically, X states can be written as

pir 0 0 pu
0 p22 pa3 O

P12 = . (2)
0 p32 p33 O

par 0 0 pag

in the computational basis for two qubits (|00), [01), [10), |11)) or equivalently (] 11), | t4), |41, )
in two spin basis. Clearly, the states of the form (2) commute with the operator o3 ® o3 reflecting the
invariance under parity transformation. The tools developed for two qubit systems are of paramount
importance for three or more qubits. The X states for multi-qubit systems and their underlying
symmetries were discussed in [11, 28, 29, 30]. In this paper we shall mainly focus on three-qubits
X states. We consider a tripartite system 1 — 2 — 3 with each party holding a qubit. The state
shared between three parties 1, 2 and 3 is given by the unit trace operator p;s3 acting on the tensor-
product Hilbert space H; ® Ho ® Hs where each single Hilbert space is two-dimensional spanned by
the vectors |0) and |1). The three qubit system lives in a 23-dimensional Hilbert space. As mentioned
in the introduction, two types of X states are studied in this work. The first type concerns the states
commuting with the operator o3 ® 03 ® oy and the second class corresponds to density matrices that

commute with the operators o3 ® o3 ® o3.

2.1 Three qubit X-states: first class

The first family of three qubit states, that we introduce in this section, corresponds to density matrices
commuting o3R03® 0. The states of the subsystem 1—2 of the tripartite system 1—2—3 are invariant
under parity transformation. It is simply verified that, in the usual 23-dimensional computational

basis, the general form of such states is

piri 0 0 pu p5 0 0 pis
0 p2 p3 0 0 pag p2r O
0 p32 p33 0 0 p3¢ p3r O
par 0 0 pgg pis O 0 pgg
p123 = : (3)
pst 0 0 psg pss O 0 psg
0 ps2 pe3 0 0 pes per O
0 pr2 p3 0 0 pg prr O

pgt 0 0 pga pss O 0 psg

In the Fano-Bloch representation, the three qubit state (3) takes the following form

1
p1as =g ZRaﬂ'y Ta ® 0@ 0y (4)
afy

where o, and 7 take the values =0, 1,2, 3 and the the correlation matrix elements R,g, are

Raﬁ'y = TY(P123(Ua 02 o @ O—W))



with Rooo = 1 (Tr(p123) = 1). The operators o, stands for Pauli basis with o is the identity.
The parity invariance reduces the number of the non vanishing correlation matrix elements R,z in
equation (4). Indeed, it is easy to verify that the non vanishing ones are those corresponding to

(c, B,7) belonging to the following set of triplets
(000), (001), (002), (003), (030), (031), (032), (033)

(110), (111), (112), (113), (120), (121), (122), (123)
(210), (211), (212), (213), (220), (221), (222), (223)
(300), (301), (302), (303), (330), (331), (332), (333). (5)

Accordingly, the state (4) expand as

1

P123 = 3

[7300000 ® o9 ® oo + Z (Rioo 05 ® 00 ® 09 + Roio 00 ® 03 ® 00 + Rovi 00 @ 00 @ 04)

)

+3 " (Rijo 05 ® 05 ® 00 + Rigj i ® 00 @ 05 + Roij 00 @ 0: ® 05) + ¥ Rijk 0i @0 @ 0p|,  (6)

ij ijk
in terms of 32 operators which span the subalgebra su(2) ® u(1) ® su(2) @ u(1l) ® su(2) ® u(l) ® su(2)
of the full symmetry algebra su(8) characterizing an arbitrary three qubit system [28, 29, 30]. The
explicit relation between the non vanishing Fano-Bloch parameters R,g, and the matrix elements of
p123 will be given here after. It is interesting to note that density matrix (3) encompasses four two

qubit X states (four sub-blocks, each one is X shaped). In fact, the matrix (3) can be written as

pra3a= > p7 @il (7)

i,j=0,1

where the vectors |i) and |j) are related to the qubit 3. From equation (3), the density matrices p%

appearing in (7) write as

P144i 1445 0 0 Pl4di 4445
il = 0 P2+4i 2445 P2+4i 3+4j 0 ’ (8)
0 P3+4i 2445  P3+4i 3445 0
PA+4i 1+4j 0 0 Pa+4i 4+4j

in the computational basis spanned by two-qubit product states of 1 and 2 {|0); ®|0)2, [0)1 ®|1)2,]1)1®
|0)2, [1)1 ® |1)2}. The Fano-Bloch representations of the two qubit X states p”/ (8) are

| .
P = 1 Z Rlofﬂaa ® o3 9)
ap
where «, 8 = 0,1,2,3 and the Fano-Bloch parameters Rifg defined by

