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1 Introduction

The WZNW model is a conformally invariant theory of a Lie group valued field
g(x0, x1) on the 2-dimensional (2D) space-time M̃2, g : M̃2 → G . We shall
concentrate exclusively in this paper on the case when the group G is a con-
nected and simply connected compact Lie group andM , the integration domain
of the classical action of the model, is the compactified Minkowski space (see
Eqs. (

MinkD2
2.2) and (

Swznw0
2.18) below); in modern parlance, one can say that the model

describes then a closed string moving on a compact group manifold
GW
[134]. Al-

though it was originally formulated in terms of a multivalued classical action
W
[262] (exploiting ideas of

WZ
[260] and

N
[207]), it was first solved in a quantum ax-

iomatic framework
KZ, T
[178, 249] using the theory of highest weight representations

of affine Lie algebras
Kac, KR
[168, 170] and ended up as a textbook example of a ratio-

nal conformal field theory (CFT)
DFMS
[63]. Following the original ideas of

BPZ, DF
[34, 68],

the correlation functions of the theory have been written as sums of products of
chiral conformal blocks which carry a monodromy representation of the braid
group

TK, Kohno
[252, 179]. The braid group statistics is associated with a quantum group

symmetry
A-GGS, GP, PS
[18, 127, 210] or some of its generalizations

MS, BNS, PZ
[196, 44, 214]. We point

out that the appearance of such non-trivial features is not just an artifact of
the ambiguity in the splitting of a local 2D field into chiral components. In
fact, the above peculiarities of chiral vertex operators (CVO) show up in the
non-group-theoretic fusion rules of 2D fields and the associated non-integer sta-
tistical dimension (for background and further references – see

FRS, Lo, FrG
[99, 188, 123] as

well as more recent overviews in
TH, Sch05
[250, 228]).

The canonical approach to the WZNW model, triggered by work of Babelon
B
[21] and Blok

Bl
[39] which related it to the Yang-Baxter equation (YBE), shed

new light on the problem. After the initial push in
Bl
[39] the classical theory

was developed by Faddeev et al. (
F1, AS, AF, F2, AFS
[80, 16, 3, 81, 6] as well as in

BDF
[24] and, in a

sense, completed by Gawȩdzki et al
Gaw, FG, FG1
[129, 84, 83] although further work in both

the classical and the quantum problem is still going on (
ChuG, AT, BFP1, BFP, BFP2, BFPquasi, FHT1, FHT2, FHT3, CL, DT, HIOPT, Goslar, FHIOPT, FHT6
[59, 17, 25, 26, 27, 28,

115, 116, 117, 53, 75, 152, 74, 114, 119]). More recently it has also included the
boundary WZNW model (

ASch, FFFS, GTT, G1, GR, G2
[14, 93, 133, 130, 132, 131]).

The idea of how one exhibits the hidden quantum symmetry is quite simple.
The general solution of the classical equations of motion for the periodic group-
valued field g(x0, x1 + 2π) = g(x0, x1) (the field configurations for fixed time
being elements of the loop group

PrS
[213] G̃ of G) is given by a product of chiral

multivalued fields,

g(x0, x1) ≡ g(x+, x−) = gL(x+) g−1
R (x−) , x± = x1 ± x0 , (1.1) LR

which satisfy a twisted periodicity condition,

gC(x+ 2π) = gC(x)M , C = L,R , M ∈ G , (1.2) cM

implying that the 2D field is periodic:

g(x+ + 2π, x− + 2π) = g(x+, x−) . (1.3) gper

The chiral components gC are not uniquely determined: Eq.(
LR
1.1) is respected

by any transformation gC(x) → gC(x)S where S is an x-independent invert-
ible matrix. In particular, we do not have to assume that gC are unitary,
albeit g(x+, x−) is. Moreover, as we shall see, the elements of the monodromy
matrix M carry dynamical degrees of freedom (they have non-vanishing Pois-
son brackets among themselves and with gC(x)) and it is natural to allow for
”dynamical matrices” S describing the ambiguity in the definition of gC . We
use the resulting freedom to impose a Poisson-Lie symmetry on the chiral the-
ory, the classical counterpart of a quantum group symmetry. Requiring that
the left and right components gL and gR Poisson commute yields a further
extension of the phase space of the theory consisting in introducing indepen-
dent left and right monodromy matrices MC . This allows the introduction of
quantum group covariant chiral zero modes (in whose treatment, both classi-
cal and quantum, in particular for G = SU(n) , the authors have taken part
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AT, FHT1, FHT2, FHT3, DT, HIOPT, Goslar, FHIOPT, FHT6, AFH, FHT7, TH10
[17, 115, 116, 117, 75, 152, 74, 114, 119, 20, 120, 251]). In the present paper we
combine the phase spaces of zero modes and ”Bloch waves” (chiral fields with
diagonal monodromy Mp ) to derive the Poisson brackets of the covariant chiral
fields gC , thus preparing the ground for the subsequent discussion of a quantum
group invariant quantization.

There is a price to pay for achieving manifest quantum group covariance of
the chiral theory. While the unitary 2D WZNW model only involves a finite
number of weights (not exceeding the level) we are led to allow all weights, thus
ending with an infinite (non-unitary) extension of the chiral state space. The
resulting theory is related to a logarithmic CFT of the type studied systemati-
cally by B.L. Feigin, A.M. Gainutdinov, A.M. Semikhatov, I.Yu. Tipunin, and
others

FGST1, FGST2, FGST3, FGST4, FT, FHST, GT, S1, S2, S3, S4
[87, 88, 89, 90, 91, 103, 125, 232, 233, 234, 235]. (We review relevant part

of this work in Section 5.) An alternative possibility, weakening the require-
ment of quantum group invariance but only allowing for a finite dimensional
unitary extension of the chiral state space has been developed in the framework
of boundary CFT (for a review and references see

PZ
[214]). It would be interest-

ing to work out a canonical formulation also of this approach starting with the
classical theory.

A few words about the organization of the material, summarized in the table
of content.

We begin in Section 2.1 by showing that the invariance of a 2D sigma model
type action with respect to infinite dimensional chiral loop group ”gauge trans-
formations” requires a Wess-Zumino (WZ) term

WZ, N, W
[260, 207, 262]. In Section 2.2

we introduce the relevant first order canonical formalism
G, JS
[128, 167]. For a field

theory in a D-dimensional space-time, it is based on a (D+1)-dimensional closed
differential form ω . This approach has at least two advantages, compared to the
standard one that starts with a Lagrangean D-form L whose integral gives the
classical action:
(i) ω = d L does not change if we add a full derivative term to L (that would
not affect the equations of motion);
(ii) ω may exist in theories with no single-valued classical action, in particular,
in the WZNW model of interest.
The integral of ω over an equal time surface (a circle, in our case) gives rise
to a symplectic form. We study in Section 2.3 its splitting into monodromy
dependent chiral symplectic forms Ω(gC ,MC) , C = L,R for g given by (

LR
1.1).

The expression for Ω involves a 2-form ρ(M) , like (
ro
2.89), defined on an open

dense neighbourhood of the identity of the complexification GC of our compact
Lie group G (using, for GC = SL(n,C) , a Gauss type factorization of M).
Section 2.4 is devoted to a study of the symmetries of the chiral theory. We
demonstrate, in particular, that the symmetry of Ω with respect to (constant)
right shifts of the chiral field g is of Poisson-Lie type

D1, S-T-S
[70, 231].

Section 3 deals with the classical theory of chiral zero modes which diagonal-
ize the monodromy matrix. They display the Poisson-Lie symmetry in a finite
dimensional context (Section 3.1; cf.

AF
[3]). In Section 3.2 we recall some facts

from the theory of the semisimple Lie algebras and prepare the ground for ob-
taining the chiral Poisson brackets. Section 3.3 reviews the result of Gawȩdzki
and Falceto

G, FG1
[128, 83] that establishes a one-to-one correspondence between 2-

forms ρ(M) such that

δρ(M) =
1
3

tr (M−1δM)∧3 =: θ(M) (1.4) rh-th

and non-degenerate solutions of the (modified) classical Yang-Baxter equation,
see Proposition 3.2.

The Schwinger-Bargmann theory of angular momentum
Sch, B62
[230, 30] gives rise to

a model of the finite dimensional irreducible representations of SU(2) by quan-
tizing the 2-dimensional complex space C2 equipped with the Kähler symplectic
form i (dz1 ∧ dz̄1 + dz2 ∧ dz̄2) . It yields the Fock space of a pair of creation and
annihilation operators. In Section 3.4 we first present the classical 4-dimensional
phase space involved in this construction as a submanifold of codimension two in
a 6-dimensional space consisting of a 2×2 matrix a = (aiα) and a 2-dimensional
weight vector pi , i = 1, 2 . Then we generalize this construction to the case of
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SU(n) in which the classical phase space is a submanifold of codimension two
in a n(n + 1)-dimensional space. Finally, we construct a q-deformation of the
resulting algebra, corresponding to the classical counterpart of a model space
construction for the finite dimensional irreducible representations of the quan-
tum universal enveloping algebra Uq(s`(n)) for generic q . The computation of
the Poisson (and Dirac) brackets of the Poisson-Lie covariant zero modes in-
volves the full complication of a theory with a non-local Wess-Zumino term. It
is dealt with in Section 3.5.

The Poisson brackets (PB) for the infinite dimensional Bloch waves u(x)
(Section 3.6) are simpler to compute. A peculiarity of our treatment is the fact
that the determinant of u(x) depends on the weights p (and is so chosen that
only the product of detu(x) and det a is equal to 1). The resulting PB for the
Poisson-Lie covariant chiral field g(x) = u(x) a ( = (uAi (x)aiα)) are spelled out
in Section 3.7 where the reconstruction of the 2D model is also explained.

Chapter 4 is devoted to the study of the quantum chiral WZNW model. The
quantization of the current algebra Ĝk (Section 4.1) involves the renormalization
of the level k → h = k + g∨ (where g∨ is the dual Coxeter number of
the Lie algebra G of G) in the Sugawara formula

Sugawara, Sommerfield
[245, 240]. The state space

construction reproduces the representation theory of affine Kac-Moody algebras
supplemented with a derivation of the Knizhnik-Zamolodchikov equation. The
exchange algebra of the chiral field g(x) is constructed (Section 4.2) in terms of
the constant SL(n,C) quantum R-matrix. In Section 4.3 we derive the exchange
relations for the monodromy matrix M which acquire a particularly simple form
for its Gauss components M± that give rise to the quantum universal enveloping
algebra Uq(s`(n)) . The zero modes’ algebra involving, in addition, the quantum
dynamical R-matrix R(p) is introduced in Section 4.4.

Section 4.5 is devoted to the study of the chiral state space. For generic
q (i.e. q 6= 0 , not a root of unity) the Fock space of the zero modes’ algebra
provides a model for the finite dimensional representations of Uq(s`(n)) (Section
4.5.1). The problems arising for q a root of unity (still unresolved for n > 2) are
discussed in Section 4.5.2. The braiding properties of chiral quantum fields are
displayed in Section 4.5.3. The exchange relations of the right chiral field are
displayed in Sections 4.6.1 and 4.6.2. (To avoid subtleties with matrix inversion
in the quantum case, we work with ”bar” right sector variables in terms of which
g(x, x̄) = g(x) ḡ(x̄) , (x, x̄) = (x+, x−) , cf. (

LR
1.1).) It is shown in Section 4.6.3

that the two dimensional field, expressed in terms of products of left and right
components, is locally commutative and quantum group invariant.

The study of the quantum WZNW model for n = 2 and of its (non-unitary)
chiral extension is pursued further in Chapter 5.
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2 2D and chiral WZNW model. Symplectic den-
sities

2.1 Chiral symmetry requires a Wess-Zumino term

The dynamics of the group valued WZNW field g is, in effect, determined by
the symmetry of the WZNW model. Combining the conformal invariance with
the internal symmetry generated by the currents one ends up, as we shall see,
with an infinite dimensional left and right chiral symmetry.

We proceed in two steps, beginning with the natural (non-linear) sigma
model action on a compact Lie group G

S0[g] = λ

∫
M

tr (g−1∂µg)(g−1∂µg) dx0dx1 ≡ −λ
∫
M

tr (∂µg)(∂µg−1) dx0dx1

(2.1) S0

where the world sheet is oriented, dx0dx1 ≡ dx0∧dx1 = −dx1∧dx0 (we omit the
wedge sign for exterior products of differentials) and λ > 0 . We are denoting by
tr (XY ) the Killing form (X,Y ) on the Lie algebra, proportional to the matrix
trace (see Appendix A). In a second step, we shall complement S0[g] with a
non-local term that will ensure the infinite chiral symmetry.

It is appropriate to carry the integration in (
S0
2.1) over the compactified two

dimensional Minkowski spaceM (≡ M̄2) which we proceed to describe in some
detail. M is a somewhat degenerate special case of the D-dimensional compact-
ified Minkowski space

M̄D := { z = (zα) , α = 1, 2, . . . , D | zα = eituα , t, uα ∈ R ; u2 = 1} =

= S1 × SD−1/{1,−1} (u2 :=
D∑
α=1

(uα)2 ) (2.2)

equipped with a real O(2)×O(D)-invariant metric of Lorentzian signature

ds2 =
dz2

z2
= du2 − dt2 , where u.du :=

D∑
α=1

uαduα = 0 . (2.3) ds2

The universal cover of M̄D for D > 2 is the cylinder M̃D = R × SD−1 . For
D = 2 , M̄2 =M is diffeomorphic to the flat Lorentzian torus (with identified
opposite points)

M = { z1 = eix
0

sinx1 , z2 = eix
0

cosx1 ; ds2 = (dx1)2 − (dx0)2 } (2.4) clM

which can be obtained from its universal cover R2 factoring by the relations

(x0, x1) ∼ (x0 + π, x1 + π) , (x0, x1) ∼ (x0, x1 + 2π) . (2.5) clM1

Eqs. (
clM1
2.5) are equivalent to 2π-periodic boundary conditions

(x+, x−) ∼ (x+ + 2πn+, x− + 2πn−) , n± ∈ Z (2.6) clM2

in each of the cone variables x± defined in (
LR
1.1),

x± = x1 ± x0 , ∂± =
1
2

(∂1 ± ∂0) , dx+dx− = 2 dx0dx1 . (2.7) conev

We are looking for an action invariant with respect to the infinite dimensional
group of chiral ”gauge transformations” of the type

g(x+, x−) → l(x+). g(x+, x−).r(x−) (2.8) infgr

where both l and r are loop group (G-valued, periodic) functions of the cor-
responding light cone variables. Computing the variation of the sigma model
action (

S0
2.1)

δS0[g] = 2λ
∫
M

tr δ(g−1∂µg)(g−1∂µg)dx0dx1 =

= −2λ
∫
M

tr
(
g−1δg ∂µ(g−1∂µg)− ∂µ(g−1δg g−1∂µg)

)
dx0dx1 =

= −2λ
∫
M

tr g−1δg
(
∂+(g−1∂−g) + ∂−(g−1∂+g)

)
dx+dx− (2.9)
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(the boundary term can be neglected due to (
gper
1.3) and (

clM2
2.6)), we see that δ S0[g]

does not vanish, in general, for

g−1δg = g−1δl(x+)g + δr(x−) (2.10) inf-conf

(here δl(x+) and δr(x−) are assumed to be G-valued periodic functions of the
respective chiral variables).

The possibility of obtaining an invariant theory found by Witten
W
[262] amounts

to adding to S0[g] (
S0
2.1) a WZ term1 proportional to

Γ[g] :=
1

12π

∫
M

d−1tr (g−1 dg)3 =
1

12π

∫
B

tr (g−1 dg)3 ∈ 2πZ (2.11) GWZ

which has a single valued variation due to the relation

δ d−1 1
3

tr (g−1 dg)3 = tr (g−1δg (g−1dg)2) . (2.12) totdiff0

Using (
totdiff0
2.12) and

dxµdxν = − εµνdx0dx1 (εµν = −ενµ , µ, ν = 0, 1 , ε01 = −1 , εµσεσν = δµν ) ,
(2.13) dxdx

we obtain

δ Γ[g] =
1

4π

∫
M

tr g−1δg (g−1∂µg) (g−1∂νg) dxµ dxν =

= − 1
4π

∫
M

tr g−1δg εµν(g−1∂µg) (g−1∂νg) dx0dx1 =

=
1

4π

∫
M

tr g−1δg εµν∂µ(g−1∂νg) dx0dx1 =

=
1

4π

∫
M

tr g−1δg
(
∂−(g−1∂+g)− ∂+(g−1∂−g)

)
dx+dx− . (2.14)

The partition function, the exponent eiS[g] of the action functional, which de-
termines the correlation functions in the Feynman path integral formulation, is
single valued if we set the coefficient of the WZ term equal to an integer,

S[g] = S0[g] + k Γ[g] , k ∈ Z (2.15) SWZ

so that

δ S[g] = −(2λ+
k

4π
)
∫
M

tr g−1δg ∂+(g−1∂−g) dx+dx− −

− (2λ− k

4π
)
∫
M

tr g−1δg ∂−(g−1∂+g) dx+dx− . (2.16)

Now, for g−1δg given by (
inf-conf
2.10), the first term vanishes, due to ∂+(g−1∂−g) =

g−1∂−((∂+g)g−1) g and

tr g−1δg ∂+(g−1∂−g) =
= tr

(
g−1δ l(x+)g g−1∂−((∂+g)g−1) g + δ r(x−)∂+(g−1∂−g)

)
=

= ∂− tr (δ l(x+)(∂+g)g−1) + ∂+ tr (δ r(x−)(g−1∂−g) , (2.17)

while vanishing of the second term implies λ = k
8π . Thus we end up with the

WZNW action functional which is invariant with respect to (
infgr
2.8),

S[g] =
k

4π

∫
M

tr
(

1
2

(g−1∂µg)(g−1∂µg) dx0dx1 +
1
3
d−1tr (g−1 dg)3

)
(2.18) Swznw0

(with k a positive integer).
In order to get around the absence of a single valued WZ term we proceed to

formulating the dynamics of the WZNW model in terms of a canonical 3-form.
1The possible continuations of the form θ(g) from the 2D compactified Minkowski space

M (
clM
2.4) to the 3-dimensional real compact manifold with boundary, the bulk

B := { (zα, ρ) , α = 1, 2 | (zα) = z ∈M , 0 ≤ ρ ≤ 1 } , ∂B =M ,

split into equivalence classes labeled by the elements of the third homotopy group π3(G) ' Z
(see

N, M, Schw, TH10
[207, 200, 229, 251]).
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2.2 First order canonical formalism with a basic (D + 1)-
form

The first order Lagrangean and covariant Hamiltonian formalism has been ap-
plied to the WZNW model by Gawȩdzki (see

G
[128] where the reader can also

find early references; for more recent developments and further applications, cf.
JS
[167]). Here we shall give a brief introduction to the subject and shall then
apply this truly canonical approach to the 2D WZNW theory of interest.

In general, a field theory lives on a fibre bundle E described locally by a
collection of charts U i × F , where ∪i U i forms an atlas of the D-dimensional
(base) space-time manifold M and the values of the fields belong to the fiber
F . We shall use, correspondingly, two exterior differentials, a horizontal one,
d , acting on M , and a vertical one (the variation) δ , acting on F so that the
exterior differential on the total space E will appear as their sum:

d = d + δ , d2 = 0 = δ2 , d2 = 0 = [ d , δ ]+ (2.19) bd

(note that, in contrast with the convention adopted in
JS
[167], d and δ necessarily

anticommute in order to have their sum satisfying the condition d2 = 0 for an
exterior differential). Each differential form can be decomposed into homoge-
neous (a, b) forms of degrees a in d and b in δ .

If an action density L (a D-form) exists, in the first order formalism it is
assumed to be a sum of (D, 0) and (D − 1, 1) forms. The exterior differential

ω := d L (2.20) om

(which does not change if we substitute L by L + d K for any (D − 1)-form
K ) provides an invariant characterization of the system: equating to zero the
pull-back of its contraction with vertical vector fields (like δ

δφi
, in a discrete

basis) such that
δ̂

δφi
δφj + δφj

δ̂

δφi
= δij , (2.21) vfd

one reproduces the equations of motion, while the integral of ω over a (D − 1)
dimensional space-like (or, for non-relativistic systems, just equal time) surface
inM defines the symplectic form of the system. A closed (D+ 1)-form ω may
exist, however, even when there is no single-valued action density. The resulting
more general framework is the only one appropriate for classical formulation of
the WZNW model.

Before going to the model of interest we shall display the role of the form ω
in the simple example of a classical mechanical system for whichM = R is the
time axis (i.e., D = 1 ), and F is a 2f -dimensional phase space parametrized
by coordinates q = (q1, . . . , qf ) and momenta p = (p1, . . . , pf ) . We shall write
the action density 1-form as a Legendre transform,

L = p d q −H(p, q) dt , p d q :=
f∑
i=1

pi d qi ,

ω = d L = d pd q − δH(p, q) dt = d pd q − (
∂H

∂q
δq +

∂H

∂p
δp) dt ≡ (2.22)

≡ δp δq + (
.
q −∂H

∂p
) δp dt− (

.
p +

∂H

∂q
) δq dt (dp ≡

.
p dt , dq ≡

.
q dt)

(we omit throughout the wedge sign ∧ for exterior products of differentials). It
is clear that for dt = 0 , ω reduces to the standard canonical symplectic form
Ω = δp δq . Contracting, on the other hand, ω with δ

δqi and δ
δpi

(using (
vfd
2.21))

and equating to zero the pull-back of the result (which amounts to setting
δp = 0 = δq), we obtain the Hamiltonian equations of motion

.
pi +

∂H

∂qi
= 0 ,

.
q
i
− ∂H

∂pi
= 0 , i = 1, . . . , f . (2.23) Ham0

In general, to any function h on the phase space one associates a vertical
Hamiltonian vector field Xh such that its contraction with the symplectic form

8



X̂h Ω (≡ iXh Ω) := Ω(Xh, .) equals δh:

X̂h Ω = δh ⇔ Xh =
∂h

∂q

δ

δp
− ∂h

∂p

δ

δq
(Xqi =

δ

δpi
, Xpj = − δ

δqj
) .

(2.24) defOX

A Poisson structure on (a smooth manifold) N is a skew symmetric bilinear
map { , } : C∞(N ) × C∞(N ) → C∞(N ) satisfying the Jacobi identity and
the Leibniz rule. This is equivalent to defining a bivector (a skew symmetric
contravariant 2-tensor) P ∈ TN∧TN such that {g, h} = P(g, h) ≡ P̂ (δg⊗δh) .
A covariant tensor defining a symplectic form gives always rise to a Poisson
tensor defined by its inverse; in general, the Poisson tensor may not be invertible.

In the above case of a finite dimensional mechanical system P = δ
δq ∧

δ
δp =

− δ
δp ∧

δ
δq and, for any pair of functions g = g(p, q) , h = h(p, q) , the PB {g, h}

is given in terms of the symplectic dual vector fields (
defOX
2.24) by

{g, h} = Xg h ≡ X̂g δh ( = −X̂h δg ) =
∂g

∂q

∂h

∂p
− ∂g

∂p

∂h

∂q
⇒ {qi, pj} = δij

(2.25) PBdef

(here δh = ∂h
∂p δp + ∂h

∂q δq is the total variation of h). It follows from (
Ham0
2.23),

(
defOX
2.24) and (

PBdef
2.25) that the time evolution of any phase space variable g(p, q) is

governed by its PB with the Hamiltonian:

.
g=

∂g

∂p

.
p +

∂g

∂q

.
q=
(
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

)
g = −XH g = {g,H} . (2.26) time-evol

Remark 2.1 The definition of a Hamiltonian vector field in the first equation
(
defOX
2.24) is not universal. Many authors set instead L̂h Ω = −δh (see e.g.

Blau
[38]) so

that Lh = −Xh , leading to the opposite sign of the PB and, correspondingly, to
equations of motion

.
g= LH g . Both choices, however, provide a representation

of the Lie algebra of Poisson brackets that is an ingredient in the prequantization
(see e.g.

TAE, WZ05, ZZ
[254, 259, 263]). We have, in particular,

[Xg, Xh] = X{g,h} . (2.27) repPBalg

We proceed now to defining the classical WZNW model. We shall only con-
sider the case when the Lie group G is compact and the corresponding quan-
tized theory is rational

CIZ1, FrSh, AM, MS2
[54, 101, 10, 203]. (These two requirements single out

combinations of WZNW models on compact semi-simple groups and ”lattice
vertex algebras”

KT
[171].) Albeit we only provide details for our main example

G = SU(n) , most results remain valid in the general case.
In the first order formalism the fiber F consists of a pair of periodic in x1

maps (g,J ) such that, for x = (x0, x1) ∈ M̃2

g(x) ∈ G , g(x0, x1 + 2π) = g(x0, x1) ≡ g(x) , (2.28)
J (x) = jµ(x) dxµ , jµ(x) ∈ iG , jµ(x0, x1 + 2π) = jµ(x0, x1) ≡ jµ(x) ,

where G is the Lie algebra of G (our conventions are such that, for G compact,
the current is Hermitean). Note that the iG-valued 1-form J (x) is horizontal.

We define the basic 3-form ω by

4π ω = d tr ((ig−1dg +
1
2k
J ) ∗J ) + k θ(g) , θ(g) :=

1
3

tr (g−1dg)3 . (2.29) omWZW

Here tr is the Killing form (
Kill
A.1) on G , k is the real ”coupling constant” that

will be ultimately restricted to (positive) integer values to ensure the single
valuedness of the exponential of the action, and ∗J is the Hodge dual to J ,

∗J (x) = εµνj
µ(x)dxν ( ε01 = 1 ) . (2.30) sJ

To identify (
omWZW
2.29) with the more customary (component) expressions, one uses

(
dxdx
2.13) and

J ∗J = jµj
µdx0dx1 = −∗J J . (2.31) JsJ
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For compact G we shall use the physicist’s convention introducing a Her-
mitean basis Ta ∈ iG for which

1
i

[Ta, Tb] = f c
ab Tc , tr (TaTb) = ηab (2.32) etaab

with real structure constants f c
ab and a positive metric (ηab) (see Appendix A).

The tensor fabc , defined by

1
i

tr (Ta [Tb, Tc]) = ηadf
d

bc =: fbca = fabc (2.33) fabc

is totally antisymmetric (due to the cyclicity of the trace). For x-independent
γ ∈ G so that dγ = 0 and γ−1δγ = iΓa Ta where Γa are basic left-invariant
G-valued 1-forms, the WZ term θ(γ) (

omWZW
2.29) is just the invariant 3-form on G

corresponding to the tensor fabc (see e.g.
Schw
[229]):

θ(γ) =
1
3

tr (γ−1δγ)3 =
1
3!

Γa Γb Γc
1
i

tr (Ta [Tb, Tc]) =
1
3!
fabc Γa Γb Γc . (2.34) can3

The 3-form ω (
omWZW
2.29) is well defined and single valued while the corresponding

WZNW action density 2-form

4πL = tr ((ig−1dg +
1
2k
J ) ∗J ) + k d−1θ(g) (2.35) acdenWZW

cannot be globally defined on G since the 3-form θ(g) , albeit closed, d θ(g) = 0 ,
is not exact. (Accordingly, the corresponding WZ term in the WZNW action
in the second order formalism (

Swznw0
2.18) is multivalued.)

If we identify ig−1∂µg with the velocity on the group manifold, then jµ
plays the role of covariant canonical momentum (cf. (

gJ
2.28) – (

sJ
2.30)), and the

coefficient to the space-time volume form dx0 dx1

2π (with a minus sign) in (
acdenWZW
2.35)

is the covariant Hamiltonian H = H(j) , just as −H was the coefficient to dt in
the classical mechanical action density L (

D1
2.22). Note that the only such term

in the right-hand side of (
acdenWZW
2.35) comes from

1
8πk

tr (J ∗J ) =
1

8πk
tr jµjµdx0dx1 =: −H(j) dx0 dx

1

2π
. (2.36) covH

It is remarkable that the 3-form (
omWZW
2.29) contains the full information about

the model: it allows to derive both the equations of motion and the symplectic
structure. To begin with, we note that

d tr (J ∗J ) = δ tr (J ∗J ) = 2 tr (jµδjµ) dx0dx1 . (2.37) dJsJ

We shall denote the pull-back of a form by g∗ ; by definition,

g∗ ( f(dg, dJ , d ∗J ; δg, δJ , δ∗J ) ) = f(dg, dJ , d ∗J ; 0, 0, 0) . (2.38) pullb

Introduce, for arbitrary Y ∈ iG (in particular, for any n×n Hermitean traceless
matrix, for G = su(n)), the vertical vector field Yjµ := tr

(
Y δ
δjµ

)
so that

Ŷjµ(δjν) = Y δνµ ( Ŷjµ(δJ ) = Y dxµ , Ŷjµ(δ∗J ) = Y εµν dx
ν ) . (2.39) rels0

Using (
dxdx
2.13), we derive the first equation of motion:

g∗
(
Ŷjµ ω

)
=

1
4π

trY (ig−1∂µg +
1
k
jµ) dx0dx1 = 0 , or

jµ = −ik g−1∂µg ⇔ J = −ik g−1dg . (2.40)

To obtain the remaining equations, we introduce the vector field Yg := i tr
(
g Y δ

δg

)
satisfying

Ŷg (g−1d g) = i Y ⇒ Ŷg θ(g) = i tr
(
Y (g−1dg)2

)
. (2.41) rels1
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Equating to zero the pull-back of Ŷg ω ,

g∗ (Ŷg ω) =
1

4π
trY

(
d ∗J + ik (g−1dg)2 + [g−1dg,∗J ]+

)
= 0 (2.42) seeqmot

together with the first equation of motion (
plbk1
2.40) and the anticommutativity

relation (
JsJ
2.31)

[g−1dg, ∗J ]+ =
i

k
[J , ∗J ]+ = 0 (2.43) []+

implies the second equation of motion which can be written entirely in terms of
currents:

d ∗J =
i

k
J 2 ⇔ ∂µj

µ = − i

2k
εµν [jµ, jν ]

i.e., ∂1j
1 + ∂0j

0 = − i
k

[j0, j1] . (2.44)

Next, we compare the result with the horizontal (d-) differential (the curl) of
(
plbk1
2.40),

dJ = ik (g−1dg)2 = − i
k
J 2 ⇔ εµν∂µjν = − i

2k
εµν [jµ, jν ]

i.e., ∂1j
0 + ∂0j

1 =
i

k
[j0, j1] . (2.45)

This yields the easily solvable equation

d (J + ∗J ) = 0 ⇔ (∂0 + ∂1)(j0 + j1) = 0 . (2.46) clos

In order to write down its general solution we introduce the light cone variables
(and the corresponding derivatives) (

conev
2.7). We can summarize the result as

∂+jR = 0 for jR :=
1
2

(j0 + j1) = −ik g−1∂−g . (2.47) eqsmR

This (second order in g = g(x+, x−)) equation is equivalent to

∂−jL = 0 for jL :=
1
2
g(j0 − j1)g−1 = ik (∂+g) g−1 , (2.48) eqsmL

since ∂+jR = −g−1(∂−jL)g , or alternatively, to the closedness of the corre-
sponding current 1-forms

JL := ik (∂+g)g−1dx+ , JR := −ik (g−1∂−g) dx−

(J = JR − g−1JLg , ∗J = JR + g−1JLg ) ,
dJL = 0 = dJR . (2.49)

Remark 2.2 In the pioneer paper
W
[262] on non-abelian bosonization Witten

starts with the observation that a set of vector currents

jµa (x) = i ψ̃(x)γµ Taψ(x) , γ2
1 = 1 = −γ2

0 , [γ0, γ1]+ = 0 (2.50) Wjj

where ψ is a (2-component) free massless fermion field with values in the fun-
damental representation of G , splits into conserved left and right components
obtained by substituting γµ with 1

2γ
µ(1 ∓ γ5) , γ5 := γ0γ1 and depending on

x± , respectively. Demanding such a splitting into chiral components for the Lie
algebra valued current jµ (

plbk1
2.40), one comes to the necessity of adding to the

”standard” action, given by the first term in the right-hand side of (
Swznw0
2.18), the

second, Wess-Zumino term.
The definition of the (conserved and traceless) stress energy tensor Tµν is

encoded in the first order action density (
acdenWZW
2.35). Its form illustrates the obser-

vation that the WZ term only influences the symplectic structure, respectively
the PB relations, while the stress energy tensor is determined by just the coef-
ficient H to the space-time volume. Expressing Tµν in terms of the covariant
Hamiltonian (

covH
2.36) and its functional derivatives,

Tµν(x) = tr
(

δH

δjµ(x)
jν(x)

)
−Hδµν =

1
2k

tr
(

1
2
j2(x)δµν − jµ(x)jν(x)

)
, (2.51) stren

11



we recover the classical Sugawara formula2.
The same expression can be obtained by Hilbert’s variational principle vary-

ing the action density

−H(j, h)
√
−h =

1
4k

hαβ tr jαjβ
√
−h (h = det(hαβ) , hασhσβ = δαβ )

(2.52) Hjh

with respect to hµν in the neighbourhood of the flat Minkowski space metric
hµν = ηµν . Using the Jacobi formula

δh = hhµνδhµν = −hhµνδhµν , (2.53) Jach

we find

1√
−h

δ (H(j, h)
√
−h) =

1
2
Tµν δh

µν (Tµµ = hµνTµν = 0 ) (2.54) fder-Hjh

which reproduces (
stren
2.51) for hµν = ηµν .

The two independent chiral components of Tµν are quadratic in the corre-
sponding chiral components of the current:

TL :=
1
2

(T 0
0 − T 1

0) =
1
8k

tr (j0 − j1)2 =
1
2k

tr j2
L ,

TR :=
1
2

(T 0
0 + T 1

0) =
1
8k

tr (j0 + j1)2 =
1
2k

tr j2
R . (2.55)

The conservation of Tµν follows trivially from the chirality of jL = jL(x+) and
jR = jR(x−) (cf. (

conev
2.7), (

eqsmR
2.47), (

eqsmL
2.48)):

∂−TL ± ∂+TR = 0 ⇔ ∂µT
µ
ν = 0 . (2.56) dT0

The traditional derivation of the equations of motion from the multivalued
action density (

acdenWZW
2.35) is based on the easily verifiable relation

δ
1
3

tr (g−1dg)3 = − d tr (g−1δg (g−1dg)2) (2.57) totdiff

implying that the vertical (”variational”) differential of the multivalued WZ
term d−1g∗(θ(g)) is single valued,

δ d−1g∗(θ(g)) = tr (g−1δg (g−1dg)2) (2.58) totdiff1

(cf. (
totdiff0
2.12)). Taking δ of the pull-back of the action density (

acdenWZW
2.35) and using

(
dJsJ
2.37), we thus obtain

δ g∗(L) = − dα− 1
4π

tr {δ ∗J (ig−1dg +
1
k
J )} −

− i

4π
tr {g−1δg (d ∗J + ik (g−1dg)2 + [g−1dg, ∗J ]+)} (2.59)

where α is the Noether form
JS
[167] (of degree (a, b) = (D − 1, 1) = (1, 1))

α =
i

4π
tr (g−1δg ∗J ) . (2.60) Noetherf

The vanishing of δ g∗(L) , up to the boundary term dα , reproduces (after
using(

[]+
2.43)) the equations of motion (

plbk1
2.40) and (

eqnmot2
2.44).

In the second order formalism the equations of motion are expressed directly
in terms of g and its derivatives. From (

SWZ1
2.16) we get

δS[g] = − k

2π

∫
M

tr { δg g−1∂−((∂+g)g−1)} dx+dx−

≡ − k

2π

∫
M

tr { g−1δg ∂+(g−1∂−g)} dx+dx− , (2.61)

2The ”Sugawara formula” has in fact many authors – see, e.g. the bibliographical notes to
Section 4 of

FSoT
[122], p.75 and references cited there.
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and equating (
varL2
2.61) to zero for arbitrary variations δg reproduces (

eqsmL
2.48) and

(
eqsmR
2.47).

In accord with the general rules formulated in the beginning of this section,
the true symplectic density ω0 for the WZNW model is obtained

G
[128] by re-

stricting the form ω (
omWZW
2.29) to an equal time surface, i.e. taking the coefficient of

dx1 . Noting that ∗J |dx0=0= j0dx1 , we see that the resulting (1, 2) form differs
from δ α |dx0=0= i

4π δ tr (j0 g−1δg) dx1 , cf. (
Noetherf
2.60) (which is a special case of the

(D − 1, 2) symplectic density considered in
JS
[167]) by a contribution from the

WZ term:

ω0 = δ α |dx0=0 +
k

4π
tr
(
g−1g′(g−1δg)2

)
dx1 , g′ := ∂1g . (2.62) omega0

The symplectic form Ω(2) of the theory is obtained by integrating ω0 (
omega0
2.62)

over a constant time circle i.e., over a period in x1 :

Ω(2) =

π∫
−π

ω0 dx
1 =

=
1

4π

π∫
−π

dx1 tr
(
i δ
(
j0g−1δg

)
+ k g−1g′

(
g−1δg

)2)
= (2.63)

=
1

2π

π∫
−π

dx1 tr
(
i δ
(
jR g

−1δg
)

+
k

2
g−1δg

(
g−1δg

)′)
= (2.64)

=
1

2π

π∫
−π

dx1 tr
(
i δ
(
jL δgg

−1
)
− k

2
δgg−1

(
δgg−1

)′)
. (2.65)

In verifying the equivalence between these three forms of Ω(2) we use the rela-
tions

j0 = 2jR + ik g−1 g′ = 2 g−1jL g − ik g−1 g′ , (2.66) abc1

cf. (
eqsmL
2.48), (

eqsmR
2.47).

2.3 Splitting g(x+, x−) into chiral components

Given the equations of motion, the classical phase space S of the 2D WZNW
model can be identified with the manifold of their initial data,

S = T ∗G̃ ' G̃× G̃ , (2.67) T*

where G̃ is the loop group corresponding to G , and G̃ – its Lie algebra. We can
choose, for example, the parametrization in terms of g and jL , see (

OmegaWZL
2.65), so

that
S = { g(x) |x0=0 ∈ G̃ , jL(x) |x0=0 ∈ G̃ } . (2.68) Ph

S can be viewed, alternatively, as the space of solutions of the equation of motion
(
eqsmR
2.47) (or, equivalently, of (

eqsmL
2.48))

∂+(g−1∂−g) = 0
(
⇔ ∂−((∂+g)g−1) = 0

)
. (2.69) eqmotion

The general solution of (
eqmotion
2.69) is given by the factorized expression g(x+, x−) =

gL(x+) g−1
R (x−) (

LR
1.1), where the chiral components gC , C = L,R satisfy the

twisted periodicity condition gC(x + 2π) = gC(x)M , M ∈ G (
cM
1.2)3. Note

that the currents jC can be expressed in terms of the corresponding chiral
components of g ,

jL(x+) = ik g′L(x+)g−1
L (x+) , jR(x−) = ik g′R(x−)g−1

R (x−) . (2.70) jLR

3To simplify notation, we shall often denote, in what follows, by x the single argument of
any of the chiral fields. It should not be confused with the vector x = (x0, x1) which only
appears in the 2D field g (

LR
1.1).
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The space of pairs of twisted-periodic maps with equal monodromies from
the light rays to the group,

S̃ = {
(
gL(x+) , gR(x−)

)
, x± ∈ R | g−1

C (x) gC(x+ 2π) = M ∈ G} (2.71) extPh

is an extension of S . More precisely, S̃ can be viewed as a principal fibre bundle
over S

BFP
[26] with respect to the free4 right action of G on S̃

(gL, gR) → (gLh , gRh) , M → h−1Mh (h ∈ G) ,

the projection pr : S̃ −→ S being defined as

S̃ 3 (gL(x+) , gR(x−))
pr−→ (gL(x)g−1

R (x) , ik g′L(x)g−1
L (x)) ∈ S . (2.72) princB

By rewriting the symplectic form Ω(2) (
OmegaWZL
2.65) on S in terms of the chiral fields

gL , gR it is extended to a closed (but degenerate) form Ω(2)(gL, gR) on S̃ .

Proposition 2.1 (Gawȩdzki
G
[128]; Falceto & Gawȩdzki

FG1
[83]) One can present

Ω(2)(gL, gR) as the difference of two chiral 2-forms:

Ω(2)(gL, gR) = Ωc(gL,M) − Ωc(gR,M) , (2.73) O-O

Ωc(gC ,M) =
k

4π
tr {

π∫
−π

g−1
C δgC(x) (g−1

C δgC(x))′ dx+ δgCg
−1
C (−π) δgCg−1

C (π) } ≡

≡ k

4π
tr {

π∫
−π

g−1
C δgC(x) (g−1

C δgC(x))′ dx+ b−1
C δbC δMM−1 } , (2.74)

C = L,R , where bC := gC(−π) and gC(x + 2π) = gC(x)M so that the mon-
odromy

M = b−1
C gC(π) (2.75) bM

is independent of the chirality C .

Proof From the expressions for g (
LR
1.1) and jL (

jLR
2.70) we get

δgg−1 = gL (g−1
L δgL − g−1

R δgR) g−1
L ,

tr(jLδgg−1) = ik tr
(
g−1
L g′L(g−1

L δgL − g−1
R δgR)

)
, (2.76)

so that

i δ tr(jLδgg−1) = k tr
(
(g−1
L δgL − g−1

R δgR)(g−1
L δg′L − g−1

L g′L g
−1
R δgR)

)
,

(2.77)
tr
(
δgg−1(δgg−1)′

)
= 2 tr

(
(g−1
L δgL − g−1

R δgR)(g−1
L δg′L − g−1

L g′L g
−1
R δgR)

)
−

− tr
(
(g−1
L δgL − g−1

R δgR)((g−1
L δgL)′ + (g−1

R δgR)′)
)
.