Ry =Tr(p" 04 @ 0p),



are given by
iy _
Ri, =1
Rij — . . _|_ . P . P . .
30 — Pl+4i 1445 T P2+4i 2+45 — P3+4i 3+45 — Pa+4i 4445
R ot et Dok i b DAty A — DAk deds
03 = Pl1+4i 1445 P2+4i 2445 P3+4i 3+4j Pa+4i 4445
o
RY| = p144i a44j + patai 1445 + P2+4i 3445 + P3+4i 24+4;
i
Ryy = i(p144i 4445 — PA+4i 1445 — P2+4i 3+45 T P3+4i 2+4j)
i
R3y = i(p144i 4+4j — PAt+ai 1445 + P2+4i 3+45 — P3+4i 2+45)
R ot et b D% s md — Dl A — Diodi 1o
29 = P2+4i 3+45 T P3+4i 2+45 — Pl+4i 4+45 — P4+4i 1+45
o
Ry = pigai 1445 — P24+4i 2445 — P3+4i 3445 + Patdi 4+4;)- (10)

By inserting the Fano-Bloch representations (9) into the expression (7), the tripartite correlations
elements R,g, can be written in terms of the bipartite correlation parameters Rgﬁ. Indeed, equation

(7) can be rewritten as

pras = 5 [0+ ) @ao + (0" = p) @ o5 + (0" + ) @ or +i(p" — p1) @ 0 (11)
and similarly, we rewrite (6) as
1
p123 = o Z [Ra,so 0a®03R00+Rapl 0a ®03R01+Rap2 0a ®03R02+Rap3 0a@0s@03]|. (12)
ap

By Replacing the expressions (9) and (10) in (11), and identifying with the equation (12), one gets
Rapo = RIS = RO+ RLG
Rags = Roy = Rojh — Raj
Ropr = R5 = Ry + RL,
Rapz = Ry J = iRz — iRyy. (13)

where the pairs (af) belong to the set {(00), (03), (30), (12), (21), (11), (22), (33)}. The relations (13)
specify completely the tripartite correlation tensor Rqg, in terms of the Fano-Bloch parameters Rgﬁ
encoding the correlations in the two qubit subsystem 1 — 2 (9). As we shall discuss, these recursive

relations play a central role in deriving the geometric measure of quantum discord.



2.2 Three qubit X-states: second class

Now we consider three qubit states, denoted by o193, possessing the symmetry invariance under the
parity transformation Zo ® Zo ® Zo. As they commute with the parity operator o3 ® o3 ® o3, they

write

cy 0 0 ou 0 o016 o017 O
0 o022 o023 0 o095 0 0 oo
0 o032 033 0 o035 0 0 o038

o 0 0 o 0 o o 0

S A1 44 46 047 (14)
0 o052 o053 0 o055 0 0 o058

ot 0 0 o0es O o066 o067 O

g71 0 0 074 0 o7¢ O77 0

0 o0g9 o3 0 o0g5 O 0 osgs

in the standard computational basis. The density matrix o193 is built of four blocks. The diagonal
blocks appear as X alphabet with non-zero density matrix elements only along the diagonal and anti-
diagonal contrarily to the two off diagonal blocks which have vanishing elements along the diagonal
and anti-diagonal. This gives another family of extended three-qubit X state (see [28, 29, 30] where
such states were originally termed X states). The underlying symmetry is su(2) ® u(l) ® su(2) ®
u(1l) ® su(2) ® u(l) ® su(2). In the Fano-Bloch representation, the matrix density (14) expands as

1
012328[7600006900@00-#2(7?00 0; ® 00 ® 00 + Toio 00 ® 04 @ 00 + Tooi 00 @ 00 @ 04)

2

—i—Z('Ejo O'Z'®0'j®0'0+7;0j O’Z‘®O'0®Uj+76ij 0'0®Ui®0'j) +Z7;jk 0;Q0; Q0 (15)
i ijk

where the the matrix correlation elements are
7-04,87 = Tr(0123(0a X g X 07))

with Tooo = 1 (Tr(o123) = 1). The non vanishing correlation elements 7,3, occurring in (15) are those

with a triplet (a3y) in the following list
(000), (003), (011), (012), (021), (022), (030), (033)
(101), (102), (110), (113), (120), (123), (131), (132)
(201), (202), (210), (213), (220), (223), (231), (232)

(300, (303), (311), (312), (321), (322), (330), (333). (16)

Analogously to the previous class of three qubit states, we write the density matrix (14) as

o=y o’ @il (17)

4,j=0,1



where |i) and |j) are eigenvectors associated with the third qubit. In equation (17), the matrices o®

(with i = 0, 1) write, in the computational basis spanned by two-qubit product states of the subsystems
1 and 2 {[0); ® |0)2,]0)1 ® [1)2,]1)1 ® |0)2, 1)1 @ [1)2}, as

O144i 144i 0
i 0 O244i 2+44i
o =
0 O344i 244i
O444i 1+4i 0

For (i=0,j =1) and (i = 1,5 = 0), we have

0 O1+4i 2445
gl | T2t4i 144 0
O34+4i 1445 0

0 O4+4i 2445

0
02445 3+4i

O03+4i 3+4i
0

O1+4i 3+4j
0
0

O4+4i 3+4j

The Fano-Bloch representations of the matrices o are

1 3
ot — ZZTOZ‘ZB Oq ®0p

ap

where «, 8 = 0,1,2,3 and the vanishing correlation parameters T’ ;JB are given by