Hence, Ω(2)(gL, gR) (
O-O
2.73) is expressed as

Ω(2)(gL, gR) =
k

4π

π∫
−π

tr
{

(g−1
L δgL(x)− g−1

R δgR(x))((g−1
L δgL(x))′ + (g−1

R δgR(x))′)
}
dx .

(2.78) Olr

To complete the proof, it remains to note that the two mixed terms in (
Olr
2.78)

combine to
π∫
−π

dx tr (g−1
L δgL(x)g−1

R δgR(x))′ ≡ tr (g−1
L δgL(π)g−1

R δgR(π)− b−1
L δbLb

−1
R δbR) =

= tr
(
(b−1
L δbL − b−1

R δbR) δMM−1
)
≡

≡ tr
(
δgLg

−1
L (−π) δgLg−1

L (π)− δgRg−1
R (−π) δgRg−1

R (π)
)
, (2.79)

4I.e., without fixed points, for h 6= e ∈ G.
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since g−1
C δgC(−π) ≡ b−1

C δbC , gC(π) = bCM , tr
(
δMM−1

)2 = 0 , and

g−1
C δgC(π) = M−1b−1

C δ(bCM) = M−1(b−1
C δbC + δMM−1)M (2.80) gpi

or, conversely,

δMM−1 = δ(b−1
C gC(π)) gC(π)−1bC = −b−1

C δbC + b−1
C δgCg

−1
C (π) bC . (2.81) gpi-conv

As already mentioned, as a 2-form on S̃ (
extPh
2.71), Ω(2)(gL, gR) (

O-O
2.73) is still

closed but is degenerate. The closedness follows from the fact that, for gL and
gR having the same monodromy M , one has δΩc(gL,M) = δΩc(gR,M) :

δΩc(gC ,M) = − k

4π
tr {

π∫
−π

dx (g−1
C δgC(x))2 (g−1

C δgC(x))′ +

+(b−1
C δbC + δMM−1) b−1

C δbC δMM−1 } =

=
k

4π
{

π∫
−π

d θ(gC(x))− tr (b−1
C δbC + δMM−1) b−1

C δbC δMM−1 } =

=
k

4π
{ θ(bCM)− θ(bC)− tr (b−1

C δbC + δMM−1) b−1
C δbC δMM−1 } =

=
k

12π
tr (M−1δM)3 =

k

4π
θ(M) (2.82)

(we have used again (
gpi
2.80); note that the 3-form θ(M) is purely vertical since

M is x-independent). The degeneracy of Ω(2)(gL, gR) on S̃ is due to its invari-
ance with respect to simultaneous equal right shifts of gL and gR , see (

free-act
2.72);

accordingly, if Yr is the vertical vector field generating the 1-parameter group

gL → gL e
itY , gR → gR e

itY ( i Y ∈ G ) , (2.83)

Ŷr δgC ≡ Yr gC :=
d

dt
(gC eitY )|t=0 = i gCY , Ŷr(g−1

C δgC) = i Y

for C = L,R , it follows immediately from (
Olr
2.78) that Ŷr Ω(2)(gL, gR) = 0 .

In order to define symplectic forms on each of the chiral phase spaces we
shall, following Gawȩdzki

G
[128], further extend S̃ introducing independent chiral

monodromies MC , C = L,R so that the left and the right sectors SL , SR where

SC = {gC(x) , x ∈ R | g−1
C (x) gC(x+ 2π) = MC ∈ G} (2.84) PC

fully decouple. To avoid overcounting variables, we shall consider each of
the chiral phase spaces SC as being parametrized by the smooth functions
gC(x) , −π < x < π and their boundary data, bC = gC(−π) and MC =
b−1
C gC(π) . Due to (

deltaO
2.82), it appears natural to set

Ω(gC ,MC) = Ωc(gC ,MC)− k

4π
ρ(MC) , (2.85) O

demanding that the 2-form ρ(M) (defined in some neighbourhood of the unit
element) satisfies

δ ρ(M) = θ(M) . (2.86) drho

The resulting Ω(gC ,MC) is closed and non-degenerate (we shall see in what
follows that it is invertible), thus equipping each SC with a true symplectic
structure.

Unless not being explicitly specified otherwise, by ”the chiral WZNW model”
we shall understand below the theory with

• phase space SC (
PC
2.84),

• symplectic form Ω(gC ,MC) (
O
2.85) (for certain ρ(MC) satisfying (

drho
2.86)),

• and (conformal) Hamiltonian TC (
Tchir
2.55), (

jLR
2.70)
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coinciding with the left WZNW sector described above, and shall omit in most
cases the chirality index. (The only difference between the two sectors is in the
opposite signs of the corresponding symplectic forms; recall that the one of the
right sector is −Ω(gR,MR).) We shall return to the problem of reconstructing
the 2D theory from the chiral ones at the end of the next Section.

The 2-form (
O-O
2.73) on S̃ is thus recovered by imposing the constraint of equal

chiral monodromies

Ω(2)(gL, gR) = (Ω(gL,ML)− Ω(gR,MR)) |ML≈MR
. (2.87) O2alt

The sign difference between the left and right symplectic forms forces us to dis-
tinguish between left and right monodromy since the resulting Poisson brackets
for ML and MR will also differ in sign. The monodromy invariance of the 2D
theory will have to be restored at a later stage as a constraint on the observ-
able quantities. Hence, recovering the 2D WZNW model from the extended
phase space (the product of two independent chiral spaces with different mon-
odromies) requires a gauge theory framework.5 The 2D observables are functions
of the periodic (i.e., monodromy free) 2D field g (

LR
1.1). The projection of the

observable algebra on a chiral (say, left mover’s) phase space is generated by
the chiral currents jC , C = L,R which can be expressed, according to (

jLR
2.70),

in terms of the corresponding chiral variable gC and allow to write down the
chiral components (

Tchir
2.55) of the stress energy tensor.

As already noted, the WZNW form θ is not exact, hence there is no globally
defined smooth 2-form on G satisfying (

drho
2.86). However, a form ρ with this

property can be constructed locally, on an open dense neighbourhood of the
identity

◦
G of G . For example, if the monodromy matrix can be factorized

S-T-S, RS
[231, 218] as

M = M+M
−1
− , M± ∈ GC (2.88) M+-

where GC is the complexification of G , one can prove directly that the 2-form

ρ(M) = tr (M−1
+ δM+M

−1
− δM−) (2.89) ro

satisfies (
drho
2.86) provided that

θ(M±) ≡ 1
3

tr (M−1
± δM±)3 = 0 . (2.90) prov

Indeed, a simple computation using (
prov
2.90) gives

θ(M) =
1
3

tr (M−1δM)3 =
1
3

tr (M−1
+ δM+ −M−1

− δM−)3 =

= tr
(
M−1

+ δM+(M−1
− δM− −M−1

+ δM+)M−1
− δM−

)
= δ ρ(M) . (2.91)

According to the Cartan criterium for solvability (see e.g.
FS
[104]), a Lie algebra

K is solvable iff its Killing form satisfies

X ∈ K , Y ∈ [K,K] ⇒ tr (XY ) ≡ (X,Y ) = 0 . (2.92) Ksolv

By (
can3
2.34), Eqs. (

prov
2.90) follow automatically if M−1

± δM± take their values in
a solvable Lie subalgebra of GC. We shall assume that these are the Borel
subalgebras b± , in which case we shall call M± (

M+-
2.88) the Gauss components of

M (other possibilities are considered in
CP
[55]).

For G = SU(n), our main example in this paper, GC = SL(n) and we

choose
◦
G to be the set of the matrices M = (Mα

β ) ∈ G such that Mn
n 6= 0 6=

det
(
Mn−1
n−1 Mn−1

n

Mn
n−1 Mn

n

)
etc., while M± belong to the Borel subgroups B± of

SL(n) of upper and lower triangular unimodular matrices, respectively. The
uniqueness of the decomposition (

M+-
2.88) is ensured by the relation

diagM+ = diagM−1
− = D = (dαδαβ ) (2.93) diagMM

5In the quantum theory, imposing the constraint of equal left and right monodromy cor-
responds to singling a physical quotient of the extended state space; see Section 5.4.2 where
the n = 2 case is treated.
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where the diagonal matrix D has unit determinant,
∏n
α=1 dα = 1 .

Being a function of the monodromy matrix M ∈
◦
G only, the 2-form ρ(M)

can be presented in terms of an (M -dependent) operator KM ∈ End G as

ρ(M) =
1
2

tr (δMM−1KM (δMM−1)) (2.94) defrhoK

(without loss of generality, KM can be assumed to be skew symmetric with
respect to the Killing form defined by the trace). For ρ(M) given by (

ro
2.89) in

terms of the Gauss components (
M+-
2.88) of M , so that

δMM−1 = δM+M
−1
+ −AdM (δM−M−1

− ) (AdM (X) := MXM−1 ) , (2.95) dMM+-

the corresponding KM acts simply as

KM (δMM−1) = δM+M
−1
+ +AdM (δM−M−1

− ) . (2.96) KMMM

Indeed, inserting (
dMM+-
2.95) and (

KMMM
2.96) into (

defrhoK
2.94), we recover (

ro
2.89):

ρ(M) = tr
(
δM+M

−1
+ AdM (δM−M−1

− )
)

= tr
(
M−1

+ δM+M
−1
− δM−

)
. (2.97) rhoKGauss

2.4 2D and chiral gauge symmetries

It is readily seen that the basic 3-form ω (
omWZW
2.29) of the 2D WZNW model is

invariant with respect to both left and right constant group translations,

L : g → h g ( g−1dg → g−1dg , J → J , ∗J → ∗J ) , (2.98)
R : g → gh ( g−1dg → h−1(g−1dg)h , J → h−1J h , ∗J → h−1 ∗J h ) .

It follows trivially from the transformation properties of the currents (
eqsmR
2.47),

(
eqsmL
2.48),

jL
L→ hjLh

−1 , jR
L→ jR , jL

R→ jL , jR
R→ h−1jR h (2.99) LR-SO

that the same applies to the stress energy tensor Tµν and its chiral counterparts
TC , C = L,R (

Tchir
2.55).

A canonical way of displaying the symmetries consists in letting the cor-
responding vector fields act on the symplectic form. In particular, the vector
fields implementing the left and right group translations,

g
L→ eitY g , jL

L→ eitY jLe
−itY ( i Y ∈ G ) , (2.100)

ŶLδg ≡ YL g = i Y g , ŶL(δgg−1) = i Y , ŶL δjL ≡ YL jL = i [Y, jL]

and

g
R→ g eitY , jR

R→ e−itY jR e
itY , (2.101)

ŶR δg ≡ YR g = i g Y , ŶR(g−1δg) = i Y , ŶR δjR ≡ YR jR = i [jR, Y ]

acting on Ω(2) give rise to the left and right (zero mode) charges. Indeed, from
(
YL
2.100) and (

OmegaWZL
2.65) we obtain

ŶL Ω(2) = − 1
2π

tr
∫ π

−π
{ [Y, jL] δgg−1 − δjLY + jL [Y, δgg−1] } dx1 =

=
1

2π
tr (Y δ

∫ π

−π
jL dx

1) = tr (Y δjL0 ) for jL =
∑
r∈Z

jLr e
−irx1

(2.102)

(the contribution from the second term under the integral in (
OmegaWZL
2.65) vanishes, as

the 2D field g is periodic in x1 and Y is constant). Similarly, using now (
OmegaWZR
2.64),

(
YR
2.101), we get

ŶR Ω(2) = − 1
2π

tr
∫ π

−π
{ [jR, Y ] g−1δg − δjRY − jR [Y, g−1δg] } dx1 =

=
1

2π
tr (Y δ

∫ π

−π
jR dx

1) = tr (Y δjR0 ) , jR =
∑
r∈Z

jRr e
−irx1

. (2.103)
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In the case of the more general infinite dimensional symmetry (
infgr
2.8) which cor-

responds to periodic (rather than constant) Y = Y (x1) =
∑
r∈Z Yre

−irx1
in

(
YL
2.100) and (

YR
2.101), the vector fields YL and YR now act on the basic 1-forms

as

ŶL(δgg−1) = i Y , ŶL δjL = i [Y, jL]− k Y ′ ,
ŶR(g−1δg) = i Y , ŶR δjR = i [jR, Y ] + k Y ′ , (2.104)

and their contractions with Ω(2) involve all current modes:

ŶL Ω(2) =
1

2π
tr
∫ π

−π
Y δjL dx

1 =
∑
r∈Z

tr (YrδjL−r) , (2.105)

ŶR Ω(2) =
1

2π
tr
∫ π

−π
Y δjR dx

1 =
∑
r∈Z

tr (YrδjR−r) . (2.106)

Of course, Eqs. (
YOL
2.102) and (

YOR
2.103) are special cases of (

YOL1
2.105) and (

YOR1
2.106),

respectively (for Y = Y (x1) = Y0).
Eqs. (

YOL
2.102) and (

YOR
2.103), as well as (

YOL1
2.105) and (

YOR1
2.106), have the standard

Hamiltonian form (
defOX
2.24). The same is true for the periodic (or constant) left

shifts of the chiral field (we shall take g ≡ gL for concreteness). Let g1 :=
g(−π) , g2 := g(π) ; then, from M = g−1

1 g2 and ŶLδg = i Y g we find

δMM−1 = g−1
1 δg2 g

−1
2 g1 − g−1

1 δg1 , hence (2.107)

ŶL(δMM−1) = i g−1
1 Y (π) g1 − i g−1

1 Y (−π) g1 = 0 ⇒ ŶL ρ(M) = 0

(cf. (
defrhoK
2.94)). A simple computation using (

jLR
2.70) allows to reproduce the chiral

counterpart of (
YOL1
2.105) (or of (

YOL
2.102), for constant Y ):

ŶL Ω(g,M) = ŶL Ωc(g,M) =

=
ik

4π
tr {
∫ π

−π

(
g−1Y g (g−1δg)′ − g−1δg (g−1Y g)′

)
dx+ g−1

1 Y g1δMM−1} =

=
ik

2π
tr δ

∫ π

−π
Y g′g−1 dx =

1
2π

tr
∫ π

−π
Y δj(x) dx . (2.108)

By contrast, the symmetry with respect to constant right shifts of the chiral
field is of a rather different nature. To begin with, we note that ŶR δg = i g Y
implies

ŶR(δMM−1) = i g−1
1 g2Y g

−1
2 g1 − i Y = i (MYM−1 − Y ) ≡ i (AdM − 1)Y .

(2.109) YRM

As a result, the contraction ŶR Ω(g,M) of YR with the chiral symplectic form
Ω(g,M) = Ωc(g,M) − k

4πρ(M) (
O
2.85) depends crucially on ρ(M) . Eqs. (

Oc
2.74)

and (
YRM
2.109) give

ŶR Ωc(g,M) =
ik

4π
tr {
∫ π

−π
Y (g−1δg)′dx+ Y δMM−1 − g−1

1 δg1(AdM − 1)Y } =

=
ik

4π
trY {g−1

2 δg2 + δMM−1 −Ad−1
M (g−1

1 δg1)} =

=
ik

4π
trY {δMM−1 +M−1δM} ; (2.110)

for the last equality we have used (
Mg12
2.107) implying

g−1
2 δg2 = M−1g−1

1 (δg1M + g1δM) ≡ Ad−1
M (g−1

1 δg1) +M−1δM . (2.111) MgM

Evaluating ŶR on ρ(M) (
defrhoK
2.94), we obtain

ŶR ρ(M) =

=
i

2
tr {( (AdM − 1)Y ) (KM (δMM−1) )− δMM−1KM ( (AdM − 1)Y )} =

= i trY (Ad−1
M − 1)KM (δMM−1) . (2.112)
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Note that both expressions (
YROc
2.110) and (

YRrho
2.112) only depend on the monodromy

matrix. Combining them, we get

ŶR Ω(g,M) = ŶR Ωc(g,M)− k

4π
ŶR ρ(M) =

=
ik

4π
trY {

(
Ad−1

M + 1− (Ad−1
M − 1)KM

)
(δMM−1)} . (2.113)

For ρ(M) given by (
ro
2.89) in terms of the Gauss components (

M+-
2.88) of M ,

the general expression (
YRO1
2.113) leads, taking into account (

dMM+-
2.95) and (

KMMM
2.96), to

ŶR Ω(g,M) =
ik

4π
trY {

(
Ad−1

M + 1− (Ad−1
M − 1)

)
(δM+M

−1
+ )−

− (AdM + 1− (AdM − 1)) (δM−M−1
− )} =

=
ik

2π
trY (δM+M

−1
+ − δM−M−1

− ) . (2.114)

We thus see that in the case of (e.g., constant) left translations the 1-form
Z = δ

∫ π
−π j(x) dx = 2πδj0 (cf. (

YLOc
2.108)) is exact (and hence, closed) so that the

corresponding symmetry is of Hamiltonian type. By contrast, the forms Z± =
δM±M

−1
± in (

YRO
2.114) satisfy the Maurer-Cartan (non-abelian flat connection)

equation δZ± = Z2
± , a fact which signals a Poisson-Lie (PL) symmetry (

D1, S-T-S, D
[70,

231, 71]) with respect to constant right translations. (An infinite dimensional
generalized PL symmetry with respect to non-constant translations satisfying
special boundary conditions has been found in

AT
[17].)

We recall the definition of a PL group and of its Poisson action
D1, S-T-S
[70, 231]. In

the terminology of Lu and Weinstein
LW
[189], a PL group is a Lie group equipped

with a multiplicative Poisson structure. In more details (cf. the first chapter
of

CP
[55]), one introduces first the notion of a Poisson map between two Poisson

manifolds, φ : L → N as a smooth map that preserves the Poisson bracket,
{f, g}N ◦ φ = {f ◦ φ, g ◦ φ}L ∀f, g ∈ C∞(N ) . Now a PL group is a Lie
group G with a Poisson structure {f, g}G(x) on it (x ∈ G, f, g ∈ C∞(G)) such
that the group multiplication m : G × G → G is a Poisson map, and a (left)
Poisson action of a PL group G on a Poisson manifold N is a Poisson map
φ : G × N → N . The product Poisson structure, e.g. on G × N 3 (x, y) , is
defined by

{f, g}G×N (x, y) = {f(. , y), g(. , y)}G (x) + {f(x, .), g(x, .)}N (y) ; (2.115) prodPB

in the case of a PL group, N = G .

So a PL group action preserves the Poisson bracket (PB) provided one takes
into account the non-trivial PB on the group as well. Indeed, we shall see
below that the Poisson bracket {g1(x1), g2(x2)} , obtained by inverting the chiral
symplectic form (

O
2.85) with ρ(M) defined by (

ro
2.89), is invariant with respect

to the right shift g(x) → g(x)T (T ∈ G ) provided that the matrix elements
of T (Poisson commuting with g(x)) are viewed as dynamical variables with a
non-trivial PB given by the Sklyanin bracket

Sk
[238]

{T1, T2} =
π

k
[r12 , T1 T2 ] (2.116) PBSkl

where r12 is a classical r-matrix.

Remark 2.3 In (
PBSkl
2.116) we introduce the familiar Faddeev’s shorthand notation

FRT
[82] for operations on multiple tensor products of a (finite dimensional) vector
space V . (A similar notation is used sometimes for tensors in V ⊗ V ⊗ · · · ⊗
V .) The subscript i = 1, 2, . . . refers to the i-th tensor factor: if, e.g. A12 =∑
iXi ⊗ Yi ⊗ 1I where Xi , Yi ∈ EndV , then A13 =

∑
iXi ⊗ 1I ⊗ Yi while

A21 =
∑
i Yi ⊗ Xi ⊗ 1I , etc. If P12 = P21 (P 2

12 = 1I ) is the permutation
operator acting on V ⊗ V as P12 x ⊗ y = y ⊗ x , then A21 = P12A12P12 . The
Kronecker product of the operator matrices in a given basis of V relates the
compact notation with the multi-index one, e.g. the matrix of A1B2 = A ⊗ B
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for A = (Aij) , B = (B`m) is (A ⊗ B)i`jm = AijB
`
m (we shall always assume the

lexicographic order of indices).6

Respecting the unitarity of the monodromy matrix M (for the general case
of non-diagonal monodromy) forces one to consider quadratic PB {g(x1), g(x2)}
involving a monodromy dependent r-matrix r(M)

BFP1, BFP
[25, 26]. Thus the non-

uniqueness of the splitting of the group valued field 2D field g(x0, x1) (
LR
1.1) into

chiral components and the associated freedom in the choice of the monodromy
manifolds and of the 2-form ρ(M) satisfying (

drho
2.86) leave room for different types

of symmetry of the chiral field under right shifts. Allowing for more general non-
unitary M , we shall be able to end up with PB involving constant r-matrices
(for −2π < x1−x2 < 2π). Their PL symmetry with respect to transformations
satisfying (

PBSkl
2.116) is the classical counterpart of the Hopf algebraic (quantum

group) symmetry of the corresponding quantum exchange relations considered
in Section 4.

Remark 2.4 The above considerations only apply to the case of general mon-
odromy matrix M . One can restrict, alternatively, the chiral phase space SC to
a subspace SdC of chiral fields u(x) with diagonal monodromy Mp (such fields
are called Bloch waves

Ba, BFP
[22, 26]). Since the 3-form θ(Mp) vanishes on the Cartan

subgroup7, the chiral form Ωc(u,Mp) itself is already closed, in view of (
deltaO
2.82).

Hence, the freedom introduced by the chiral splitting is reduced in this case to
an arbitrary closed 2-form ρ(Mp) in (

O
2.85), Ω = Ωc − k

4π ρ(Mp) . Further, since
δMpM

−1
p = M−1

p δMp = δ logMp , it follows from (
YROc
2.110) that the symmetry of

such fields with respect to constant right shifts is still Hamiltonian.
So it is meaningful to denote a chiral field with a diagonal monodromy

matrix Mp by a different letter, u(x) . As we shall see in the next section, the
PB of the Bloch waves contain singularities depending on the eigenvalues of
the monodromy matrix Mp . Thus, at the classical level, the intertwining map
a between u(x) and the chiral field g(x) defined by g(x) = u(x) a can only
be regular in a restricted domain of diagonal monodromies. We shall face a
similar problem when considering the quantization in Section 4 where the above
mentioned feature manifests itself in the vanishing of the quantum determinant
det(a) .

3 Chiral phase spaces and Poisson brackets

3.1 Diagonalizing the monodromy matrix

As anticipated in the preceding section, we shall write down the chiral group
valued, twisted periodic field (

PC
2.84)

g(x) = (gAα (x)) , g(x+ 2π) = g(x)M (3.1) ggM

as a product
gAα (x) = uAj (x) ajα (3.2) gua

of an (x-dependent) Bloch wave u(x) = (uAj (x)) and a (constant) zero mode
matrix a = (ajα) . (We identify in this paper the Lie groups and the Lie algebras
with their defining representations. Thus, for G = SU(n) all the indices A, j, α
take values from 1 to n .)

The Bloch waves are defined to be twisted-periodic fields with diagonal (i.e.,
belonging to the subgroup corresponding to the chosen Cartan subalgebra h)
monodromy Mp:

u(x+ 2π) = u(x)Mp , Mp = e
2πi
k /p , /p ∈ h . (3.3) uuMp

6Note that the relation A1B2 = B2A1 means that the entries of A and B commute,
AijB

`
m = B`mA

i
j . In particular, A1A2 is not equal to A2A1 for a matrix A with non-

commuting matrix elements. This remark will be especially important for the quantum case,
see below.

7This follows from (
can3
2.34) applied to the (commutative) Cartan subalgebra. In general,

θ(M) = 0 iff M−1δM takes value in a solvable Lie subalgebra of GC, cf. (
prov
2.90).
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(More generally, we may assume that Mp has a normal Jordan form.) Compar-
ing (

ggM
3.1) and (

uuMp
3.3), we see that Mp and M are related by

Mp a = aM . (3.4) aintertw

Hence, if the zero modes’ matrix a is invertible, then M is diagonalizable and
its diagonal form is Mp . To guarantee this, we have to restrict /p to belong to
the interior AW of the positive Weyl alcove defined in Eq.(3.13) below (for a
discussion on this point, see e.g.

FG1
[83] and Section 3 of

GR
[132]).

The separation of variables (
gua
3.2) is analogous to the so called ”vertex-IRF

(interaction-round-a-face) transformation” originally used in lattice models, see
Ba
[22]. As the current j(x) which generates the left group translations is the same
for g(x) and u(x) , it follows from (

jLR
2.70) that each of them satisfies the classical

Knizhnik-Zamolodchikov (KZ) equation

ik
dg

dx
(x) = j(x) g(x) , ik

du

dx
(x) = j(x)u(x) . (3.5) clKZ

The corresponding solutions (given by ordered exponentials) can only differ by
their initial values, say at x = −π . Hence, the zero modes’ matrix in (

gua
3.2) is

just a = u(−π) g−1(−π) .

We now proceed to introducing individual symplectic forms on the infinite
dimensional manifold of Bloch waves and on the zero modes’ phase space.

There is an ambiguity in splitting the chiral symplectic form Ω(g,M) (
O
2.85)

into a Bloch wave and a finite dimensional (zero modes’) part. The following
statement is verified by a straightforward computation.

Proposition 3.1 For g(x) given by (
gua
3.2) and for every choice of the closed

2-form ωq(p) , the chiral symplectic form Ω(g,M) (
O
2.85) splits into a sum of two

closed forms, a Bloch wave form

ΩB(u,Mp) = Ω(u,Mp) + ωq(p) , (3.6)

Ω(u,Mp) =
k

4π
tr
{∫ π

−π
dxu−1(x) δu(x)(u−1(x) δu(x))′ + b−1δb δMpM

−1
p

}
(with b := u(−π)) and a finite dimensional one,

Ω(a,Mp) = Ωq(a,Mp)−
k

4π
ρ (a−1Mp a)− ωq(p) , (3.7)

Ωq(a,Mp) =
k

4π
tr {δa a−1(Mp δa a

−1M−1
p + 2 δMpM

−1
p )} .

The proof of Proposition 3.1 is based on the following observations. The
2-form Ω(u,Mp) (

OB
3.6) is just (

Oc
2.74), with gC replaced by u and M by Mp . In

view of (
deltaO
2.82), to conclude that it is closed it is sufficient to note that θ(Mp)

vanishes. On the other hand, computing θ(M) for M = a−1Mp a , we obtain

k

4π
δρ (a−1Mp a) =

k

4π
θ (a−1Mp a) = (3.8)

=
k

4π
tr {(δaa−1)2(2 δMpM

−1
p +Mp δaa

−1M−1
p −M−1

p δaa−1Mp)−

− δa a−1δMpM
−1
p (Mp δaa

−1M−1
p +M−1

p δaa−1Mp)} ,

which is equal to δΩq(a,Mp) , so that Ω(a,Mp) (
Oq
3.7) is closed as well.

It is not difficult to verify that for infinitesimal right shifts of a (leaving
Mp invariant) the finite dimensional form Ω(a,Mp) (

Oq
3.7) transforms in the

same way as the infinite dimensional one Ωc(g,M) (
Oc
2.74). Indeed, if ŶR δ a =

i aY , ŶR δMp = 0 , we find

ŶR Ωq(a,Mp) =
ik

4π
trY {δMM−1 +M−1δM} for M ≡ a−1Mp a , (3.9) YROf

21



thus reproducing the right-hand side of (
YROc
2.110). Taking further into account

(
YRrho
2.112), (

dMM+-
2.95) and (

KMMM
2.96), we verify the PL symmetry of the zero mode sym-

plectic form Ω(a,Mp) (
Oq
3.7) with respect to right shifts:

ŶR Ω(a,Mp) =
ik

2π
trY (δM+M

−1
+ − δM−M−1

− ) , M+M
−1
− = a−1Mp a .

(3.10) YROa

There is also a Hamiltonian symmetry with respect to transformations a →
eitα(p)a with diagonal α(p) (∈ h), that do not change the monodromy:

D̂L(δa a−1) = i α(p) , D̂L(δMpM
−1
p ) = 0 ⇒ D̂L ρ (a−1Mp a) = 0 ,

D̂L Ω(a,Mp) = − tr (α(p) δ/p) . (3.11)

Remark 3.1 In order to have the infinite and the finite dimensional parts fully
decoupled, we should further extend the chiral phase space, distinguishing the
diagonal monodromy of the zero modes and that of the Bloch waves. After do-
ing this, the symplectic forms (

OB
3.6) and (

Oq
3.7) become completely independent.

As a corollary, on the extended phase space Mp := u−1(x)u(x+ 2π) automati-
cally Poisson commutes with aiα (while Mp and M , related by (

aintertw
3.4), do not);

on the other hand, both M and Mp Poisson commute with u(x) . To recover
the original g(x) , one has to make a reduction of the extended phase space,
imposing the relations Mp ≈ Mp as (first class) constraints and accordingly,
after quantization, (Mp −Mp)H = 0 as a gauge condition characterizing the
chiral state space H .

It is easy to see in the SU(n) case that both ΩB(u,Mp) (
OB
3.6) and Ω(a,Mp)

(
Oq
3.7) remain invariant with respect to multiplication of u(x) , resp. a , with

scalar functions of p ; of course, such a transformation breaks the unimodularity
property so one should further extend the corresponding phase spaces. We shall
make use of the resulting freedom as well of the one in choosing the form ωq
to fit the quasi-classical limit of the (dynamical) R-matrix exchange relations
conjectured earlier in

F1, F2, HIOPT, FHIOPT
[80, 81, 152, 114] and derived (by exploring the braiding

properties of the chiral correlation functions in the quantum model) in
HST
[154].

To this end, we need the PB of the chiral zero modes and of the Bloch waves
which are obtained by inverting the corresponding symplectic forms.

3.2 Basic right invariant 1-forms for G semisimple

Both the 2-form Ωq(a,Mp) (
Oq
3.7) and the 3-form θ (a−1Mp a) (

omegaaMp
3.8) are expressed

in terms of Lie algebra valued right invariant 1-forms. In this section we shall
present Ωq(a,Mp) in terms of ”ordinary” (C-valued) basic right invariant 1-
forms. (The relevant notions and conventions about semisimple Lie algebras
are collected for convenience in Appendix A.)

We shall identify, by duality, the fundamental Weyl chamber CW and the
(interior AW of the) level k positive Weyl alcove with the following subsets of
the Cartan subalgebra h 3 /p =

∑r
i=1 pαi h

i :

CW = {/p ∈ h , pαi > 0} , AW = {/p ∈ CW ,

r∑
i=1

a∨i pαi < k } (3.12) CAG

({a∨i }ri=1 are the dual Kac labels, cf. (
dCL
A.18)). One can show that /p in (

uuMp
3.3) is

fixed unambiguously, for a given M ∈ G , by (
aintertw
3.4) iff it belongs to AW (

CAG
3.12)

(see Section 3 of
GR
[132] for a detailed explanation). In the case of s`(n) , a∨i ≡ 1

and AW is just the set

A
s`(n)
W = {/p =

n−1∑
i=1

pαih
i , pαi > 0 ,

n−1∑
i=1

pαi < k } . (3.13) AWn

The finite dimensional manifold Mq with coordinates {aiα , pαj} and sym-
plectic form Ωq(a,Mp) (

Oq
3.7) can be viewed as a deformation

AF, AT
[3, 17] of the sym-

plectic manifoldM1 obtained in the limit k →∞ . The role of the deformation
parameter is played by π

k or, better, by its exponential

q = qk := e−i
π
k ( q q = 1 , lim

k→∞
q = 1 ) . (3.14) qcl
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To show this, let the diagonal monodromy matrix be expressed as in (
uuMp
3.3) with

/p =
∑r
j=1 pαjh

j ∈ AW , and Θi , Θ±α be the right invariant 1-forms in T ∗GC
corresponding to the Cartan-Weyl basis (

CWbasis
A.9), so that

−i δa a−1 =
r∑
j=1

Θjhj +
∑
α>0

(Θαeα + Θ−αe−α) (3.15) Thetas

and, conversely,

Θj = −i tr (δa a−1hj) , Θ±α = −i (α|α)
2

tr (δa a−1e∓α) . (3.16) converse

For a compact group G and a given by an unitary matrix, a−1 = a∗ the
forms Θj are real, while Θ−α is complex conjugate to Θα . We note that the
matrix valued form (

Thetas
3.15) is not closed but satisfies the Maurer-Cartan relations

(defining thus a flat connection) which lead to corresponding equations for the
basic 1-forms (

converse
3.16). We shall use, in particular,

δΘj = i
∑
α>0

tr (hj [eα, e−α]) Θα Θ−α = i
∑
α>0

(Λj |α∨) Θα Θ−α , (3.17) CM

cf. (
hee
A.7), (

CCWC
A.8), (

h-a
A.15).

Inserting the expression (
uuMp
3.3) for Mp into the second term of Ωq(a,Mp) (

Oq
3.7),

we get

k

2π
tr δaa−1δMpM

−1
p = i tr (δaa−1δ/p) =

r∑
j=1

tr (hj δ/p) Θj =
r∑
j=1

δpαjΘ
j .

(3.18) Oq1

The first term of Ωq(a,Mp) is expressed as a sum of products of conjugate
off-diagonal forms Θ±α ,

k

4π
tr(δaa−1Mp δaa

−1M−1
p ) =

k

4π
(q − q)

∑
α>0

2
(α|α)

[2pα] ΘαΘ−α (3.19) 2term

([x] := qx−qx
q−q ) . Here we are using [hj , e±α] = ±(Λj |α) e±α to derive

Mp e±αM
−1
p ≡ AdMp e±α = q∓2pαe±α , (3.20)

pα :=
r∑
j=1

(Λj |α) pαj ≡ (Λ |α) , /p ∈ AW ⇒ 0 < pα < k ∀ α > 0 ,

as well as (
converse
3.16). Combining (

Oq1
3.18) and (

2term
3.19), we arrive at

Ωq(a,Mp) =
r∑
j=1

δpαjΘ
j − k

4π
(q − q−1)

∑
α>0

2
(α|α)

[2pα] ΘαΘ−α . (3.21) Ofvar

As the weight manifold is simply connected, the closed 2-form ωq(p) is ac-
tually exact:

ωq(p) = δΥj(p) δpαj (≡ δ
r∑
j=1

Υj(p) δpαj ) =
1
2

r∑
i,j=1

ωij(p) δpαiδpαj ,

ωij =
∂Υj

∂pαi
− ∂Υi

∂pαj
= −ωji . (3.22)

One can therefore express the difference Ωq − ωq in (
Oq
3.7) as a kind of a gauge

transformation of Ωq (cf.
BFP
[26]):

Ωq(a,Mp)− ωq(p) = Ωq(eiΥ(p)a,Mp) , Υ(p) = Υi(p)hi ∈ h . (3.23) OeYa

Taking further into account that the monodromy M = a−1Mp a (and hence the
2-form ρ ) is invariant under the substitution a = e−iΥ(p)a′ , one can compute
the PB of a from those of a′ obtained for ωq = 0 .
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The WZNW term vanishes in the undeformed limit q → 1 (k →∞). Indeed,
taking into account the definition of pα in (

Adone
3.20) and Eq.(

CM
3.17), we derive that

Ω1(a, /p) = lim
q→1

Ωq(a,Mp) =

=
r∑
j=1

δpαjΘ
j + lim

k→∞

ik

2π

∑
α>0

2
(α|α)

sin
2πpα
k

Θα Θ−α = (3.24)

=
r∑
j=1

δpαjΘ
j + i

∑
α>0

2
(α|α)

pαΘα Θ−α = δ

r∑
j=1

pαjΘ
j ≡ −i δ tr (/p δa a−1)

is not only closed but even exact by itself. As AW (
CAG
3.12) ”expands” to CW for

k → ∞ , (
O1
3.24) is defined on the phase space G × CW of dimension (dimG +

rankG) which, after complexification, coincides with that of the (symplectic)
cotangent bundle T ∗(B) of a Borel subgroup B ⊂ GC , considered in

BF
[49].

The symplectic form Ω1(a, /p) (
O1
3.24) can be readily inverted to obtain the

corresponding Poisson bivector field

P1 =
r∑
j=1

Vj ∧
δ

δpαj
+ i
∑
α>0

1
pα

Vα ∧ V−α , (3.25) P1

where the vector fields are dual to the corresponding basic 1-forms (e.g. V̂j Θi =
δij , V̂j δpαi = 0 = V̂j Θα , etc.; note that pα (

Adone
3.20) is positive for /p ∈ CW and

α > 0). The corresponding PB of the zero modes follow simply from here, as
(
Thetas
3.15) implies

V̂j δa = i hj a , V̂α δa = i eα a . (3.26) hatVa

The expression (
Ofvar
3.21) looks very similar to (

O1
3.24), but one should remember

that Ωq(a,Mp) is not closed (and is degenerate for /p ∈ AW as [2pα] = sin 2π
k pα

sin π
k

may vanish). To find the PB of the zero modes, we have to invert the true sym-
plectic form Ω(a,Mp) (

Oq
3.7), taking into account the presence of the additional

2-form ρ (a−1Mp a) .

3.3 WZ 2-forms and solutions of the classical Yang-Baxter
equation

The correspondence between the WZ 2-forms ρ(M) satisfying δρ(M) = θ(M)
(
drho
2.86) and the non-degenerate constant solutions of the classical Yang-Baxter

equation (”r-matrices”) has been first described by Gawȩdzki
G
[128] (see also

FG1
[83]). We proceed to review this relation, taking subsequent work, especially
BFP, FehG
[26, 86], into account.

We saw in Section 2.3 that the possibility of presenting ρ(M) in the form
(
ro
2.89) for a given factorization of the monodromy matrix M = M+M

−1
− implies

PL symmetry with respect to right shifts of the chiral field, see Eq.(
YRO
2.114) (or

of the zero modes, Eq.(
YROa
3.10)). The so called classical r-matrix gives rise to a

solution of an infinitesimal version of the factorization problem
D1, S-T-S
[70, 231].

We shall briefly recall the basic facts about the PL symmetry
CP
[55]. The Lie

algebra of a PL group G possesses a natural Lie coalgebra structure (and is,
thus, a Lie bialgebra (G, δG)), the cocommutator δG : G → G ∧ G being a (skew
symmetric) linear map satisfying the 1-cocycle condition

δG([X,Y ]) = [ δG(X) , Y1 + Y2 ] + [X1 +X2 , δG(Y ) ] ∀X,Y ∈ G . (3.27) coc

(The crucial fact is that the PB on G induces a Lie bracket on the dual of
G , δ∗G : G∗⊗ G∗ → G∗ ; one defines, for any ξ, η ∈ G∗ obtained as differentials
of appropriate functions f, h ∈ C∞(G) at the identity element e ∈ G , (d f)e =
ξ , (d h)e = η ,

[ξ, η]G∗ ≡ δ∗G (ξ ⊗ η) = (d {f, h})e . (3.28)

Then the cocommutator is just δG = (δ∗G)∗ , Eq.(
coc
3.27) being implied by the

invariance of the PB with respect to the multiplication map in G .) Coboundaries
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are those 1-cocycles for which there exists a (not necessarily skew symmetric)
element r12 ∈ G ⊗ G such that

δG(X) = [X1 +X2 , r12] ; (3.29) cob

skew symmetry of δG implies that r12 + r21 has to be ad (G) invariant, while
(
coc
3.27) requires ad-invariance of

[[r]]123 := [r12, r13] + [r12, r23] + [r13, r23] ∈ G ⊗ G ⊗ G . (3.30) mCYBE-0

If the Lie algebra G is semisimple (complex or compact), every 1-cocycle
δG on it is a coboundary. Besides, then there is a one-to-one correspondence
between elements A12 of G ⊗ G and linear operators A ∈ End G ,

A12 ↔ A , AX = tr2 (A12X2) ∀X ∈ G , (3.31) A-A

the element corresponding to tA (where tr (XAY ) = tr (Y tAX) ∀X,Y ∈ G)
being just A21 . The polarized Casimir operator C12 ∈ Sym (G⊗G) corresponding
to the quadratic invariant (

CasCW
A.21) is

C12 (= C21) = ηab Ta1 Tb2 = h`1h`2 + eα1 eα2 . (3.32) Cas-Fadd

The invariance of C12 with respect to the ad-action of G on G ⊗ G ,

[X1 +X2 , C12] = 0 ∀X ∈ G (3.33) ad-inv12

follows from the antisymmetry of the structure constants fabc (
fabc
2.33), since [Ta1+

Ta2 , C12] = i (fabc + facb) tb1 t
c
2 = 0 . One also finds the following identities in

the triple tensor product of G ,

[C12, C13] = [C13, C23] = −[C12, C23] = ifabc t
a
1t
b
2t
c
3 , (3.34) CCrel

the right hand side of (
CCrel
3.34) being the (unique, up to normalization) G-invariant

tensor in G ∧ G ∧ G . As the operator C : G → G corresponding, by (
A-A
3.31), to

C12 ∈ G ⊗ G is just the identity operator on G since

C Ta = tr2 (C12Ta2) = ηbc Tb tr (TcTa) = ηbcηcaTb = Ta , (3.35) C-id

the relation (
A-A
3.31) assumes the following convenient form:

A12 = A1 C12 (⇔ A21 = A2 C12 ) . (3.36) A-A12

Following
S-T-S
[231], we shall use an operator formalism to introduce the classical

r-matrix. For any Lie algebra G and a skew symmetric r ∈ End G , tr = −r (so
that r21 = −r12 ∈ G∧G) one defines the following two linear maps G ∧G → G ,

[X,Y ]r := [rX,Y ] + [X, rY ] = −[Y,X]r (3.37) XYr

and
Br(X,Y ) := [rX, ρY ]− r[X,Y ]ρ = −Br(Y,X) . (3.38) Br

It is easy to prove that the Jacobi identity for [X,Y ]r is equivalent to the
2-cocycle condition

[Br(X,Y ), Z] + [Br(Y, Z), X] + [Br(Z,X), Y ] = 0 , (3.39) B-Jac

hence Eq.(
XYr
3.37) defines a second Lie bracket on G (one denotes G equipped

with it by Gr) whenever (
B-Jac
3.39) holds. An obvious (bilinear) sufficient condition

this to happen is the validity of (the operator version of) the modified classical
Yang-Baxter equation (CYBE)

Br(X,Y ) = α2 [X,Y ] (3.40) MCYBEa

for some constant α . If α 6= 0 , in the complex case one can always reduce (
MCYBEa
3.40),

by rescaling r , to

Br(X,Y ) = − [X,Y ] ⇔ r±[X,Y ]r = [r±X, r±Y ] , r± := r± 1I (3.41) req
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(the minus sign in the right-hand side of the first equation is crucial for what
follows). Hence, the maps r± : Gr → G are Lie algebraic homomorphisms, their
images G± := r± Gr are Lie subalgebras of G and, since 1

2 (r+ − r−) = 1I , any
X ∈ G can be decomposed in a unique way as

X = X+ −X− , X± :=
1
2

r±X ∈ G± so that rX = X+ +X− (3.42) rX

(this is the infinitesimal form of the factorization theorem of
S-T-S
[231])). One can

prove, using (
A-A12
3.36) and (

CCrel
3.34), that the modified CYBE (

req
3.41) is equivalent to

the following equation (in G ⊗ G ⊗ G ) for the classical r-matrix r12 = −r21 ∈
G ∧ G :

[[r]]123 = [r12, r13] + [r12, r23] + [r13, r23] = [C12, C23] . (3.43) mCYBE

The matrices corresponding to the operators r± are, accordingly,

r±12 = r12 ± C12 . (3.44) rpmcl

Applying (
ad-inv12
3.33), it is straightforward to show that they both satisfy the ordinary

CYBE:
[[r±]]123 = 0 . (3.45) CYBE

Remark 3.2 In general, (non-skew-symmetric) solutions r12 ∈ G ⊗ G of the
CYBE [[r]]123 = 0 (

CYBE
3.45) are called non-degenerate if their symmetric part,

1
2 (r12 + r21) is such. In this case the corresponding Lie bialgebra (G, δG) (cf.
(
cob
3.29)) is called factorizable. The other extreme case r12 + r21 = 0 is usually

referred of as ”the classical unitarity condition”
RS
[218].

As we shall see below, Eqs. (
mCYBE
3.43) (or (

CYBE
3.45)) imply the Jacobi identity of

the chiral PB.
The operator formalism described above implies the following

Proposition 3.2 Let ρ(M) = 1
2 tr (δMM−1KM (δMM−1)) (

defrhoK
2.94), where

KM ∈ End G is defined in terms of the skew symmetric operator r (for M
such that (r+ −AdM r−) is invertible) by

KM = (r+ +AdM r−) (r+ −AdM r−)−1 . (3.46) KofM

Then ρ(M) satisfies δ ρ(M) = θ(M) (
drho
2.86) whenever r solves the modified

CYBE (
req
3.41).

Note that K1I = (r++r−)(r+−r−)−1 = r ; the skew symmetry of KM ,
tKM =

−KM follows from that of r , taking into account the orthogonality of AdM ,
t(AdM ) = Ad−1

M and the equality

(r− + r+Ad−1
M )(r+ −AdM r−) = − (r− − r+Ad−1

M )(r+ +AdM r−) . (3.47)

The proof of Proposition 3.2 can be obtained by adapting a more general
statement in

FehG
[86] to the case of monodromy independent r .

The importance of (
KofM
3.46) stems from the fact that the r-matrix r12 ∈ G ∧ G

corresponding to the same operator r appears in the PB of the the zero modes as
well in those of the chiral field g(x)

BFP
[26]; we shall provide a proof in Section 3.5

below. For G compact, the modified CYBE (
MCYBEa
3.40) only has solutions for real α ,

see
CGR
[52]. Thus Eq.(

req
3.41) cannot hold in this case. The problem can be overcome

by a more general Ansatz for ρ(M) , still of the type (
KofM
3.46), but allowing the

operator r to depend on M
BFP1, BFP
[25, 26]. Then the Jacobi identity for the emerging

PB is equivalent to a generalized version of the modified dynamical CYBE (see
below), including differentiation in the group parameters, for r(M) .

Alternatively, if we insist on working with monodromy independent r-matrices,
we have to extend the chiral phase space and its symplectic form (

O
2.85) to

monodromy (and hence, due to (
aintertw
3.4), zero mode) matrices belonging to the

complexified group, M ∈ GC .

The fact that ρ(M) , given by (
defrhoK
2.94) and (

KofM
3.46), is a solution of (

drho
2.86) follows

also from the factorization (
M+-
2.88) of the monodromy matrix M into Gauss

components, see
G, FG, FHT1
[128, 84, 115]. Indeed, if M = M+M

−1
− (so that (

diagMM
2.93) holds),
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the 1-forms X± := δM±M
−1
± and Y± = Ad−1

M±
(δM±M−1

± ) = M−1
± δM± take

values in the respective Borel subalgebras G± . Then (
dMM+-
2.95), (

rX
3.42) and (

KofM
3.46),

which implies

KM (r+ −AdM r−) = r+ +AdM r− ⇔ (3.48)
KM AdM+ (Ad−1

M+
r+ −Ad−1

M−
r−) = AdM+ (Ad−1

M+
r+ +Ad−1

M−
r−) ,

lead to (
KMMM
2.96), proving thus (

ro
2.89) and hence, (

drho
2.86). Comparing the second

relation in (
KMMrM
3.48) and (

rX
3.42), we see that KM can be presented in the following

simple form
FHT1
[115]:

KM = AdM+rAd−1
M+

. (3.49) altKM

The factorization of M into Gauss components is related to a special solution
of (

req
3.41) given by

rhi = 0 , r e±α = ± e±α , α > 0 . (3.50) re1

Using (
A-A12
3.36), (

Cas-Fadd
3.32) and (

CasCW
A.21), we obtain the corresponding solution of (

mCYBE
3.43),

the standard classical r-matrix:

r12 ≡ r1 C12 =
∑
α>0

(eα1e−α2 − e−α1eα2) ( = −r21 ) . (3.51) rstandard

We shall restrict ourselves in what follows to G = SU(n) (so that GC = s`(n))
and to the 2-form ρ (

ro
2.89) corresponding to the factorization of M into Gauss

components (thus related to r12 (
rstandard
3.51)). In this case G± are just the upper

and lower triangular traceless matrices, respectively, the uniqueness of the de-
composition being guaranteed by the additional condition that the diagonal
elements of X+ and −X− are equal (cf. (

diagMM
2.93)). This choice is dictated by the

quasi-classical correspondence, if we postulate exchange relations for the quan-
tized chiral field g(x) in terms of the standard

D, J, FRT
[71, 163, 82] constant Uqs`(n)

quantum R-matrix. It is appropriate, assuming that the complexification only
concerns the zero modes ajα and does not affect the properties of the 2D ”gauge
invariant” field g(x+, x−) ∈ G (which should still transform covariantly, in the
usual sense, under both left and right shifts of the compact group G).

3.4 Extending the zero modes’ phase space

For the sake of simplicity we begin by exploring the PB for the undeformed
(q = 1) case corresponding to the symplectic form

Ω(a, /p) = lim
q→1

(Ωq(a,Mp)− ωq(p)) = Ω1(a, /p)− ω1(p) (3.52) OG1

where Ω1(a, /p) is given by (
O1
3.24), and ω1(p) is the limit of ωq(p) (

oijY
3.22). This

is readily done using the Poisson bivector field (
P1
3.25) and the prescription after

(
OeYa
3.23):

{pαj , pα`} = 0 , {ajα, pα`} = i (h`)js a
s
α , (3.53)

{a1, a2} =

∑
j 6=`

ωj`(p)hj1h`2 − i
∑
α

eα1e−α2

pα

 a1a2 (3.54)

(note that the last summation goes over all, positive and negative, roots α).
Going to the special case G = SU(n) we first observe that the assumption

det a = 1 (as part of the requirement a = (ajα) ∈ G) is more restrictive than
what is needed to ensure that the classical chiral field g (

gua
3.2) belongs to G ,

i.e. that detu .det a = 1 . We shall use the ensuing freedom to impose a Weyl
invariant relation between a and the weight variables p . This can be done most
conveniently in the barycentric parametrization of the s`(n) roots and weights
presenting the simple roots as α` = ε` − ε`+1 for (εi| εj) = δij so that the root
space is the hyperplane in the auxiliary n-dimensional Euclidean space spanned
by {εi}ni=1 orthogonal to ε :=

∑n
i=1 εi (see Appendix A). A linear combination
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of the weights can be expressed, accordingly, in terms of barycentric coordinates
pi , i = 1, ..., n as

p =
n∑
i=1

pi εi , (p |ε) = 0 ⇒
n∑
i=1

pi =: P = 0 . (3.55) bary

Using (
al
A.28), we find, for p =

∑n−1
`=1 pα`Λ

`

pi =
n−1∑
`=i

pα` −
1
n

n−1∑
`=1

` pα` ⇒ pαi (≡ pαi i+1 ) = pi − pi+1 . (3.56) slnweights1

Further, from (
slnroots
A.29) and (

Adone
3.20) it follows that in general

pαij :=
n−1∑
`=1

(Λ`|αij) pα` = pi − pj ≡ pij . (3.57) slnweights2

The action of the s`(n) Weyl group Sn in the orthonormal basis is easy to
describe: the reflection si with respect to the root αi (i = 1, . . . , n − 1) is
equivalent to the transpositions εi ↔ εi+1 , pi ↔ pi+1. It is natural to assume
that Sn also permutes the rows aj = (ajα) of the matrix a, as the upper index
(j) refers to the weights, cf. (

PBapG
3.53). We shall equate the determinant of a which

changes sign under odd permutations of rows to a natural pseudoinvariant of
the weights pi :

D(a) := det a =
∏

1≤i<j≤n

pij =: D(p) . (3.58) DaDp1

We shall exhibit the effect of this constraint in the simplest (rank r = 1) case
corresponding to G = SU(2) in which ωq(p) = 0 so that the form (

OG1
3.52) involves

no ambiguity. To see what is going on, we parametrize the matrix a by a 2-
component spinor z = (z1, z2) and its complex conjugate z̄ :

a =
(
z1 z2

−z̄2 z̄1

)
, a−1 =

1
D(a)

(
z̄1 −z2

z̄2 z1

)
, D(a) = z̄z := z̄1z1 + z̄2z2 . (3.59)

For D(a) = p12 ≡ p (according to (
DaDp1
3.58)) the (exact) 2-form Ω1 (

O1
3.24) can be

written as

Ω1 = δφ , φ =
1
2i

tr
{(

p 0
0 −p

)
δaa−1

}
= p

z̄δz − zδz̄
2i z̄z

=
1
2i

(z̄δz − zδz̄) .

(3.60) Ophi

Thus, for D(a) (= z̄z) = p , Ω1 coincides with the standard Kähler form on C2:

Ω1(a, /p) = i δzδz̄ ( for z̄z = p) . (3.61) On2

The non-trivial PB,

{zα, z̄β} = i δαβ ⇒ {zα, p} = i zα , {z̄α, p} = −i z̄α , (3.62) classCCR2

reproduce the classical limit of the canonical commutation relations for a pair of
SU(2) spinors of creation (zα) and annihilation (z̄α) operators

Sch, B62
[230, 30] (p = zz̄

playing the role of the classical weight equal to twice the isospin).

Remark 3.3 Note that, had we set D(a) = 1 (instead of (
DaDp1
3.58)), we would have

obtained the awkward PB {z1, z̄1} = i
p |z2|2 , {z2, z̄2} = i

p |z1|2 (|zα|2 = zαz̄α)
instead of (

classCCR2
3.62).

We shall use in what follows the n× n Weyl matrices {e ji } , i, j = 1, . . . , n ,
(e ji )`k = δ`i δ

j
k satisfying

e ji e
`
k = δjk e

`
i , tr (e ji e

`
k ) = δ`i δ

j
k ,

n∑
i=1

e ii = 1In . (3.63) eij
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In the n-dimensional fundamental representation, the Cartan algebra duals of
the s`(n) roots and weights, cf. (

cdual
A.12), are expressed in terms of the diagonal

Weyl matrices e ii by replacing in (
al
A.28) εi → e ii and α` → h` , Λj → hj :

h` = e `` − e `+1
`+1 , hj = (1− j

n
)

j∑
r=1

e rr −
j

n

n∑
r=j+1

e rr ,

tr (h`hj) = δj` , 1 ≤ j, ` ≤ n− 1 . (3.64)

The condition that /p belongs to the interior of the level k positive Weyl alcove
(
AWn
3.13) becomes

A
s`(n)
W = {/p (=

n−1∑
`=1

p``+1h
`) =

n∑
i=1

pi e
i
i | P = 0 ; 0 < pij < k , ∀ i < j } ,

(3.65) AWn1

and the raising (lowering) operators are eαij = e ji for i < j (j < i ). From
(
al
A.28) and (

Cas-Fadd
3.32) we get

σ12 :=
n−1∑
`=1

h`1h`2 =
n∑
j=1

(e jj )1(e jj )2 −
1
n

1I12 ⇒ (3.66)

C12 = σ12 +
∑
i 6=j

(e ji )1(e ij )2 = P12 −
1
n

1I12 , P12 =
n∑

i,j=1

(e ji )1(e ij )2

((P12)iji′j′ = δij′δ
j
i′ is the permutation matrix) which is a well known formula for

the polarized Casimir operator in the tensor square of the defining n-dimensional
representation of s`(n) .

Proceeding to the general (deformed, SU(n) , n ≥ 2) case, we shall view
Mq as a submanifold of co-dimension 2 of the n(n+1) dimensional phase space
Mex

q of all {ajα , pi} . The constraint P ≈ 0 in (
AWn1
3.65) will be supplemented by a

gauge condition which is a q-deformed version of (
DaDp1
3.58),

D(a) ≈ Dq(p) :=
∏
i<j

[pij ] , [p] =
qp − q−p

q − q−1
for q = e−i

π
k (3.67) Dpq

(cf. (
qcl
3.14)). The determinant D(a) may be defined by either one of the relations

εin...i1a
in
αn . . . a

i1
α1

= D(a) εαn...α1 , ainαn . . . a
i1
α1
εαn...α1 = εin...i1D(a) (3.68) Da

(we assume summation over repeated upper and lower indices and normalize
the totally skew symmetric tensors by εn...1 = 1 = εn...1). The corresponding
adjugate matrix A = (Aαj ) such that

aiαA
α
j = D(a) δij , Aαi a

i
β = D(a) δαβ i.e., (a−1)αi =

Aαi
D(a)

(3.69) aA

can be determined from either one of the following equivalent equations:

ainαn . . . â
i`
α` . . . a

i1
α1
εαn...α`...α1 = εin...i`...i1Aα`i` ,

εin...i`...i1a
in
αn . . . â

i`
α` . . . a

i1
α1

= Aα`i` εαn...α`...α1 , (3.70)

the hat meaning omission (note that missing indices in the left hand side, e.g.
α` in the second equation, correspond to summed up ones in the right hand
side).

The choice (
Dpq
3.67) will lead to PB relations expressed in terms of a standard

classical dynamical r-matrix
GN, BDF, Felder
[136, 24, 92]. Upon quantization it will reproduce

for n = 2 the Pusz-Woronowicz q-deformed oscillators
PW
[215] (see Section 5.1

below). For the time being we only note that the expression Dq(p) (
Dpq
3.67) (just

as D1(p) = D(p) (
DaDp1
3.58)) is a pseudoinvariant with respect to the su(n) Weyl

group. As [pij ] > 0 for 0 < pij < k (i < j), Dq(p) and hence, D(a) are positive
if and only if /p is an internal point of the positive Weyl alcove, (

AWn1
3.65).
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One can verify, using
∑n
s=1 e

s
s = 1I , that the following equality holds:

p :=
n∑
s=1

pse
s
s =

(
1
n

n∑
s=1

ps

)
1I +

n−1∑
`=1

p``+1h
` for h` =

∑̀
s=1

e ss −
`

n

n∑
s=1

e ss .

(3.71) eq-pP

We shall assume that the extended diagonal monodromy matrix is given by

Mp = e
2πi
k p = q2 ( 1

nP+/p) , /p ∈ AW , (3.72) monex

cf. (
eq-pP
3.71), (

uuMp
3.3), (

AWn1
3.65). Further, it is convenient to expand the form δaa−1

(having non-zero trace in the extended, non-unimodular zero mode case) into
n2 basic right-invariant forms Θj

k using the n× n Weyl matrices (
eij
3.63):

−i δ a a−1 = e `j Θj
` (≡

n∑
j,`=1

e `j Θj
` ) ⇔ Θj

` = −i tr (e j` δ a a
−1) . (3.73) eq90

Taking into account the Maurer-Cartan equations

δ(δ a a−1) = (δ a a−1)2 ⇒ δΘj
` = iΘj

s Θs
` , (3.74) eq91

we can thus write the extension of the form Ωq(a,Mp) (
Ofvar
3.21) (for G = SU(n))

as

Ωex
q =

n∑
s=1

δ ps Θs
s −

k

4π
(q − q−1)

∑
j<`

[2pj`] Θj
` Θ`

j . (3.75) eq92

So the second term in the right hand side is not sensitive to the extension,
while the first (k-independent) one can be rewritten singling out the ”total
momentum” P (

bary
3.55) as

n∑
s=1

δ ps Θs
s =

n−1∑
j=1

δ pjj+1 Θj + δ P Θn , (3.76) eq93

where

Θj = (1− j

n
)

j∑
s=1

Θs
s −

j

n

n∑
s=j+1

Θs
s , j = 1, . . . , n− 1 ,

Θn =
1
n

n∑
s=1

Θs
s = − i

n

δD(a)
D(a)

. (3.77)

Hence (cf. (
Ofvar
3.21)),

Ωex
q = Ωq(a,Mp)−

i

n
δP

δD(a)
D(a)

. (3.78) Oqex

As the 2-form ρ(M) is only restricted by (
drho
2.86), and θ(M) does not change upon

extension (this is easy to check using M−1δM → M−1δM + 2πi
kn δP ), we can

assume that ρex = ρ , and shall look for a closed, Weyl invariant 2-form ωex
q (p)

such that the extended version of (
Oq
3.7),

Ωex = Ωex
q −

k

4π
ρ− ωex

q (p) , (3.79) Oex

reduces to Ω(a,Mp) for D(a) ≈ Dq(p) and P ≈ 0 . More specifically, we shall
demand that

Ωex = Ω(a,Mp)− i δP δχ , χ :=
1
n

log
D(a)
Dq(p)

. (3.80) eq97

Taking into account the definition of Dq(p) (
Dpq
3.67) and (

Oqex
3.78), this means that

ωex
q (p)−ωq(p) =

i

n

δDq(p)
Dq(p)

δP =
i

n

∑
j<`

δ [pj`]
[pj`]

δP =
iπ

kn

∑
j<`

cot
(π
k
pj`

)
δpj` δP .

(3.81) oex-o
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The (closed) 2-form ωq(p) is by definition P -independent while, splitting the
terms proportional to δP in the most general expression for ωex

q (p) , we obtain

ωex
q (p) :=

1
2

∑
j 6=`

fj`(p) δpj δp` =
∑
j<`

cj`(p) δpj` δP +
∑

j<`<m

dj`m(p) δpj` δp`m

(3.82) oexqp

where fj`(p) = −f`j(p) and

n
∑
j<`

cj`(p) δpj` =
∑
j<`

fj`(p) δpj` , n dj`m(p) = fj`(p) + f`m(p)− fjm(p) .

(3.83) f-and-c

To derive (
f-and-c
3.83), we have used the identities

np` = P + P` , P` :=
∑
s

p`s ,∑
j<`

fj`(p) δpj` δP` =
∑

j<`<m

(fj`(p) + f`m(p)− fjm(p)) δpj` δp`m . (3.84)

It follows from (
oex-o
3.81) – (

f-and-c
3.83) that the corresponding unextended p-dependent

2-form is

ωq(p) =
1
n

∑
j<`<m

(fj`(p) + f`m(p)− fjm(p)) δpj` δp`m . (3.85) unextoq

Note that the expression (
unextoq
3.85) vanishes for n = 2 as it should, due to the

restrictions on the summation indices.

Remark 3.4 One could write a more general Weyl invariant second constraint
χ ≈ 0 replacing Dq(p) (

Dpq
3.67) in the definition of χ (

eq97
3.80) by

Φ(p) =
∏
j<`

F (pj`) for F (p) = −F (−p) . (3.86) Phigen

(It requires a suitable change in Eq.(
oex-o
3.81) where the logarithmic derivative of

Dq(p) has to be replaced by that of Φ(p) .) Assuming that Φ(p) is proportional
to Dq(p) gives rise to a ωex

q of type (
oexqp
3.82) with

fj`(p) = i
F ′(pj`)
F (pj`)

= i
π

k

(
cot(

π

k
pj`)− β(

π

k
pj`)

)
, j 6= ` (β(p) = −β(−p)) .

(3.87) f01

This freedom fits the quasi-classical limit of the general solution of the quan-
tum dynamical Yang-Baxter equation found in

I2
[159]. Identifying F (p) with the

”quantum dimension” [p] is equivalent to making the Ansatz

fj`(p) = i

(
∂V `

∂pj
− ∂V j

∂p`

)
, V `(p) :=

∑
r<`

log [pr`] (ωex
q (p) = i δV `(p) δp` ) .

(3.88) 2Max-ex

As one can see from (
dynr
3.111) below, this choice (which amounts to setting β(p) =

0 in (
f01
3.87)) simplifies the expression for the classical dynamical r-matrix r12(p) .

Remark 3.5 We observe that Eqs. (
oexqp
3.82), (

f01
3.87) define a non-trivial cohomol-

ogy class of closed meromorphic 2-forms. (The Ansatz (
2Max-ex
3.88) does not contradict

this since the logarithm is not meromorphic. We can still use Eq.(
2Max-ex
3.88) locally,

say inside the positive Weyl alcove, in verifying that the form ωex
q (p) is closed.)

The same remark holds for the change of variables a → a′ = Dq(p)
1
n a (for-

mally relating D(a′) = Dq(p) with D(a) = 1) which is not a legitimate ”gauge
transformation” in the class of meromorphic functions.

3.5 Computing zero modes’ Poisson and Dirac brackets

Our next task is to derive the PB relations among aiα and pj inverting the
symplectic form (

Oex
3.79), (

eq92
3.75), (

oexqp
3.82) and taking into account the second class
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constraint (in Dirac’s terminology
Dir
[65])

P

=
n∑
j=1

pj

 ≈ 0 , χ

(
=

1
n

log
D(a)
Φ(p)

)
≈ 0 . (3.89) eq11new.20

If we regard P ≈ 0 as a natural constraint, then χ ≈ 0 plays the role as
associated (Weyl invariant) gauge condition.

We recall (cf. (
defOX
2.24), (

PBdef
2.25)) that given a symplectic form Ω and a Hamilto-

nian vector field Xf obeying the defining relation X̂f Ω = δf , we can compute
the PB {f, g} by setting {f, g} = Xf g ≡ X̂f δg . As the dependence of Ωex

(
Oex
3.79) on P and χ is split (cf. (

eq97
3.80)), the corresponding Hamiltonian vector

fields are
Xχ = i

δ

δP
, XP = −i δ

δχ
⇒ {χ, P} = i . (3.90) eq11new.22

The PB on Mq is reproduced by the Dirac bracket on Mex
q :

{f, g}D = {f, g}+
1

{P, χ}
({f, P}{χ, g} − {f, χ}{P, g})

(
1

{P, χ}
= i

)
.

(3.91) PBD

In fact, the second term in the right-hand side of (
PBD
3.91) vanishes in most cases

of interest since, as we shall verify it by a direct computation below, χ is central
for the zero modes’ Poisson algebra restricted to the hypersurface of the first
constraint P = 0:

{χ, ajα} = 0 = {χ, pj`} . (3.92) chi-center

To obtain the PB on Mex
q , we have to invert the symplectic form (

Oex
3.79)

Ωex =
k

2π
tr δaa−1δMpM

−1
p −ωex

q (p) +
k

4π
(
tr δaa−1AdMpδaa

−1 − ρ(a−1Mp a)
)
.

(3.93) Oex-var

In order to write it down in a manageable form, we use Eq.(
defrhoK
2.94) for ρ(a−1Mp a)

noting that KM (
KofM
3.46) can be recast as

KM = ((1 +AdM )r + 1−AdM ) ((1−AdM )r + 1 +AdM )−1
, (3.94) KofM2

and introduce the notation

δp =
n∑
s=1

δps e
s
s =

k

2πi
δMpM

−1
p , Θ :=

∑
j 6=`

Θj
` e

`
j ,

A± := 1±AdMp
, ra := Ada rAd−1

a ,

Ka := AdaKa−1Mp aAd
−1
a = (A+ra +A−)(A−ra +A+)−1 . (3.95)

(To derive the last equality in (
notO
3.95) from (

KofM2
3.94), we use that Ada−1Mpa =

Ad−1
a AdMp

Ada .) It is easy to show that the operators Ka and ra are skew
symmetric together with KM and r . We obtain

k

4π
ρ(a−1Mp a) = (3.96)

=
k

8π
tr {(δMpM

−1
p −A−(δaa−1))Ka (δMpM

−1
p −A−(δaa−1))} =

= − k

8π
tr {(2π

k
δp−A−Θ)Ka (

2π
k
δp−A−Θ)} =

= −1
2

tr δp
π

k
Ka δp+

1
2

tr δpKaA−Θ− k

8π
trA−ΘKaA−Θ ,

while the other term in (
Oex-var
3.93) containing Θj

` with j 6= ` can be rewritten as

tr δaa−1AdMp
δaa−1 ( = (q̄ − q)

∑
j<`

[2 pj`] Θj
` Θ`

j ) = −1
2

trA−ΘA+Θ . (3.97) other
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Summing up the two terms pairing the off-diagonal forms and taking into ac-
count that

KaA− −A+ = (A+ra +A−)(A−ra +A+)−1A− −A+ =

= (A+ra +A−)(ra +
A+

A−
)−1 −A+ =

=
(
A+ra +A− −A+(ra +

A+

A−
)
)

(ra +
A+

A−
)−1 =

=
A2
− −A2

+

A−
(ra +

A+

A−
)−1 = −4

AdMp

A−
(ra +

A+

A−
)−1 , (3.98)

we obtain

k

8π
( trA−ΘKaA−Θ − trA−ΘA+Θ) =

= − k

2π
trA−Θ

AdMp

A−
(ra +

A+

A−
)−1Θ ≡ 1

2
tr Θ

k

π
(ra +

A+

A−
)−1Θ .

The last equality follows from the fact that A ≡ AdMp
is orthogonal with respect

to tr (i.e. tA = A−1), hence t(1−A)A = (1−A−1)A = A− 1 so that, for 1−A
is invertible, one has

tr (1−A)X
A

1−A
Y = trX

A− 1
1−A

Y = − trX Y . (3.99) AXY

Hence, in the basis of vector fields { δ
δps

, V ii , V
`
j } dual to the 1-forms {δps,Θi

i,Θ
j
`} ,

respectively (all the indices running from 1 to n , and j 6= `), the Poisson bivec-
tor matrix we obtain for (

Oex-var
3.93) has the following block form (in which B is an

n × n square matrix and the block D−1 is n(n − 1) × n(n − 1) while C is an
n× n(n− 1) rectangular matrix, and fe jj :=

∑
` f`j e

`
` ): B 1I C

−1I 0 0
−tC 0 D−1

−1

=

0 −1I 0
1I B + CD tC −CD
0 −D tC D

 ,

B = −f +
π

k
Ka , C = −1

2
KaA− , D =

π

k
(ra +

A+

A−
) . (3.100)

Equivalently, the Poisson bivector is just

P = tr
(
V ∧ δ

δp
+

1
2
V ∧ F V

)
, V :=

∑
j,`

V `j e
j
` ≡

∑
i

V ii e
i
i +

∑
j 6=`

V `j e
j
` ,

(3.101) PbV_def

where the skew symmetric square matrix

F :=
(
B + CD tC −CD
−D tC D

)
(3.102) Pn2

is the n2 × n2 block in the lower right corner of (
BCD
3.100).

We shall show that, by using repeatedly the equality Ka(A−ra + A+) =
A+ra +A− following from (

notO
3.95) and the fact that

AdMp
e ji =

∑
r,s

e
2πi
k prse rr e

j
i e

s
s = q2pije ji ⇒

A+e
s
s = tA+e

s
s = 2 e ss , A−e

s
s = tA−e

s
s = 0 (3.103)

(cf. (
eij
3.63)), the action of P (

PbV_def
3.101) can be actually simplified. We find that for

j 6= ` ,

− tr e ii CDe
j
` =

π

2k
tr e ii K

aA−(ra +
A+

A−
)e j` =

=
π

2k
tr e ii (A+ra +A−) e j` =

π

k
tr e ii rae j` , (3.104)
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and, due to the skew symmetry of Ka and ra ,

tr e ii (B + CD tC)e jj = tr e ii (−f +
π

k
Ka +

π

4k
(A+ra +A−)tA−tKa)e jj =

= −fij −
π

2k
tr e ii

t[Ka(A−ra +A+)] e jj = −fij +
π

k
tr e ii rae jj . (3.105)

It follows further from (
AdMe1
3.103) that

A+

A−
e `j =

1 + q2pj`

1− q2pj`
e `j =

e−i
π
k pj` + ei

π
k pj`

e−i
π
k pj` − eiπk pj`

e `j = i cot(
π

k
pj`)e `j for j 6= ` .

(3.106) AdMe

On the other hand, as Ad−1
a1
C12 = Ada2C12 , we conclude that

ra12 a1a2 = (ra1C12) a1a2 = (Ada1r1Ad
−1
a1
C12) a1a2 = (Ada1a2r12) a1a2 = a1a2 r12 .

(3.107) PBex-aa

Combining these results and using V̂ `j δa
i
α = i δij a

`
α (cf. Eq.(

eq90
3.73)) we finally

obtain the PB on Mex
q :

{pj , p`} = 0 , {ajα, p`} = i ajα δ
j
` ,

{a1, a2} =
(
r12(p)− π

k
ra12

)
a1 a2 ≡ r12(p) a1 a2 −

π

k
a1 a2 r12 . (3.108)

Here the (standard) constant classical r-matrix (
rstandard
3.51) which corresponds to the

operator r acting as

r e ss = 0 , r e ji = e ji , i < j , r e ji = −e ji , i > j (3.109) stand-r-op

(cf. (
re1
3.50)) has the form

rαβα′β′ = − εαβ δαβ′ δ
β
α′ , εαβ =

 1 , α > β
0 , α = β
−1 , α < β

, (3.110) stand-r-matr

while the matrix

r12(p) =
∑
j 6=`

(
fj`(p)(e

j
j )1(e `` )2 − i

π

k
cot
(π
k
pj`

)
(e `j )1(e j` )2

)
( fj`(p) = −f`j(p) )

(3.111) dynr

(where fj`(p) is given in (
f01
3.87)), with entries

r(p)j `j′`′ =
{
fj`(p) δ

j
j′δ

`
`′ − iπk cot

(
π
k pj`

)
δj`′δ

`
j′ for j 6= ` and j′ 6= `′

0 for j = ` or j′ = `′

(3.112) dyn-r-matr

is the classical dynamical r-matrix solving the (modified) classical dynamical
YBE

[r12(p), r13(p)] + [r12(p), r23(p)] + [r13(p), r23(p)] + Alt (dr(p)) =

=
π2

k2
[C12, C23] , (3.113)

Alt (dr(p)) := −i
n∑
s=1

∂

∂ps
( (ess)1 r23(p)− (ess)2 r13(p) + (ess)3 r12(p) )

(cf.
EV
[76]). The difference between (

CDYBE
3.113) and the modified classical YBE (

mCYBE
3.43)

satisfied by r12 is in the term Alt (dr(p)) containing derivatives in the dynamical
variables ps . It is easy to see that (

mCYBE
3.43) and its dynamical counterpart (

CDYBE
3.113)

guarantee the Jacobi identity for the PB (
PBex
3.108).

Comparing (
dyn-r-matr
3.112) with (

PBa1a2G
3.54), we see that π

k cot
(
π
k pj`

)
substitutes its un-

deformed (k → 0) limit, 1
pj`

; the diagonal term reflects the gauge freedom in
choosing ωex

q (p) (
oexqp
3.82) and the determinant condition. On the contrary, the

presence of the constant r-matrix term is purely a deformation phenomenon.
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In order to prove that the constraint χ is central on the hypersurface P = 0 ,
i.e. that Eqs. (

chi-center
3.92) take place, one first derives

{ajβ , a
n
αn . . . a

1
α1
} =

∑
` 6=j

fj`(p) a
j
β a

n
αn . . . a

`
α`
. . . a1

α1
−

−iπ
k

∑
6̀=j

cot(
π

k
pj`) a`βa

j
α`
anαn . . . â

`
α`
. . . a1

α1
−

−π
k

∑
`

εβα` a
`
βa

j
α`
anαn . . . â

`
α`
. . . a1

α1
. (3.114)

The second and the third terms in (
ana
3.114) vanish when multiplied by εαn...α`...α1

and summed over repeated indices, due to∑
6̀=j

cot(
π

k
pj`) a`β a

j
α`
anαn . . . â

`
α`
. . . a1

α1
εαn...α`...α1 =

=
∑
` 6=j

cot(
π

k
pj`) a`β a

j
α`
Aα`` =

∑
` 6=j

cot(
π

k
pj`)a`β D(a) δj` = 0 (3.115)

and ∑
`

εβα` a
`
β a

j
α`
anαn . . . â

`
α`
. . . a1

α1
εαn...α`...α1 =

=
∑
`

εβα` a
j
α`
Aα`` a`β = εβα` a

j
α`
D(a) δα`β = 0 (3.116)

(cf. (
Da
3.68) – (

AA
3.70)). Hence,

{ajβ , logD(a)} =
1

D(a)
{ajβ , D(a)} =

∑
` 6=j

fj`(p) a
j
β . (3.117) aDa

On the other hand, the PB (
PBex
3.108) imply

{D(a), p`} = iD(a) ⇒ {D(a), pj`} = 0 ⇒ {χ, pj`} = 0 , (3.118) pavar

as well as
{ajα, U(p)} = {ajα, p`}

∂U

∂p`
(p) = i

∂U

∂pj
(p) ajα . (3.119) aUp

In particular, the calculation of the PB (
aUp
3.119) for U(p) = log Φ(p) , see (

Phigen
3.86),

(
f01
3.87), gives the same result as (

aDa
3.117),

{ajα, log Φ(p)} =
∑
i<`

fi`(p)
(

∂

∂pj
pi`

)
ajα =

∑
6̀=j

fj`(p) ajα . (3.120) 11

As χ = 1
n log D(a)

Φ(p) , it follows from (
aDa
3.117) and (

11
3.120) that

{χ, ajα} = 0 ⇒ {D(a)
Φ(p)

, ajα} = 0 . (3.121) DPa

The first of these equations together with the last one in (
pavar
3.118) confirm the

centrality of the constraint χ for P = 0 (
chi-center
3.92).

The passage to the (n+2)(n−1)-dimensional (unextended) phase spaceMq

is straightforward; using (
PBD
3.91), we see that of the three PB (

PBex
3.108) only the

second one is changing and, as

{ajα, P} = i ajα , {χ, p`} =
1
n
{logD(a), p`} =

i

n
(3.122) Dirap

(cf. (
pavar
3.118)), it follows that

{ajα, p`}D = i

(
δj` −

1
n

)
ajα ⇒ {ajα, p`m}D = {ajα, p`m} = i(δj` − δ

j
m) ajα .

(3.123) PBapD
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On the other hand, D(a) and p` have a vanishing Dirac bracket:

{D(a), p`}D = {D(a), p`}+ i {D(a), P}{χ, p`} = iD(a) + i.i nD(a) .
i

n
= 0 .

(3.124) Dap

From now on we shall assume that all the brackets are the Dirac ones, skipping
the subscript D.

We now proceed to computing the PB of the monodromy matrix M =
a−1Mp a , cf. (

aintertw
3.4), and its Gauss components M± .

Remark 3.6 As we shall see, in the quantized theory pi i+1 become opera-
tors whose eigenvalues label the representations of the current algebra, while
the entries of the quantum monodromy matrix M are functions of the Uqs`(n)
generators which commute with the currents. We should therefore expect, in
particular, that in the classical case M Poisson commutes with pij and hence,
with the diagonal monodromy Mp . Another implication of this fact would be
that the PB of M with the zero modes, as well as the PB between the ma-
trix elements of M itself, do not contain the dynamical r-matrix. All this is
confirmed by the results of the explicit calculations carried below.

It follows from (
PBapD
3.123) and (

AWn1
3.65) that

{ajα, p``+1} = i(h` a)jα ⇔ {/p1, a2} = −i σ12 a2 (3.125) asp

(σ12 = h`1h`2 is the diagonal part of the polarized Casimir operator C12 , see
(
Cn-sigma
3.66)) and hence,

{Mp1, a2} =
2π
k
σ12Mp1 a2 ( {Mp1,Mp2} = 0 ) . (3.126) Mpa0

From (
PBex
3.108) and (

Mpa0
3.126) one gets

{M1, a2} = {a−1
1 Mp1a1, a2} =

= −a−1
1 {a1, a2} a−1

1 Mp1 a1 + a−1
1 {Mp1, a2} a1 + a−1

1 Mp1{a1, a2} =

=
π

k
a2(r12M1 −M1r12) +

+a−1
1 (Mp1r12(p)− r12(p)Mp1 +

2π
k
σ12Mp1) a1a2 . (3.127)

The classical dynamical r-matrix r12(p) (
dyn-r-matr
3.112) obeys the relation

(1I−AdMp1) r12(p) = −π
k

(1I +AdMp1) (C12 − σ12) , (3.128) rp-sat

cf. (
AdMe
3.106) (only the off-diagonal part of r12(p) survives after applying 1I −

AdMp1), which can be rewritten as

Mp1r12(p)− r12(p)Mp1 +
2π
k
σ12Mp1 =

π

k
(Mp1C12 + C12Mp1) . (3.129) adMreq

(the n2 × n2 matrices Mp1 and σ12 are diagonal and hence, commute with each
other). We have, therefore,

{M1, a2} =
π

k
a2(r12M1 −M1r12) +

π

k
a−1

1 (Mp1C12 + C12Mp1) a1a2 =

=
π

k
a2(r12M1 −M1r12) +

π

k
a−1

1 (Mp1a1a2 C12 + a1a2 C12 a
−1
1 Mp1a1) = (3.130)

=
π

k
a2(r12M1 −M1r12) +

π

k
a2(M1C12 + C12M1) =

π

k
a2(r+

12M1 −M1r
−
12)

where r±12 = r12 ± C12 are the r-matrices satisfying the CYBE (
CYBE
3.45). The ma-

trix elements of the monodromy M Poisson commute with those of the diagonal
one Mp :

{Mp1,M2} = {Mp1, a
−1
2 Mp2 a2} =

=
2π
k
a−1

2 (Mp2 σ12Mp1 − σ12Mp1Mp2) a2 = 0 (3.131)
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(we have used (
Mpa0
3.126)). Finally, from (

Mgen
3.130) and (

PBMMp
3.131) we obtain the PB of

two monodromy matrices M :

{M1,M2} = {M1, a
−1
2 Mp2 a2} =

= a−1
2 Mp2{M1, a2} − a−1

2 {M1, a2}a−1
2 Mp2 a2 =

= M2 a
−1
2 {M1, a2} − a−1

2 {M1, a2}M2 =
π

k
[M2 , r

+
12M1 −M1r

−
12 ] ≡

≡ π

k
(M1r

−
12M2 +M2 r

+
12M1 −M1M2 r12 − r12M1M2) . (3.132)

As already mentioned (at the end of Section 2), a basic property of the PB
listed above is their Poisson-Lie symmetry

D1, S-T-S, D
[70, 231, 71] with respect to constant

right shifts of a ,

a → a T , M → T−1M T (T ∈ G ) , (3.133) PLleft

provided that the PB of the transformation group (are non-trivial and) are
given by the Sklyanin bracket (

PBSkl
2.116) {T1, T2} = π

k [r12 , T1T2] (assuming that
{a1, T2} = 0 = {M1, T2}). It follows from (

aintertw
3.4) that the diagonal monodromy

matrix Mp = aMa−1 is invariant with respect to (
PLleft
3.133), cf. Remark 3.6. The

PL symmetry of the chiral classical WZNW model, leading to quantum group
D
[71] symmetry of the quantized theory, has been first explored in

AS, G
[16, 128].