113

00 —

T30 = O144i 14+4i T 02+4i 2+4i — O3+44i 3+4i — O444i 4+4i
T05 = O144i 1+4i — 0244i 2+4i + 0344i 3+4i — O444i 4+44i
T = 0144 a+4i + Oatai 144i + 02445 3+4i + 03445 244
T — ) ) ) ) . ) ) .
12 — Z<Ul+4z A44i — O444i 1+4i — 0244i 3+4i + 03445 2+4z)
T — . . : ) . . . .
21 = Z(Ul+4z 4447 — 0444 1445 T 02444 3+4i — O3+4i 2+4z)
T35 = 0214i 34+4i + O3+4i 244i — O144i 4+4i — Od+di 1+44i
TV — ‘ ‘ : ) : . . .
35 = O144i 144i — O2+4i 2+4i — O3+4i 3+4i T 0444 4+4i)-

Similarly, for the two-qubit matrices ¢/ (19), the corresponding Fano-Bloch representations are

01444 4+44
0
0

O4+47 4440

0
0244i 4445

O3+4i 4+4j
0

TR i .
UZ‘]:ZZT;JBUQ(X)O'ﬁ 1# ]
af

where the non zero matrix elements TO’ZB are given by

.
Ty = 0o44i 1445 + O144i 2445 + O4tdi 3445 + O344i 4+4j

Ty) = i(—0244i 1445 + O14+4i 244j — Od4di 3+4j + O344i 4+4;5)

y
Tlf) = 01444 3445 T 034+4i 1+45 T 0244 4+45 T O4+4i 2445

(18)

(21)

(22)



.
TV, = O144i 3445 + 03440 144 — 0244 444j — Odtdi 2+4;
Tyl = i(0144i 3445 — O344i 144j + 024 4i 444 — Oatdi 2445)
Tos = (0144 3+4j — 344 144j — O24+4i 444 + Oasdi 2445)
y
T3] = O144i 2445 + 02440 144j — 03447 444 — Odtdi 34+45)
T3 = i(0144i 244 — 0244 144j — O3+44i 44+4j + Tdtai 3445)- (23)

Using (17), one obtains

o1 = 5 0%+ oY@ 0g + (6% — oY@ o3 + (6% + o) @ o1 + (0% — 010) @ s |. (24)
The three qubit state (15) rewrites also as
0123 = ;ZB: [7:1,80 0a®03R00+ Tapl 0a @001+ Tapz 0a ®03® 02+ Taps 0a ®og @ 03| (25)
o
Inserting (20) and (22) in the equation (24), one verifies the following relations
Tapo = To5h =T + Tk
Tops =Tog = Tag — Tap (26)
where (af3) belongs to the set {(00), (03), (30), (12), (21), (11),(22), (33)} and
Topr = T =To5 + T
Tap2 = To5 = iToh — T, (27)

where (af) are in the set {(01), (02), (10), (20), (13), (23), (31), (32)}, so that the total number of non
vanishing correlation matrix 7,5, elements is 32 to be compared with (16). The relations (26) and
(27) reflect that the tensor element 7,3, can be explicitly expressed in terms of two-qubit correlations

factors.

3 Geometric measure of quantum discord

Given a tripartite system 1 — 2 — 3, we shall consider the bipartite splitting 1|23. The pairwise
quantum correlation between the subsystems (1) and (23) in three-qubit X states of type (3) or (14)
is determined in complete analogy with two qubit X state. It is defined as the distance from the
set of classically correlated states using Hilbert-Schmidt trace. In this respect, the explicit form of
states of type (3) or (14) presenting vanishing quantum correlation can be derived by optimizing the
Hilbert-Schmidt norm by means of which quantunmness is quantified. This issue constitutes the main

of this section.



3.1 Closest classical states to two qubit X states

To begin, we shall present the procedure leading to the closest classically correlated state to the
two-qubit X state (2). The Fano-Bloch representation (1) reads
1
P2 =7 ao®00+T0300®U3+T3003®00+2Tk10k®01 (28)
kl
where the correlation matrix elements are obtainable from (10) modulo some obvious substitutions.

The geometric measure of quantum discord is defined as the distance the state pio and its closest

classical-quantum state presenting zero discord [10]
Dy(p12) = min ||pr2 = x12||” (29)

where the Hilbert-Schmidt norm is defined by || X||> = Tr(X'X) and the minimization is taken over
the set of all classical states. When the measurement is performed on the qubit 1, the classical states

write

X12 = p1|Y1) (1] ® pi + p2lt2) (vo| @ p3 (30)

where {|11),|¢2)} is an orthonormal basis related to the qubit 1, p; (i = 1,2) stands for probability
distribution and p? (i = 1,2) is the marginal density of the qubit 2. The classically correlated states

X12 can also be written as

3 3 3
1
X12 = Z oo ® og + Ztei 0; Q og + Z(SJF)i oo X o; + Z 61'(87)3‘ 0; ® 0;j (31)
i=1 i=1 7'7]:1
where
t =p1 — po, e; = (1loilvr), (s£); = Tr((p1p] £ p2p3)o;).