To derive the PB of the Gauss componentsM± from those of the monodromy
matrix M = M+M

−1
− in a systematic way, we can use the fact that, by (

dMM+-
2.95)

and (
KMMM
2.96),

1
2

(KM + 1I) δMM−1 = δM+M
−1
+ (3.134) KM+1

and hence, for any (matrix) function F on the phase space,

{M+1, F2} =
1
2

( (KM1 + 1I) {M1, F2} )M−1 . (3.135) rules

The corresponding PB for M− can be now found from

{M−1, F2} = M−1
1 ( {M+1, F2} − {M1, F2}M−1 ) . (3.136) M->Mpm

Combining (
rules
3.135) and (

M->Mpm
3.136) with (

Mgen
3.130) or (

PBMM
3.132) and using (

KofM
3.46), from

which it follows that
1
2

(KM1 + 1I) (r+
12 −AdM1r

−
12) = r+

12 (3.137) KofM+1

we get, respectively,

{M±1, a2} =
π

k
a2 r

±
12M±1 , {M±1,M2} =

π

k
[M2, r

±
12 ]M±1 . (3.138) Mpma

As M Poisson commutes with p` , (
rules
3.135), (

M->Mpm
3.136) imply the same for M±:

{M±, p`} = {M,p`} = 0 . (3.139) Mpmpl

Note that the PB of M± displayed above are simpler than the analogous brack-
ets for M . Applying once more (

rules
3.135), we can obtain the PB among the Gauss

components themselves. For example,

{M+1,M+2} =
1
2

( (KM1 + 1I) {M1,M+2} )M−1 =

= − π

2k
((KM1 + 1I) (r−12 −AdM1r

−
12) )M1M+2M−1 =

= − π

2k
( (KM1 + 1I) (r+

12 −AdM1r
−
12 − 2C12) )M+1M+2 =

=
π

k
[M+1M+2, r

+
12 ] =

π

k
[M+1M+2, r12 ] . (3.140)

To evaluate (KM1 +1I)C12 in (
MpmfromM
3.140), we have used (

altKM
3.49), from which it follows

that

(KM1 + 1I)C12 = AdM+1 (r1 + 1I)Ad−1
M+1

C12 =

= AdM+1 (r1 + 1I)AdM+2 C12 = M+1M+2 r
+
12M

−1
+2M

−1
+1 . (3.141)
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Here is the complete list of PB among M± :

{M±1,M±2} =
π

k
[M±1M±2, r12 ] , {M±1,M∓2} =

π

k
[M±1M∓2, r

±
12 ] .

(3.142) Mpmmp

3.6 PB for the Bloch waves

The requirement that the covariant group valued chiral field g(x) (
gua
3.2) is uni-

modular implies that the determinants of the zero mode’s matrix (ajα) and of
the Bloch waves (uAj (x)) have inverse values (after identifying p and p , cf. Re-
mark 3.1). We shall denote the determinant of the extended Bloch wave matrix
by D̃(x) := detu(x) so that the analog of (

Da
3.68) holds,

uA1
j1

(x)uA2
j2

(x) . . . uAnjn (x) εj1j2...jn = D̃(x) εA1A2...An ⇒

D̃(x) =
1
n!
εA1A2...Anu

A1
j1

(x)uA2
j2

(x) . . . uAnjn (x) εj1j2...jn . (3.143)

Here again εA1A2...An = εA1A2...An is the fully antisymmetric Levi-Civita tensor
of rank n , for which

εA1A2...An ε
B1A2...An = (n− 1)! δB1

A1
. (3.144) normal

In the extended Bloch waves’ phase space D̃(x) is necessarily x-dependent; in-
deed, we set, in complete analogy with the zero mode case (

monex
3.72),

Mp = u(−π)−1u(π) =
n∑
s=1

q2psess , P :=
n∑
s=1

ps 6= 0 ⇒ detMp = e
2πi
k P

(3.145) extMpBW

and hence, D̃(π) = D̃(−π) e
2πi
k P where D̃(x) is an abelian group valued field.

To study its x-dependence, we take the derivative in x of both sides of the second
equation (

Dtilde
3.143). Using the ”classical KZ equation” (

clKZ
3.5) written in terms of

u(x) , the first equation in (
Dtilde
3.143) and (

normal
3.144), we obtain

d

dx
D̃(x) = − i

k

1
n!
εA1A2...An {j

A1
B1
uB1
j1
uA2
j2
. . . uAnjn +

+uA1
j1
jA2
B2
uB2
j2
. . . uAnjn + · · ·+ uA1

j1
uA2
j2
. . . jAnBnu

Bn
jn
} εj1j2...jn =

= − i
k

1
n!
εA1A2...An {j

A1
B1
D̃(x)εB1A2...An + jA2

B2
D̃(x)εA1B2...An + · · ·+

+jAnBn D̃(x)εA1A2...Bn } = − i
k

1
n
D̃(x){ jA1

A1
+ jA2

A2
+ . . . + jAnAn } =

= − i
k

(tr j(x))D̃(x) ≡ − i
k
J(x) D̃(x) , J(x) := tr j(x) . (3.146)

We shall parametrize D̃(x) , setting accordingly

D̃(x) = D̃ e−
i
k t(x) , t(x) = J0 x+ i

∑
r 6=0

Jr
r
e−irx , (3.147) tildeDabel

so that

t′(x) = J(x) =
∑
r∈Z

Jre
−irx , Jr =

∫ π

−π
J(x) eirx

dx

2π
,

t(π) = t(−π) + 2πJ0 ⇒ J0 = −P . (3.148)

Thus, the extension amounts to adding the modes of D̃(x) which form a denu-
merable (countably infinite) set of degrees of freedom. Denoting

χ̃ :=
1
n

log (D̃Dq(p)) , (3.149) chitilde

the reduction from the extended Bloch waves’ phase space to the unextended
one (in which u(x) has inverse determinant D̃−1 = Dq(p) !) is performed,
accordingly, by imposing the infinite set of constraints

χ̃ ≈ 0 ≈ Jr , r ∈ Z . (3.150) cu
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Writing u(x) as a multiple of an (unimodular) element u0(x) ∈ SU(n) ,

u(x) = u0(x) D̃(x)
1
n (3.151) uu1

and denoting the corresponding (Lie algebra valued) left invariant 1-forms by

U(x) := −iu−1(x) δu(x) , U0(x) := −iu−1
0 (x) δu0(x) , (3.152) LL1

we obtain from (
uu1
3.151) and (

tildeDabel
3.147) the following expressions for U(x) and its

derivative U ′(x) :

U(x) = U0(x)− i
n

δD̃(x)
D̃(x)

,
δD̃(x)
D̃(x)

=
δD̃

D̃
− i
k
δ t(x) , U ′(x) = U0

′(x)− 1
nk

δJ(x) .

(3.153) defL

In terms of U0(x) (
LL1
3.152), the symplectic form for the Bloch waves ΩB = Ω+ωq

(
OB
3.6) becomes

ΩB(u0, q
2/p) = tr

(
k

4π

∫ π

−π
dxU ′0(x)U0(x)− 1

2
U0(−π) δ/p

)
+ ωq(p) , (3.154) OBunext

and the extended symplectic form given by

Ωex
B (u,Mp) = tr

(
k

4π

∫ π

−π
dxU ′(x)U(x)− 1

2
U(−π) δp

)
+ ωex

q (p) (3.155) OBWext

reduces again (as it happens in the zero modes case, cf. (
eq97
3.80)) to the sum of

ΩB (
OBunext
3.154) and a part representing the (second class) constraints:

Ωex
B (u,Mp) = ΩB(u0, q

2/p)− i δP δχ̃+
i

nk

∞∑
r=1

δJ−r δJr
r

. (3.156) OPchi

Deriving (
OPchi
3.156), we have assumed that ωex

q (p) given by (
oexqp
3.82) is related to

ωq(p) by (
oex-o
3.81) and have used (

chitilde
3.149) and (

JrDabel
3.148), the latter implying, in par-

ticular, ∫ π

−π
dxx δJ(x) δJ0 = −

∑
r 6=0

∫ π

−π
dxx e−irx δJr δP =

= −2πi
∑
r 6=0

(−1)r

r
δJr δP = −2π δt(−π) δP . (3.157)

To find the PB for the Bloch waves u(x), we need to invert the symplectic
form (

OBWext
3.155). To this end, we shall introduce loop group (periodic) variables

`(x) = u(x) e−i
p
kx , `(x+ 2π) = `(x) (3.158) l-u

(the exponential factor compensating the non-trivial diagonal monodromy Mp =
q2p of u(x)), in terms of which the left invariant, matrix valued Bloch waves’
1-forms are expressed as

i U(x) ≡ u−1(x) δu(x) = e−i
p
kx `−1(x) δ`(x) ei

p
kx + i

δp

k
x . (3.159) u-l

The mode expansion of the periodic matrix valued 1-forms

−ik `−1(x)δ`(x) =
∑
m∈Z

Ξm e−imx , Ξm =
n∑

j,`=1

(Ξm)j` e
`
j (3.160) lmodes

allows to write the extended symplectic form simply as

Ωex
B (u,Mp)− ωex

q (p) =
1
k

tr {δ(pΞ0) + i

∞∑
m=1

mΞ−mΞm} =

=
1
k

n∑
`=1

δp` (Ξ0)`` +
i

2k

∞∑
m=−∞

n∑
j,`=1

(m+
pj`
k

) (Ξ−m)`j(Ξm)j` . (3.161)
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(Note that | pijk |< 1 for /p ∈ AW , cf. (
AWn1
3.65).) To derive (

OLinTheta
3.161), we deduce from

δ(`−1δ`) = −(`−1δ`)2 that

δ Ξn =
1
ik

∑
m

Ξn−mΞm ⇒ δ Ξ0 =
1
ik

∑
m

Ξ−mΞm (3.162) dThetan

and use
[p , e `j ] = pj` e

`
j , ei

p
kx e `j = ei

pj`
k x e `j e

i pkx (3.163) pexp

as well as the relations

`−1(−π)δ`(−π)−
∫ π

−π

dx

2π
x (`−1(x)δ`(x))′ =

∫ π

−π

dx

2π
`−1(x) δ`(x) =

i

k
Ξ0 .

(3.164) intermed

The form Ωex
B (u,Mp) (

OLinTheta
3.161) can be readily inverted in terms of the vector

fields (V m)ji ,
δ
δp`

dual to the 1-forms (Ξm)ij , δp` , respectively, to obtain the
corresponding Poisson bivector:

P = k
∑
`

(V 0)`` ∧
δ

δp`
+
k2

2

∑
j 6=`

fj`(p) (V 0)jj ∧ (V 0)`` + (3.165)

+
ik

2

∑
m 6=0

∑
`

1
m

(V −m)`` ∧ (V m)`` +
∑
m

∑
j 6=`

1
m+ pj`

k

(V −m)j` ∧ (V m)`j

 .

From Eq.(
u-l
3.159) we obtain the contractions with δu(x):

(V̂ m)`j δu(x) =
i

k
u(x) e `j e

−i(m+
pj`
k )x ,

δ̂

δp`
δu(x) =

i

k
x u(x)e`` . (3.166) basic-on-v

This gives (trivially) {pj , p`} = 0 and

{uAj (x) , p`} = i uAj (x)δj` ⇒ {(Mp)`` , u
A
j (x)} =

2π
k
uAj (x)(Mp)`` δj` .

(3.167) pPBex

The PB of two Bloch wave fields, on the other hand, is quadratic,

{u1(x1) , u2(x2)} ≡ P (u(x1), u(x2)) = −u1(x1)u2(x2)
∑
j 6=`

fj`(p)(e
j
j )1(e `` )2 +

+u1(x1)u2(x2)

π
k
ε(x12)

∑
`

(e``)1(e``)2 +
1
ik

∑
j 6=`

∑
m∈Z

ei(m+
pj`
k )x12

m+ pj`
k

(e j` )1(e `j )2

 =

=
π

k
u1(x1)u2(x2)

ε(x12)
∑
`

(e `` )1(e `` )2 +
∑
j 6=`

ε pj`
k

(x12) (e j` )1(e `j )2

−
−u1(x1)u2(x2) r12(p) . (3.168)

Here the classical dynamical r-matrix r12(p) coincides with (
dynr
3.111), and the

discontinuous functions ε(x) and εz(x) (it is appropriate to consider them as
distributions) are given by the series

ε(x) :=
1
iπ

∑
m 6=0

eimx

m
+
x

π
=

2
π

∞∑
m=1

sinmx
m

+
x

π
, (3.169)

εz(x) :=
1
iπ

∑
m

ei(m+z)x − 1
m+ z

( z /∈ Z ) , (3.170)

respectively. The first one is just a twisted periodic generalization of the sign
function sgn(x),

ε(x+ 2πN) = ε(x) + 2N (N ∈ Z ) , ε(0) = 0 ,
ε(x) = sgn(x) for − 2π < x < 2π , (3.171)
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and its derivative is twice the periodic δ-function

δper(x) :=
1

2π

∑
m

eimx ≡
∑
m

δ(x+ 2πm) . (3.172) eps-perd

The properties of the second one, εz(x) defined by (
epsz
3.170), follow from the Euler

formula8 for cot(πz) yielding (for x ∈ R , z /∈ Z)

lim
N→∞

1
π

N∑
m=−N

ei(m+z)x

m+ z
= cot(πz) + i εz(x) , εz(0) = 0 . (3.173) epsz-cot

The derivative of εz(x) in x is proportional to a twisted version of the periodic
δ-function,

1
2
∂

∂x
εz(x) = eizx δper(x) (3.174) dtwisted

which implies that, for −2π < x < 2π , εz(x) = sgn(x) = ε(x). One concludes
that for −2π < x12 < 2π the two terms in (

uuPBex
3.168) containing ε(x) and εz(x)

combine to produce the sign function times the permutation matrix P12 =∑
i,j e

j
i e

i
j :

{u1(x1) , u2(x2)} = u1(x1)u2(x2) (
π

k
sgn(x12)P12 − r12(p) )

for − 2π < x12 < 2π . (3.175)

By the twisted periodicity of u(x) and with the help of (
pPBex
3.167), one can recon-

struct the PB {u1(x1) , u2(x2)} for general x1 and x2 from the one in which
the values of both arguments are restricted to intervals of length 2π (as e.g. in
(
uuPBsgn
3.175)). On the other hand, using the twisted periodicity of ε(x) (

eps-sgn
3.171) and

the twisted periodicity property

∑
m

ei(m+z)(x+2π)

m+ z
= e2πiz

∑
m

ei(m+z)x

m+ z
( for z /∈ Z ) , (3.176) tw-per

one can show that the relation

{u1(x1 + 2π) , u2(x2)} = {(u(x1)Mp)1 , u2(x2)} (3.177) 2pi

holds, which provides a consistency check for (
pPBex
3.167) and (

uuPBex
3.168).

Proceeding to the Dirac brackets we first note that, as it follows from (
OPchi
3.156),

the infinite matrix of PB between the independent constraints

Φ = {P , χ̃ , Jr , r 6= 0 } (P ≡ −J0 , χ̃ =
1
n

log(D̃Dq(p)) ) (3.178) BWconstr

consists of 2× 2 non-degenerate (canonical) blocks

({Φ`,Φ` ′}) =


0 {P, χ̃} . . . . . . . . . . . .

{χ̃, P} 0 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . 0 {Jr, J−r} . . .
. . . . . . . . . {J−r, Jr} 0 . . .
. . . . . . . . . . . . . . . . . .

 . (3.179) PhiPB

Hence, the Dirac bracket of any two phase variables b(x1) , c(x2) from the Bloch
waves sector is

{b(x1), c(x2)}D = {b(x1), c(x2)}+
+{P, χ̃}−1 ({b(x1), P} {χ̃, c(x2)} − {b(x1), χ̃} {P, c(x2)}) + (3.180)

+
∞∑
r=1

{Jr, J−r}−1 ({b(x1), Jr} {J−r, c(x2)} − {b(x1), J−r} {Jr, c(x2)})

8See e.g.
Weil
[261]. An integrated version of (

epsz-cot
3.173) appeared in

BL
[40]; we thank L. Fehér for

indicating this reference to us.
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i.e., to compute it we need to find the PB {P, χ̃} , {Jr, J−r} as well as those of
b(x1) and c(x2) with the constraints (

BWconstr
3.178).

As it follows directly from (
OPchi
3.156), the Hamiltonian vector field correspond-

ing to Jr , r 6= 0 is XJr = −iknr δ
δJ−r

and that for P ≡ −J0 is XP = −i δδχ̃ ,
hence

{Jr, χ̃} = i δr0 ({P, χ̃} = −i ) , {Jr, Js} = −iknr δr+s, 0 (3.181) PB-P-c

and

{P, χ̃}−1 = i , {Jr, J−r}−1 =
i

knr
, r = 1, 2, . . . . (3.182) invjj1

The PB of P with the basic variables follow immediately from (
pPBex
3.167):

{P, u(x)} = −i u(x) , {P, p`} = 0 . (3.183) PB-P

The PB of the modes Jr of the abelian current J(x) can be computed, by taking
the trace, from those for j(x) = ik u′(x)u−1(x) (cf. (

clKZ
3.5)) which follow, in turn,

from those for u(x) , (
uuPBsgn
3.175):

{j1(x1), u2(x2)} = 2πi P12 u2(x2) δper(x12) , {j(x1), p`} = 0 . (3.184) jx-PB

(Due to the periodicity of the current, j(x+ 2π) = j(x) , the first PB including
the periodic δ-function (

eps-perd
3.172) is valid for arbitrary real x1, x2.) Taking the trace

in the first space and using tr1P12 =
∑
i,j δ

i
j(e

j
i )2 = 1I2 , we obtain

{J(x1), u(x2)} = 2πi u(x2) δper(x12) , {J(x), p`} = 0 (3.185) Jx-PB

or, in terms of modes (
JrDabel
3.148),

{Jr, u(x)} = i eirxu(x) , {Jr, p`} = 0 . (3.186) Jr-PB

We finally note that the only non-trivial PB of χ̃ (
chitilde
3.149) with the variables in

(
OPchi
3.156) is the one with P ; in particular, χ̃ Poisson commutes with the differences
pj` . Eqs. (

uu1
3.151), (

tildeDabel
3.147) (implying ∂

∂P u(x) = ix
kn u(x)) and the equality p` =

1
n (P −

∑n
j=1 pj`) give

{χ̃, u(x)} = {χ̃, P} ix
kn

u(x) = − x

kn
u(x) , {χ̃, p`} =

1
n
{χ̃, P} =

i

n
.

(3.187) chit-PB

Hence, the terms that have to be added to {u1(x1), u2(x2)} to obtain the cor-
responding Dirac bracket (

Dbr
3.180) are

{P, χ̃}−1 ( {u1(x1), P} {χ̃, u2(x2)} − {u1(x1), χ̃} {P, u2(x2)} ) =

= −x12

kn
u1(x1)u2(x2) , (3.188)

∞∑
r=1

{Jr, J−r}−1 ( {u1(x1), Jr} {J−r, u2(x2)} − {u1(x1), J−r} {Jr, u2(x2)} ) =

=
i

kn

∞∑
r=1

eirx12 − e−irx12

r
u1(x1)u2(x2) = − 2

kn

∞∑
r=1

sin rx12

r
u1(x1)u2(x2) .

Combining (
uuPBsgn
3.175) and (

Pchitterm
3.188), we obtain, for −2π < x12 < 2π

{u1(x1), u2(x2)}D = {u1(x1), u2(x2)} − π

nk
u1(x1)u2(x2) sgn(x12) =

= u1(x1)u2(x2) (
π

k
sgn(x12)C12 − r12(p)) (3.189)

where C12 = P12 − 1
n1I12 , see (

Cn-sigma
3.66) and we have made use of the expansion

(
eps
3.169) for the twisted periodic ε(x) as well of (

eps-sgn
3.171). The Dirac bracket of

uAj (x) with p` is

{uAj (x), p`}D = {uAj (x), p`}+ i {uAj (x), P}{χ̃, p`} = i uAj (x) (δj` −
1
n

) (3.190) DPBdiffer2
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implying

{uAj (x), p``+1}D = i (u(x)h`)Aj , {u1(x), Mp2}D = −2π
k
u1(x)Mp2 σ12 .

(3.191) uMp-PB

Due to the twisted periodicity of u(x) , (
uuDir
3.189) and (

uMp-PB
3.191) allow to calculate

{u1(x1) , u2(x2)}D for arbitrary values of x1 and x2 .

The Dirac PB involving the su(n) current j(x) can be obtained either di-
rectly from (

uuDir
3.189) and (

clKZ
3.5) or by applying the Dirac reduction to (

jx-PB
3.184). One

gets

{j1(x1), u2(x2)}D = 2πiC12 u2(x2) δper(x12) ⇔
{ja(x1), u(x2)}D = 2πi Ta u(x2) δper(x12) , or (3.192)
{jam, u(x)}D = i ta u(x) eimx

for j(x) = ja(x)Ta (≡ ja(x) ta ) =
∑
m

jam Ta e
−imx

and further (from now on we shall skip the subscript D for the Dirac brackets),

{j1(x1), j2(x2)} = 2πi [C12, j2(x2)] δper(x12) + 2πk C12 δ
′
per(x12) ⇔

{ja(x1), jb(x2)} = 2π f c
ab jc(x2) δper(x12) + 2πk ηab δ′per(x12) , or

{jam, jbn} = fabc j
c
m+n − i k mηab δm+n,0 ( [ta, tb] = ifabc t

c ) . (3.193)

Eq.(
KacM1
3.193) is the classical (PB) counterpart of the defining relations of the affine

(current) algebra Ĝ at level k while (
curf1
3.192), whose form could be actually antici-

pated from the fact that j(x) is the Noether current generating left translations,
shows that u(x) is a primary field corresponding to the fundamental represen-
tation of G = su(n) .

The PB of the chiral component of the Sugawara stress energy tensor (
Tchir
2.55),

T (x) = 1
2k tr j2(x) = 1

2k η
abja(x)jb(x) are easy to compute from those of the

current (
KacM1
3.193). Making use of the total antisymmetry of the structure constants

fabc (
fabc
2.33), we obtain

{ja(x1), tr j2(x2)} = ηbc{ja(x1), jb(x2)jc(x2)} = 4πk ja(x2) δ′per(x12) , or

{jam, ηbc
∑
`

jb−` j
c
n+` } = −2 i k m jam (3.194)

and hence,
{j(x1), T (x2)} = 2π j(x2)δ′per(x12) . (3.195) jT

On the other hand, the current-field PB (
curf1
3.192), together with (

clKZ
3.5), imply

{T (x1), u(x2)} =
2πi
k
j(x1)u(x2) δper(x12) = −2π u′(x2) δper(x12) . (3.196) stressf1

Introducing the mode expansion T (x) =
∑
m Lme

−imx , one derives from Eqs.
(
jT
3.195) and (

stressf1
3.196), respectively, the following PB characterizing the chiral

stress energy tensor modes as generators of local diffeomorphisms:

{j(x), Ln} =
d

dx

(
j(x)einx

)
⇔ {jam, Ln} = −im jam+n ,

{u(x), Ln} = einx
du

dx
(x) . (3.197)

Eq.(
jT
3.195) also implies

{T (x1), T (x2)} =
2π
k

tr (j(x1)j(x2)) δ′per(x12) . (3.198) TT

Clearly, Eqs. (
clKZ
3.5) and (

DPBdiffer2
3.190) imply that the current j(x) (and hence, the

stress energy tensor T (x)) commute with p` , i.e.

{jam, p`} = 0 , {Ln, p`} = 0 . (3.199) jTpl
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We shall finalize this section by showing how the basic properties of a classi-
cal dynamical r-matrix (see

EV
[76]) arise as consistency conditions for the Poisson

structure of the Bloch waves, i.e. how the mere existence of (
uuDir
3.189) and (

uMp-PB
3.191)

restricts r12(p) . The most important among them, that r12(p) solves the clas-
sical dynamical Yang-Baxter equation (

CDYBE
3.113), follows from the Jacobi identity

for the PB (
uuDir
3.189). Indeed, performing the calculation, one gets the triple

tensor product u1(x1)u2(x2)u3(x3) multiplied from the right by an expression
containing three different kinds of commutators, of C-C , C-r , and r-r type,
respectively. The first group of terms produces the right-hand side of (

CDYBE
3.113),

π2

k2 [C12, C23] . To see this, one uses (
CCrel
3.34) and the following quadratic identity

satisfied by the sign function, invariant with respect to point permutations:

sgn (x13) sgn (x32) + sgn (x21) sgn (x13) + sgn (x32) sgn (x21) = −1 . (3.200) eps2

The second group containing mixed commutators is actually zero, due to the
invariance of C12 with respect to the adG action (

ad-inv12
3.33) implying, for exam-

ple, [r13(p) + r23(p), C12] = 0 . The third group (of r-r terms) multiplying
u1(x1)u2(x2)u3(x3) gives rise to the left hand side of the modified classical
dynamical YBE (

CDYBE
3.113).

The skew-symmetry of (
uuDir
3.189) implies ”unitarity”, r12(p) + r21(p) = 0 .

Finally, Eqs. (
DPBdiffer2
3.190) or (

uMp-PB
3.191) and the Jacobi identity involving u1(x1), u2(x2)

and p` (or p``+1 , respectively) impose the zero weight condition on r12(p) ,

[(e``)1 + (e``)2 , r12(p)] = 0 , ` = 1, . . . , n
⇒ [h`1 + h`2 , r12(p)] = 0 , ` = 1, . . . , n− 1 . (3.201)

One can explicitly check that r12(p) given by (
dynr
3.111), (

dyn-r-matr
3.112) indeed satisfies

all the three conditions specified above. Note that our classical dynamical YBE
(
CDYBE
3.113) is written in a form that keeps track (in the term Alt (dr(p))) of the

extension of the phase space. Also, r12(p) (
dynr
3.111) only depends on the differences

pj` (cf. (
f01
3.87)), but its diagonal part does not belong to su(n) ∧ su(n) .

The first expression for the dynamical r-matrix appeared already in the early
studies of the chiral WZNW model

BDF
[24] (see also

BFP
[26] for further generalization in

a direction different from ours). Classification theorems for classical dynamical
r-matrices in various cases (for Kac-Moody algebras, simple Lie algebras etc.
as well such with a spectral parameter) can be found in

EV
[76].

3.7 PB for the chiral field g(x) . Recovering the 2D field

We have described so far (in full details, for G = SU(n)) the two basic canonical
versions of the chiral WZNW model, the first one described in terms of the
Bloch wave field u(x) with diagonal monodromy matrix Mp , whose quadratic
PB (

uuDir
3.189) involve the classical dynamical r-matrix r12(p) and the second, in

terms of chiral field g(x) with general (G-valued) monodromy matrix M . These
two pictures are intertwined by the zero modes a obeying (

aintertw
3.4).

3.7.1 The Poisson brackets of the chiral field g(x)

We shall now use the PB for the zero modes ajα and the Bloch waves u(x)Aj
to find the PB for the chiral field g(x)Aα (

gua
3.2). As explained in Section 3.1,

the two constituents of g(x)Aα can be treated as independent (and therefore,
Poisson commuting), only at the end we should identify the variables p (for the
Bloch waves) and p (for the zero modes) and hence, the corresponding diagonal
monodromies. This prescription is equivalent to introducing an additional set
of first class constraints:

Cp := p− p ≈ 0 ⇒ Mp ( = u(x)−1u(x+ 2π) ) ≈Mp . (3.202) MpMp
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So the PB of the covariant group valued field g(x) = u(x) a are obtained by
combining (

uuDir
3.189) and (

PBex
3.108):

{g1(x1), g2(x2)} = ({u1(x1), u2(x2)}a1a2 + u1(x1)u2(x2){a1, a2})|Cp≈0 =

= u1(x1)u2(x2)
(

(
π

k
C12 sgn(x12)− r12(p)) a1a2 + r12(p) a1a2 −

π

k
a1a2 r12

)
=

=
π

k
g1(x1)g2(x2) (C12 sgn(x12)− r12) ≡ (3.203)

≡ −π
k
g1(x1)g2(x2) (r−12 θ(x12) + r+

12 θ(x21)) , −2π < x12 < 2π

where r12 is given by (
stand-r-matr
3.110) and θ(x) is the Heaviside step function,

θ(x) =
{

0 , x ≤ 0
1 , x > 0 , θ(x)− θ(−x) = sgn(x) . (3.204) heavi

Identifying the monodromy matrix M with that of the zero modes, one trivially
obtains, from (

Mgen
3.130) and (

Mpma
3.138)

{M1, g2(x)} =
π

k
g2(x) (r+

12M1 −M1r
−
12) , {M±1, g2(x)} =

π

k
g2(x) r±12M±1 .

(3.205) Mgeng

The compatibility of the PB (
gpb
3.203) and (

Mgeng
3.205) can be easily checked, e.g.

{g1(x1), g2(x2)} = −π
k
g1(x1) g2(x2) r+

12 for − 2π < x12 < 0 ⇒

{g1(x1 + 2π), g2(x2)} = {g1(x1), g2(x2)}M1 + g1(x1){M1, g2(x2)} =

= −π
k
g1(x1) g2(x2) r+

12M1 +
π

k
g1(x1) g2(x2) (r+

12M1 −M1r
−
12) =

= −π
k
g1(x1 + 2π) g2(x2) r−12 for g1(x1 + 2π) = g1(x1)M1 . (3.206)

The current and hence, the stress energy tensor, Poisson commute with the zero
modes, so that their PB with the chiral field g(x) are analogous to those given
in (

curf1
3.192) and (

LPB
3.197), respectively. We have, in particular,

{jam, g(x)} = i tag(x) eimx , {g(x), Ln} = einx
dg

dx
(x) . (3.207) jTg

3.7.2 Symmetries of the chiral PB

A guiding principle in quantization is to retain the invariance of the classical
system replacing, if needed, the classical notions of symmetry by appropriate
quantum analogs. The set of chiral PB is preserved by the following transfor-
mations (the first two of them are inherited from the corresponding properties
of the Bloch waves, while the third is shared with the zero modes):

(1) G-valued periodic left shifts

g(x) → h(x) g(x) , h(x) ∈ G , h(x+ 2π) = h(x) (3.208) Gleft

are generated by the chiral current j(x) (cf. Section 2.4). This transformation
does not affect the zero modes; accordingly, the PB of j(x) with the left chiral
field g(x) is the same as its bracket with the Bloch wave, (

curf1
3.192):

{j1(x1), g2(x2)} = 2πiC12 g2(x2) δper(x12) . (3.209) curg

To prove that the PB (
curg
3.209)is also invariant with respect to (

Gleft
3.208) (the current

itself transforming as j(x)→ h(x) j(x)h(x)−1), we use the fact that the tensor
product h1(x1)h2(x2) commutes with C12 when multiplied with the periodic
delta function.

(2) Chiral conformal symmetry with respect to smooth monotonic coordinate
transformations of the type

x → f(x) , f ′(x) > 0 ( f(±π) = ±π , −π < x < π ) . (3.210) chiralconf

Checking the invariance of Eq.(
gpb
3.203) with respect to (

chiralconf
3.210), one uses the

following obvious property of the step function under such mappings:

θ(f(x1)− f(x2)) = θ(x12) . (3.211) tf
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Alternatively, using (
jTg
3.207), one can validate the infinitesimal conformal invari-

ance of (
gpb
3.203) generated by the modes Ln of the stress energy tensor. The

invariance of (
KacM1
3.193) and (

curg
3.209) is equivalent to the following easily verifiable

relations:

{{jam, Lr}, jbn}+ {jam, {jbn, Lr}} = fabc{jcm+n, Lr} ,
{{jam, Ln}, g(x)}+ {jam, {g(x), Ln}} = i ta{g(x), Ln}eimx . (3.212)

This is the classical prerequisite of the invariance of the quantized chiral model
with respect to infinitesimal diffeomorphisms (implemented by the Virasoro
algebra).

(3) Poisson-Lie symmetry with respect to constant right shifts of the chiral
field g(x) . The left sector PB are invariant with respect to the transformations

gL(x) → gL(x)TL , ML → T−1
L ML TL (TL ∈ G ) , (3.213) PLleftg

provided that

{gL1, TL2} = 0 , {TL1, TL2} =
π

k
[r12 , TL1TL2] , (3.214) PLdefg

cf. (
PBSkl
2.116). It was proposed already in the early papers on the subject

MR, F1, AS, G
[201, 80,

16, 128] that the PL symmetry is to be replaced, in the quantized chiral WZNW
theory, by quantum group invariance of the corresponding exchange relations.

3.7.3 The classical right movers’ sector; the ”bar” variables

As already noted in Section 2.3, transferring the PB structure from the left to
the right movers’ sector (written in terms of chiral fields gL and gR such that
g(x+, x−) = gL(x+) g−1

R (x−) , cf. (
LR
1.1)) amounts to a mere change of sign, see

(
O-O
2.73), (

Oc
2.74) and (

O2alt
2.87), (

O
2.85). The extreme simplicity of this ”rule of thumb”

makes it quite suitable for practical applications concerning the classical model.
This will be exemplified in the following section 3.7.4 where the locality and
monodromy invariance of the 2D field will be examined.

It is easy to foresee, however, that the pair of chiral variables gL , gR will not
be convenient in the quantum case when the interpretation of the matrix inverse
would lead to considerable difficulties. In addition, being formally equivalent to
replacing the level k by its opposite −k , the thumb rule forces us to use q−1

rather than q (
qcl
3.14) as a classical deformation parameter for the right sector,

and this fact will persist in the quantum case as well. Both problems are trivially
overcome by just setting

ḡ(x̄) = g−1
R (x̄) , ḡ(x̄+2π) = M̄ ḡ(x̄) ( M̄ = M−1

R ) , ḡ(x̄) = ā ū(x̄) (3.215) ggbar

for x = x+ , x̄ = x− so that now gAB(x, x̄) = gAα (x) ḡαB(x̄) . With the ”bar”
variables the left and the right sector are put on equal footing; we shall also
have, eventually, the same deformation parameter q for both sectors.

As the chiral Poisson brackets provide the basis for the canonical quantiza-
tion performed in the following Chapter 4, we shall collect below those already
obtained for the left sector and also derive the corresponding ones for the right
sector in the bar variables by changing the sign in (

gpb
3.203), (

uuDir
3.189), (

PBex
3.108) and

(
Mgen
3.130) and then substituting (

ggbar
3.215). We thus get

{g1(x1), g2(x2)} =
π

k
g1(x1) g2(x2) (C12 sgn(x12)− r12) =

= −π
k
g1(x1) g2(x2) (r−12 θ(x12) + r+

12 θ(x21)) , −2π < x12 < 2π ,

{ḡ1(x̄1), ḡ2(x̄2)} =
π

k
(r12 − C12 sgn(x̄12)) ḡ1(x̄1) ḡ2(x̄2) =

=
π

k
(r−12 θ(x̄12) + r+

12 θ(x̄21)) ḡ1(x̄1) ḡ2(x̄2) , −2π < x̄12 < 2π ; (3.216)
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{u1(x1), u2(x2)} = u1(x1)u2(x2) (
π

k
C12 sgn(x12)− r12(p)) =

= −u1(x1)u2(x2) (r−12(p) θ(x12) + r+
12(p) θ(x21)) , −2π < x12 < 2π ,

{ū1(x̄1), ū2(x̄2)} = (r̄12(p̄)− π

k
C12 sgn(x̄12)) ū1(x̄1) ū2(x̄2) =

= (r̄−12(p̄) θ(x̄12) + r̄+
12(p̄) θ(x̄21)) ū1(x̄1) ū2(x̄2) , −2π < x̄12 < 2π (3.217)

(for r±12 = r12±C12 , r
±
12(p) = r12(p)± π

k C12 and r̄±12(p̄) = r̄12(p̄)± π
k C12 with

p̄ = pR), as well as

{a1, a2} = r12(p) a1 a2 −
π

k
a1 a2 r12 = r

(±)
12 (p) a1 a2 −

π

k
a1 a2 r

(±)
12 ,

{ā1, ā2} =
π

k
r12 ā1 ā2 − ā1 ā2 r̄12(p̄) =

π

k
r

(±)
12 ā1 ā2 − ā1 ā2 r̄

(±)
12 (p̄) (3.218)

for ā = a−1
R . The PB involving p̄ follow from (

DPBdiffer2
3.190) and (

PBapD
3.123), so we have

{uAj (x), p`} = i (δj` −
1
n

)uAj (x) , {ajα, p`} = i (δj` −
1
n

) ajα ,

{ūjA(x̄), p̄`} = i (δj` −
1
n

) ūjA(x̄) , {āαj , p̄`} = i (δj` −
1
n

) āαj . (3.219)

The PB of the general monodromy matrices (recall that M̄ = M−1
R (

ggbar
3.215)) are

{M1, g2(x)} =
π

k
g2(x)(r+

12M1 −M1r
−
12) ,

{M̄1, ḡ2(x̄)} =
π

k
(r−12M̄1 − M̄1r

+
12) ḡ2(x̄) , (3.220)

{M1, a2} =
π

k
a2(r+

12M1 −M1r
−
12) , {M̄1, ā2} =

π

k
(r−12M̄1 − M̄1r

+
12) ā2 ,

cf. (
Mgeng
3.205), (

Mgen
3.130), (

PBMM
3.132), and

{M1,M2} =
π

k
(M1r

−
12M2 +M2 r

+
12M1 −M1M2 r12 − r12M1M2) ,

{M̄1, M̄2} =
π

k
(M̄1M̄2 r12 + r12M̄1M̄2 − M̄1 r

+
12M̄2 − M̄2 r

−
12 M̄1) . (3.221)

Finally, the PB of the Gauss components of the monodromy matrices (such that
M = M+M

−1
− and M̄ = M̄−1

− M̄+ , M̄± = M−1
R±) with the chiral fields or zero

modes read

{M±1, g2(x)} =
π

k
g2(x) r±12M±1 , {M̄±1, ḡ2(x̄)} = −π

k
M̄±1 r

±
12 ḡ2(x̄) ,

{M±1, a2} =
π

k
a2 r

±
12M±1 , {M̄±1, ā2} = −π

k
M̄±1 r

±
12 ā2 (3.222)

(cf. (
Mgeng
3.205), (

Mpma
3.138)). It is remarkable that the PB of M̄± with themselves are

identical to those of M± (
Mpmmp
3.142):

{M±1,M±2} =
π

k
[M±1M±2, r12 ] , {M±1,M∓2} =

π

k
[M±1M∓2, r

±
12 ] ,

{M̄±1, M̄±2} =
π

k
[M̄±1M̄±2, r12 ] , {M̄±1, M̄∓2} =

π

k
[M̄±1M̄∓2, r

±
12 ] . (3.223)

3.7.4 Back to the 2D WZNW model

To complete the ”classical part” of this review, we shall show that expressing
the 2D field g(x+, x−) in terms of its chiral components (

LR
1.1) is selfconsistent.

This is not obvious since we have allowed the left and right monodromy ma-
trices ML , MR to be independent, cf. (

PC
2.84), whereas the single-valuedness of

g(x0, x1) (strict periodicity in the compact space variable x1 or, equivalently,
condition (

gper
1.3) for g(x+, x−)) requires ML and MR to be equal, see Eq.(

cM
1.2).

The latter relation cannot be imposed ”in the strong sense” since the PB of left
and right chiral variables differ in sign, but it is perfectly sound as a constraint.
Indeed, to obtain the 2D field from its (independent) chiral components, one has
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to project the phase space SL ×SR on S̃ (
extPh
2.71), and this amounts to imposing

the (matrix valued) gauge condition

ML ≈MR , (3.224) constrC

cf. (
O2alt
2.87). Now the fact that left and right PB only differ in sign is exactly what

is needed for the constraints C := ML −MR to be first class
BFP
[26]:

{C1, C2} = {ML1 −MR1,ML2 −MR2} = {ML1,ML2}+ {MR1,MR2} ≈ 0 .
(3.225) C1class

The ”observable” field g(x+, x−) = gL(x+) g−1
R (x−) (

LR
1.1) has to be gauge

invariant. Indeed, using (
Mgeng
3.205) and its right sector analog, we obtain

{C1, gL2 g
−1
R2} = {ML1, gL2} g−1

R2 + gL2 g
−1
R2{MR1, gR2} g−1

R2 =

=
π

k
gL2(r+

12ML1 −ML1r
−
12) g−1

R2 −
π

k
gL2(r+

12MR1 −MR1r
−
12) g−1

R2 =

=
π

k
gL2 (r+

12 C1 − C1 r
−
12) g−1

R2 ≈ 0 . (3.226)

The 2D field is also local (already ”in the strong sense”) since, according to
(
gpb
3.203), for −2π < x±12 < 2π we have

{g1(x+
1 , x

−
1 ), g2(x+

2 , x
−
2 )} = {gL1(x+

1 ), gL2(x+
2 )} g−1

R2(x−2 ) g−1
R2(x−2 ) +

+ gL1(x+
1 ) gL2(x+

2 ) g−1
R1(x−1 ) g−1

R2(x−2 ) {gR1(x−1 ), gR2(x−2 )} g−1
R1(x−1 ) g−1

R2(x−2 ) =

=
π

k
(sgn (x+

12)− sgn (x−12)) gL1(x+
1 ) gL2(x+

2 )C12 g
−1
R1(x−1 ) g−1

R2(x−2 ) , (3.227)

and sgn (x+
12) = sgn (x−12) for x12 spacelike (i.e., x+

12 x
−
12 > 0 , see (

conev
2.7)).

Remark 3.7 The reason for Eqs. (
C1class
3.225) – (

gloc
3.227) to hold, i.e. the fact that

the left and right sector PB only differ in sign, presupposes the equality of the
classical constant r-matrices appearing in both. If we restrict ourselves to chiral
fields with diagonal monodromy matrices, cf. Remark 2.4 (and hence, do not
introduce zero modes), we should replace (

constrC
3.224) by the constraint MpL ≈MpR .

To ensure the locality of the 2D field u(x) ū(x̄) as in (
gloc
3.227), we should choose

in this case equal classical dynamical r-matrices for the left and right sectors.
In the presence of the chiral zero modes, however, the dynamical r-matrices in
the two sectors can be given by different functions of the respective arguments.
(This amounts to choosing different β(p) in (

f01
3.87); we shall make use of the

quantum counterpart of this fact to impose, in Section 4.6.2 below, identical
exchange relations for the left and right zero mode operators.) What is needed,
on top of the mentioned equality of the left and right constant r-matrices, is to
choose identical dynamical r-matrices for the Bloch waves and zero modes of
same chirality (i.e., r12(p) in (

uuDirbar
3.217) and (

aabar
3.218) should be the same, as well

as r̄12(p̄)). This requirement stems from the decomposition (
gua
3.2) of the chiral

fields into Bloch waves and zero modes, cf. Remark 3.1.