It follows that the distance between the density matrix pi1o and the classical state xi12, as measured

by Hilbert-Schmidt norm, is then given by
1 3 3
llp12 = xa2l|* = 5 | (8 — 2tesTso + T5o) + > (Thi — (s4)i)* + > _ (T — ei(S—)j)z} (32)

4 , “
i=1 3,j=1

The minimization of the distance (32), with respect to the parameters ¢, (s4); and (s_);, gives

t = e3T30

(s:)1=0 (s4)2=0 (s4)3="Tos

3
(s-)i = €Ty (33)
j=1
Inserting these solutions in (32), one has
2 _ 1 o
llp12 — x12l|” = 1 [TrK - Ke] (34)

10



where the matrix K is defined by

K =zzt + 1777 (35)
with
Tn T2 O
2t = (0,0, Ty) T=| Ty Too O
0 0 T33

From equation (34), one see that the minimal value of Hilbert-Schmidt distance (34) is reached for
the largest eigenvalue of the matrix K. We denote by A1, Ao and A3 the eigenvalues of the matrix K
(35) corresponding to the X state (2) or equivalently (28). They are given by

A1 = 4(|pual + |p2s))?, A2 = 4(|p1a] — |p23))?, As = 2[(p11 — p33)? + (p22 — pas)?. (36)

To get the minimal value of the Hilbert-Schmidt distance (34) and subsequently the amount of geo-
metric quantum discord, one compares A, Ao and A3. As A; is always greater than As, the largest

eigenvalue Apax is A1 or Ag. It follows that the geometric discord is given by
1 .
Dg(plg) = Z mln{)\l + Ao, Ao + )\3}. (37)

To write down the explicit expressions of the closest classical state y12 to p12, one has to determine the
eigenvector €.y associated with the largest eigenvalue A\pax. In this respect, two cases ( Amax = A1
and A\pax = A3) are separately discussed. We begin by density matrices p12 (2) whose entries satisfy
the condition Apax = A3. The associated eigenvector is given by €3 = (0,0, 1). Replacing in the set of
constraints (33), one has

oo ® oo+ T30 03 @00+ To3 00 ® 03+ T33 03 ® 03

1
3

38
X12—4 ( )

In the second situation, the eigenvector corresponding to A; is given by €1 = (cos %, —sin %, 0) where

e = |pp1 144\\/)5233|' Reporting the components of € in (33), one gets the closest classical state
) 2 2
X%QZZ a0 ® oo + T30 U3®00+Z Tij 0i ® 0 (39)
i=1 j=1
where

S ¢ . ¢ R o . ¢
Ti1 = cos 5 (cos 2T11 —sin 2T21) Tio = cos 5 (cos 5 112 —sin 2T22)

) ¢ O = .9 ¢ . ¢
Ty = —sin 2(cos 2T11 sin 2T21) Thy = —sin 2(cos 2T12 sin 2T22).

As we already mentioned, the geometric quantifiers of quantum correlations in bipartite systems can

be extended to embrace three qubits X states of type (3) or (14).

11



3.2 Closest classical states to three-qubits X states

Along similar lines of reasoning, we determine first the closest classical states to generalized X states
of the form p123 (3) and o123 (14). The algebraic structures of both three qubit density matrices offer
many simplification in quantifying geometric quantum discord. To deal with the states pi23 (3) and
o123 (14) in a common framework, it is interesting to note that pio3 as well as o193 have a similar
Fano-Bloch representation. That is

1

3 Tooo ooR0gR00+T300 03RToRT9+ Z Top UO®05®U’Y+Z Z Tigy 0;R05R0

(B:1)#(0,0) i (8,7)#(0,0)

0123 =

(40)
where the notation Ty, stands for the correlations coefficients Rog (resp. Tapy) of the states o123
of type pi2s (3)(resp. o123 (14)). The evaluation of the geometric quantum discord (29) requires a
minimization procedure over the set of all classically correlated states, i.e., the states of the form (31).