Assuming that the left and right sector constant r-matrices coincide, we can
also prove that the matrix elements of the 2D field g(x+, x−) Poisson commute
with those of M−1

L±MR± , again ”in the strong sense”. Indeed, using (
Mgeng
3.205) and

its right sector counterpart, we obtain

{(M−1
L± )1(MR±)1 , g2(x+, x−)} =

= − (M−1
L± )1 {(ML± )1 , gL2(x+)} (M−1

L± )1 (MR±)1 g
−1
R2(x−)−

− (M−1
L± )1 gL2(x+) g−1

R2(x−) {(MR± )1 , gR2(x−)} g−1
R2(x−) =

= − π

k
(M−1

L±)1 gL2(x+) r±12 (MR±)1 g
−1
R2(x−) +

+
π

k
(M−1

L±)1 gL2(x+) r±12 (MR±)1 g
−1
R2(x−) = 0 . (3.228)

Clearly, the zero mode analog of (
Mpm2dg
3.228) (which we shall write using the inverse

product (M−1
R±)1(ML± )1) is also valid, cf. (

Mpmga-bar
3.222):

{(M−1
R±)1(ML± )1 , Q2} = 0 , Q := aLa

−1
R . (3.229) Mpm2a
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In the quantized theory, where the factors M± of the monodromy matrix (
M+-
2.88)

(satisfying R-matrix quadratic equations) can be conveniently parametrized in
terms of the generators of the Hopf algebra Uq(s`(n)) (see

FRT
[82] and Section 4.3

below), the vanishing of the commutators of (M−1
R±)1(ML± )1 with g(x+, x−)

and Q = aLa
−1
R implies the ”gauge invariance” of the latter with respect to the

(inverse) coproduct action of the quantum group. In this sense the quantum
group symmetry remains ”hidden” in the 2D WZNW theory, see e.g.

GS
[139].

4 Quantization

Quantization of a classical system involves two steps:
(i) a deformation of the algebra of dynamical variables such that the commutator
of any two of them, f and g , is given by a power series in the Planck constant
~ with leading term proportional to their PB:

[f, g] = i~ {f, g}+O(~2) . (4.1) commPB

(ii) constructing a state space, i.e. an inner product vector space which carries
a positive energy representation of the above quantum algebra.9

The first step is rather straightforward for a classical observable algebra of
conserved currents (like the chiral currents jL(x+) ≡ j(x+) and jR(x−)) that
span a Lie algebra under Poisson brackets. It is more involved when dealing with
group-like objects like g(x+, x−) , and especially with their gauge dependent
chiral components. We shall start with the quantization of the chiral current
algebra reviewing, in particular, the change in the level in the Sugawara formula
and then proceed to our main task, the R-matrix quantization of the group
valued chiral fields g(x) and of the zero modes in the case of G = SU(n) and
the quantum group symmetry of their exchange relations. The chiral state space
will be then constructed as a representation of the chiral fields’ algebra built
on a non-degenerate (cyclic) lowest energy vector, the vacuum | 0〉 , satisfying
L0 | 0〉 = 0 . The inner product on such a space is defined by introducing a left
(”bra”-) vacuum such that 〈0 | L0 = 0 . (We expect that the reader is familiar
with the basic notions of 2D CFT – see e.g.

DFMS, FSoT
[63, 122].)

4.1 The chiral conformal current algebra

The quantum counterpart of the classical current PB (
KacM1
3.193) are the standard

relations for the affine Kac-Moody (current) algebra Ĝ at level k:

[jam, j
b
n] = ifabc j

c
m+n + kmηab δm+n,0 . (4.2) KM

The Planck constant ~ is hidden here in a rescaling of the current, j → ~ j and
of the level, k → ~ k =: k̄ , cf. Remark 4.1 below, so that the right-hand side of
(
KM
4.2) written in terms of the new variables is proportional to ~ .

The local diffeomorphism invariance (
LPB
3.197) can also be extended to the

quantum theory:

[j(x), Ln] = i
d

dx

(
j(x)einx

)
. (4.3) jLcomm

As (
jLcomm
4.3) implies

[jam, Ln] = mjam+n ⇒ L0 j
a
m | 0〉 = jam(L0 −m) |0〉 , (4.4) Ljvac

it follows from the positive energy requirement that

jam |0〉 = 0 for m ≥ 0 . (4.5) jonvac

Keeping with tradition in the quantum CFT, we shall introduce at this point
the analytic z-picture using the complex variables

z := eix
+
, z̄ := e−ix

−
(4.6) zzbar

9Any positive linear functional on a C∗-algebra of norm 1 defines a state via the Gelfand-
Naimark-Segal construction. For a review and applications of the GNS construction to ax-
iomatic QFT, see

BLOT
[41].
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in which a chiral field ϕ(x) of dimension ∆ is substituted by a field φ(z) such
that

ϕ(x) = z∆ φ(z) . (4.7) xz

Note that in Euclidean space-time (defined as the set of real Wick-rotated points
(ix0, x1)→ (x0, x1) ∈ R2 ⊂ C2) the variables z and z̄ are complex conjugate,

x0 → −i x0 ⇒ z → ex
0+ix1

, z̄ → ex
0−ix1

(4.8) Eucl

and that the infinite future/past limits x0 → ∞ and x0 → −∞ correspond to
|z| → ∞ and |z| → 0 , respectively.

The counterpart of (
jLcomm
4.3) for an arbitrary primary (with respect to the Vira-

soro algebra) chiral field φ of dimension ∆ reads

[Ln, φ(z)] = zn(z
d

dz
+ (n+ 1) ∆)φ(z) . (4.9) phiLcomm

The deviation of ∆ from its canonical (integer or half integer) value signals a
field strength renormalization.

We shall have, as a consequence of energy positivity, analyticity of the vac-
uum expansion in both z and z̄ ; for example, for a primary chiral field it only
involves non-negative integer powers of z ,

φ(z) |0〉 =
∞∑
m=0

φ−m−∆ zm |0〉 . (4.10) phionvac

Calculating the norm square of (
phionvac
4.10) provides a power series convergent for

|z| < 1 , by the following general argument. Conformal (Möbius) invariance
implies

Ln |0〉 = 0 = 〈0 | Ln for n = 0,±1 . (4.11) Moebius

The notion of z-picture conjugate of a complex chiral field φ(z) of dimension ∆
DFMS
[63] and the 2-point function (determined from (

phiLcomm
4.9) and (

Moebius
4.11)),

φ(z)∗ = z̄−2∆ φ∗(z̄−1) , 〈0 | φ∗(z1)φ(z2) |0〉 = Nφ z
−2∆
12 (4.12) phistar

yield the following expression for the norm square of the vector (
phionvac
4.10):

‖φ(z) |0〉 ‖2 = z̄−2∆ 〈0 | φ∗(z̄−1)φ(z) |0〉 = Nφ (1− |z|2)−2∆ . (4.13) normphionvac

For the z-picture current (which, abusing notation, we again denote by j),
Eq.(

jLcomm
4.3) takes the form

[Ln, ja(z)] =
d

dz
(zn+1ja(z)) ( ja(z) =

∑
m

jam z
−m−1 , ∆(j) = 1) . (4.14) jzLcomm

Proceeding to the quantum version of the Sugawara formula, we shall use the
following definition (cf.

FSoT
[122]) for an infinite sum of normal products of current

modes,

tr
∑
`

: j−` jn+` : = tr

( ∞∑
`=1

+
∞∑

`=−n

)
j−` jn+` ≡ ηab

( ∞∑
`=1

+
∞∑

`=−n

)
ja−` j

b
n+`

(4.15) npcm

where jm := jamTa . It has the virtue that, applied to a finite energy state, only a
finite number of terms survive. We shall prove (comparing the resulting commu-
tator with the mode expansion of T (x) in the PB relations (

jT
3.195)) that the sum
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(
npcm
4.15) is proportional to Ln and will compute the proportionality coefficient:

[jam , tr
∑
`

: j−`jn+` :] = ηbc

( ∞∑
`=1

+
∞∑

`=−n

)
[jam , j

b
−` j

c
n+` ] =

= km jam+n

( ∞∑
`=1

(δm−`,0 + δm+n+`,0) +
∞∑

`=−n

(δm−`,0 + δm+n+`,0)

)
+

+ i ηbcf
ab
d

( ∞∑
`=1

(jdm−`j
c
n+` − jd−`jcm+n+`) +

∞∑
`=−n

(jdm−`j
c
n+` − jd−`jcm+n+`)

)
=

= km jam+n

(( ∞∑
`=1

+
0∑

`=−∞

)
δm` +

( ∞∑
`=1

+
0∑

`=−∞

)
δm+n+`,0

)
+

+ i ηbcf
ab
d ×


0 , m = 0(∑m

`=1 +
∑m−n−1
`=−n

)
1
2 [jdm−` , j

c
n+` ] , m > 0

−
(∑|m|

`=1 +
∑|m|−n−1
`=−n

)
1
2 [jd−` , j

c
m+n+` ] , m < 0

=

= 2 km jam+n + i2mfabdf
d
bs j

s
m+n = 2hmjam+n , h := k + g∨ . (4.16)

(In the last equality we have used (
adff
A.25).) As anticipated, only finite sums

are involved at the final step of the computation (
commjnpcm
4.16). The quantum shift

of the level k to the height h affects the normalization of the WZNW stress
energy tensor so that, to comply with the standard commutation relations of
the Virasoro algebra (see e.g.

Kac, KR
[168, 170]),

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1) δm+n, 0 , (4.17) Vir

one should set

Ln =
1

2h
tr

( ∞∑
`=1

+
∞∑

`=−n

)
j−` jn+` ⇒ c =

k

h
dimG (4.18) Ln

(cf.
GO86
[138] where one can find a list of the authors who have contributed to

deriving the correct result). The Sugawara formula (
Ln
4.18) and (

jonvac
4.5) imply

Ln |0〉 = 0 for n ≥ −1 . (4.19) Lonvac

The local diffeomorphisms in z and z̄ are generated by the mutually com-
muting modes Ln and L̄n of the left and right component of the stress energy
tensor

T (z) =
∑
m

Lm
zm+2

, T̄ (z̄) =
∑
m

L̄m
z̄m+2

, [Lm, L̄n] = 0 . (4.20) Tz

We shall write the quantum analog of the 2D group valued field (
LR
1.1) as

g(z, z̄) = g(z) ḡ(z̄) ≡ (gAα (z) ḡαB(z̄)) , (4.21) LRq

where ḡ replaces g−1
R . Then the current-field PB in (

jTg
3.207) yields the commu-

tation relation
[jam, g(z, z̄)] = −zm ta g(z, z̄) . (4.22) c-f

Requiring that g(z, z̄) also satisfies (
phiLcomm
4.9) for n = 0 and L0 given by (

Ln
4.18),

L0 =
1
h

tr (
1
2
j2
0 +

∞∑
m=1

j−mjm) (4.23) L0

is equivalent to imposing the Knizhnik-Zamolodchikov equation
KZ, T
[178, 249] in an

operator form,

h
∂

∂z
g(z, z̄) = − :j(z) g(z, z̄) : = −Ta (ja(+)(z) g(z, z̄) + g(z, z̄) ja(−)(z)) ,

ja(+)(z) :=
∞∑
m=0

ja−m−1 z
m , ja(−)(z) :=

∞∑
m=0

jam z
−m−1 (4.24)
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and fixes the conformal dimension ∆ of g to

∆ =
C2(πf )

2h
=
n2 − 1
2nh

. (4.25) conf-dim-g

A similar equation involving the right current dictates the same value for ∆̄ .
Here C2(πf ) = n − 1

n is the value (
c2piL
A.22) of the quadratic Casimir operator

(
CasCW
A.21) in the defining n-dimensional representation πf of su(n) . These two

operator KZ equations are the quantum counterparts of the definitions (
jLR
2.70)

of the classical chiral currents.
More generally, if φΛ(z) is a Ĝ-primary chiral field transforming under an IR

of weight Λ of the simple compact Lie algebra G , i.e. if

[ja(−)(z1) , φΛ(z2)] = −πΛ(ta)
1
z12

φΛ(z2) ,

[φΛ(z1) , ja(+)(z2)] = πΛ(ta)
1
z12

φΛ(z1) , (4.26)

then φΛ(z) has conformal dimension

∆(Λ) =
C2(πΛ)

2h
(4.27) conf-dim-L

and satisfies the KZ equation

h
d

dz
φΛ(z) = −πΛ(Ta) (ja(+)(z)φΛ(z) + φΛ(z) ja(−)(z)) . (4.28) KZL

Here πΛ(Ta) and πΛ(tb) are dual bases in the (finite dimensional) representation
space of G of highest weight Λ and 1

z12
in (

Ward
4.26) is understood as the power series

1
z1

∑∞
m=0

(
z2
z1

)m
for |z1| > |z2| (therefore it is not strictly antisymmetric but

satisfies 1
z12

+ 1
z21

= δ(z12)
FSoT, Kac98
[122, 169]). The KZ equation (

KZL
4.28), the operator

Ward identity (
Ward
4.26) and Eq.(

jonvac
4.5) allow to write a system of partial differential

equations for the vacuum expectation value

WN = 〈0 | φΛ(1)(z1) . . . φΛ(N)(zN ) |0〉 (4.29) W-N

in its primitive domain of analyticity in which |z1| > |z2| · · · > |zN |:h ∂

∂zi
+

i−1∑
j=1

Cij (Λ(i),Λ(j))
zj i

−
N∑

j=i+1

Cij (Λ(i),Λ(j))
zij

WN = 0 ,

i = 1, . . . , N , Cij (Λ(i),Λ(j)) := ηab πΛ(i)(Ta)⊗ πΛ(j)(Tb) . (4.30)

To summarize: the infinite chiral symmetry of the WZNW model, which
involves both a local chiral internal symmetry expressed by the current-field
commutation relations (CR) (

Ward
4.26) and (infinitesimal) diffeomorphism invari-

ance of primary fields (
phiLcomm
4.9), allows to compute the anomalous dimension ∆

(
conf-dim-g
4.25) of the primary field φΛ deriving on the way the operator KZ equation

(
KZL
4.28). This is a remarkable non-perturbative result and deserves recalling its

main ingredients.
(i) The requirement of infinite chiral invariance at the classical level led to the
addition of the multivalued Wess-Zumino term to the classical action S[g] (

Swznw0
2.18).

(ii) Demanding the path integral measure involving the factor eiS[g] to be single
valued yields the quantization of the coupling constant k (ultimately identified
with the affine Kac-Moody level).
(iii) The quantum Sugawara formula (

Ln
4.18), which gives rise to a (non-perturba-

tive) renormalization of k , relates the internal symmetry with the conformal
properties. The non-integer anomalous dimension ∆ (

conf-dim-L
4.27) implies, in particu-

lar, the presence of a non-trivial monodromy in the chiral theory.
(iv) The non-perturbative character of the outcome is displayed by the fact
that the renormalized coupling constant h appears in the denominator of the
anomalous dimension ∆ .
(v) The operator equation (

KZL
4.28) along with the Ward identity (

Ward
4.26) allows to

write down the system of partial differential equations (
KZW-N
4.30) for the correlation

functions. The operator in the left hand side of (
KZW-N
4.30) has a nice geometric

interpretation as a flat connection (see e.g.
Ka
[172]). The system admits an explicit

solution in terms of a multiple integral representation
KZ, DF, ZF, CF, STH, FGP
[178, 68, 264, 57, 243, 111].
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4.2 The exchange algebra of the chiral field g(x)

The naive idea of just replacing PB by commutators fits the cases of free or Lie-
algebra valued fields but is no longer applicable to group-like quantities which
have quadratic PB relations. The simplest example is provided by the Weyl
form of the canonical CR involving the groups of unitary operators eiαp and
eiβx ,

eiαp eiβx = ei~αβ eiβx eiαp . (4.31) CCR

We can recover the PB as a quasi-classical limit of the quantum exchange rela-
tions setting

{eiαp, eiβx} = lim
~→0

1
i~

[eiαp, eiβx] = αβ eiβx eiαp . (4.32) WCR

To quantize the classical chiral WZNW PB relations (
gpb
3.203), we shall look

for quadratic exchange relations for g(x)
B, MR, F1, AS, G
[21, 201, 80, 16, 128], setting in the

real (x-) picture

g1(x1) g2(x2) = g2(x2) g1(x1)R12(x12) , −2π < x12 < 2π (4.33) ggR

where

R12(x) = R−12 θ(x) +R+
12 θ(−x) , R−12 = R12 , R+

12 = R−1
21 , (4.34) Rx

the quantum R-matrix R12 being an invertible matrix satisfying the quantum
Yang-Baxter equation (QYBE)

R12R13R23 = R23R13R12 (4.35) QYBE

and reproducing the classical r-matrix r−12 in the quasi-classical limit. The
relation between R− and R+ in (

Rx
4.34) ensures the compatibility between the

exchange relations for x1 < x2 and x1 > x2 while the QYBE is a consistency
condition for the associativity of triple products of chiral field operators.

The properties of the quantum exchange relations are revealed by studying
their quantum group symmetry, the quantum counterpart of the Poisson-Lie
structure (discussed in Section 2.4). A key to understanding quantum groups A,
in particular quantum universal enveloping algebras (QUEA) Uq(G) is provided
by the notion of coproduct ∆ : A→ A , which teaches us how to ”add” quantum
numbers passing from a single particle to a many particle system and has a
bearing on the quantum statistics. The crucial property which distinguishes the
QUEA coproduct from that of the standard undeformed universal enveloping
algebra U(G) = U1(G) is the possibility ∆ to be non-symmetric, i.e. (using the
convenient Sweedler’s notation

Sweedler
[246])

∆(X) :=
∑
(X)

X1 ⊗X2 6=
∑
(X)

X2 ⊗X1 =: ∆′(X) . (4.36) DDp

The breaking of cocommutativity, i.e. of the symmetry of the coproduct, implies
that quantum mechanical multiparticle wave functions (or correlation functions,
in QFT) cannot transform covariantly under the group of permutations. The
exchange symmetry that replaces it should commute with the coproduct ∆(X) .
One can construct such a substitute of permutation for almost cocommutative
Hopf algebras (see Appendix B where this and related notions are recalled and
illustrated on examples) for which a special element R ∈ A ⊗ A , called the
universal R-matrix, exists that intertwines between the coproduct ∆(X) and
its opposite ∆′(X):

R∆(X) = ∆′(X)R . (4.37) intR

This notion will be applicable to the above exchange relations if the matrix
R = R12 in (

Rx
4.34) can be obtained from R when applied to the tensor square of

the defining representation of Uq(G) . The object of main interest for us is the
braid operator that combines R with the permutation operator P = P12 so that
it commutes with the coproduct

R̂ := PR , ∆′(X) = P ∆(X)P ⇒ ∆(X) R̂ = R̂∆(X) (4.38) PRco
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and satisfies the braid group relations (for R̂i := R̂i i+1)

R̂i R̂i+1R̂i = R̂i+1R̂i R̂i+1 , R̂i R̂j = R̂j R̂i for |i− j| > 1 , (4.39) braidR

the first of which follows from the Yang-Baxter equality (
QYBE
4.35) for Rij .

The analytic (z-) picture exchange relations are then expressed in terms of
the corresponding matrix R̂:

gAα (z1) gBβ (z2) =
y

gBρ (z2) gAσ (z1)R̂ρσαβ ( R̂ρσαβ ≡ R
σρ
αβ ) , (4.40)

( z12
y→ z21 = e−iπz12 for |z1| > |z2| , π > arg(z1) > arg(z2) > −π ) .

They involve analytic continuation along a path that exchanges two neighbour-
ing arguments of the multivalued chiral (conformal) blocks. (Analyticity in the
domain indicated in the last equation (

ggRa
4.40), cf. e.g.

FHIOPT
[114], is a consequence of

energy positivity.)
The multivaluedness of chiral blocks reflects the fact that the (complex) con-

figuration space is not simply connected. The quantum group symmetry and
the braid group statistics generalize in a sense the Schur-Weyl duality between
an internal unitary symmetry group and the permutation group10 to the case of
correlation functions with non-trivial monodromy. There is a gauge freedom in
the choice of the braid operator related to the ambiguity in the definition of the
chiral components g(z) and ḡ(z̄) of g(z, z̄) (

LRq
4.21). We shall opt for the simple,

numerical SLq(n) R-matrix of
FRT
[82] for the SU(n) WZNW model under consid-

eration ensuring the simple covariance and braiding properties of the matrix
chiral fields at the expense of dropping chiral covariance under the (antilinear)
complex conjugation and the related unitarity property, which will be only sat-
isfied by the 2D field g(z, z̄) (

LRq
4.21). We shall only require that the regularized

quantum determinant of g(z)

Dq(g ; z1, . . . , zn) :=
1

[n]!

∏
1≤i<j≤n

z
n+1
nh
ij εA1...An g

A1
α1

(z1) . . . gAnαn (zn) εα1...αn

(4.41) D(g)

belongs to the conformal class of the unit operator. The necessity to use the
deformed (”quantum”) ε-tensor εα1...αn will be explained in Section 4.4 below
where we introduce the similar notion of quantum determinant for the zero
modes11. Here we shall only provide the argument for the z-depending prefactor.

Let G = SU(n) and denote by wn the n-point conformal block

wn = wn(z1, . . . , zn)A1...An
α1...αn = 〈0 | gA1

α1
(z1) . . . gAnαn (zn) |0〉 . (4.42) Wn

It satisfies the KZ equation (
KZW-N
4.30) for N = n and all πΛ(i) = πf so that

Cij(Λ(i),Λ(j)) = Cij = Pij −
1
n

1Iij = Cj i , i, j = 1, . . . , n , (4.43) nL1

cf. (
Cn-sigma
3.66). As the full antisymmetry of εA1...An implies

εA1...Ai...Aj ...AnP
AiAj
BiBj

= εA1...Bj ...Bi...An = −εA1...Bi...Bj ...An , (4.44) epsP

the KZ linear system (
KZW-N
4.30) reduces to ∂

∂zi
− n+ 1

nh

i−1∑
j=1

1
zj i
−

n∑
j=i+1

1
zij

 pn(z1, . . . , zn) = 0 , i = 1, . . . , n

(4.45) KZp_n

for
pn(z1, . . . , zn) :=

1
[n]!

εA1...An wn(z1, . . . , zn)A1...An
α1...αn ε

α1...αn (4.46) Wn1

10See
TH
[250] for a pedagogical survey of Schur-Weyl duality and references to the pioneer

work of Arnold that links the braid group with the topology of configuration space. The
similarity between Schur-Weyl duality and Doplicher-Roberts theory of superselection sectorsDR
[67] is commented in

HF
[150].

11The ”quantum factorial” [n]! is defined in (
antis-l
4.116).
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and hence,
pn(z1, . . . , zn) = c

∏
1≤i<j≤n

z
−n+1

nh
ij , c = const . (4.47) p_n

For c = 1 and Dq(g ; z1, . . . , zn) given by (
D(g)
4.41), Eq.(

p_n
4.47) is equivalent to

〈0 | Dq(g ; z1, . . . , zn) |0〉 = 1 . (4.48) Dg1

The prefactor can also be deduced from (
conf-dim-L
4.27) and the identity

2 ∆(Λ1)−∆(Λ2) =
n+ 1
nh

( = ∆(2Λ1)− 2∆(Λ1) ) (4.49) id-pre

and then verified by the KZ equation (the values of the quadratic Casimir in
the symmetrized and antisymmetrized square, π2Λ1 ≡ πs and πΛ2 ≡ πa , of the
defining representation πΛ1 ≡ πf are, respectively

C2(πs) = 2
(n− 1)(n+ 2)

n
, C2(πa) = 2

(n+ 1)(n− 2)
n

, (4.50) C-as

cf. (
llab
A.32)). Note that

(
n
2

)
n+1
nh = n∆ for ∆ the dimension (

conf-dim-g
4.25) of the

primary field g(z) .

Eq.(
ggR
4.33) is also invariant with respect to G-valued periodic left shifts and

chiral conformal transformations (the quantum version of (
Gleft
3.208), (

chiralconf
3.210)). The

invariance of the exchange relations (
ggR
4.33) with respect to constant right shifts

g(x)→ g(x)T , (4.51) gT

the counterpart of the Poisson-Lie symmetry of the corresponding PB, implies
the RTT relations

D, FRT
[71, 82]

R12 T1 T2 = T2 T1R12 ⇔ R−1
21 T1 T2 = T2 T1R

−1
21 . (4.52) RTT

So a natural choice for the quantum R-matrix is the Drinfeld-Jimbo
D, J
[71, 163]

n2 × n2 matrix used in
FRT
[82] to define the quantum group SLq(n) ,

R12 = (Rαβα′β′) , Rαβα′β′ = q
1
n

(
δαα′δ

β
β′ + (q−1 − qεαβ ) δαβ′δ

β
α′

)
(4.53) R

(all indices running from 1 to n and the sign convention on the skew-symmetric
εαβ being fixed in (

stand-r-matr
3.110)), where q is the corresponding quantum deformation

parameter.
The value of q in (

R
4.53) may not coincide with the ”classical” one (

qcl
3.14) but

the quasi-classical expansion of (
R
4.53) with

q = 1− iπ
k

+O(
1
k2

) (4.54) qq-k

has to reproduce the standard s`(n) r-matrix (
rstandard
3.51), (

stand-r-matr
3.110). To this end, it

is convenient to rewrite R12 and r12 in the following compact form using the
diagonal n2 × n2 matrix ε12 = diag(εαβ) (i.e., εαβα′β′ = εαβ δ

α
α′δ

β
β′) satisfying

ε12 P12 = −P12 ε12 :

R12 = q
1
n (1I12 + (q−1 − qε12)P12) , r12 = − ε12 P12 . (4.55) Rr-compactly

Remark 4.1 To show that the quantum exchange relations reproduce the
WZNW model PB in the quasi-classical limit we can introduce at an intermedi-
ate step the Planck constant ~ and the dimensionful overall coefficient k̄ to the
action (

Swznw0
2.18) setting k = k̄

~ so that, effectively, ~→ 0 ⇔ 1
k → 0 . If one consid-

ers angular momentum type variables p̄ij which also have the dimension of an
action, then the corresponding dimensionless quantities are given by pij = p̄ij

~
so that the quasi-classical limit can be recovered from their scaling behaviour:

~→ 0 ⇔ 1
k
→ 0 , pij →∞ ,

pij
k

finite . (4.56) quasicl
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The undeformed quantum limit, on the other hand, corresponds to finite pij ,
neglecting all terms of the type pij

k in the expansion in powers of 1
k .

Using (
Rr-compactly
4.55), it is straightforward to show that right-hand side of the PB

(
gpb
3.203) is reproduced, up to an i-factor, by the leading term in the expansion in

powers of 1
k of the commutator following from (

ggR
4.33). In particular, the classical

r-matrices r± appear in the expansion of the quantum R-matrix,

R12 = 1I12 − i
π

k
r−12 +O(

1
k2

) , R21 = 1I12 + i
π

k
r+
12 +O(

1
k2

) , or

R±12 = 1I12 − i
π

k
r±12 +O(

1
k2

) (R−12 := R12 , R
+
12 := R−1

21 ) . (4.57)

To verify the compatibility of (
Rr
4.57) for r±12 = r12 ± C12 , we take into account

that r12 = −r21 and C12 = C21 . (The overall coefficient q
1
n of R12 is impor-

tant: the first non-trivial term in its expansion contributes to the polarized
Casimir operator C12 = P12 − 1

n 1I12 (
Cn-sigma
3.66).) These expansions also ensure that

the Sklyanin bracket (
PBSkl
2.116) emerges as the quasi-classical limit of the RTT

relations (
RTT
4.52). (In both cases one has to take into account the fact that the

matrix elements of g(x), as well as those of T , commute in this limit so that
g1(x1) g2(x2) = g2(x2) g1(x1) and T1T2 = T2T1.)

Demanding that the eigenvalues of the braid matrix R̂ agrees with the con-
formal dimensions implies that the correct value of the quantum deformation
parameter q (satisfying (

qq-k
4.54)) is

q = e−i
π
h , h := k + g∨ (4.58) height-h

i.e., the level k of the classical expression (
qcl
3.14) has to be replaced again by the

height h . To begin with, we note that for R given by (
R
4.53), (

Rr-compactly
4.55), R̂ = PR

(
PRco
4.38) satisfies the Hecke algebra relation

(q−
1
n R̂− q−1)(q−

1
n R̂+ q) = 0 (4.59) Hecke

and hence, has only two different eigenvalues12, q−1+ 1
n and −q1+ 1

n . These have
to be compared with the braiding properties following from the exchange rela-
tions (

ggRa
4.40). Conformal invariance fixes the 3-point functions of primary fields

up to normalization (see e.g.
DFMS, FSoT
[63, 122]) so that we have

〈∆s | g1(z1) g2(z2) |0〉 = N
(s)
12 z

∆s−2∆
12 , (P12 − 1)N (s)

12 = 0 ,

〈∆a | g1(z1) g2(z2) |0〉 = N
(a)
12 z

∆a−2∆
12 , (P12 + 1)N (a)

12 = 0 , (4.60)

where the normalization matrices N (s, a) = (N (s, a)AB

αβ ) have both SU(n) and
quantum group indices inherited from the chiral fields. The conformal dimension
∆ in (

Nsa
4.60) is given by (

conf-dim-g
4.25), while ∆s, a = C2(πs̄, ā)

2h = C2(πs, a)
2h (cf. (

C-as
4.50))

are the conformal dimensions of the WZWN primary fields conjugate to the
symmetric and antisymmetric SU(n) tensors, respectively. Applying now (

ggRa
4.40)

to (
Nsa
4.60), we obtain

N (s)R̂ = e−i
π
h (C2(πf )− 1

2C2(πs))P N (s) = e−i
π
h (−1+ 1

n )N (s) ,

N (a)R̂ = e−i
π
h (C2(πf )− 1

2C2(πa))P N (a) = −e−iπh (1+ 1
n )N (a) . (4.61)

Hence, the matrices N (s, a) intertwine the corresponding symmetric and anti-
symmetric eigenspaces of the permutation P and the braid operator R̂ which
have the same dimensions

(
n+1

2

)
and

(
n
2

)
, respectively. Comparing the eigen-

values of R̂ following from (
Ex
4.61) with those predicted by (

Hecke
4.59), we fix the value

of the quantum deformation parameter q (
height-h
4.58) for G = SU(n):

q = e−i
π
h , h = k + n ( q±

1
n = e∓i

π
nh ) . (4.62) h-SUn

12This is the main reason for constraining ourselves to the case of G = SU(n). The braid op-
erators obtained from the R-matrices for the deformations of other simple (compact) classical
groups have three different eigenvalues

FRT
[82] and are more difficult to handle.
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4.3 Monodromy, its factorization and the QUE algebra

Noting that L0 − L̄0 is the generator of translation in x1 and that the spin
(or, rather, the helicity) ∆ − ∆̄ vanishes (i.e., g(z, z̄) is a Lorentz scalar field),
we deduce that the periodicity of g(x0, x1) in x1 (cf. (

gper
1.3), (

xz
4.7) and (

zzbar
4.6)) is

equivalent to the univalence property of g(z, z̄):

e2πi(L0−L̄0) g(z, z̄) e2πi(L̄0−L0) = g(e2πi z, e−2πi z̄) = g(z, z̄) . (4.63) gzzbar-per

Eq.(
gzzbar-per
4.63) would be satisfied if the monodromy matrices M (= ML) and M̄ (=

M−1
R ) of the chiral components of g(z, z̄) , defined by

e2πiL0 gAα (z) e−2πiL0 = e2πi∆ gAα (e2πi z) = gAσ (z)Mσ
α ,

e−2πiL̄0 ḡαB(z̄) e2πiL̄0 = e−2πi∆̄ ḡαB(e−2πi z̄) = M̄α
ρ ḡ

ρ
B(z̄) (4.64)

were inverses of each other. (The classical counterpart of this property of the
chiral splitting is spelled out in Proposition 2.1, see further Eq.(

O2alt
2.87). As al-

ready mentioned, it requires a gauge theory framework which, in the quantum
case, involves singling an appropriate physical space of states. This problem is
approached, for n = 2 , in Section 5.4.2.)

Applying the first relation (
gzM
4.64) to the vacuum vector |0〉 and using (

conf-dim-g
4.25),

we obtain that
Mα

β |0〉 = q−C2(πf )δαβ |0〉 = q
1
n−nδαβ |0〉 (4.65) M0

i.e., the vacuum is annihilated by the off-diagonal elements of M and is a com-
mon eigenvector of the diagonal ones, corresponding to the (common) eigenvalue
q

1
n−n . This suggests a modification of the factorization (

M+-
2.88) of the quantum

monodromy matrix M in upper and lower triangular Gauss components:

M = q
1
n−nM+M

−1
− ( diagM+ = diagM−1

− ) . (4.66) M+-q

We postulate the following quantum exchange relations for M± :

g1(x)R∓12M±2 = M±2 g1(x) (R−12 = R12 , R
+
12 = R−1

21 ) , (4.67)

R12M±2M±1 = M±1M±2R12 , R12M+2M−1 = M−1M+2R12 . (4.68)

Using the quasi-classical asymptotics (
Rr
4.57) of the quantum R-matrix, it is not

hard to check that the 1
k expansions of the commutators following from (

Mg
4.67)

and (
Mpmq
4.68) reproduce the corresponding PB in the second relation (

Mgeng
3.205) and

(
Mpmmp
3.142), respectively. The resulting exchange relation between M (

M+-q
4.66) and

g(x) is
g1(x)R−12M2 = M2 g1(x)R+

12 . (4.69) Mgq

It guarantees the compatibility of Eq.(
ggR
4.33) for x2 < x1 < x2 + 2π when we

have

g1(x1) g2(x2) = g2(x2) g1(x1)R−12 ,

g1(x1) g2(x2 + 2π) = g2(x2 + 2π) g1(x1)R+
12 , (4.70)

g2(x2 + 2π) ≡ g2(x2)M2 .

The exchange relations for the matrix elements of M following from (
Mpmq
4.68) can

be written as a reflection equation
Ch84, Sk88
[56, 239] that is quadratic in the R-matrix:

M1R12M2R21 = R12M2R21M1 ⇔ R̂12M2 R̂12M2 = M2 R̂12M2 R̂12 .
(4.71) Mexch

The quasi-classical limits of (
Mgq
4.69) and (

Mexch
4.71) agree with the first PB relation

(
Mgeng
3.205) and with (

PBMM
3.132), respectively.

Using the explicit form (
R
4.53) of the quantum R-matrix, one can write the

RMM relations (
Mpmq
4.68) for M± in components:

[(M±)αρ, (M±)βσ] = (qεσρ − qεαβ ) (M±)ασ(M±)βρ ,

[(M−)αρ, (M+)βσ] = (4.72)

= (q−1 − qεαβ ) (M+)ασ(M−)βρ − (q−1 − qεσρ) (M−)ασ(M+)βρ .
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We shall denote

diagM+ = diagM−1
− =: D = (dαδαβ ) , detD :=

n∏
α=1

dα = 1 (4.73) MpmD1

(cf. (
diagMM
2.93)). From (

RM
4.72) we obtain, in particular,

dα dβ = dβ dα ( (M+)αα = dα , (M−)αα = d−1
α ) , (4.74)

dα(M+)βα = q−1 (M+)βα dα , dβ(M+)βα = q (M+)βα dβ , α > β ,

dα(M−)αβ = q (M−)αβ dα , dβ(M−)αβ = q−1 (M−)αβ dβ , α > β ,

[(M−)αβ , (M+)βα] = λ (d−1
α dβ − dαd−1

β ) , α > β (λ = q − q−1 ) .

(Using the triangularity of M+ and M− in deriving (
dMpm
4.74) is crucial; as dα

commute, their order in the product defining detD is not important.)
A natural coalgebra structure on the algebra generated by the entries of M±

is given by

∆((M±)αβ) = (M±)ασ ⊗ (M±)σβ ,

ε((M±)αβ) = δαβ , S((M±)αβ) = (M−1
± )αβ . (4.75)

(In computing M−1
± one should take into account the non-commutativity of the

matrix elements.) Following
FRT
[82], we are going to show that the Hopf algebra

determined by (
RM
4.72), (

MpmD1
4.73) and (

Hopf-FRT
4.75) is a cover of the QUEA Uq(s`(n)) defined

in Appendix B.
Due to the triangularity, the coproduct (

Hopf-FRT
4.75) of a matrix element of M+ or

M− belonging to the corresponding ”m-th diagonal” (for m = 1, . . . , n) contains
exactly m summands. Thus, the diagonal elements dα , α = 1, 2, . . . , n (m = 1)
are group-like (∆(dα) = dα ⊗ dα , ε(dα) = 1 , S(dα) = d−1

α ), while

∆((M+)ii+1) = di ⊗ (M+)ii+1 + (M+)ii+1 ⊗ di+1 ,

∆((M−)i+1
i ) = (M−)i+1

i ⊗ d
−1
i + d−1

i+1 ⊗ (M−)i+1
i (4.76)

for 1 ≤ i ≤ n− 1 (here m = 2). The comparison with (
copr
B.4) suggests that

(M+)ii+1 = xi Fi di+1 , (M−)i+1
i = yi d

−1
i+1Ei , d−1

i di+1 = Ki (4.77) MpmFE

where xi and yi are some yet unknown q-dependent coefficients. The second
and third relation (

dMpm
4.74) (for α = i+ 1 , β = i) are satisfied if

dα = kα−1k
−1
α ( k0 = kn = 1 ) ⇒

n∏
α=1

dα = 1 , (4.78) dkk

the new set of independent Cartan generators k1, . . . , kn−1 obeying

ki :=
i∏

`=1

d−1
` , Ki = k−1

i−1k
2
i k
−1
i+1 , i = 1, 2, . . . , n− 1 ,

kikj = kjki , kiEj = qδijEj ki , ki Fj = q−δijFj ki ,

∆(ki) = ki ⊗ ki , ε(ki) = 1 , S(ki) = k−1
i . (4.79)

Inserting (
MpmFE
4.77) into the last Eq.(

dMpm
4.74) and using the second and third relation

(
dMpm
4.74) from which it follows that [di+1, (M−)i+1

i (M+)ii+1] = 0, we obtain

xi yi = −λ2 , i = 1, . . . , n− 1 . (4.80) xiyi

We note further that the commutation relation (
RM
4.72) of (M+)ii+2 with dα (

dkk
4.78)

suggests that (M+)ii+2 contains the step operators Fi and Fi+1 only. Assuming
that it is proportional to (Fi+1Fi−zFiFi+1)Di+2 where Di+2 is group-like and z
is another unknown q-dependent coefficient, taking the corresponding coproduct
(
Hopf-FRT
4.75) and using (

MpmFE
4.77), (

copr
B.4) gives

(M+)ii+2 = −xixi+1

λ
[Fi+1, Fi]q di+2 , ( [A,B]q := AB − qBA) . (4.81) M+i2
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A similar calculation shows that

(M−)i+2
i =

yiyi+1

λ
d−1
i+2 [Ei, Ei+1]q−1 . (4.82) M-i2

From now on we shall fix the coefficients xi and yi satisfying (
xiyi
4.80) in a sym-

metric way:
xi = −λ , yi = λ . (4.83) fix-xiyi

Computing from (
RM
4.72) the commutators of (M+)ii+2 with (M+)ii+1 and (M+)i+1

i+2 ,

and of (M−)i+2
i with (M−)i+1

i and (M−)i+2
i+1 , we obtain relations equivalent to

[(M+)ii+1, (M+)ii+2]q = 0 , [(M+)ii+2, (M+)i+1
i+2]q = 0 ,

[(M−)i+1
i , (M−)i+2

i ]q = 0 , [(M−)i+2
i , (M−)i+2

i+1]q = 0 (4.84)

which are in fact the non-trivial q-Serre relations (
Sq
B.2) written in the form

[Fi, [Fi, Fi+1]q−1 ]q = 0 = [Fi+1, [Fi+1, Fi]q ]q−1 ,

[Ei, [Ei, Ei+1]q−1 ]q = 0 = [Ei+1, [Ei+1, Ei]q ]q−1 . (4.85)

Proceeding in a similar way, one can obtain the higher off-diagonal terms of the
matrices M± (for example, (M+)1

4 = −λ [F3, [F2, F1]q]q d4).
The result can be summarized in

M+ = (1I− λN+)D , M− = D−1 (1I + λN−) (4.86) MpmNpmD

where the nilpotent matrices N+ and N− are upper and lower triangular, respec-
tively, with matrix elements given by the corresponding (lowering and raising)
Cartan-Weyl generators of Uq(s`(n)) (see e.g.

R, KhT
[221, 174]), while the non-trivial

entries dα , α = 1, . . . , n of the diagonal matrix D are determined by (
dkk
4.78),

(
dk
4.79). Writing Ki = qHi would allow us to present the Cartan elements ki as
ki = qH

i

where Hi =
∑n−1
j=1 cijH

j = 2Hi − Hi−1 − Hi+1 so that an inverse
formula expressing ki in terms of Ki would involve ”n-th roots” of the latter
(as det(cij) = n ; cf. also (

al-d
3.64)). In this sense the Hopf algebra U

(n)
q (s`(n))

generated by Ei, Fi, ki, i = 1, . . . , n − 1 (called the ”simply-connected rational
form” in

CP
[55]) is an n-fold cover of Uq(s`(n)) .