In a bipartition of type 1|23, a zero discord state is necessarily of the form

X123 = P1|Y1) (1| @ 01 + palth) (1| ® 05° (41)

where {|11),]12)} is an orthonormal basis related to the qubit 1. The density matrices 0?3 (i = 1,2)

corresponding to the subsystem 23 write as
23 _ 1 23
o’ =17 Z%Tr(gi Oa ® 08)0q ® 0p|.
a,

The Fano-Bloch form of the tripartite classical state (41) is

1 3
X123 = g UD®UO®UO+Zt€i 0; ® 09 @ 00
i=1
3
+ (54)a,8 00 ® 0a @ 0p + Z Z €i(5—)a,p 0i ®0q @03 (42)
(e,8)#(0,0) i=1 (a,3)7(0,0)

where

t=p1—p2 e; = (Y1|og|vr) (51)a,5 = Tr((p101® £ p203°)0a ® 0p).
The Hilbert-Schmidt distance between the state p123 (40) and a classical state of type (42) gives
1 3
lonas—xa2sll® = 5 | (P —2tesTs00+T300)+ Y (Toap—(s4)a)®+> >  (Tiap—ei(5-)ap)’|-

8
(0,8)£(0.0) i=1 (,8)(0,0)
(43)

Setting zero the partial derivatives of Hilbert-Schmidt distance (43) with respect to the variables ¢

and (s+)q 3, one has

3
t=eTs0  (51)ap=Toas  (5-)ap =) eiTiap. (44)
=1

12



Reporting the results (44) in (43), one obtains
] 3 3
o123 — xapesll® = 3 {Tzzoo — e3T500 + Z Z Ths — Z Z eiejTinpljap (45)
i=1 (a,8)#(0,0) 4,7=1 (,8)#(0,0)

to be optimized with respect to the three components of the unit vector € = (e1, es, e3). The equation

(45) can re-expressed as

lovs = xaaall? = 5 el + ITI? — &zt + TT)¢] (46)
in terms of the 3 x 1 matrix x defined by
' = (0,0, T300) (47)
and the 3 x 15 matrix given by
T = (Tiap) with i=1,2,3 («a,B)#(0,0). (48)

The minimal value of the Hilbert-Schmidt distance (46) is reached when €'is the eigenvector associated

with the largest eigenvalue k. of the matrix defined by
K =zt + TT". (49)

It follows that the minimal value given by

1

8(k1 + ko + k3 — k‘max) (50)

Dg(@1|23) =

is the measure quantifying the pairwise quantum discord in the state o103 divided into the subsystems
1 and 23. Note that the sum of the eigenvalues k1, ko and k3 of the matrix K is exactly the sum of
the Hilbert-Schmidt norms of the matrices # and T (k1 + k2 + k3 = ||z||? + ||T||?). For the state pia3
(3) as well as o123 (14), the matrix K takes the form

K1 K2 0
K= Ko Koo 0 . (51)
0 0 K33

The geometric measure of quantum discord is determined in terms of the eigenvalues

1 1
ki =5 (K + Kx) + Q\/(Kn + Ko2)? — 4(K11 Koz — K12K21)

1 1
ko = §(K11 + Ka) — 5\/(K11 + K92)? — 4(K11 K9 — K12K91)
ks = Kss. (52)
Noticing that ki is always greater that ks, the geometric quantum discord (50) rewrites as

Dy(01123) = i (k2 + min(ki, k3)). (53)
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The minimal Hilbert-Schmidt is obtained for the vector € (see equation (46)) associated with the
largest eigenvalue of the matrix K (51). In this sense, to write the explicit form of closest classical
states, one distinguishes two situations: kp.x = k1 or knax = k3. For states g103 with entries satisfying
the condition kpax = k1, it is easy to verify that the maximal eigenvector is given by

K1 —k

€] = (cosf,—sin6,0) with tanf =
Kz

and subsequently the closest classical states write

1 1
X(1‘12)3:§ 00X0pK0o0+ Z Toap 00R0R0+ Z Tl(i)ﬁ 01R0,Q03+ Z T2(a)5 0280,®03

(a,8)£(0.0) (e.8)£(0.0) (e,8)£(0.0)
(54)

where

Tl(i)ﬂ = cos” 0T10p — cosOsin 01545 Téi)ﬁ = sin? 0153 — cos 0sin 0T 43.

For states satisfying kmax = k3, the maximal eigenvector is
é%’) = (07 0, 1>7
and it follows that the closest classical state takes the form

3 1
X§|%3:§ 00®00®00+T300 03R00R00+ Z Toas 00QTR03+ E T308 03R0,®03|. (55)

(0,8)7#(0,0) (0r,8)7(0,0)
It is worth noticing that the entries of the matrix K defined by (49) can be explicitly expressed in terms
of the correlations factors and subsequently in terms of the density matrices elements. Obviously, this
will provides us with the analytical expressions of quantum discord (53) in terms the matrix elements

of states p1o3 and o193. This issue is discussed in what follows.