Taking into account (
M+-q
4.66), the condition (

M0
4.65) turns out to be consistent

with the QUEA invariance of the vacuum vector,

X |0〉 = ε(X) |0〉 (4.87) Uqvac

where ε(X) is the counit (
Hopf-FRT
4.75); in accord with the above we may assume that

X ∈ U (n)
q (s`(n)) .

We shall display below the matrices N± and D (
MpmNpmD
4.86) in the cases n = 2 and

n = 3 :

n = 2 : D =
(
k−1 0

0 k

)
(K = k2 ) , N+ =

(
0 F
0 0

)
, N− =

(
0 0
E 0

)
; (4.88)

n = 3 : D =

k−1
1 0 0
0 k1k

−1
2 0

0 0 k2

 (K1 = k2
1k
−1
2 , K2 = k−1

1 k2
2 ) ,

N+ =

0 F1 [F2, F1]q
0 0 F2

0 0 0

 , N− =

 0 0 0
E1 0 0

[E1, E2]q−1 E2 0

 , (4.89)

(1I + λN−)−1 = 1I− λ

 0 0 0
E1 0 0

[E1, E2]q E2 0

 .

The symmetric choice (
fix-xiyi
4.83) of the normalization is singled out, up to a sign,

by the following additional requirement. There exists a transposition X → X ′ ,
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an involutive linear algebra antihomomorhism (and coalgebra homomorphism,
(′⊗ ′) ◦∆ (X) = ∆ (X ′) , ε(X ′) = ε(X)), acting on the generators as

ki
′ = ki (⇒ Ki

′ = Ki , dα
′ = dα ) ,

Ei
′ = d−1

i Fi di+1 = q−1FiKi , Fi
′ = d−1

i+1Ei di = q K−1
i Ei (4.90)

(cf. (
CRq
B.1), (

Sq
B.2) and (

copr
B.4), respectively). We observe that demanding xi = −yi

(cf. (
MpmFE
4.77) and (

xiyi
4.80)) is equivalent to requiring the standard matrix transposed

tM± to coincide with the algebraic transposition of M−1
∓ determined by (

’
4.90)

(so that these two different transformations give the same result when applied
to the monodromy matrix M ; see Eq.(

Mpr
4.234) below):

(M±)βα = ((M−1
∓ )αβ)′ ⇒ Mβ

α = (Mα
β)′ . (4.91) Mtr

The parametrization (
MpmNpmD
4.86) of the matrix elements of M± in terms of the

QUEA generators relates two Hopf algebras that seem very different. As it has
been already mentioned, the deep result that the Hopf algebra defined by (

Mpmq
4.68),

(
MpmD1
4.73) and (

Hopf-FRT
4.75) is a cover of the QUEA Uq(s`(n)) has been obtained by Fad-

deev, Reshetikhin and Takhtajan in
FRT
[82] (in fact it is more general, applying, for

suitably chosen numerical R-matrices, to the quantum deformations introduced
by Drinfeld

D
[71] and Jimbo

J
[163] of all classical simple Lie algebras G).

The main idea in
FRT
[82] is that an appropriately defined deformation Fun(Gq)

of the algebra of functions on a matrix Lie group G should be dual to a certain
cover of the QUEA Uq(G) where G is the Lie algebra of G . The ”classical”
counterpart of this duality is the realization, due to L. Schwartz, of U(G) as the
(non-commutative) algebra of distributions on G supported by its unit element,
U(G) ' C−∞e (G) (see Theorem 3.7.1 in

C06
[51]).

In
FRT
[82] the Hopf algebra covering Uq(G) (generated, in our notation, by the

matrix elements of M±) was constructed as the dual of a quotient of the RTT
algebra (

RTT
4.52) defining Fun(Gq). In particular, the Hopf algebra (

Mpmq
4.68), (

MpmD1
4.73),

(
Hopf-FRT
4.75) is dual to Fun (SLq(n)) , the detq(T ) = 1 quotient of the RTT algebra

(
RTT
4.52) (for an appropriate definition of the quantum determinant) with coalgebra

relations written in matrix form as

∆(1) = 1⊗ 1 , ∆(T ) = T ⊗ T , ε(T ) = 1I , S(T ) = T−1 . (4.92) coRTT

Moreover, it has been shown that relations (
Mpmq
4.68), (

MpmD1
4.73), (

Hopf-FRT
4.75) can be derived

from an explicitly given pairing 〈M±, T 〉 expressed in terms of R∓ .

4.4 The zero modes’ exchange algebra

Our next step will be to find appropriate quantum relations corresponding to
the PB of the zero modes. We shall first postulate the exponentiated quantum
version of (

PBapD
3.123),

qpj aiα = aiα q
pj+v

(i)
j , v

(i)
j = δij −

1
n
⇒ qpj`aiα = aiα q

pj`+δ
i
j−δ

i
` (4.93) ExRap

where the operators qpj , i = 1, . . . , n are mutually commuting and their prod-
uct is equal to the unit operator:

qpiqpj = qpjqpi ,

n∏
j=1

qpj = 1 . (4.94) prod-p=1

As the quantum matrix a is a group-like quantity, it is natural to assume that
it obeys quadratic exchange relations of the form

AF, BF
[3, 49]

R12(p) a1 a2 = a2 a1R12 (4.95) ExRaa1

involving the quantum dynamical R-matrix R12(p) as well as the constant R-
matrix R12 (

R
4.53), that reproduce the PB {a1, a2} (

PBex
3.108) in the quasi-classical

limit. Eqs. (
ExRap
4.93), (

prod-p=1
4.94) and (

ExRaa1
4.95) determine the quantum matrix algebra

Mq(R(p), R) .
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As one may expect from (
ggR
4.33), (

Rx
4.34), Eq.(

ExRaa1
4.95) has two equivalent forms,

R±12(p) a1 a2 = a2 a1R
±
12 , R−12(p) := R12(p) , R+

12(p) := R−1
21 (p) (4.96) ExRaa

which can be also written as a braid relation (note that R̂12 = PR−12 implies
R̂−1

12 = PR+
12):

R̂12(p) a1 a2 = a1 a2 R̂12 , R̂12(p) := PR−12(p) ⇒ R̂−1
12 (p) = PR+

12(p) .
(4.97) ExRaa2

Using (
quasicl
4.56) to determine the leading terms in ~ in the quasi-classical expansion

of (
ExRaa
4.96), we conclude that R±12(p) have to reproduce in the large k limit the

classical dynamical r-matrices r±12(p) ,

R±12(p) = 1I− i r±12(p) +O(
1
k2

) , r±12(p) = r12(p)± π

k
C12 (4.98) Rp-cond

with r12(p) given by (
dynr
3.111), (

f01
3.87). Indeed, assuming (

Rp-cond
4.98) and (

Rr
4.57) and

taking into account that the entries of a classically commute (so that a1 a2 =
a2 a1), we conclude that the leading terms in 1

k of (
ExRaa
4.96) exactly match the PB

(
PBex
3.108).

Applying the two sides of Eq.(
QYBE
4.35) to the right of the triple tensor product

a3 a2 a1 and using (
ExRaa
4.96) and the CR (

ExRap
4.93), we obtain, as consistency condition,

the quantum dynamical YBE

R12(p− v(3))R13(p)R23(p− v(1)) = R23(p)R13(p− v(2))R12(p) ⇔
R̂12(p) R̂23(p− v(1)) R̂12(p) = R̂23(p− v(1)) R̂12(p) R̂23(p− v(1)) . (4.99)

The following example explains the above short-hand notation:

R̂23(p− v(1))
i1i2i3
j1j2j3

= δi1j1 R(p− v(i1))i3i2j2j3 . (4.100) pv1

Eq.(
QDYBE
4.99) appeared in the early days of the 2D CFT in the paper

GN
[136] by

Gervais and Neveu on the Liouville model and attracted wide interest ten years
later due to the work of Felder

Felder
[92].

Following Etingof and Varchenko
EV2
[77], we shall call quantum dynamical R-

matrix an invertible solution R12(p) of (
QDYBE
4.99) satisfying, in addition, the zero

weight condition

[h`1 + h`2 , R12(p)] = 0 , ` = 1, . . . , n− 1 . (4.101) nRp

Eq.(
nRp
4.101) looks natural as it implements at the quantum level the classical

condition (
neutrality
3.201) for r12(p) . It strongly restricts the off-diagonal elements of

the n2 × n2 matrix R12(p) , implying the ice condition

Riji′j′(p) = 0 unless i = i′ , j = j′ or i = j′ , j = i′ (4.102) ice

which is in turn equivalent to

q−
1
n R̂iji′j′(p) = aij(p) δij′δ

j
i′ + bij(p) δii′δ

j
j′ ( bii(p) = 0 ) . (4.103) Rp-ice

(The last convention makes the representation (
Rp-ice
4.103) unambiguous.)

The Hecke relation (
Hecke
4.59) for R̂ implies a similar equation for R̂(p):

(q−
1
n R̂(p)− q−1)(q−

1
n R̂(p) + q) = 0 . (4.104) HeckeRp

Finally, the property of the operators R̂i i+1(p) to generate a representation
of the braid group (namely, the commutativity of distant braid group generators
(
braidR
4.39)) is ensured by the additional requirement

R̂12(p+ v(1) + v(2)) = R̂12(p) ⇔ R̂ijk`(p) a
k
αa

`
β = akαa

`
β R̂

ij
k`(p) . (4.105) Rpvv

The general solution for R̂(p) of the type (
Rp-ice
4.103) satisfying (

QDYBE
4.99), (

HeckeRp
4.104)

and (
Rpvv
4.105) has been found in

HIOPT
[152] (based on the paper

I2
[159]; see also

EV2
[77]). It

can be brought to the following canonical form:

aij(p) = αij(pij)
[pij − 1]

[pij ]
, bij(p) =

q−pij

[pij ]
, i 6= j

(αji(pji) =
1

αij(pij)
) , aii(p) = q−1 , bii(p) = 0 . (4.106)
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For any given pair (i, j) (i 6= j), the ice condition provides a convenient rep-
resentation of the (i, j) block of R̂(p) as a 4 × 4 matrix which, assuming the
ordering (ii), (ij), (ji), (jj) of the rows and columns, takes thus the form

R̂(ij)(p) = q
1
n


q−1 0 0 0
0 q−pij

[pij ]
αij(pij)

[pij−1]
[pij ]

0

0 (αij(pij))−1 [pij+1]
[pij ]

− qpij

[pij ]
0

0 0 0 q−1

 . (4.107) RRp2

Using the expansions

[p± 1]
[p]

= 1± π
k

cot(
π

k
p)+O(

1
k2

) ,
q±p

[p]
=
π

k

(
cot(

π

k
p)∓ i

)
+O(

1
k2

) , (4.108) exppk

one recovers in the quasi-classical limit (
Rp-cond
4.98) the classical dynamical r-matrix

r12(p) (
dyn-r-matr
3.112) for

αij(pij) = 1 +
π

k
β(
π

k
pij) +O(

1
k2

) (β(p) = −β(−p) ) ,

fj`(p) = i
π

k

(
cot(

π

k
pj`)− β(

π

k
pj`)

)
, (4.109)

cf. (
f01
3.87)13. Here again, the expansion of the coefficient q

1
n provides the 1

n term
for C12 (

Cn-sigma
3.66).

In contrast with the constant R̂ case, the representation of the braid group
generated by R̂(p) is ”nonlocal”. The second equation (

QDYBE
4.99) suggests that the

braid operators corresponding to the dynamical R-matrix should be defined
by R̂1(p) = R̂12(p) , R̂2(p) = R̂23(p − v(1)) . In general, we shall define the
(renormalized) i-th braid operator as

bi(p) = q−
1
n R̂i(p) := q−

1
n R̂ii+1(p−

i−1∑
`=1

v(`)) (4.110) dyn-braid

which guarantees that the braid group relations (
braidR
4.39) are satisfied.

The Hecke condition for the renormalized braid operators bi := q−
1
n R̂i and

bi(p) (
dyn-braid
4.110) (Eqs. (

Hecke
4.59) and (

HeckeRp
4.104), respectively) can be equivalently ex-

pressed in their spectral decomposition in terms of two orthogonal idempotents
q±11I±bi

[2] with coefficients q−1 and −q , respectively. A renormalized version of
this, more suitable for the root of unity case, is to set

bi = q−11I−Ai , bi(p) = q−11I−Ai(p) , (4.111) biAi

where Ai ≡ Aii+1 and Ai(p) are the constant and dynamical q-antisymmetrizers,
respectively. Now the full set of relations (

braidR
4.39) and (

Hecke
4.59) satisfied by the braid

operators,

b2i = (q−1 − q) bi + 1I ,
bi bj bi = bj bi bj for |i− j| = 1 ,
bi bj = bj bi = 0 for |i− j| ≥ 2 (4.112)

can be rewritten equivalently as

A2
i = [2]Ai ( [2] = q + q−1 ) ,

AiAj Ai −Ai = Aj AiAj −Aj for |i− j | = 1 ,
[Ai, Aj ] = 0 for |i− j | ≥ 2 (4.113)

(identical relations exist for bi(p) and Ai(p)).

Remark 4.2 The abstract algebra generated by 1I , b1 , . . . , bm−1 , subject to
relations (

b-Hecke
4.112) (or by 1I, A1, . . . , Am−1 and (

q-antisymm
4.113), respectively), is known as

13In (
f01
3.87), the condition βj`(pj`) = β(pj`) has been imposed to ensure the Weyl invariance

of the constraint χ .
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the Hecke algebra Hm(q−1) (see e.g.
CP, GdlHJ
[55, 140]). Regarded as an one-parameter

deformation of the group algebra of a Coxeter group (here of the symmetric
group of m elements, see (

Wrels
A.27)), it is also called the Iwahori-Hecke algebra of

type A . Its quotient defined by imposing the stronger condition

AiAj Ai = Ai for |i− j | = 1 (4.114) TL

is the well known Temperley-Lieb algebra T Lm(β)
TL
[248] (for β = [2]2) that has

numerous applications in lattice models of statistical mechanics14. Note that
the second set of relations in (

b-Hecke
4.112) and (

q-antisymm
4.113) are only relevant for m > 2

(and the third set, even for m > 3).

The operators Ai and Ai(p) provide two different deformations of the projec-
tor on the skewsymmetric part of the tensor square of an n-dimensional vector
space. We shall proceed, following the paper

HIOPT
[152] (in which ideas, techniques

and results from
Gur, GPS
[146, 147] and

I2
[159] have been further developed), with the

definitions of the corresponding higher order antisymmetrizers acting on the
(tensor products of the) auxiliary index spaces and the Levi-Civita (ε-)tensors
related to them. This will allow us to introduce the notion of quantum determi-
nant Dq(a) of the zero modes matrix (with non-commuting entries) (aiα) and
find the appropriate quantum counterpart of the determinant condition (

DaDp1
3.58).

The constant solution of the YBE (
R
4.53) gives rise to (

biAi
4.111) with

A1 ≡ A12 = q−ε1I12 − P12 = (Aαβα′β′) , Aαβα′β′ = qεβα δαα′ δ
β
β′ − δ

α
β′ δ

β
α′ .

(4.115) A1const

Following
HIOPT
[152], we shall introduce inductively higher order antisymmetrizers

A`m projecting on the q-skewsymmetric tensor product of n-dimensional spaces
with labels `, `+ 1, . . . ,m , 1 ≤ ` ≤ m by

A`m+1 = q−m+`−1A`m −
1

[m− `]!
A`m bmA`m , A`` = 1I ,

[m]! = [m][m− 1]! , [0]! = 1 . (4.116)

The operatorsA`m (for ` < m) are thus multilinear functions of b`, b`+1, . . . , bm−1 .
Their projector properties follow from the general relation

A`mA1j = A1j A`m = [m− `+ 1]!A1j for 1 ≤ ` ≤ m ≤ j ; (4.117) unP

in particular, A2
1j = [j]!A1j . In the non-trivial case when ` < m , Eq.(

unP
4.117)

can be proved by induction, starting with

A` `+1A1j = A1j A` `+1 = [2]A1j ⇔ b`A1j = A1j b` = −q A1j (4.118) bA

for 1 ≤ ` ≤ j−1 . Indeed, suppose that (
unP
4.117) is correct for 1 ≤ ` < m ≤ j−1 .

Then, from (
antis-l
4.116) one obtains

A`m+1A1j = A1j A`m+1 =
(
q−m+`−1[m− `+ 1]! + q

[m− `+ 1]!2

[m− `]!

)
A1j =

= [m− `+ 1]! (q−m+`−1 + q [m− `+ 1])A1j = [m− `+ 2]!A1j . (4.119)

One can verify that the definition of A1j+1 , j = 1, 2, . . . implied by (
antis-l
4.116),

A1j+1 = q−jA1j −
1

[j − 1]!
A1j bj A1j ≡

1
[j − 1]!

A1jAj j+1A1j − [j − 1]A1j

(4.120) antis-j

is equivalent also to

A1j+1 = U1j+1A1j , U1j+1 = q−j − q−j+1bj + · · ·+ (−1)jb1 . . . bj−1bj ,

A1j+1 = A1j V1j+1 , V1j+1 = q−j − q−j+1bj + · · ·+ (−1)jbjbj−1 . . . b1 . (4.121)

14An infinite ”tower” of such algebras defined in terms of projectors satisfying (E2
i = Ei

and) β Ei Ej Ei = Ei for |i − j | = 1 has been used by V.F.R. Jones in the classification
of inclusions of von Neumann subfactors

Jones83
[165] and in the construction of a new polynomial

invariant of links
Jones85
[166].
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These alternative expressions for A1j+1 can be obtained from the first one in
(
antis-j
4.120) by using the same definition for A1j , then availing of the fact that bj

commutes with A1j−1 , etc. Note that U1j and V1j obey the recursive relations

U1j+1 = q−j − U1j bj , U11 = 1I (U12 = A12 ) ,
V1j+1 = q−j − bjV1j , V11 = 1I (V12 = A12 ) , (4.122)

respectively. We can now confirm (
bA
4.118); indeed, Eq.(

antis2
4.121) extends to

A1j+1 = U1j+1 . . . U1`+1U1`A1`−1 = A1`−1V1`V1`+1 . . . V1j+1 , ` = 2, . . . , j .
(4.123) UA-AV

Now A12 b1 = b1A12 = −q A12 whereas, for 2 ≤ ` ≤ j , b` commutes with
A1`−1 , and

U1`+1U1` b` = −q U1`+1U1` , b` V1`V1`+1 = −q V1`V1`+1 . (4.124)

The proof of (
UUb
4.124) can be performed by induction which goes as follows (see

Gur
[146]), e.g.

U1`+1U1` = (q−` − U1` b`)U1` = q−` U1` − U1` b` (q−`+1 − U1`−1 b`−1) =
= q−` U1` − q−`+1 U1` b` + U1` b` U1`−1 b`−1 ⇒
U1`+1U1` b` = (4.125)
= q−` U1` b` − q−`+1 U1` (1− (q − q−1) b`) + U1` U1`−1 b`−1b` b`−1 =
= −q (q−` U1` − q−`+1 U1` b` + U1` b` U1`−1 b`−1) = −q U1`+1U1` .

We use consecutively the Hecke property b2` = 1I− λ b` , the braid relations (im-
plying b` U1`−1 = U1`−1b` and) b` b`−1b` = b`−1b` b`−1 and finally, U1` U1`−1 b`−1 =
−q U1` U1`−1 which is the induction hypothesis.

Alternatively, the antisymmetrizer A1j+1 (
antis-j
4.120) can be presented as

A1j+1 =
1

[j − 1]!
A2 j+1A12A2 j+1 − [j − 1]A2 j+1 , (4.126) alt-antis

the equality of (
antis-j
4.120) and (

alt-antis
4.126) generalizing the first relation (

q-antisymm
4.113).

As already mentioned, the unusual normalization of the antisymmetrizers
adopted here is suitable for the case when qh = −1 . Indeed, as h = n+ k > n ,
all A1j are well defined for 1 ≤ j ≤ n + 1 . Further, one can show that the
dimension of the image of A1j (i.e., its rank) is equal, for any j in this range,

to the dimension
(
n
j

)
of the fully skew-symmetric IR of the symmetric group

Sj corresponding to the single column Young diagram with j boxes so that, in
particular,

A1n+1 = 0 , rankA1n = 1 ⇒ A1n = (εα1...αn εβ1...βn) . (4.127) A1n

The Levi-Civita tensors ε with upper indices belong to the eigenspaces corre-
sponding to the eigenvalue [2] of all Aj , j = 1, . . . , n− 1 and those with lower
indices, to the corresponding eigenspaces of the transposed Aj , i.e.

Aαiαi+1
σiσi+1

εα1...σiσi+1...αn = [2] εα1...αiαi+1...αn ,

εα1...σiσi+1...αnA
σiσi+1
αiαi+1

= [2] εα1...αiαi+1...αn (4.128)

(see the first relation (
bA
4.118)). By (

A1const
4.115), this implies e.g. that

εα1...αi+1αi...αn = −q εα1...αiαi+1...αn for αi+1 < αi , εα1...αα...αn = 0 ,
i.e. εα1...αi+1αi...αn = −qεαiαi+1 εα1...αiαi+1...αn , (4.129)

see (
stand-r-matr
3.110). As the matrix of the operator Aii+1 is symmetric, Aα

′β′

αβ = Aαβα′β′ ,
the solutions of (

eqs-eps
4.128) with identical ordered sets of upper and lower indices

only differ by a proportionality factor and, in particular, can be chosen to be
equal. Then the normalization condition implied by (

unP
4.117), (

A1n
4.127)

A2
1n = [n]!A1n ⇒ εα1...αnε

α1...αn = [n]! (4.130) een!
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fixes them up to a sign. Thus, the constant Levi-Civita tensors vanish whenever
some of their indices coincide while, in our conventions,

εα1...αn = εα1...αn = q−
n(n−1)

4 (−q)`(σ) for σ =
(

n . . . 1
α1 . . . αn

)
∈ Sn ,

(4.131) q-eps

where Sn is the symmetric group of n objects and `(σ) is the length of the per-
mutation15 σ . The q → 1 limit of (

q-eps
4.131) reproduces the ordinary (undeformed)

Levi-Civita tensor εα1...αn normalized by εn...1 = 1 whose non-zero components
are simply (−1)`(σ). We also have

HIOPT
[152]

εασ1...σn−1 εσ1...σn−1β = (−1)n−1 [n− 1]! δαβ = εβσ1...σn−1 ε
σ1...σn−1α . (4.132) NK

The dynamical antisymmetrizer A1(p) ≡ A12(p) = (A(p)iji′j′) deduced from
(
biAi
4.111), (

dyn-braid
4.110), (

Rp-ice
4.103) and (

canRp
4.106) has the form

A(p)iji′j′ =
[pij − 1]

[pij ]
(δii′ δ

j
j′ − αij(pij) δ

i
j′ δ

j
i′) for i 6= j and i′ 6= j′ ,

A(p)iji′j′ = 0 for i = j or i′ = j′ . (4.133)

Higher order dynamical antisymmetrizers A1j(p) can be found by a procedure
similar to the one used for the constant ones

HIOPT
[152]. In particular, A1n(p) is of

rank 1 and hence,

A1n(p) = (εi1...in (p) εj1...jn (p)) =
1

[n]!
A2

1n(p) ⇒ εi1...in (p) εi1...in (p) = [n]! .

(4.134) een!dyn

The choice αij(pij) = 1 simplifies considerably the above expressions and we
shall assume it in what follows, unless explicitly stated otherwise. In this case
the dynamical analogs of Eqs. (

eqs-eps
4.128), (

ee
4.129) for the ε-tensors read

εi1... i i ...in (p) = εi1... i i ...in (p) = 0 ,
[piµ+1iµ + 1] εi1...iµ+1iµ...in (p) = [piµiµ+1 + 1] εi1...iµiµ+1...in (p) ,
εi1...iµ+1iµ...in (p) = − εi1...iµiµ+1...in (p) for iµ 6= iµ+1 . (4.135)

Fixing the remaining ambiguity by choosing the ε-tensor with lower indices to
be equal to the (p-independent) undeformed Levi-Civita tensor εi1...in = εi1...in

eventually leads to the following solution satisfying the normalization condition
in (

een!dyn
4.134):

εi1...in (p) = εi1...in , εi1...in (p) = εi1...in
∏

1≤µ<ν≤n

[piµiν − 1]
[piµiν ]

. (4.136) epsilon-p

The non-zero components of the dynamical ε-tensor with upper indices (which
should be therefore all different) can be also written as

εi1...in (p) =
(−1)

n(n−1)
2

Dq(p)
∏

1≤µ<ν≤n

[piµiν − 1] , Dq(p) :=
∏
i<j

[pij ] .

(4.137) eps-Dqp

In order to complete the study of the quantum matrix algebraMq , we define
the quantum determinant

det(a) = Dq(a) :=
1

[n]!
εi1...in(p) ai1α1

. . . ainαn ε
α1...αn . (4.138) Dqa

15The length `(σ) of a permutation σ (
q-eps
4.131) is equal to inv(σ) , the number of inversions

which, in our notation, are the pairs (αi, αj) such that αi < αj for i < j . Let Z(n, `) be the
number of permutations in Sn of length ` . The normalization factor in Eq.(

q-eps
4.131) is derived

using the well known formula for the generating function of Z(n, `)

∑
σ∈Sn

t`(σ) =
∑
σ∈Sn

tinv(σ) =

(n2 )∑
`=0

Z(n, `) t` = (1 + t)(1 + t+ t2) . . . (1 + t+ · · ·+ tn−1) (∗)

and the relation 1 + q2 + · · · + q2(n−1) = qn−1 [n] , implying
∑
σ∈Sn q

2`(σ) = q
n(n−1)

2 [n]! .

The discovery (in 1970!) of the fact that formula (∗) has been actually found by Benjamin
Olinde Rodrigues

R
[221] in 1839 (see e.g.

CSZ
[58]) is attributed to Leonard Carlitz.
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The definition (
Dqa
4.138) of the quantum determinant is justified by the following

statement (see Proposition 6.1 of
HIOPT
[152]).

Proposition 4.1 The product ai1α1
. . . ainαn intertwines between the constant and

dynamical Levi-Civita tensors:

εi1...in(p) ai1α1
. . . ainαn = Dq(a) εα1...αn , ai1α1

. . . ainαn ε
α1...αn = εi1...in (p)Dq(a) .

(4.139) det-intertw

Proof Denote ai1α1
. . . ainαn =: a1 . . . an ; then (

ExRaa
4.96) implies

a1 . . . an R̂i i+1 = a1 . . . ai−1aiai+1R̂i i+1ai+2 . . . an = (4.140)

= a1 . . . ai−1 R̂i i+1(p) ai ai+1 ai+2 . . . an = R̂i i+1(p−
i−1∑
`=1

v(`)) a1 . . . an

for 1 ≤ i ≤ n− 1 which, due to (
dyn-braid
4.110), (

biAi
4.111), is equivalent to

a1 . . . anAi = Ai(p) a1 . . . an ⇒ a1 . . . anA1n = A1n(p) a1 . . . an .
(4.141) ApA

Multiplying the last equality (
ApA
4.141) by A1n(p) from the left, or by A1n from

the right, we obtain the following two relations,

A1n(p) a1 . . . an =
1

[n]!
A1n(p) a1 . . . anA1n = a1 . . . anA1n (4.142)

which are equivalent to (
det-intertw
4.139) (to prove this we use the rank 1 projector prop-

erties of the constant and dynamical antisymmetrizers A1n and A1n(p) (
A1n
4.127),

(
een!
4.130) and (

een!dyn
4.134)).

The quantum counterpart of the vanishing PB (
Dap
3.124) is the commutativity

of Dq(a) with qpj , an immediate corollary of the commutation relations (
ExRap
4.93)

and the definition (
Dqa
4.138) of the quantum determinant:

qpjDq(a) = Dq(a) qpj+
∑n
i=1 v

(i)
j = Dq(a) qpj . (4.143) Dqap

On the other hand, the exchange of Dq(a) and aiα produces a p-dependent
coefficient,

Dq(a) aiα = Ki(p) aiαDq(a) , i = 1, . . . , n , (4.144) Dqa-K

where the function Ki(p) is given explicitly by

Ki(p) :=
(−1)n−1

[n− 1]!
εij1...jn−1 ε

j1...jn−1i(p− v(i)) =
∏
j 6=i

[pij ]
[pij − 1]

(4.145) Dqaa

(cf.
HIOPT
[152], Proposition 6.2). So the centrality of a function of the type Dq(a)

Φq(p)
∈

Mq which reduces, effectively, to the quantum analog of (
DPa
3.121),

[
Dq(a)
Φq(p)

, aiα] = 0 (4.146) qcent

will be guaranteed if Φq(p) satisfies an equation analogous to (
Dqa-K
4.144),

Φq(p) aiα = Ki(p) aiα Φq(p) . (4.147) Fpa

It is easy to prove that (
Fpa
4.147) takes place for

Φq(p) = Dq(p) (4.148) Fqp

(note that Dq(p) introduced in (
eps-Dqp
4.137) coincides with its classical expression

(
Dap
3.124), only the value of the deformation parameter is different). The quasi-

classical expansions of these relations agree with (
aDa
3.117), (

11
3.120) and (

f01
3.87) (for

β(p) = 0).
It is thus consistent to impose the determinant condition

det(a) = Dq(p) (4.149) Dqa=Dqp
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as an additional constraint on the quantum matrix a and define the zero modes’
quantum algebra as the quotient of Mq(R(p), R) with respect to the two-sided
ideal generated by (

Dqa=Dqp
4.149); we shall denote this quotient henceforth simply as

Mq . Note that the determinant condition is n-linear whereas the exchange
relations (

ExRaa
4.96) are quadratic so they are only mixing in the degenerate case

n = 2 .
Quantizing (

Mgen
3.130), we obtain the zero modes exchange relations with the

monodromy matrix M which are essentially the same as those for g(z) (
Mgq
4.69):

a1R
−
12M2 = M2 a1R

+
12 (R−12 = R12 , R

+
12 = R−1

21 ) . (4.150) Maq

We shall assume that the classical relation (
aintertw
3.4) is retained at the quantum

level:
Mp a = aM . (4.151) aMMpa

It allows to compare (
Maq
4.150) with the first relation (

ExRap
4.93) which can be written

in the form

a1Mp2 = q2σ12 Mp2 a1 , (q2σ12)ij`m = q2(δij− 1
n ) δi` δ

j
m (4.152) ExRap2

where σ12 is the diagonal part of the polarized Casimir operator (
Cn-sigma
3.66). Using

the exchange relations (
ExRaa1
4.95), we derive a compatibility condition between the

last three equalities expressing the inverse of the dynamical R-matrix in terms
of R12(p) and the diagonal monodromy matrix Mp :

R12(p) q2σ12 Mp2R21(p)M−1
p2 = 1I12 ⇔ (R̂12(p))−1 = q2σ12Mp2 R̂12(p)M−1

p1 . (4.153)

One can verify that Eq.(
Rpinv
4.153) holds for R̂12(p) given by (

Rp-ice
4.103), (

canRp
4.106) and

Mp proportional to diag (q−2p1 , . . . , q−2pn) (see the next subsection).
It should be also mentioned that the PB (

Mpmpl
3.139) quantize trivially to

[(M±)αβ , p` ] = 0 = [Mα
β , p` ] ⇒ [M±1,Mp2] = 0 = [M1,Mp2] . (4.154) Mpmplq

We shall conclude this subsection with the quantum group transformation
properties of the quantum zero mode’s matrix. The exchange relations between
the Gauss components of the monodromy M± and a (the quantization of the
first relation (

Mpma
3.138)) read

M±2 a1 = a1R
∓
12M±2 ; (4.155) aMpm

of course, Eq.(
Maq
4.150) follows from here as it should. Recasting (

aMpm
4.155) in a form

involving the antipode S (
Hopf-FRT
4.75),

M±2 a1 S(M±)2 = a1R
∓
12 ( i.e., (M±)βρ a

i
α S((M±)ργ) = aiσ (R∓)σβαγ )

(4.156) aMpm-comp

defines the quantum group action on the zero modes. Writing down explicitly
equations (

aMpm-comp
4.156) that only include the diagonal and next-to-diagonal elements

of M± (i.e., fixing γ = β or γ = β ± 1 , respectively), using the parametrization
of M± from the previous Section 4.3, as well as the formula

R+
12 = R−1

21 = q−
1
n (1I12 + (q − qε12)P12) (4.157) R+compactly

(cf. (
Mg
4.67) and (

Rr-compactly
4.55)), we obtain

dβ a
i
αd
−1
β = q

1
n−δαβ aiα , ka a

i
α k
−1
a = qθaα−

a
n aiα

for θaα =
{

1 , a ≥ α
0 , a < α

, Ka a
i
αK

−1
a = qδaα−δa+1αaiα ,

[Ea, aiα] = δa+1α a
i
α−1Ka , [KaFa, a

i
α] = δaαKa a

i
α+1

(or, equivalently, Fa a
i
α = qδa+1α−δaα aiα Fa + δaα a

i
α+1 ) ,

a = 1, . . . , n− 1 , α, β = 1, . . . , n (4.158)
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(note that θij−θi−1 j = δij). Remarkably, relations (
AdXa
4.158) imply that the rows

of the zero modes matrix ai = (aiα)nα=1 , i = 1, . . . , n form Uq-vector operators16

for the n-fold cover U (n)
q (s`(n)) of Uq(s`(n)) , i.e.

AdX(aiα) = aiσ(Xf )σα , where AdX(z) :=
∑
(X)

X1z S(X2) . (4.159) tens-op

In (
tens-op
4.159) X 7→ Xf is the defining n× n matrix representation so that

(Kf
a )σα = qδaα−δa+1αδσα , (Efa )σα = δσα−1δa σ , (F fa )σα = δσα+1δaα (4.160) Xf

(kfa and dfβ are defined accordingly, see (
AdXa
4.158)), and X1 and X2 are the factors

appearing in the Uq coproduct written as ∆(X) =
∑

(X)X1 ⊗X2 , see (
copr
B.4) in

Appendix B. Hence, albeit quite differently looking, relations (
aMpm
4.155), (

AdXa
4.158)

and (
tens-op
4.159) express the same property of the zero modes’ matrix, namely its

covariance with respect to Uq. As the initial formulae (
aMpm
4.155) and (

Mg
4.67) for

the transformation of the zero modes’ matrix a and of the chiral field g(x) are
identical, the same applies to g(x) as well.

One can show further that, as devised by Pusz and Woronowicz
PW
[215] back in

the late 1980’s, the zero modes’ exchange relations (
ExRaa1
4.95) transform covariantly

with respect to the quantum group action (
aMpm
4.155), in the following sense:

M±3 (R12(p) a1 a2 − a2 a1R12)M−1
±3 = (R12(p) a1 a2 − a2 a1R12)R∓13R

∓
23 .
(4.161) Mpm-aex

To verify (
Mpm-aex
4.161), one uses the relation [M±3, R12(p)] (see (

Mpmplq
4.154)), Eq.(

aMpm-comp
4.156)

and the quantum YBE (
QYBE
4.35) in the form

R12R
∓
13R

∓
23 = R∓23R

∓
13R12 . (4.162) QYBE1

In the spirit of the discussion at the end of Section 4.3, (
Mpm-aex
4.161) has to be con-

sidered as dual to the obvious invariance of the exchange relations (
ExRaa1
4.95) with

respect to the action a→ a T where T obey the RTT relations (
RTT
4.52).

All this applies to the exchange relations (
Mg
4.67) for g(x) as well.

4.5 The WZNW chiral state space

Our next task will be to construct the state space of the quantized WZNW
model as a vacuum representation of the quantum exchange relations.

We shall assume that the quantized chiral field g(z) splits as in (
gua
3.2),

gAα (z) = uAj (z)⊗ ajα (4.163) guaq

where the field u(z) = (uAi (z)) has diagonal monodromy,

e2πiL0uAj (z) e−2πiL0 = e2πi∆ uAj (e2πi z) = (Mp)ij u
A
i (z) (4.164) uuMpq

and further, that the zero modes ”inherit” the diagonal monodromy matrix Mp

of u(z) in (
uuMpq
4.164), in the sense that

(Mp)ij u
A
i (z)⊗ ajα = uAi (z)⊗ (Mp)ij a

j
α = uAi (z)⊗ aiσMσ

α (4.165) inhMp

(cf. (
gzM
4.64) and (

aMMpa
4.151)). To ensure that (

inhMp
4.165) takes place, we shall require that

(p̂i− p̂i)H = 0 as a constraint characterizing the WZNW chiral state space (cf.
Remark 3.1; we shall put temporarily hats on the operators to distinguish them
from their eigenvalues). Clearly, this will take place if the chiral field (

guaq
4.163)

acts on
H =

⊕
p

Hp ⊗Fp (4.166) space

where both Hp and Fp are eigenspaces corresponding to the same eigenvalues of
the collections of commuting operators p̂ = (p̂1, . . . , p̂n) and p̂ = (p̂1, . . . , p̂n) ,
respectively, so that

(p̂i ⊗ 1I− 1I⊗ p̂i)Hp ⊗Fp = 0 , i = 1, . . . , n . (4.167) 1pp1

16Uq-tensor operators have been introduced in
RS92, S93
[219, 226].
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Assuming that H is generated from the vacuum vector by polynomials in g(z)
(and its derivatives) automatically provides this structure.

The quantum counterparts of the PB (
jTpl
3.199) and (

curf1
3.192),

[jam, p` ] = 0 = [Ln, p` ] , [jam, u
A
i (z)] = − zm (ta)AB u

B
i (z) (4.168) curfq

show that Hp are representation spaces of both the current algebra ŝu(n)k (
KM
4.2)

and the Virasoro algebra (
Vir
4.17), while u(z) is an affine primary field. On the

other hand, the quantum analog of (
DPBdiffer2
3.190), written as

p` u
A
i (z) = uAi (z) (p` + v

(i)
` ) , v

(i)
` = δi` −

1
n

(4.169) gCVO

implies that the operators ui(z) = (uAi (z)) intertwine Hp and Hp+v(i) i.e., are
generalized chiral vertex operators (CVO)

TK, DFMS
[252, 63].

Likewise, the PB (
PBapD
3.123) is quantized to

p` a
i
α = aiα (p` + v

(i)
` ) ⇒ [pj` , aiα] = (δij − δi`) aiα (4.170) pacomm

which implies the first equation (
ExRap
4.93). According to (

Mpmplq
4.154), every Fp is invari-

ant with respect to the action of (the n-fold cover Uq of) Uq(s`(n)) , the rows
ai = (aiα) of the zero modes’ matrix acting as ”q-vertex operators” (cf. (

ExRap
4.93)).

The reducibility properties of the corresponding representations will be studied
in detail in what follows.

Having in mind (
uuMpq
4.164) and (

inhMp
4.165), one should expect that

det(Mp a) = det(a) = det(aM) (4.171) detaM

for appropriately defined det(Mp a) and det(aM) . The first relation (
detaM
4.171) sug-

gests that the quantum diagonal monodromy matrix Mp also gets a ”quantum
correction” to its classical expression (

uuMp
3.3) (as the general monodromy M does,

cf. (
M+-q
4.66)):

(Mp)ij = q−2pi+1− 1
n δij . (4.172) Mpq

Indeed, the non-commutativity of qpj and ai , see (
ExRap
4.93), exactly compensates

the additional factors q1− 1
n when computing

det(Mp a) :=
1

[n]!
εi1...in (Mp a)i1α1

. . . (Mp a)inαn ε
α1...αn . (4.173)

To prove this, assume that iµ 6= iν for µ 6= ν (so that, in particular,
∏n
µ=1 q

−2piµ =∏n
i=1 q

−2pi = 1I ); we then have

q−2pi1+1− 1
n ai1α1

q−2pi2+1− 1
n ai2α2

. . . q−2pin+1− 1
n ainαn = ai1α1

ai2α2
. . . ainαn (4.174) qsum

since, moving all q−2piµ+1− 1
n terms either to the leftmost or to the rightmost

position, we get trivial overall numerical factors:

qn(1− 1
n )− 2

n (1+2+···+n−1) = 1 = qn(1− 1
n )−2n+ 2

n (1+2+···+n) . (4.175) qsum1

Hence, defining simply

det(Mp) :=
n∏
i=1

q−2pi ( = 1 ) , (4.176) detMp

we also obtain

det(Mp a) = det(Mp) det(a) = det(a) det(Mp) . (4.177) DaDMp

Understanding the second relation (
detaM
4.171) turns out to be more intriguing

FH2
[113];

it is relegated to Appendix C where we also justify the appropriate definition of
det(M) .