3.2.1 States of type pio3

For three qubit states 123 (40) belonging to class of states of type (6), we have

p123 = 2 | Rooo 00®00®00+R300 03R00Q00+ Z Ropy OO@Uﬁ@U‘*""Z Z Ripy 0i®0pR0 |-

(B,7)#(0,0) i (B7)#(0,0)

| =

(56)
To obtain the matrix K (51), we replace the correlations coefficients 7,3, in the matrices = (47) and

T (48), with their counterparts R,s,. In this way, after straightforward algebra, one shows

2 3
Kij = Z ZRZ-MRW with 4,7 =1,2 (57)
k=1 1=0

and

3
Kz =Y > Rij (58)

i=0,3 j=0
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Furthermore, using the relations (13), these quantities are expressed as

K1y = 2[(R1)* + (Ri1)% + 2[(RY%)* + (R13)*] + 4[RYRL) + RIS RLY), (59)
Koo = 2[(R3))* + (R31)%) + 2[(R99)* + (R33)%] + A[RIIRY) + RO R3], (60)
Ksg = 2[(R3))* + (R3)°] + 2[(R39)” + (R33)*] + 4[R3yR3) + Rz R3], (61)

K1y = Koy = 2[R\ RY) + Riy Ryy + RISRY, + RipRag] + 2[RIVRS) + R RyY + RijRo; + Ry R, (62)

in terms of two qubit correlation elements related to the two qubit correlations matrices p* given by

(10). Subsequently, the entries of the matrix K (51) are

K1 = 8(!023 + /)41\2 + |pe7 + P85\2 + |p3s + P18|2 + |psa + ,072|2>

Ko = 8<!p23 — pa1l? + |per — pss|® + [p36 — prst + |psa — ,072!2>
K9 = Koy = —16<\,023Hp14| sin(ya3+7y14)+|pss|| pe7| sin(yss+v67)+|p1s| | p36] sin(v18—36 )+ p27 || pas| Sin(727—745)>

Ks3 = 4((011—933)2+(Pz2—044)2+(p55—077)2+(066—Pss)2+!(015—p37)+(Pz6—p48)\2+|(015—P37)—(026—p48)|2>
(63)

where ~;; = % for i < j. The results (63) give the explicit forms of the matrix elements of K.

Clearly, reporting them in (52), one can get the explicit expression of the geometric quantum discord

(53) in terms of the density matrix elements of pj93. In the particular case where the matrix elements

pi; are all reals, we have K12 = K91 = 0 and the eigenvalues k1, k2 and k3 (52) of the matrix K

coincide respectively with Kj1, Koo and K33. In other hand, if one ignores the qubit 3, the matrix

elements (63) reduces to ones of two qubit X states and it simply verified that one recovers the results

(36).

3.2.2 States of type o123

Similarly, for states of type o123, we write the matrix density (15) as follows

Tooo oo®@00®00+T300 03R00R00+ Z Tos 0‘0@05@0‘74-2 Z Tipy 0iR03R0,
(8,7)7(0,0) i (B)#(0,0)

0123 =

co|

(64)
Identifying the coefficients Ti,3, occurring in (40) with 7.+, one obtains the corresponding matrix K

(51) whose elements determine the geometric measure of quantum discord. Explicitly, we have
Ky = Z Z Trii Tiij + Trji Tiji (65)
i=1,2 j=0,3

for k,1 =1,2, and

Kgs=Y > T+ >, > Ty (66)

i=0,3 j=0,3 i=1,2j=1,2
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They can be rewritten in terms of the bipartite correlations matrix 7% associated with the two qubit
density matrices 0°, 6%, o1 and o!! given by (21) and (23). Indeed, using the relations (26) and

(27), one shows that the diagonal elements are given by

Ky = 2[(T{)? + (T1)%] + 2[(T12)* + (Thy )] + 4 Tip |* + 4|75 (67)
Koz = 2[(T30)* + (Ta1)°] + 2[(T55)* + (T33)°] + 4T3 |* + 4| T35 (68)
K33 = 2[(T50)* + (T50)°] + 2[(T55)* + (Tss)*] + 4751 |* + 4|75, (69)

where we have used the relation Tglﬁ =T ;Oﬁ The non zero off-diagonal element Ko rewrites

Kip = Ko = 20T + Tl 1) + 2T 105 + T3y T )

+2(T50 Tho + T Ty ) + 2(T95 T1s + Tos Ty (70)

Finally, using the relations (21) and (23), one gets
K1 = 8[|ou1 + 023 + |os5 + o67|] + 4[|o17 + 035 + 028 + 046|* + |o17 + 035 — 028 — 0ug|*],  (71)
Koy = 8[|ou1 — 093 + |os5 — o67|?] + 4|07 — 035 + 028 — 046|* + |o17 — 035 — 028 + 0ug|*],  (72)

K33 = 4[(0’11—0’33)2+(022—044)2+(0’55—077)2+(066—0’88)2+|016—038—047+0’25|2+|016—038+0’47—025|2 )

(73)

and

K19 = —16 |:‘0'23| ’0'14’ sin(a23+a14)+]058H067\ sin(a58+a67)+\035| ’0'17’ sin(a17—a35)+laggHo46\ sin(agg—a%)}
(74)

where a;; = % for i < j. Substituting the quantities (71), (72), (73) and (74) in the expressions (52),
ij
we have the geometric discord (53) in terms of matrix elements of o123 (15). In the special situation

where all the entries of the density matrix o123 are reals, we have k1 = K11, ko = Koo and k3 = Kjs.

4 Monogamy of geometric discord in three qubit X states

There are severe constraints on how the quantum correlations are distributed among the different
parts of a multipartite system. The distribution of quantum correlations among the subsystems of a
multipartite quantum system is constrained by the so-called monogamy relation. This important prop-
erty was originally proposed by Coffman, Kundo and Wootters in 2001 [36] for squared concurrence
and extended since then to other correlation quantifiers such as entanglement of formation [37, 38],
quantum discord [39, 40, 41, 42, 43] and its geometric variant [45]. In particular, the geometric discord
was proven to follow the monogamy property on all pure three qubits. Here, we shall investigate the

distribution among the three qubits in the mixed states of typepias (3) and o923 (14).
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4.1 Monogamy conditions

We consider first the states of type (3). The corresponding reduced matrices p1a = Trg pia3 and

p13 = Try p1og are

P11 + P55 0 0 P14 + pss
0 22 + P66 P23 + Per 0
oy — P22+ pes P2+ p (75)
0 p32 + pr6 P33+ pr7 0
pa1 + pss 0 0 pas + pss
P11+ p22 P15+ p2e 0 0
51+ P62 P55 + P66 0 0
pp— | P Pe2 Pt . (76)
0 0 P33 + paa P37 + p4s
0 0 P73+ ps4a  pr7 + Pss

The reduced two qubit states pi2 (75) is X-shaped. The bipartite geometric discord can be derived
using the results (36). Therefore, the bipartite quantum correlation in the state p12, as measured by
Hilbert-Schmidt distance, is

1

Dy(p12) = 1(612 + min(q + ¢3)) (77)

where

q1 = 4(| p1a+ pss | + | p2s + per |)2
g2 = 4(| p1a+ pss | — | p2s + per |)2
g3 = 2[(p11 + ps5 — p33 — p17)° + (P22 + pes — pas — pss)’]. (78)

The state pi3 (76) is classically correlated. The quantum correlation between the qubits 1 and 3
is zero. This is easily verified using the prescription described previously to get the discord in an
arbitrary two qubit state. In this special case, the eigenvalues of the analogue of the matrix K (35)

are
pr=p2=0
p3 = 2[(p11 + paz2 — p33 — paa)? + (pss + pes — pr7 — pss)’]

which implies that the geometric discord is indeed zero:
Dy(p13) = 0. (79)
It follows that the geometric discord in the three qubit states p123 (3) is monogamous when

Dy(p1j23) = Dy(p12) (80)

where Dy(pyj23) and Dy(p12) are respectively given by (53) and (77).
Analogously, for the states of type o123 (14), the reduced two qubit states are

011 + 055 0 0 014 + 058
0 + + 0
S 092 + 066 023 + O67 (81)
0 039 + 076 033 + o77 0
041 + 085 0 0 044 + 088
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011 + 0922 0 0 o17 + 0928

0 055 + 066 053 + 064 0
013 = . (82)
0 035 + 046 033+ 044 0
o71 + 0g2 0 0 o7 + 088

The two qubit density matrices 12 and o153 are X shaped. It follows that the geometric measure of
pairwise quantum discord arises directly from the results (36) modulo the appropriate substitutions.

Accordingly, for 012, the geometric quantum discord is
Dy(012) = %min(ll o, I3+ Io) (83)
where
Iy = 4(|o14 + 058] + |o23 + 067])?
ly = 4(|o14 + 058] — |o23 + 067])?
I3 = 2[(011 + 055 — 033 — 077)% + (022 + 066 — 0ag — 088)°).

In the same way, for the subsystem described by o13, one gets

1 .
Dy(o12) = Emm(ml + ma, m3 + my) (84)

where
my = 4(|o17 + o] + 053 + 06al)?
mgy = 4(|o17 + o8] — 053 + 06al)?
mg = 2[(011 + 022 — 033 — 044)? + (055 + 66 — 77 — 088)°).

The geometric discord satisfy the monogamy properly when the entries of the density matrix oj93
satisfy the inequality

Dy(o1j23) > Dy(012) + Dy(013) (85)
where the Dg(0q)23) is evaluated from (53). To exemplify these results, we consider some special

instances of mixed three qubit states.

4.2 Some special mixed states

4.2.1 Mixed GHZ-states

We consider the mixed three-qubit GHZ state defined by

panz = ¢ T+ (1 - p) |GHZ) (GHZ| (86)

where the pure GHZ-state is given by |GHZ) = %(K}OO) +|111)). The states pguz belong to the class
of mixed three-qubit states of type p123 (3). Subsequently, using the expressions (63), it is simple to

verify that the eigenvalues of the matrix K are
A=A = A3 =2(1 - p)’
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and thus the geometric measure of the pairwise discord between the subsystems 1 and 23 is

1

S =P, (57)

Dy(pcuz) =

The maximal value of quantum correlation is reached for p = 0 (pure GHZ state), and for p = 1
the discord is vanishing as expected. To discuss the monogamy, we determine the pairwise geometric
discord in the subsystems containing the qubits 1 — 2 and the qubits 1 — 3. We denote the associated

states by pguz,, and pguz,, respectively. Using the results (77) and (79), one obtains

Dg(pGHZu) =0 Dg(pGHZ13) =0.