In accord with (
Mpmplq
4.154), it follows from (

aMMpa
4.151) that the elements of M com-

mute with qpi and hence, with Mp (
Mpq
4.172).
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Eq.(
gCVO
4.169) implies that the exchange relations between qpj and uAi (z) are

identical to those for the zero modes (
ExRap
4.93):

qpj uAi (z) = uAi (z) qpj+δ
i
j− 1

n ⇒ qpj`uAi (z) = uAi (z) qpj`+δ
i
j−δ

i
` .
(4.178) ExRup

(Together with (
1pp1
4.167), this is the reason why Mp should multiply u(z) from

the left in (
uuMpq
4.164).) As expected, in the quantum theory the spectrum of the

commuting operators pi , i = 1, . . . , n acting on H (
space
4.166) will be discrete ; to

determine it we only need, in addition to (
ExRup
4.178), the corresponding eigenvalues

on the vacuum. Combining (
ExRup
4.178) with (

uuMpq
4.164) and (

Mpq
4.172), we obtain

q
1
n−n uAi (0) | 0〉 = uAi (0) q−2pi−1+ 1

n | 0〉 ⇔ uAi (0) q−2pi | 0〉 = q1−n uAi (0) | 0〉 .
(4.179) uqp-vac

Eq.(
uqp-vac
4.179) admits the following interpretation. The vacuum eigenvalues p(0)

i on
| 0〉 are equal to the barycentric coordinates of the Weyl vector ρ (

llab
A.32),

pi |0〉 = p
(0)
i |0〉 , p

(0)
i = `i(ρ) =

n+ 1
2
− i , i = 1, . . . , n (4.180) vac-Weyl

(so that, in particular, q−2p
(0)
1 = q1−n), and

uAi (z) | 0〉 = 0 for i ≥ 2 . (4.181) u2.n

A similar condition appears for the zero modes due to (
aMMpa
4.151) and (

M0
4.65):

(Mp)ij a
j
α | 0〉 = aiσM

σ
α | 0〉 ⇔ aiα q

−2pi | 0〉 = q1−n aiα | 0〉 . (4.182) ap-vac

Hence, the assumption that (
vac-Weyl
4.180) holds leads us to the counterpart of (

u2.n
4.181)

for the zero modes:

(qpi − q
n+1

2 −i) | 0〉 = 0 , i = 1, . . . , n ⇒ aiα | 0〉 = 0 for i ≥ 2 . (4.183) a2.n

As the exchange relations (
ExRup
4.178) (or (

ExRap
4.93)) imply

uAi (z) : Hp → Hp+v(i) , aiα : Fp → Fp+v(i) , (4.184) cqvo

they completely determine, together with (
vac-Weyl
4.180), the spectrum of p on the

chiral state space (
space
4.166) under the assumption that H is generated from the

vacuum by polynomials in g(z) (
guaq
4.163). (The uniqueness of the vacuum requires

the spaces Hp(0) and Fp(0) to be one dimensional, so that Hp(0)⊗ Fp(0) = C |0〉 .)
The first thing to say about the spectrum is that it is certainly a subset of the
lattice of shifted integral s`(n) weights

p = Λ + ρ ⇔ pi i+1 = λi + 1 for Λ =
n−1∑
i=1

λi Λi , λi ∈ Z , (4.185) sp-p-r

see (
lambda-ell
A.31) and (

Wv
A.23) (it follows from (

sp-p-r
4.185) that all pij have integer eigen-

values). The shifted weight interpretation is also supported by the observation
that, according to (

Dqa=Dqp
4.149), the quantum determinant det(a) = Dq(p) of the

zero modes’ matrix is strictly positive for qh = −1 for integer values of pi i+1

satisfying pi i+1 ≥ 1 , p1n ≤ h − 1 . By (
sp-p-r
4.185), these coincide with the shifted

dominant weights lying in the level k positive Weyl alcove, with Dynkin labels
characterized by λi ≥ 0 ,

∑n−1
i=1 λi ≤ k , a fact that might be anticipated by the

classical correspondence, see (
AWn
3.13).

It is natural to start the study of the WZNW space of states with the rep-
resentation of the chiral zero modes’ algebra Mq . Being z-independent, it is a
quantum system with a finite number of degrees of freedom and state space

F = F(Mq) :=Mq |0〉 . (4.186) F

The dynamical R-matrix (
RRp2
4.107) is singular for [pij ] = 0 , so that the exchange

relations (
ExRaa1
4.95) are ill defined on F for q given by (

height-h
4.58) (qh = −1), as [nh] = 0

for any integer n . This problem has however a simple solution; indeed, getting
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rid of the denominators in (
RRp2
4.107) (for αij(pij) = 1) and using the identity

[p− 1]− q±1[p] = − q±p , we obtain the set of relations

ajβa
i
α [pij − 1] = aiαa

j
β [pij ]− aiβ a

j
α q

εαβpij ( for i 6= j and α 6= β) ,

[ajα, a
i
α] = 0 , aiαa

i
β = qεαβ aiβa

i
α , α, β, i, j = 1, . . . , n , (4.187)

with εαβ as defined in (
stand-r-matr
3.110). We shall replace from now on the relations

(
ExRaa1
4.95) by their ”regular form” (

aa2
4.187). Thus the algebra Mq is defined by

(
aa2
4.187), (

ExRap
4.93), (

prod-p=1
4.94) and the determinant condition (

Dqa=Dqp
4.149). We assume that

Mq contains polynomials in aiα and rational functions of qpj .
To avoid confusion between the operators and their eigenvalues we shall put,

when needed, hats on the operators p̂ij .Note that, evaluated on a given Fp , the
operators pij in the first relation (

aa2
4.187) can be replaced by their (integer)

eigenvalues so that the coefficients of the three (bilinear in aiα) terms become
just ordinary (q-) numbers:

(p̂ij − pij)Fp = 0 ⇒ (qp̂ij − qpij )Fp = 0 . (4.188) Fpdef

4.5.1 Fock representation of Mq for generic q

We shall call the vacuum representation (
F
4.186) of the algebra Mq determined

by (
a2.n
4.183) and (

vac-Weyl
4.180) ”Fock representation”. Due to (

Uqvac
4.87) (with the counit

defined in (
coun
B.5), (

dk
4.79)) and (

AdXa
4.158), it is clear that F is an Uq-invariant space.

The two questions of prime importance for us will be its Uq-module structure
and the construction of convenient bases. We shall first explore both of them in
the case of generic q for which we have a satisfactory theory and consider the
root of unity case (

height-h
4.58) only at the end.

The following result (also valid for q = 1) was first established, for general
n, in

FHIOPT
[114] (for n = 2, cf.

BF
[49]).

Proposition 4.2 For generic q the Fock space F (
F
4.186) is a direct sum of

irreducible Uq(s`(n)) modules Fp :

F =
⊕
p

Fp (Fp(0) = C |0〉) . (4.189) Fock-n

Here p runs over all shifted dominant weights of s`(n) and each Fp enters into
the direct sum with multiplicity one. In other words, F provides a model

BGG
[35]

for the finite dimensional representations of Uq(s`(n)) .

To prove this statement, we shall introduce bases of vectors in Fp labeled by
semistandard Young tableaux, see e.g.

FulH
[110] and

FM
[100]. The key point is to realize

that Eqs. (
cqvo
4.184) and (

sp-p-r
4.185) imply that, in the Young tableaux language, the

multiplication by aiα is equivalent to adding a box (labeled by α) to the i-th
row; in particular,

aiα : Yλ1,...,λn−1 → Yλ1,...,λi−1−1, λi+1,..., λn−1 , i = 1, . . . , n (4.190) aY

where Yλ1,...,λn−1 is the Young diagram corresponding to Fp (here Y0,...,0 is
identified with Fp(0) , the one dimensional vacuum subspace). Thus, the entries
of the zero modes’ matrix appear as natural variables for a non-commutative
polynomial realization of the finite dimensional representations of Uq(s`(n)).17

The correspondence between the labels of Fp and Yλ1,...,λn−1 is made explicit
by the following

Theorem 4.1 (cf. Lemma 3.1 of
FHIOPT
[114]) For generic q the space F (

F
4.186) is

spanned by ”antinormal ordered” polynomials applied to the vacuum vector

Pmn−1(an−1) . . . Pm2(a2)Pm1(a1) |0〉
with m1 ≥ m2 ≥ · · · ≥ mn−1 (4.191)

17Note that this realization has a non-trivial q = 1 counterpart. The proof given below goes
essentially without any modification in the undeformed case as well since, for generic q , [n]
vanishes only for n = 0 .
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where each Pmi(a
i) is a homogeneous polynomial of degree mi in ai1, . . . , a

i
n or,

alternatively, by vectors of the type

Pλ1(∆(1))Pλ2(∆(2)) . . . Pλn−1(∆(n−1)) |0〉
with λi = mi −mi+1 ≥ 0 (mn ≡ 0) (4.192)

where ∆(i)
αi...α1 := aiαi . . . a

1
α1
, i = 1, . . . , n − 1 are ”strings” of antinormal or-

dered operators of length i .

One can check that a vector of the type (
PolF
4.191) belongs to the space Fp

which is a common eigenspace of the commuting operators p̂ = (p̂1, . . . , p̂n)
with eigenvalues satisfying pii+1 = λi + 1 . If the total number of zero mode
operators acting on the vacuum is N , then the inequalities in (

PolF
4.191) and (

PolF-alt
4.192)

correspond to the partition N =
∑n−1
i=1 mi =

∑n−1
j=1 j λj or, in other words, to

the Young diagram Yλ1,..., λn−1 ; in (
PolF
4.191) the diagram is built row by row while

(
PolF-alt
4.192) corresponds to a construction column by column.

Proof of Theorem 4.1 We shall start by assuming that n ≥ 3 ; the case n = 2
is special (and simpler) and will be considered separately at the end. The proof
is based on the following three Lemmas.
Lemma 4.1 If P (ai, . . . , a1) is a (unordered) polynomial in a`α for 1 ≤ ` ≤ i
(and arbitrary 1 ≤ α ≤ n), then

ajβ P (ai, . . . , a1) |0〉 = 0 for 3 ≤ i+ 2 ≤ j ≤ n . (4.193) L1

Lemma 4.2 The ”string vectors” of length i ≥ 2

v(i)
αi...α1

:= aiαia
i−1
αi−1

. . . a1
α1
|0〉 , 2 ≤ i ≤ n (4.194) string-v

are q-antisymmetric, i.e.

v(i)
αi...α`+1α`...α1

= − qεα`α`+1 v(i)
αi...α`α`+1...α1

. (4.195) vi-q-anti

String vectors of length n are proportional to the vacuum vector |0〉 .
Lemma 4.3 The product of two operators of type ai+1 annihilates a string
vector of length i for an arbitrary combination of their lower indices:

ai+1
α ai+1

β v(i)
γi...γ1

= 0 for 1 ≤ i ≤ n− 1 . (4.196) L3

Proof of Lemma 4.1 To show that Eq.(
L1
4.193) takes place, we first note that

p̂`j |0〉 = p
(0)
`j |0〉 = (j − `) |0〉 , 1 ≤ `, j ≤ n (4.197) pjl-on-vac

(see (
vac-Weyl
4.180)) and hence, by (

ExRap
4.93),

[p̂`j − 1]Pmn...m1(an, an−1, . . . , a1) |0〉 =
= [m` −mj + j − `− 1]Pmn...m1(an, an−1, . . . , a1) |0〉 (4.198)

for any homogeneous polynomial of order mr (≥ 0) in ar , 1 ≤ r ≤ n . Eq.(
L1
4.193)

follows from the consecutive application of the equality

ajβ a
`
α Pmi...m1(ai, . . . , a1) |0〉 =

=
1

[p`j − 1]
ajβ a

`
α [p̂`j − 1]Pmi...m1(ai, . . . , a1) |0〉 = (4.199)

=
1

[p`j − 1]
(a`α a

j
β [p`j ] − a`β a

j
α q

εαβp`j )Pmi...m1(ai, . . . , a1) |0〉

for α 6= β , with

p`j = m` + j − ` ≥ 2 for 1 ≤ l ≤ i , i+ 2 ≤ j ≤ n (4.200) plj

(it is essential that p`j − 1 6= 0); for α = β the operators ajα and a`α simply
commute, see (

aa2
4.187). As j ≥ 3 , moving the operators aj to the right until
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they reach the vacuum and using (
a2.n
4.183), we prove that expressions of the type

(
L1a
4.199) (and hence, (

L1
4.193)) vanish.

Proof of Lemma 4.2 It is clear in the first place that a string vector vanishes
if any two neighbouring indices α`+1 and α` , for ` = 1, . . . , i − 1 , coincide (if
this is the case, we can exchange the corresponding operators a`+1

α`+1
and a`α` and

then apply Lemma 4.1). If α`+1 6= α` , we can use the first exchange relation
(
aa2
4.187) in the form

a`+1
α`+1

a`α` [p̂``+1] = a`α` a
`+1
α`+1

[p̂``+1 + 1]− a`+1
α`

a`α`+1
qεα`α`+1 p̂``+1 (4.201) aaP

and, as the first term in the right hand side vanishes when evaluated on v(`−1)
α`−1...α1

(v(0) ≡ |0〉) while the eigenvalue p``+1 = 1 , deduce relation (
vi-q-anti
4.195). For i = n

it complies with the properties of the ε-tensor (
ee
4.129) since

v(n)
αn...α1

≡ εin...i1ainαn . . . a
i1
α1
|0〉 = εαn...α1 Dq(a) |0〉 = εαn...α1 Dq(p(0)) |0〉 ,

Dq(p(0)) =
∏

1≤`<j≤n

[j − ` ] =
n−1∏
`=1

[`]! (4.202)

(the first equality (
vn-q-anti
4.202) follows from Lemma 4.1; we then use (

det-intertw
4.139), (

Dqa=Dqp
4.149)

and (
pjl-on-vac
4.197)).

Proof of Lemma 4.3 Eq.(
L3
4.196) is a simple consequence of the q-symmetry

of the product ai+1
α ai+1

β and the q-antisymmetry of the string vectors (Lemma
4.2). Denote a vector of the type (

L3
4.196) by

wαβγ ≡ wαβγ{σ} := ai+1
α ai+1

β v(i)
γ σi−1... σ1

= ai+1
α v

(i+1)
β γ σi−1... σ1

, 1 ≤ i ≤ n− 1
(4.203) wabg

(the indices σi−1, . . . , σ1 are irrelevant for the argument that follows). The
point is that the ensuing symmetry of the tensor wαβγ is contradictory, i.e.
incompatible with its non-triviality. Indeed, exchanging the indices arranged
as γ, β, α back to α, β, γ in the two possible ways and using the last equality
(
aa2
4.187) and (

vi-q-anti
4.195) we obtain, respectively

wγβα = qεγβ wβγα = − qεγβ+εαγ wβαγ = − qεγβ+εαγ+εβα wαβγ or
wγβα = − qεαβ wγαβ = − qεαβ+εγα wαγβ = qεαβ+εγα+εβγ wαβγ , i.e.

wαβγ = − q2(εαβ+εβγ+εγα) wαβγ ⇒ wαβγ = 0 . (4.204)

Returning to the proof of Theorem 4.1, we shall first show that a weaker
form of (

PolF
4.191) takes place, namely all vectors in F are linear combinations of

vectors

Pmn(an)Pmn−1(an−1) . . . Pm2(a2)Pm1(a1) |0〉 , mi ≥ mj for i < j .
(4.205) PolFn

By making use of Lemmas 4.1 and 4.3, one can easily exhaust the list of vectors
created from the vacuum by a small number (say, N ≤ 3) operators aiα:

N = 1 : a1
α |0〉 ;

N = 2 : a1
α a

1
β |0〉 , a2

α a
1
β |0〉 = v

(2)
αβ ;

N = 3 : a1
α a

1
β a

1
γ |0〉 , a2

α a
1
β a

1
γ |0〉 , a3

α a
2
β a

1
γ |0〉 = v

(3)
αβγ

( a2
α a

1
β a

1
γ |0〉 = [2] a1

β v
(2)
αγ − q2εβα a1

α v
(2)
βγ ) ;

. . . (4.206)

Due to the q-(anti)symmetry in the lower indices, not all combinations (
F123
4.206)

are linearly independent. Obviously, all vectors in the list (
F123
4.206) are of the form

(
PolFn
4.205). We shall assume that the arrangement (

PolFn
4.205) can be made for any

number of zero modes’ operators not larger than certain N and then perform
the induction in N . To this end we shall prove that the action of ajβ on a vector

Pmi(a
i) . . . . . . Pm1(a1) |0〉 for N = m1 + · · ·+mi , 1 ≤ i ≤ n (4.207) PolN
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either produces again vectors of the form (
PolFn
4.205), or gives zero. The former is

certainly correct for j = i + 1 and the latter for n ≥ j ≥ i + 2 , by Lemma
4.1. So it is necessary to show that an operator of type ajβ , 1 ≤ j ≤ n − 1
acting on (

PolN
4.207) can be moved to the right through Pmi(a

i) for any j < i ≤ n
and mi > 0. This amounts to proving that the corresponding eigenvalue of
[p̂ij − 1] , i > j is different from zero; to this end we could write

ajβ Pmi(a
i) . . . Pmj (a

j) . . . Pm1(a1) |0〉 =

=
1

[pij − 1]
ajβ a

i
α [p̂ij − 1]Pmi−1(ai) . . . Pmj (a

j) . . . Pm1(a1) |0〉 (4.208)

and apply the first relation (
aa2
4.187) if α 6= β , or just use the second relation

(
aa2
4.187) if α = β . By the general formula (

evs-plj
4.198)

pij = mi − 1−mj + j − i (≤ −2 for mi ≤ mj and j < i ) , (4.209) evs-pij

hence the quantum brackets in the right-hand side of (
aiPmj
4.208) do not vanish. As

a result, the operator aj can always join its companions of the same type. Our
next step will be to show that this will not violate the inequalities among mi in
(
PolFn
4.205) i.e., if mj = mj−1 ,

ajα Pmj−1(aj)Pmj−1(aj−1) . . . Pm1(a1) |0〉 = 0 , 2 ≤ j ≤ n . (4.210) mi=mi-1

Eq.(
mi=mi-1
4.210) can be proved by pulling consecutively the rightmost operators of

type a2, a3, . . . , aj until they form a string of length j with the rightmost ”free”
a1 . Using the property of strings

[p̂rs,∆(j)] = 0 for 1 ≤ r < s ≤ j ≤ n , (4.211) prop-str

we can proceed in the same way, eventually expressing (
mi=mi-1
4.210) as a linear com-

bination of vectors of the kind

Pmj−2−mj−1(aj−2) . . . Pm1−mj−1(a1) ajβ Pmj−1(∆(j)) |0〉 , 2 ≤ j ≤ n− 1
(4.212) last-i1

(strings of length n that would appear for j = n are eliminated by (
vn-q-anti
4.202)). To

confirm (
mi=mi-1
4.210) – and hence, (

PolF
4.191), it remains to prove the following general-

ization of Lemma 4.3:

ajβ Pm(∆(j)) |0〉 = 0 for 2 ≤ j ≤ n− 1 , m ≥ 0 . (4.213) genL3

The proof of (
genL3
4.213) can be done by induction in m. The case m = 0 is covered

by (
a2.n
4.183) and m = 1 , by (

L3
4.196). For m ≥ 2 we shall use (

aaP
4.201) to extract

a q-antisymmetric term from Pm(∆(j)) |0〉 which vanishes when acted upon by
ajβ , due to an immediate generalization of (

wabg
4.203), (

wgba
4.204):

ajβ Pm(∆(j)) |0〉 = ajβ a
j
αja

j−1
αj−1

. . . a1
α1
Pm−1(∆(j)) |0〉 =

= ajβ

(
1
2

(ajαja
j−1
αj−1

− ajαj−1
aj−1
αj q

εαj−1αj ) +
[2]
2
aj−1
αj−1

ajαj

)
×

× aj−2
αj−2

. . . a1
α1
Pm−1(∆(j)) |0〉 , 2 ≤ j ≤ n− 1 . (4.214)

Further, the operator ajαj from the remaining last term in the big parentheses
of (

gen-string-v
4.214) can be moved to the right until one gets a linear combination of terms

of the type P1(∆(j)) ajρ Pm−1(∆(j)) |0〉 . Thus Eq.(
genL3
4.213) follows from the same

assumption for m− 1 .
A similar procedure (grouping the operators in strings of decreasing length)

leads to (
PolF-alt
4.192). By the technique used in (

gen-string-v
4.214), based on Eq.(

aaP
4.201), one

can prove that any of the strings is q-antisymmetric on its lower indices; this
generalizes Lemma 4.2.

To complete the proof of Theorem 4.1, we shall consider separately the spe-
cial case n = 2 when the determinant condition is also bilinear as the exchange
relations (

aa2
4.187). Denoting p := p12 , we have (for α12(p12) = 1 in (

A1dyn
4.133))

Dq(p̂) = [p̂ ] , ε12(p̂) = − [p̂− 1]
[p̂]

, ε21(p̂) =
[p̂+ 1]

[p̂]
(4.215) eps-p-n2
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(cf. (
eps-Dqp
4.137)) so that, combining (

det-intertw
4.139) and (

Dqa=Dqp
4.149), we obtain

εij a
i
αa

j
β (≡ a2

αa
1
β − a1

αa
2
β ) = [p̂ ] εαβ , α, β = 1, 2

( ε12 = −q 1
2 = ε12 , ε21 = q−

1
2 = ε21 ) ⇒ a1

αa
2
α = a2

αa
1
α ,

a2
αa

1
β ε

αβ = [p̂+ 1] , a1
α a

2
β ε

αβ = − [p̂− 1] , (4.216)

aiαa
i
β ε

αβ = 0 ( i.e., ai2 a
i
1 = q ai1a

i
2 ) , i = 1, 2 . (4.217)

It is not difficult to see that Eqs.(
detc-n2-1
4.216) (which are inhomogeneous in aiα) and

(
detc-n2-2
4.217) imply the homogeneous exchange relations (

aa2
4.187) for n = 2 . An im-

portant consequence of (
detc-n2-1
4.216) is that the exchange of operators with different

upper indices (in particular, their ”antinormal ordering”) can be performed al-
ready at the algebraic level, which directly implies Theorem 4.1.

Proof of Proposition 4.2
By Theorem 4.1, for generic q any vector in F is a linear combination of

vectors belonging to the spaces Fp where the (barycentric shifted weight) labels
p = (p1, . . . , pn) are related to the Dynkin labels of Young diagrams Yλ1,...,λn−1

of s`(n) type by pii+1 = λi + 1 , i = 1, . . . , n− 1 .
As the Uq(s`(n)) generators only change the lower indices of the zero mode

operators, it follows that each Fp is a Uq(s`(n)) invariant space. In particular,
all vectors generated from the vacuum by homogeneous polynomials are weight
vectors (eigenvectors of all Ki , i = 1, . . . , n − 1), the weights depending solely
on the set of N lower indices. Both (

PolF
4.191) and (

PolF-alt
4.192) have an obvious inter-

pretation as filling in the boxes of the Young diagram Yλ1,...,λn−1 with numbers
from 1 to n corresponding to the arrangement of the lower indices along its
rows or columns, respectively. One infers from the last equation (

aa2
4.187) the

q-symmetry of the row fillings, and from the generalization of Lemma 4.2, the
q-antisymmetry of the column ones. On the other hand, the exchange operations
(
aa2
4.187) we use to express a vector of the form (

PolF
4.191) as a linear combination

of vectors (
PolF-alt
4.192) (and vice versa) leave the set of lower indices invariant. We

thus have the same situation as in the s`(n) case where, for enumerational pur-
poses, one introduces bases of vectors labeled by semistandard Young tableaux,
with indices ”weakly increasing” (i.e., non-decreasing) along rows and strictly
increasing along columns.

Each Fp contains a unique, up to normalization, highest (resp., lowest)
weight vectors (HWV and LWV)

|HWV 〉p ≡ |λ1 . . . λn−1〉 and |LWV 〉p ≡ | − λn−1 . . . − λ1〉 (4.218) HLWV1

satisfying

(Ki − qλi) |λ1 . . . λn−1〉 = 0 = (Ki − q−λn−i) | − λn−1 . . . − λ1〉 ,
Ei |λ1 . . . λn−1〉 = 0 = Fi | − λn−1 . . . − λ1〉 , 1 ≤ i ≤ n− 1 . (4.219)

These are given by

|λ1 . . . λn−1〉 = (∆(1)
11 )λ1(∆(2)

21 )λ2 . . . (∆(n−2)
n−2 1 )λn−2(∆(n−1)

n−1 1 )λn−1 |0〉 ∼
∼ (an−1

n−1)mn−1(an−2
n−2)mn−2 . . . (a2

2)m2 (a1
1)m1 |0〉 ,

| − λn−1 . . . − λ1〉 = (∆(1)
nn)λ1(∆(2)

nn−1)λ2 . . . (∆(n−2)
n3 )λn−2(∆(n−1)

n2 )λn−1 |0〉 ∼
∼ (an−1

2 )mn−1(an−2
3 )mn−2 . . . (a2

n−1)m2 (a1
n)m1 |0〉 ,

∆(i)
α+i−1α := aiα+i−1 a

i−1
α+i−2 . . . a

1
α ,

λi = mi −mi+1 = pii+1 − 1 , i = 1, . . . , n− 1 . (4.220)

As for generic q the Uq(sl(n)) (finite-dimensional) representation theory (in-
cluding weight space decomposition and dimensions) is essentially the same as
that for s`(n)

CP
[55], we conclude that the spaces Fp for pii+1 = λi+1 , λi ≥ 0 ex-

haust the list of Uq(sl(n)) IR. The dimension (
Weyldim
A.26) and the quantum dimension
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of Fp are given by

dimFp =
∏

1≤i<j≤n

pij

p
(0)
ij

=
D1(p)
D1(p(0))

=
1∏n−1
`=1 `!

D1(p) =: d(p) , (4.221)

qdimFp := TrFp
n−1∏
i=1

Ki =
∏

1≤i<j≤n

[pij ]

[p(0)
ij ]

=
Dq(p)
Dq(p(0))

=
1∏n−1

`=1 [`]!
Dq(p) =: dq(p)

(cf.
CP
[55], Example 11.3.10). According to Theorem 4.1, every vector in F has

a finite number of components belonging to different Fp . It is obvious from
the definition that vectors belonging to Fp and Fp′ for p 6= p′ are linearly
independent. It follows that the Fock space F (

F
4.186), originally defined as a

vacuum representation space of the zero modes algebra Mq , is equal to the
direct sum (

Fock-n
4.189). This completes the proof of Proposition 4.2 (for generic q).

Remark 4.3 Note that (
detc-n2-1
4.216) takes place also for q a root of unity. Hence,

for n = 2 Theorem 4.1 applies to the Fock space F = ⊕∞p=1 Fp of the WZNW
chiral zero modes as well, where the spaces Fp are generated from the vacuum
by homogeneous monomials in a1 of order (λ =) p − 1 . In this case, however,
Fp carry indecomposable representations of Uq .

We define next a linear antiinvolution (”transposition”) on Mq

FHIOPT
[114] by

(XY )′ = Y ′X ′ ∀X,Y ∈Mq , (qp̂i)′ = qp̂i ,

D(i)
q (p̂)(aiα)′ = ãαi :=

1
[n− 1]!

εii1...in−1 a
i1
α1
. . . ain−1

αn−1
εαα1...αn−1 , (4.222)

where D(i)
q (p) is equal to 1 for n = 2 while, for n ≥ 3 , is given by the product

D(i)
q (p) =

∏
j<l, j 6=i 6=l

[pjl]
(
⇒ [D(i)

q (p̂) , aiα] = 0 = [D(i)
q (p̂) , ãαi ]

)
. (4.223) minor

The matrix (ãαi ) is thus the (left) adjugate matrix of (aiα) :

ãαi a
i
β =

1
[n− 1]!

εii1...in−1 a
i1
α1
. . . ain−1

αn−1
aiβ ε

αα1...αn−1 =

=
(−1)n−1

[n− 1]!
εαα1...αn−1εα1α2...αn−1β Dq(a) = Dq(a) δαβ (4.224)

(we have used the antisymmetry of εii1...in−1 and further, (
det-intertw
4.139) and (

NK
4.132)).

In other words,

ãαi = Dq(a) (a−1)αi = Dq(p̂) (a−1)αi where (a−1)αi a
i
β = δαβ , aiα(a−1)αj = δij

(4.225) a-1

(the fact that the matrix a−1 defined by (
a-1
4.225), (

prim
4.222) is also a right inverse

of a can be demonstrated in a similar way as (
a-inv
4.224) by using the properties of

the dynamical antisymmetrizers and ε-tensors
HIOPT
[152]). Note that, due to (

a-inv
4.224)

(and in conformity with (
Dqa=Dqp
4.149)), the determinant Dq(a) of the zero modes’

matrix is invariant with respect to the transposition:

(Dq(a))′ δαβ = (aiβ)′(ãαi )′ =
1

D(i)
q (p̂)

ãβi D
(i)
q (p̂) aiα = ãβi a

i
α = Dq(a) δβα ;

(Dq(a))′ = (Dq(p̂))′ = Dq(p̂) = Dq(a) . (4.226)

It also follows that the transposed elements (aiα)′ obey

n∑
i=1

(aiα)′D(i)
q (p̂) aiβ = Dq(p̂) δαβ ,

n∑
α=1

aiα
1
Dq(p̂)

(ajα)′ =
1

D(j)
q (p̂)

δij . (4.227) ladjug

The involutivity of the transposition derives from the fact that the last two
equations are valid with (aiα)′′ in place of aiα .
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To compute correlation functions (like in (
Nsa
4.60)), we shall equip the chiral

state space (
space
4.166) with a left (”bra”) vacuum state 〈0 |, defining thus a linear

functional on the chiral field algebra. This will allow us to define, in particular,
a bilinear form 〈 . | . 〉 : F ×F → C on the zero modes’ Fock space (

F
4.186) such

that, for any two vectors in F of the form |Φ〉 = A | 0〉 , |Ψ〉 = B | 0〉 where
A,B ∈Mq ,

〈Φ | Ψ〉 := 〈0 |A′B |0〉 . (4.228) dual

To this end, we shall require the left vacuum to be orthogonal to any Fp with
p 6= p(0) , and normalized (〈0 |0〉 = 1):

〈0 |C |0〉 = c0 ∀C ∈Mq , where

C |0〉 = c0 |0〉+
∑
p 6=p(0)

| Cp〉 , | Cp〉 ∈ Fp . (4.229)

It is clear that the only non-trivial monomials in ai contributing to the vacuum
expectation value (

lvac
4.229) are those of the form (

PolFn
4.205) with m1 = · · · = mn

which could be further reduced by using (
vn-q-anti
4.202). From the invariance of Dq(a)

and qp̂i with respect to the transposition (
Dqatransp
4.226) and their commutativity,

(
Dqap
4.143) we deduce that

〈0 |C |0〉 = 〈0 |C ′ |0〉 ∀C ∈Mq (4.230) C’vac

and hence (with the same conventions as above),

〈Φ | C | Ψ〉 = 〈0 | A′CB |0〉 = 〈0 | B′C ′A |0〉 = 〈Ψ | C ′ | Φ〉 ∀C ∈Mq

(4.231) C’

(by taking C = 1I in Eq.(
C’
4.231) we infer, in particular, that the bilinear form

(
dual
4.228) is symmetric). We thus have, for any | Ψ〉 ∈ F ,

〈0 | ajα | Ψ〉 = 〈Ψ | (ajα)′ |0〉 = 0 for j = 1, . . . , n− 1
i.e. 〈0 | ajα = 0 , j ≤ n− 1 , (4.232)
〈Φ | qp̂ij | Ψ〉 = 〈Ψ | qp̂ij | Φ〉 = qpij 〈Ψ | Φ〉 = qpij 〈Φ | Ψ〉
i.e. 〈Φ | qp̂ij = qpij 〈Φ | ∀ | Φ〉 ∈ Fp (4.233)

(cf. (
a2.n
4.183), (

prim
4.222), and (

Fpdef
4.188), respectively). It easily follows from (

Dual2
4.233)

that all the irreducible Uq(s`(n)) modules Fp and Fp′ (
Fock-n
4.189) with p 6= p′ are

orthogonal to each other.
Eqs. (

prim
4.222), (

a-1
4.225), (

Dqa=Dqp
4.149) and the relation aM = Mp a (which can be

considered, for a given Mp , as a definition of the monodromy matrix M for the
zero mode sector) imply

(Mα
β)′ (a−1)αi = (a−1)βj (Mp)

j
i ⇒ (Mα

β)′ = (a−1Mp a)βα = Mβ
α

(4.234) Mpr

i.e., the transposition of an entry of M coincides with the corresponding entry
of its transposed, in the usual matrix sense, M ′ = tM . In agreement with the
opposite triangularity of the Gauss components M± (

M+-q
4.66), this is compatible

with Eq.(
Mtr
4.91), (M±)′ = t(M−1

∓ ) which implies, in turn, Eq.(
’
4.90) for the

transposed of the Chevalley generators of Uq(s`(n)) .
It follows trivially from the definition (

dual
4.228) that, for any | Φ〉 , | Ψ〉 ∈ Fp

and any X ∈ Uq(s`(n)) ,

〈XΦ | Ψ〉 = 〈Φ | X ′ | Ψ〉 , (4.235) bfinv

i.e. the bilinear form is Uq(s`(n))-invariant (see Section 9.20 of
Ja
[162] for a proof

that, for generic q , a form with this property is essentially unique and non-
degenerate). It is equally simple to derive, by analogy with (

Dual1
4.232) and using

(
Uqvac
4.87) and ε(X ′) = ε(X) , the invariance of the left vacuum:

0 = 〈0 | (X − ε(X)) ∀X ∈ Uq(s`(n)) . (4.236) Uqlvac

It has been proven in
FHIOPT
[114] for n = 2, 3 (and conjectured to hold in general)

that the scalar squares of the highest and lowest weight vectors (
HLWV
4.220) are

〈HWV | HWV 〉p =
∏
i<j

[pij − 1]! = 〈LWV | LWV 〉p . (4.237) scsq
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4.5.2 Fock representation of Mq for q = e−i
π
h

After having studied the structure of the Fock representation of the algebra
Mq for generic q , we now return to our genuine problem, assuming that the
deformation parameter is an (even) root of unity, q = e−i

π
h , h = k + n (

h-SUn
4.62).

The fact that in this case [Nh] = 0 for any N ∈ Z changes drastically the
picture. We shall point out and comment on the main differences below.

The basic technical tools that enabled the classification of Fock states for q
generic and N ≥ 3 were the three lemmas in the previous subsection. Lemma
4.2 holds in the root of unity case as well (due to the fact that the moduli of
the eigenvalues of p̂ij that are involved do not exceed n − 1 , and n < h); this
also ensures the validity of Lemma 4.3 which uses Lemma 4.2 in an essential
way. The proof of Lemma 4.1 however fails since in this case [pij−1] can vanish
which makes impossible the exchange of ajβ and aiα for α 6= β ; indeed, in this
case

[p̂ij − 1] v = 0 ⇔ p̂ij v = (Mh+ 1) v , M ∈ Z ⇒ qεp̂ij v = (−1)Mqε v
(4.238) pij1

(for ε = ±1) and (
aa2
4.187) reduces to just the q-symmetry of aiαa

j
β v :

aiαa
j
β v = qεαβaiβ a

j
α v . (4.239) pij-symm

It is quite interesting that the same condition (
pij1
4.238) implies the q-antisymmetry

of (aiαa
j
β − ajα aiβ) v:

(aiαa
j
β − a

j
α a

i
β) v = −q−εαβ (aiβ a

j
α − a

j
β a

i
α) v . (4.240) pij-anti

To prove it, we use (
aa2
4.187) with i ↔ j and p̂ji v = (Nh − 1) v , N ∈ Z , and

further (
pij-symm
4.239) as well as [2] = qε + q−ε for ε = ±1 . Note that both (

pij-symm
4.239) and

(
pij-anti
4.240) remain trivially valid for α = β .

The vanishing of the other p-dependent coefficient in (
aa2
4.187) implies, on the

other hand, the symmetry of ajα a
i
β v in the upper indices:

[p̂ij ] v = 0 ⇔ p̂ij v = Mhv , M ∈ Z ⇒ aiα a
j
β v = ajα a

i
β v . (4.241) pij0

The proof of Lemma 4.1 cannot be applied, for example, to the vector

vαβ1β2 := ajα a
1
β1
a1
β2
. . . a1

βh+3−j
|0〉 for j ≥ 3 (4.242) s

which is of the form envisaged in (
L1
4.193). This is an important issue: if vαβ1β2 6=

0 , it would mean that, for n ≥ 3 , the spectrum of p̂ = (p̂1, . . . , p̂n) on F includes
non-dominant (shifted integral) s`(n) weights. As mentioned above, when the
index α is different from all βi , i = 1, . . . , h + 3 − j , it is not possible to use
(
aa2
4.187) to move aj to the right until it reaches and annihilates the vacuum, since

[p̂1j − 1] a1
β2
. . . a1

βh+3−j
|0〉 = a1

β2
. . . a1

βh+3−j
[p̂1j + h+ 1− j] |0〉 =

= [h] a1
β2
. . . a1

βh+3−j
|0〉 = 0 . (4.243)

It turns out, however, that the vector (
s
4.242) is q-antisymmetric in the first pair

of indices and q-symmetric in the second,

−q−εαβ vβαγ = vαβγ = qεβγ vαγβ (4.244) b

and, as a result, vanishes. Indeed, it follows from (
b
4.244) that

vαβγ = −q−εαβ vβαγ = −q−εαβ+εαγ vβγα = q−εαβ+εαγ−εβγ vγβα (4.245) vabg1

but also

vαβγ = qεβγ vαγβ = −qεβγ−εγα vγαβ = −qεβγ−εγα+εαβ vγβα (4.246) vabg2

or,
vαβγ = q−εαβ−εβγ−εγα vγβα = −qεαβ+εβγ+εγα vγβα ( = 0 ) (4.247) vabg3
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since the relative factor is equal to −1 (for β = γ) or to −q±2 6= 1 .
We shall provide details of the proof of (

b
4.244) since they appear to be typical

for the root of unity case. The q-symmetry of vαβγ in β and γ is implied directly
by the second Eq.(4.184). To prove its q-antisymmetry in the first two indices,
we write

vαβγ = ajα a
1
β vγ where vγ := a1

γ a
1
β3
. . . a1

βh+3−j
|0〉 . (4.248)

There are h + 2 − j operators a1 applied to the vacuum in vγ so that, in
particular, by (

ExRap
4.93) and (

pjl-on-vac
4.197),

p1j vγ = (h+ 1) vγ and ajσ vγ = 0 ∀σ . (4.249) a

The last equality follows since ajσ vγ = ajσ a
1
γ v , p1j v = h v etc., so one can

apply repeatedly (
aa2
4.187), starting with

ajσ vγ = ajσ a
1
γ v =

1
[h− 1]

ajσ a
1
γ [p1j − 1] v = . . . (4.250) av

until aj reaches the vacuum. If α = β , then

vααγ = ajα a
1
α vγ = a1

α a
j
α vγ = 0 , (4.251) va

and this is equivalent to −vααγ = vααγ , a particular case of the first Eq.(
b
4.244).

Assume now that α 6= β ; again by (
aa2
4.187) (with i ↔ j , followed by i = 1),

Eq.(
a
4.249) implies that

[pj1 − 1] a1
β a

j
α vγ = 0 = ajαa

1
β [pj1] vγ − ajβ a

1
α q

εαβpj1 vγ (4.252) paa

and the first Eq.(
b
4.244) for α 6= β follows since pj1 vγ = −(h+1) vγ , cf. (

a
4.249):

−ajαa1
β [h+ 1] vγ − ajβ a

1
α q
−εαβ(h+1) vγ = 0 ⇔

ajαa
1
β vγ ≡ vαβγ = −q−εαβ ajβ a

1
α vγ ≡ −q−εαβ vβαγ . (4.253)

Thus, ajα a
1
β1
a1
β2
. . . a1

βh+3−j
|0〉 = 0 for j ≥ 3 .

This partial result is easily generalized to vectors of the form

wαβγ = ajαa
i
β a

i
γ w , pij w = Nhw , ajσ a

i
γ w = 0 ∀σ (4.254) avgen

for 3 ≤ i + 2 ≤ j ≤ n (i.e., wαβγ = 0). The full combinatorial description of
the Fock space F (

F
4.186) for n ≥ 3 , however, remains a challenge.

We shall list below a few more complications one has to confront when
considering the zero modes’ algebra and its Fock representation at roots of
unity.
(1) The determinant Dq(a) has zero eigenvalues on F so a is not invertible.

As the determinant Dq(a) is equal, by definition, to Dq(p̂) , it vanishes on
every subspace Fp characterized by (

Fpdef
4.188) such that pij ∈ Zh for some pair

(i, j) , 1 ≤ i < j ≤ n . Hence, the zero modes’ operator matrix a is not invertible,
see (

a-1
4.225). For a similar reason (as D(i)

q (p) (
prim
4.222) may vanish), the bilinear

form (
dual
4.228) is not well defined, except for n = 2 .

(2) The zero modes’ algebra Mq has a non-trivial (two-sided) ideal.
The key to this property of Mq is the relation (valid for i 6= j and α 6= β)

[p̂ij − 1](ajβ)maiα = aiα(ajβ)m[p̂ij ]− [m](ajβ)m−1aiβ a
j
α q

εαβ p̂ij (4.255) genex

generalizing the first Eq.(
aa2
4.187) for any positive integer m.18 Therefore, as-

suming that (ajβ)m = 0 ∀ j, β for generic q would imply (ajβ)m−1 = 0 etc.,

18Eq.(
genex
4.255) can easily be proved by induction, using the q-number relation

[p+m] = [p][m+ 1]− [p− 1][m] .
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leading eventually to trivialization. For qh = −1 , however, putting in (
genex
4.255)

(for m = h)
(ajβ)h = 0 , 1 ≤ j , β ≤ n (4.256) ah

does not imply further relations for the lower powers. As we are mainly inter-
ested in the Fock representation of Mq in which all the eigenvalues of p̂ij are
integers (cf. (

sp-p-r
4.185)), we could also assume that

q2hp̂ij = 1 , 1 ≤ i, j ≤ n . (4.257) qhpij

Thus, if J (h)
q ⊂ Mq is the two-sided ideal generated by the h-th powers of all

aiα and the 2h-th powers of qp̂ij , the quotientM(h)
q :=Mq/J (h)

q is non-trivial.
For n = 2 it is easy to deduce from Eqs. (

detc-n2-1
4.216), (

detc-n2-2
4.217), (

ah
4.256) and (

qhpij
4.257)

that M(h)
q is finite (2h5-) dimensional; the corresponding Fock representation

F (h) =M(h)
q |0〉 (4.258) Fock-h

is h2-dimensional
FHT2
[116].