Using the result (87), one has

Dy(pcuz) > Dy(pcuz,s) + Dg(panz.s), (88)

reflecting that the quantum discord in the states pgnz, as quantified by Hilbert-Schmidt norm, follows

the monogamy constraint.

4.2.2 Mixed W-states

The second example deals with a special type of three-qubit states o123 (14). They are given by

ow = ¢ I+ (1—p) [WHW]. (89)

in terms of the W state: |W) = %HOO) +1010) + |001). Using the expressions (71)-(74), one gets

16

M=X=—1-p? I="(1-p)?
1 2= (1-p) 377 (1-p)
and the geometric discord reads as
4
Dy(ow) = 5(1—p)*. (90)
In other hand, from the equations (83) and (84), one has
1
Dg(UWm) = Dg(UWm) = 6(1 _p)Q' (91)

where pw,, and pw,, are the two qubit states corresponding to the subsystems comprising the qubits

1-2 and 1-3 respectively. It is clear that

Dg(pw) > Dg(pwm) + Dg(pW13>' (92)

The geometric measure of quantum discord in the states ow satisfies the monogamy condition.
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4.2.3 Three-qubit state of Bell type

Finally, we consider the three-qubit

3

1

PB = — 0'0®0'0®0'0+26i0i®0'z‘®0'i . (93)
8 =0

which can be viewed as the extended version of two-qubit Bell state. The state pp has non vanishing

matrix elements only along the diagonal and off diagonal. Indeed, in the computational basis, it writes

1+4c3 0 0 0 0 0 0 c1 +ico
0 1—ecs3 0 0 0 0 c1 —icy 0
0 0 1-— C3 0 0 Cc1 — iCQ 0 0
1 0 0 0 14ec3 c1+ic 0 0 0
pB = 2 . (94)
8 0 0 0 c1—ica 1—c3 0 0 0
0 0 c1 +ico 0 0 1+c3 0 0
0 c1+ico 0 0 0 0 14 c3 0
c1 — ica 0 0 0 0 0 0 14 c3
From equations (63), one has
Kin=d Koy =3 Ks3=c3 K91 = Ko =0
and the geometric discord in the bipartition 1|23 is
1
Dy(ps) = 3(A + &+~ ) (95)
where ¢ = max(c?, c3, cg) It is remarkable that the reduced two qubit states given by
1
PB12 = PB13 = ZO'O ® oo

do not present quantum correlations when measured by the Hilbert-Schmidt distance (i.e., Dg(pB,,) =
Dg(pBy;) = 0). The quantum Dg(pp) is always non negative and therefore the geometric discord in

the states pp is monogamous.

5 Concluding remarks

In this work, we have investigated the analytical derivation of quantum correlations in mixed states
describing quantum systems comprising three qubits. We have deliberately considered the square
norm (Hilbert-Schmidt distance) instead of entropic based quantifiers. In fact, despite the informa-
tion meaning of based entropy measures, determining explicit expressions of quantum correlations
requires optimization procedures that are in general very complicated to achieve even in two qubit
systems. In this respect, the geometric quantifiers are advantageous in obtaining closed computable
expressions of the information contained in a tripartite quantum system. In this picture, through the

geometrized variant of quantum discord, we characterized the bipartite quantum correlations in mixed
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three qubit states and their analytic expressions are explicitly derived for two families of generalized
three qubit X states. In addition, we have determined the explicit Fano-Bloch expressions of classi-
cally correlated (zero discord) states. In other hand, we have studied the monogamy property and
the shareability limitations of geometric quantum discord for two kinds of generalized three qubit X
states. To exemplify our results, we discussed the monogamy property in mixed three qubit states of
W, GHZ and Bell types.

Finally, it worth to notice that the geometric measure of quantum discord obtained in this paper are
useful for many purposes. First, it provides the explicit amount of quantum correlation in mixed
three qubit X states that is generalizable to arbitrary quantum systems of arbitrary number of qubits.
Also, it offers a computable tool to get the multipartite quantum correlation defined as the sum of
all pairwise partition in a multi-components system (see for instance [44]). In this sense, the present
approach constitutes a good alternative to evaluate tripartite correlation in mixed states generalizing
the analysis done for pure tripartite systems [45, 44, 46]. In other hand, this approach is ready to
adapt in investigating the dynamics of geometric discord in quantum systems subjected to decoherence
mechanisms in the spirit of the results recently presented in [47]. Further study in this direction might

be worthwhile.
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