(3) Indecomposable representations of Uq(s`(n)) appear.
This issue will be discussed at length in the following section for n = 2 . Here

we shall only recall that the decomposition of the Fock space F = ⊕∞p=1 Fp (for
p ≡ p12) still takes place in this case (Remark 4.3). Even so, the statement
of Proposition 4.2 does not hold as it stays; it turns out

FHT7
[120] that only the

Uq(s`(2)) representations on Fp with p ≤ h are irreducible while those with
p > h are either indecomposable, for p /∈ Nh , or fully reducible, for p ∈ Nh .
(As we shall see in the next Section, the true symmetry algebra in this case
is in fact a finite dimensional quotient of Uq(s`(2)) .) The dimension and the
quantum dimension of each Fp (

qdimFp
4.221) are equal to

dimFp = p , qdimFp = [p] , (4.259) qdim-n2

respectively; hence, the quantum dimension of Fp vanishes for p ∈ Nh .
As we do not have full control of the situation for n ≥ 3 , we shall focus

further our attention mainly on the n = 2 case. Before that, however, we shall
complete this section with some general remarks on the role of the elementary
CVO u(z) and the quantum group covariant chiral field g(z) , cf. (

gCVO
4.169) and

(
gT
4.51).

4.5.3 Braiding of the chiral quantum fields

In analogy to (
ggR
4.33) (or (

ggRa
4.40)) and (

ExRaa2
4.97), we shall postulate braiding relations

for u(x) of the type

u1(x1)u2(x2) = u2(x2)u1(x1) (R12(p) θ(x12) +R−1
21 (p) θ(x21)) (4.260) uuRp

(for −2π < x12 < 2π) or, equivalently, exchange relations for u(z)

uAi (z1)uBj (z2) =
y

uB` (z2)uAm(z1)R̂(p)`mij , R̂(p) = PR(p) (4.261) uuRp2

in the analyticity domain specified in (
ggRa
4.40). Eq.(

uuRp
4.260) involving the dynamical

quantum R-matrix (
RRp2
4.107) should serve as a quantum version of the PB (

uuDir
3.189).

One may think that the singularity of R(p) for q a root of unity could be resolved
in the same way as it was done for the zero modes where we replaced the relations
following from (

ExRaa2
4.97) by their regular counterparts (

aa2
4.187). The discussion in

the beginning of Section 3.6 however shows that we should supplement the
exchange relations of u(z) by a relation for its (regularized) determinant, and in
the quantized theory this has to be proportional to the inverse of the (operator)
function Dq(p) – which is ill defined too.

We can use analytical methods to tackle the problem by using the KZ equa-
tion (

KZW-N
4.30). To this end, we identify the spaces Hp as infinite dimensional

ŝu(n)k current algebra modules (cf. (
curfq
4.168)) characterized by highest weight

(which also means, due to (
Ln
4.18), also lowest energy) subspaces Vp :

jan Vp = 0 ⇒ Ln Vp = 0 for n > 0 . (4.262) jLnVp

80



Further, Vp(0) is 1-dimensional and coincides with the vacuum subspace; in
addition to (

jLnVp
4.262), the vacuum vector |0〉 is assumed to carry zero charge and,

as a consequence of the Sugawara formula, is also conformal invariant, see (
jonvac
4.5),

(
Lonvac
4.19).

In general, any Vp is generated from the vacuum by a primary field φΛ(z)
satisfying (

Ward
4.26) (for p = Λ + ρ) so that

Vp = φΛ(0) |0〉 ⇒ ja0 Vp = −πΛ(ta)Vp , L0 Vp = ∆(Λ)Vp (4.263) jL0Vp

where ∆(Λ) is the conformal dimension (
conf-dim-L
4.27) of φΛ(z) (the first implication

follows from (
Ward
4.26)19 and the second, from (

L0
4.23) and (

jLnVp
4.262)). In our context

the primary fields can be constructed, in principle, as composite operators in
the elementary CVO u(z) .

Thus we can think of Hp as ŝu(n)k current algebra highest weight modules
defined by (

jLnVp
4.262) and (

jL0Vp
4.263). Let us now consider a matrix element of the

type

〈Φp′ | uAi (z1)uBj (z2) | Φp〉 for Φp ∈ Hp , Φp′ ∈ Hp′ (4.264) KZuu

The CVO ui(z) are assumed to intertwine between Hp and Hp+v(i) , see (
gCVO
4.169).

In order to avoid the difficulty of dealing with non-dominant weights, we assume
that all representations involved are integrable, i.e. all pij satisfy 1 ≤ pij ≤ h−1
for i < j (or, which amounts to the same, that – for fixed dominant p and p′

– the level k is high enough). Then we can expect that (
KZuu
4.264) is well defined

unless pij approaches h .
It is possible to derive the braiding relations (

uuRp
4.260) in this setting, and

the following is a summary of the corresponding computation performed in
HST
[154]. Due to the SU(n) invariance, (

KZuu
4.264) could be only non-zero for p′ =

p+ v(i) + v(j) so let us consider the 4-point function

W4 := W4(z, z1, z2, w) = 〈0 | φΛ∗(z)uAi (z1)uBj (z2)φΛ(w) | 0〉 (4.265) W4

where Λ∗ is the su(n) representation conjugate to Λ + Λi + Λj . Taking into ac-
count the Möbius invariance

DFMS, FSoT
[63, 122], (

W4
4.265) can be reduced, up to appropriate

conformal factors, to a 4-point function W4(∞, 1, η, 0) on a primary analyticity
domain containing the real values of η between 0 and 1 . For i 6= j the two
possible channels (with intermediate states belonging to Hp+v(i) and Hp+v(j) ,
respectively) are identified by their analytic behaviour at η ∼ 0 . For each of
them the ensuing ”reduced KZ equation” leads to an ordinary linear equation of
hypergeometric type in η . In the case i = j there is a single first order equation.

The braiding of the corresponding solutions recovers exactly the quantum
dynamical R-matrix R̂(p) (

RRp2
4.107). The mutual normalization of the solutions

to the reduced KZ equation for i 6= j has poles (or, conversely, zeroes) at
pij = Nh for i < j and N a positive integer. As expected, (

KZuu
4.264) makes

sense for integrable (shifted) dominant weights (pi i+1 ≥ 1 , p1n ≤ h− 1) which
are the only ones that appear when considering the model in the framework of
rational CFT but are not sufficient for a consistent description of the canonical
quantization of the chiral theory.

By contrast, the solutions of the KZ equations for the analog of (
KZuu
4.264)

〈Φp′ | gAα (z1) gBβ (z2) | Φp〉 (4.266) KZgg

involving the chiral field g(x) (
ggRa
4.40) are well defined for any (dominant) p and

p′ . Their braiding reproduces the exchange relations (
ggRa
4.40) which do not de-

pend on p . What actually happens is that the meaningless matrix elements
and exchange relations of the CVO are ”regularized” by the zeroes in the corre-
sponding expressions for the zero modes. A convenient basis of regular solutions
of the KZ equations for a general 4-point function has been introduced for n = 2
in

STH
[243].
As it has been already explained, a complete description of the n ≥ 3 case

would require studying more general representations of both the zero modes’
and the affine algebra corresponding to non-dominant p . We shall restrict our
attention in the next Section to n = 2 in which case this obstruction does not
occur.

19Note that the minus sign ensures the compatibility between the commutation relations of
ja0 and ta as [ja0 , j

b
0]Vp = [πΛ(tb), πΛ(ta)]Vp = −ifabcπΛ(tc)Vp = ifabcj

c
0 Vp .
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5 Zero modes and braiding beyond the unitary
limit for n = 2

We shall collect here, for reader’s convenience, the necessary formulae for the
n = 2 case derived so far. The q-antisymmetrizers of (

biAi
4.111) (Section 4.4) are

rank one operators and in particular, Aρσαβ = ερσεαβ , cf. (
A1const
4.115). The constant

R-matrix (
R
4.53) gives then rise to the braid operator

q−
1
2 R̂ρσαβ = q−1δραδ

σ
β − ερσεαβ ( ε12 = ε12 = −q 1

2 , ε21 = ε21 = q−
1
2 ) .

(5.1) braidR2

In view of Remark 4.2 and Eq.(
A1n
4.127), this case is characterized by the fact that

the Hecke representation (
b-Hecke
4.112) factors through the Temperley-Lieb algebra.

Using εασ ε
σβ = −δβα = εβσεσα , it is easy to verify indeed that

A1A2A1 −A1 = 0 = A2A1A2 −A2 with
(A1)α1α2α3

β1β2β3
= Aα1α2

β1β2
δα3
β3

and (A2)α1α2α3
β1β2β3

= δα1
β1
Aα2α3

β2β3
. (5.2)

The corresponding dynamical R-matrix (
RRp2
4.107) reads

R̂12(p) = q
1
2


q−1 0 0 0
0 q−p

[p] α(p) [p−1]
[p] 0

0 α(p)−1 [p+1]
[p] − qp

[p] 0
0 0 0 q−1

 , p = p12 . (5.3) Rpn=2

For α(p) = 1 the quadratic n = 2 determinant conditions (
det-intertw
4.139), (

Dqa=Dqp
4.149)

(implying in this case the exchange relations (
aa2
4.187)) can be written as

ajαa
i
β −aiαa

j
β = [p̂ij ] εαβ ; ajαa

i
β ε

αβ = [p̂ij + 1] ( i 6= j ) , aiαa
i
β ε

αβ = 0
(5.4) detc-n2

(cf. (
detc-n2-1
4.216), (

detc-n2-2
4.217)). Using (

braidR2
5.1), we can replace the first and/or the third

relation (
detc-n2
5.4) by

q
1
2 aiρa

j
σR̂

ρσ
αβ = ajαa

i
β−q1−p̂ijεαβ ( i 6= j ) , q

1
2 aiρa

i
σR̂

ρσ
αβ = aiαa

i
β , (5.5) altEx

respectively
FHT2, FHT3
[116, 117]. For n = 2 Eq.(

ExRap
4.93) gives simply

qp̂ a1
α = a1

α q
p̂+1 , qp̂ a2

α = a2
α q

p̂−1 , (5.6) ExRapn2

and the relations (
a2.n
4.183) and (

Dual1
4.232) reduce to the standard creation and anni-

hilation operator conditions

a2
α | 0〉 = 0 , 〈0 | a1

α = 0 . (5.7) a-vac

The U (2)
q (s`(2)) covariance properties (

AdXa
4.158) of the zero modes read

k ai1k
−1 = q

1
2 ai1 , k ai2k

−1 = q−
1
2 ai1 ( k2 = K ) ,

[E, ai1] = 0 , [E, ai2] = ai1K ,

F ai1 = q−1ai1 F + ai2 , F ai2 = q ai2 F . (5.8)

5.1 The Fock representation of the zero modes’ algebra

A basis
{ |p,m〉 , p = 1, 2, . . . , 0 ≤ m ≤ p− 1 } (5.9) base2

in the Fock space F =Mq |0〉 is obtained by acting on the vacuum by homo-
geneous polynomials in the creation operators a1

α (of degree p− 1):

|p,m〉 := (a1
1)m(a1

2)p−1−m |0〉 ( |1, 0〉 ≡|0〉 , (qp̂− qp) |p,m〉 = 0 ) . (5.10) basis2

For a given p , all vectors |p,m〉 in the allowed range of m form a basis in Fp so
that

F = ⊕∞p=1 Fp ( dimFp = p , qdimFp = [p] ) , (5.11) FFp-dim
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see (
qdim-n2
4.259). By (

detc-n2
5.4) and (

a-vac
5.7), the operators aiα act on the basis vectors as

a1
1|p,m〉 = |p+ 1,m+ 1〉 ,
a1

2|p,m〉 = qm|p+ 1,m〉 ,
a2

1|p,m〉 = −q 1
2 [p−m− 1]|p− 1,m〉 ,

a2
2|p,m〉 = qm−p+

1
2 [m]|p− 1,m− 1〉 . (5.12)

The Uq(s`(2)) transformation properties follow from (
AdXa1
5.8) and (

Uqvac
4.87),

K |p,m〉 = q2m−p+1|p,m〉 ,
E |p,m〉 = [p−m− 1] |p,m+ 1〉 ,
F |p,m〉 = [m] |p,m− 1〉 (5.13)

(in particular, all basis vectors (
basis2
5.10) are eigenvectors of K). The transposition

(
prim
4.222) is the linear transformation acting on the Mq generators as

(qp̂)′ = qp̂ , (aiα)′ = εij ε
αβajβ , i.e. (a1

1)′ = q
1
2 a2

2 , (a1
2)′ = −q− 1

2 a2
1 .
(5.14) transp2

The Uq(s`(2)) generators E and K and their transposed (
’
4.90) are expressed

as bilinear combinations in ajα:

E = −q− 1
2 a1

1a
2
1 , q−1FK = q

1
2 a1

2a
2
2 = E′ ,

K = q
1
2 a2

2a
1
1 − q−

1
2 a1

1a
2
2 = q

1
2 a1

2a
2
1 − q−

1
2 a2

1a
1
2 = K ′ . (5.15)

The algebraic relations (
EFH
5.15) (derived in Appendix A of

FHIOPT
[114]) are valid in the

Fock space representation, cf. (
apmn2
5.12) and (

Uqprop2
5.13). Note that neither F alone nor

K−1 appear; the generators E,E′,K obey the relation q EE′−q−1E′E = K2−1
λ .

To compute the inner product (
dual
4.228) of the basis vectors (

basis2
5.10), we first

observe that 〈p′,m′|p,m〉 vanishes if either p′ 6= p or m′ 6= m (this follows easily
from (

transp2
5.14), (

detc-n2
5.4) and (

a-vac
5.7)). Then we can apply directly (

apmn2
5.12) to obtain20

〈p′,m′|p,m〉 = δpp′ δmm′ q
m(m+1−p)[m]![p−m− 1]! . (5.16) bilin2

Thus all vectors |p,m〉 are mutually orthogonal, and the only ones that have
non-zero scalar squares are those for which

1 ≤ p ≤ h , 0 ≤ m ≤ p−1 or h+1 ≤ p ≤ 2h−1 , p−h ≤ m ≤ h−1 . (5.17) nzscsq

It is easy to see that conditions (
nzscsq
5.17) determine a h2-dimensional subspace of

F isomorphic to F (h) (
Fock-h
4.258).

5.2 The restricted quantum group

5.2.1 Action of Uq(s`(2)) on the zero modes’ Fock space F

According to the general relations displayed in Appendix B.1, the QUEA Uq ≡
Uq(s`(2)) is a Hopf algebra with generators E , F and K±1 satisfying

KEK−1 = q2E , KFK−1 = q−2F , KK−1 = K−1K = 1I ,

[E,F ] =
K −K−1

q − q−1
(5.18)

and coalgebra structure defined by

∆(K) = K ⊗K , ∆(E) = E ⊗K + 1I ⊗ E , ∆(F ) = F ⊗ 1I +K−1 ⊗ F ,

ε(K) = 1 , ε(E) = ε(F ) = 0 ,
S(K) = K−1 , S(E) = −EK−1 , S(F ) = −K F . (5.19)

20For generic q , this result proves (
scsq
4.237) as |p, p− 1〉 and |p, 0〉 are the highest and lowest

weight vector of Fp , respectively.
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It is easy to see, however, that its representation on the Fock space F (
Uqprop2
5.13) is

subject to the additional relations

Eh = 0 = Fh , K2h = 1I . (5.20) Uq-res

The quotient Hopf algebra defined by (
Uqsl2-alg
5.18), (

Uq-res
5.20) and (

coalg2
5.19) has been intro-

duced in
FGST1
[87] under the name of the restricted quantum group Uq(s`(2)) . As we

only consider the n = 2 case, we shall denote it for brevity as just Uq .
It is clear that Uq is finite dimensional: the commutation relations (

Uqsl2-alg
5.18)

allows any monomial in the generators to be expressed in terms of ordered ones
and (

Uq-res
5.20) restrict the maximal powers, so its dimension is 2h3 . A Poincaré-

Birkhoff-Witt (PBW) basis is provided e.g. by the elements

EµF νKn for 0 ≤ µ, ν ≤ h− 1 , 0 ≤ n ≤ 2h− 1 . (5.21) PBW-Uqres

As q2h = 1 , the element Kh belongs to the centre Z of Uq .
It is customary (see e.g.

CP
[55]) to define, up to rescaling, the Casimir operator

in the deformed case as

C = λ2 FE + qK + q−1K−1 ( = λ2EF + q−1K + qK−1 ) ∈ Z , λ = q − q−1 .
(5.22) C

Evaluating (
C
5.22) on the basis vectors |p,m〉 by using (

Uqprop2
5.13) and taking into

account (
basis2
5.10) and (

FFp-dim
5.11), one obtains

(C − qp − q−p) Fp = 0 ⇒ (C − qp̂ − q−p̂) F = 0 . (5.23)

The representation theory of Uq has been thoroughly studied in
FGST1, FGST2
[87, 88]. It

has a finite set of irreducible representations which is easy to describe. It is clear
from (

Uq-res
5.20) that the dimension of an IR cannot exceed h (abusing notation, we

shall denote it again by p). Further, the spectrum of K in a p-dimensional IR
is non-degenerate and coincides with a set of the type

S
(p)
` := {q`, q`+2, . . . , q`+2p−2} ( ` ∈ Z , −h+1 ≤ ` ≤ h , 1 ≤ p ≤ h ) , (5.24) K-spec

the first and the last eigenvalue corresponding to the lowest and highest weight
vector, respectively (the fact that the spectrum only contains integer powers
of q follows from the last equation in (

Uq-res
5.20)). Evaluating the Casimir operator

(
C
5.22) on these two vectors imposes the following restriction on ` :

q`−1 + q−`+1 = q`+2p−1 + q−`−2p+1 ⇒ `+ p = 1 modh . (5.25) CLH

For a fixed dimension p , (
CLH
5.25) has two solutions for ` in the allowed range,

`+ = 1−p and `− = 1 +h−p (the corresponding lowest weights, and therefore
all weights, differ in sign: q`− = −q`+). So there are 2h (equivalence classes of)
irreducible representations V ±p of Uq labeled by their highest weight ±qp−1 :

V εp : specK = ε {q1−p, q3−p, . . . , qp−1} , p = 1, 2, . . . , h , ε = ± ,

dim V εp = p , qdimV εp := TrVεpK = ε [p] , (C − ε(qp + q−p))V εp = 0 . (5.26)

We shall refer to the sign ε as to the parity of the IR V εp . By (
specK-Vp
5.26) and (

C
5.22),

a characterization of a canonical basis {vεp,m} in V εp invariant under a rescaling
E → ρE , F → ρ−1 F (ρ > 0) which preserves all defining relations (

Uqsl2-alg
5.18),

(
coalg2
5.19), is provided by the relations

(K − ε q2m−p+1) vεp,m = 0 ( 1 ≤ p ≤ h , 0 ≤ m ≤ p− 1 ) , (5.27)
(EF − ε [m][p−m]) vεp,m = 0 = (FE − ε [m+ 1][p−m− 1]) vεp,m .

Returning to the Fock space representation of Uq we see that Fp ' V +
p for

1 ≤ p ≤ h while the negative parity IR first appear as subrepresentations of
the spaces Fh+p , each of which contains two irreducible submodules isomorphic
to V −p spanned by {|h + p,m〉} and {|h + p, h + m〉} for m = 0, . . . , p − 1 ,
respectively. For 1 ≤ p ≤ h − 1 the quotient of Fh+p by the direct sum of
invariant subspaces is isomorphic to V +

h−p or, in terms of exact sequences,

0 → V −p ⊕ V −p → Fh+p → V +
h−p → 0 . (5.28) shexseq
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For p = h the two negative parity submodules exhaust the content of F2h =
V −h ⊕V

−
h . More generally, the Uq module structure of FNh+p for N ∈ Z+ and

1 ≤ p ≤ h is described by the short exact sequence
FHT7
[120]

0 → V ε(N)
p ⊕ V ε(N)

p · · · ⊕ V ε(N)
p︸ ︷︷ ︸ → FNh+p → V

−ε(N)
h−p ⊕ · · · ⊕ V −ε(N)

h−p︸ ︷︷ ︸ → 0 ,

# (N + 1) #N (5.29)

where ε(N) = (−1)N is the parity of the integer N and V ±0 := {0} (we have
N + 1 submodules V ε(N)

p and a quotient module which is a direct sum of N
copies of V −ε(N)

h−p ).
The subquotient structure of F as a representation space of Uq for h = 3

is displayed on Figure 1 below.

Figure 1: The Uq representation on the Fock space F for q = e±i
π
3 . Vectors belonging to

subquotients of type V +
p (for some p ) are represented by yellow circles (◦ in black and white

print) and those belonging to V −p , by blue ones (• in BW). The eigenvalues of K = qH can
be read off from those of H .

5.2.2 Quasitriangular twofold cover Uq of Uq

In accord with the consideration carried in Section 4.3, the Gauss components
of the monodromy matrix M± for n = 2 can be parametrized in terms of the
twofold cover U (2)

q (s`(2)) of Uq(s`(2)) with Cartan element k satisfying

k E = qE k , k F = q−1F k , [E,F ] =
k2 − k−2

q − q−1
( k2 = K ) ,

∆(k) = k ⊗ k , ε(k) = 1 , S(k) = k−1 . (5.30)

By (
Uqvac
4.87) and (

tens-op
4.159) we obtain the action of its generators on the basis (

base2
5.9)

which are of course the same as in (
Uqprop2
5.13), except for

k |p,m〉 = qm−
p−1

2 |p,m〉 . (5.31) kprop2

Restricting the Hopf algebra U (2)
q (s`(2)) by the ensuing additional relations

Eh = 0 = Fh , k4h = 1I (5.32) bUq-res

one obtains the 4h-dimensional double cover Uq of Uq with a PBW basis pro-
vided by the elements

EµF νkn , 0 ≤ µ, ν ≤ h− 1 , 0 ≤ n ≤ 4h− 1 . (5.33) PBW-Uqres2

The important property of Uq is that it is quasitriangular i.e., there exists a
universal R-matrix (

intR
4.37) R ∈ Uq ⊗ Uq satisfying (

qtr
B.9), while Uq itself is not.

By contrast, Uq (but not Uq) is a factorizable Hopf algebra which means
that the (universal) monodromy matrix M = R21R belongs to Uq ⊗ Uq and
has maximal rank (2h3), see Appendix B.3. A hint to this feature is provided
by the following observation. Using (

M+-q
4.66) for n = 2 , as well as (

MpmNpmD
4.86), (

MD2
4.88)

and (
dk2
5.30), we deduce that the entries of monodromy matrix M only contain

K ∈ Uq and not its ”square root” k ∈ Uq :

q
3
2M = M+M

−1
− =

(
k−1 −λFk

0 k

)(
k−1 0

−λEk−1 k

)
=

=
(
qλ2FE +K−1 −λFK
−qλE K

)
, λ = q − q−1 . (5.34)

As the Hopf algebras under consideration are finite dimensional, all the
constructions are purely algebraic. An efficient way of finding the universal
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R-matrix is the Drinfeld double construction
D, RS, Ka, Ma
[71, 218, 172, 197] since the dou-

ble of any Hopf algebra is canonically quasitriangular (and factorizable). The
quasitriangularity of Uq follows from the fact that it is a quotient of the (16h4-
dimensional) double of any of its Borel Hopf-subalgebras

FGST1, FHT7
[87, 120]21, see Ap-

pendix B.2. We start e.g. with the 4h2-dimensional Hopf algebra Uq(b+) gen-
erated by F and k+ to find Uq(b−) generated by E and k− as its dual, and
put at the end k+ = k− =: k . In such a way we derive the (lower triangular)
universal R-matrix of Uq given by the triple sum

R =
1

4h

h−1∑
ν=0

q−
ν(ν−1)

2 (−λ)ν

[ν]!
F ν ⊗ Eν

4h−1∑
m,n=0

q
mn
2 km ⊗ kn ∈ Uq ⊗ Uq . (5.35) RbD

This expression allows to recover the 4 × 4 matrix R12 (
R
4.53), given explicitly

in this case by

R12 = q
1
2


q−1 0 0 0
0 1 0 0
0 −λ 1 0
0 0 0 q−1

 , (5.36) R2

from the universal R-matrix (
RbD
5.35) by taking the generators of Uq in the 2-

dimensional representation πf :

Ef =
(

0 1
0 0

)
, F f =

(
0 0
1 0

)
, kf =

(
q

1
2 0

0 q−
1
2

)
. (5.37) bUf

Indeed, using (Ef )2 = 0 = (F f )2 and the summation formula

4h−1∑
m=0

q
mj
2 =

{
4h for j = 0 mod 4h
0 otherwise , (5.38) sum-m

one obtains from (
RbD
5.35) and (

bUf
5.37)

(πf ⊗ πf )R =
1

4h
(
1I2 ⊗ 1I2 − λF f ⊗ Ef

) 4h−1∑
m,n=0

q
mn
2 (kf )m ⊗ (kf )n =

=


1 0 0 0
0 1 0 0
0 −λ 1 0
0 0 0 1



q−

1
2 0 0 0

0 q
1
2 0 0

0 0 q
1
2 0

0 0 0 q−
1
2

 = R12 . (5.39)

Remarkably, the expression for the universal monodromy matrix M = R21R ,

M =
1

2h

h−1∑
µ,ν=0

(−λ)µ+νq
ν(ν+1)−µ(µ−1)

2

[µ]![ν]!

2h−1∑
m,n=0

qmn+ν(n−m)EµF νk2m ⊗ FµEνk2n

(5.40) Mmatr

only contains even powers of k and hence, belongs to Uq ⊗ Uq . Moreover, M
(
Mmatr
5.40) is of the type (

Mm
B.28) so that Uq is factorizable. This is the reason why we

shall be interested mainly in Uq in what follows, with Uq playing an auxiliary
role providing the universal R-matrix R in terms of which M is constructed.

Remark 5.1 The other admissible (upper triangular) universal R-matrix of
Uq is found by exchanging the places of Uq(b+) and Uq(b−) in the double and
has the following form:

R−1
21 =

1
4h

4h−1∑
m,n=0

q−
mn
2 km ⊗ kn

h−1∑
ν=0

q
ν(ν−1)

2 λν

[ν]!
Eν ⊗ F ν . (5.41) RbD21

It gives rise to the inverse of the monodromy matrix M−1 = R−1R−1
21 .

21The conventions in the journal paper
FHT7
[120] are updated in its last arXiv version and

coincide with those adopted here.
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It is instructive to note that the matrix (
calcM2
5.34) is equal to (πf ⊗ id)M . To

verify this we observe that, due to the nilpotency of Ef and F f , one is left in
the first sum in (

Mmatr
5.40) with the terms with µ, ν = 0, 1 only:

(πf ⊗ id)M =
1

2h

2h−1∑
m,n=0

(qmn 1I2 ⊗ 1I− λ qmn+n−m+1F f ⊗ E −

−λ qmnEf ⊗ F + λ2qmn+n−m+1EfF f ⊗ FE) (Kf )m ⊗Kn =

=
1

2h

2h−1∑
m,n=0

(
(qm(n+1) + λ2qmn+n+1FE)Kn −λ qm(n−1)FKn

−λ qmn+n+1EKn qm(n−1)Kn

)
. (5.42)

(We have applied (
bUf
5.37) from which it follows that

EfF f =
(

1 0
0 0

)
, (Kf )m =

(
qm 0
0 q−m

)
(5.43) EFKf

and evaluated the tensor product as a Kronecker product of matrices.) Proceed-
ing with the summation in m and using

∑2h−1
m=0 q

mj = 2h δj , 0 mod 2h , we finally
obtain that (

calcM
5.42) indeed coincides with (

calcM2
5.34):

(πf ⊗ id)M =
(
qλ2FE +K−1 −λFK
−qλE K

)
= q

3
2M . (5.44) piidM

5.2.3 The factorizable Hopf algebra Uq and its Grothendieck ring

A partial information about indecomposable representations is provided by their
content in terms of irreducible modules, independently of whether they ap-
pear as its submodules or subquotients. It is captured by the concept of the
Grothendieck ring (GR). We write π = π1 + π2 if one of the representations in
the right hand side is a submodule of π while the other is the corresponding
quotient representation, and complete the structure to that of an abelian group
by introducing formal differences (so that e.g. π1 = π − π2 ) and zero element,
given by the vector {0} . To define the GR multiplication, we start with the
tensor product of the IR πV1 and πV2 (with representation spaces V1 and V2 ,
respectively) defined by means of the coproduct,

πV1⊗V2 := (πV1 ⊗ πV2) ∆ (5.45) tens-ring

and further, represent each of the (in general, indecomposable) summands in the
expansion by the GR sum of its irreducible submodules and subquotients (thus
”forgetting” its indecomposable structure). By a construction due to Drinfeld
D3
[72], the GR of the Uq representations turns out to be equivalent to a subring
of its centre generated by the Casimir operator C (

C
5.22).

Let A be a factorizable Hopf algebra with monodromy matrixM; then there
is an isomorphism between the (commutative) algebra of the A-characters

Ch := {φ ∈ A∗ | φ(xy) = φ(S2(y)x) ∀x, y ∈ A} (5.46) Ch-Ad*inv

and the centre Z ∈ A , given by the Drinfeld map
D3, FGST1
[72, 87]

A∗ → A , φ 7→ (φ⊗ id)(M) (5.47) Dr-map

(see Appendix B.3). Let further g be a balancing element22 of A , i.e. an element
satisfying

g ∈ A , ∆(g) = g ⊗ g , S2(x) = g x g−1 ∀x ∈ A . (5.48) balance

Then any finite dimensional representation πV of A (with representation space
V ) gives rise to a A-character ChgV defined by the q-trace

ChgV (x) := TrπV (g−1x) ∀x ∈ A ; (5.49) canCh

22The existence of a balancing element is not granted, and it may be not unique. An element
g ∈ A satisfying the first relation (

balance
5.48) is called ”group-like”.
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any ChgV belongs indeed to Ch (
Ch-Ad*inv
5.46) since

ChgV (S2(y)x) = TrπV (g−1S2(y)x) = TrπV (yg−1x) = ChgV (xy) . (5.50) canch

The corresponding Drinfeld images

D(πV ) := (ChgV ⊗ id)(M) ∈ Z (5.51) D-im

form a subring of the centre Z isomorphic to the GR.
We shall use the factorizability of Uq to explore the GR S2h generated by

its IR. It is easy to see that both K and Kh+1 satisfy the conditions (
balance
5.48); note

that Kh ∈ Z . Choosing K as balancing element for Uq , the Drinfeld image of
the 2-dimensional representation πf (

bUf
5.37) is just the Casimir operator (

C
5.22):

(ChKπf ⊗ id)(M) = C for ChKπf (x) = Trπf (K−1x) . (5.52) ChKM

The computation of (
ChKM
5.52) amounts to applying (

piidM
5.44) and (

EFKf
5.43):

Tr((Kf )−1(πf ⊗ id)M) = Tr
{(

q−1 0
0 q

)(
qλ2FE +K−1 −λFK
−qλE K

)}
=

= λ2FE + qK + q−1K−1 = C . (5.53)

The alternative choice of Kh+1 as balancing element (cf. Eqs. (3.3) and (4.7)
of

FGST1
[87]) leads to the opposite sign in (

Tr1
5.53) since (Kf )h = −1I2 .

It follows from (
specK-Vp
5.26) that the q-dimension of an IR (and hence, of any

representation) of Uq is just its q-trace evaluated at the unit element:

qdimV = TrVK = TrVK−1 = ChKV (1I) . (5.54) Ch-qdim

The following Proposition shows that the commutative algebra generated
by the Casimir operator C (

C
5.22) is 2h-dimensional and contains the central

element Kh . As a preliminary step, we note that the following relations can be
easily proved by induction in r :

λ2rErF r =
r−1∏
s=0

(C − q−2s−1K − q2s+1K−1) ,

λ2rF rEr =
r−1∏
s=0

(C − q2s+1K − q−2s−1K−1) . (5.55)

Recall also that the Chebyshev polynomials of the first kind are defined by

Tm (cos t) = cosmt ( deg Tm = m ) . (5.56) Cheby1

Proposition 5.1
(a) The central element Kh (of order 2) is related to C by

Kh = −Th(
C

2
) . (5.57) qhHTh1

(b) The Casimir operator (
C
5.22) satisfies the equation

P2h(C) :=
2h−1∏
s=0

(C − βs) = 0 , βs = qs + q−s = 2 cos
sπ

h
. (5.58) P2h=0

Proof Writing the formula

cosNt− cosNy = 2N−1
N−1∏
s=0

(cos t− cos(y +
2πs
N

)) (5.59) flaRG1
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(see, e.g., 1.395 in
GR
[132]) for 2 cos t =: C and eiy =: Z such that Z2N = 1 (and

hence, ZN = cosNy), and applying it to the case when C (given by (
C
5.22)) and

Z are commuting operators in a finite dimensional space, we find

2 (TN (
C

2
)− ZN ) =

N−1∏
s=0

(C − e 2πis
N Z − e− 2πis

N Z−1) . (5.60) TNZ

Two special cases of (
TNZ
5.60): a) N = h , Z = q−1K and b) N = 2h , Z = 1 give

2 (Th(
C

2
) +Kh) =

h−1∏
s=0

(C − q−2s−1K − q2s+1K−1) (5.61) qhHTh

and
2 (T2h(

C

2
)− 1) ≡ 4

(
(Th(

C

2
))2 − 1

)
= P2h(C) , (5.62) P2hT2h

respectively. Setting in (
ErFr
5.55) r = h and using (

Uq-res
5.20), we deduce that the

product in (
qhHTh
5.61) vanishes, proving thus (a). Further, (b) follows from (

P2hT2h
5.62),

(
qhHTh1
5.57) and (

Uq-res
5.20):

P2h(C) = 4 (K2h − 1) = 0 . (5.63) directP2h

Since D maps isomorphically the Uq GR S2h to a 2h-dimensional subring

of the centre, S2h
D−→ D(S2h) ⊂ Zq , the algebra of the corresponding central

elements D(V εp ) provides, in turn, a convenient description of the Grothendieck
fusion. As a representation of Uq , πf (with Drinfeld image C (

Tr1
5.53)) coincides

with the IR V +
2 (see (

specK-Vp
5.26)). It is not difficult to derive the expressions for

the Drinfeld images of all the IR of Uq . This is done in Appendix B.3 (see
Proposition B.1), following

FGST1, FHT7
[87, 120]. In principle, it is possible to find the Uq

GR ring structure from the explicit expressions (
DrVp1
B.41). We shall follow however

another path.
Albeit the GR of Uq is finite, the Fock space representation makes it natural

to express its multiplication rules in terms of the infinite number of representa-
tions Fp which are of su(2) type:

D(Fp) . D(Fp′) =
p+p′−1∑

p′′=|p−p′|+1
p′′−p−p′=1mod 2

D(Fp′′) , p = 1, 2, . . . . (5.64) n5

The justification of (
n5
5.64) takes into account the well known fact that an anal-

ogous decomposition holds for tensor products of the (irreducible) represen-
tations Fp for generic q ; in the GR context it should remain true after spe-
cializing q to a root of unity as well. Note that the GR content of FNh+p for
N ∈ Z+ , 1 ≤ p ≤ h which replaces the precise indecomposable structure (

shexseqN
5.29),

FNh+p = (N + 1)V ε(N)
p +N V

−ε(N)
h−p (5.65) GRpb

obeys the following ”parity rule”: one always has an odd number of irreducible
Uq modules of type V + and an even number of modules of type V − .

Assuming that (
n5
5.64) holds, we shall make use of the following corollary of

Proposition B.1.

Corollary 5.1 The Drinfeld images of the Uq IR

dεp := D(V εp ) = (TrπV εpK
−1 ⊗ id)M∈ Z , 1 ≤ p ≤ h , ε = ± (5.66) Dr-Vp

satisfy

d+
1 = 1 , d+

2 = C , d−εp = −Khd εp = Th(
C

2
) d εp . (5.67) Drinfeld12

From (
n5
5.64) for p′ = 2 and (

Drinfeld12
5.67) one concludes that D(Fp) are functions

of C satisfying both the recurrence relations and the initial conditions for the
Chebyshev polynomials of the second kind Up(x) , defined by

Um+1(x) = xUm(x)− Um−1(x) , m ≥ 1 , U0(x) = 0 , U1(x) = 1 (5.68) recurseUm

89



and hence,
D(Fp) = Up(C) , p ∈ Z+ . (5.69) Dr-VP

It follows from (
recurseUm
5.68) that Um(x) are monic polynomials of deg Um = m − 1

and
Um(2 cos t) =

sinmt
sin t

, U2(x) = x , Um(2) = m . (5.70) Um

Using (
GRpb
5.65) for N = 0 and N = 1 , one sees that the Drinfeld images (

Dr-Vp
5.66) of

the Uq IR are given by

d+
p = Up(C) , d−p =

1
2

(Uh+p(C)− Uh−p(C)) , 1 ≤ p ≤ h . (5.71) DR-gen

By (
Cheby1
5.56) and (

Um
5.70), the trigonometric relation 2 sin t cosmt = sin(m + 1) t −

sin(m− 1) t is equivalent to

2Tm(
x

2
) = Um+1(x)− Um−1(x) , (5.72) TU

so that the condition (
P2hT2h
5.62), (

directP2h
5.63) is converted in terms of Um(x) to the equality

T2h(
C

2
) = 1 ⇔ U2h+1(C)− U2h−1(C)− 2 = 0 . (5.73) T2h=1

Eq.(
T2h=1
5.73) ensures the consistency between (

DR-gen
5.71) and the IR content of F2h+1

(
GRpb
5.65):

U2h+1(C) = D(F2h+1) = 3D(V +
p ) + 2D(V −h−p) = U2h−1(C) + 2U1(C) . (5.74) F2h+1

One can check that the fusion of (
F2h+1
5.74) with U2(C) justifies, step by step,

the consistency of the representation (
DR-gen
5.71) for any FNh+p , N ≥ 2 , i.e. no

additional conditions appear. As Um(x) , m ∈ Z+ span the polynomial ring
C[x] , the Uq GR is equivalent to the quotient ring of C[C] modulo the ideal
generated by the polynomial (

T2h=1
5.73)

FGST1
[87].

It is elementary to derive from (
n5
5.64) and (

GRpb
5.65) the multiplication rules for

the GR images (in terms of the Uq IR) which, as it has been shown in
FGST1
[87], read

D(V εp ) . D(V ε
′

p′ ) =
p+p′−1∑

s=|p−p′|+1
s−p−p′=1mod 2

D(V̂ εε
′

s ) , 1 ≤ p , p′ ≤ h , ε , ε′ = ± ,

V̂ εs =
{
V εs for 1 ≤ s ≤ h
V ε2h−s + 2V −εs−h for h+ 1 ≤ s ≤ 2h− 1 . (5.75)

Indeed, Eq.(
n5
5.64) imply directly (

GRres
5.75) for ε = ε′ = + , and the cases when ε , ε′

or both are of opposite sign follow from these by multiplying them with Th(C2 ) ,
see (

Drinfeld12
5.67), taking into account that (Th(C2 ))2 = 1 , cf. (

P2hT2h
5.62) and (

directP2h
5.63). For a

proof that (
GRres
5.75) imply in turn (

n5
5.64), see

FHT7
[120].

Eq.(
P2h=0
5.58) can be regarded as the characteristic equation of the Casimir C as

an operator on the subalgebra of the centre D(S2h) ⊂ Z generated by the Drin-
feld images of the Uq IR. As the eigenvalues βp = β2h−p are doubly degenerate
for 1 ≤ p ≤ h− 1 ,

P2h(C) = (C − 2)(C + 2)
h−1∏
p=1

(C − βp)2 = 0 , βp = qp + q−p , (5.76) P2h-2

the spectral decomposition of C is of Jordan type:

C = 2 e0−2 eh+
h−1∑
p=1

(βp ep+wp) , (C−βp) ep = wp , (C−βp)wp = 0 .

(5.77) spC

The primitive idempotents es and nilpotents wp obey

eres = δrser , erwp = δrpwp , wpwp′ = 0 , 0 ≤ r, s ≤ h , 1 ≤ p, p′ ≤ h− 1

⇒ f(C) = f(2) e0 + f(−2) eh +
h−1∑
p=1

(f(βp) ep + f ′(βp)wp) . (5.78)
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In particular, the coefficients of the idempotents ep , 1 ≤ p ≤ h − 1 in the
expansion of Us(C) are equal to

Us(βp) = Us(2 cos
p π

h
) =

sin sp π
h

sin p π
h

=
[s p]
[p]

. (5.79) UpC

The unitary WZNW model only includes integrable affine algebra represen-
tations

DFMS
[63]. In the ŝu(2)k case, the corresponding shifted weights are in the

interval 1 ≤ p ≤ h − 1 (≡ k + 1) . It has been known from the early stud-
ies

PS, FK
[210, 102] that the fusion of the corresponding ”physical representations”

of Uq(s`(2)) (for q = e±i
π
h ) can be recovered from the ordinary su(2) fusion

by appropriately factoring out representations of zero quantum dimension. As
representations of Uq , the latter form the ideal of Verma modules

FGST1, FGST2
[87, 88]. The

latter are h-dimensional and include the two IR Vεh := V εh , ε = ± as well as
other 2h− 2 indecomposable representations with subquotient structure

0 → V εp → Vεp → V −εh−p → 0 , p = 1, . . . , h− 1 . (5.80) Verma

In the GR Vεp and V−εh−p cannot be distinguished so it is appropriate to use the
notation

Vs := V +
s +V −h−s , 0 ≤ s ≤ h (V ±0 = {0} ; V0 = V −h , Vh = V +

h ) . (5.81) VermaGR

That Vs form an ideal in S2h is quite easy to prove using (
GRres
5.75), and

qdimVs = 0 follows from (
specK-Vp
5.26) since [s]− [h− s] = 0 . On the other hand, the

Drinfeld images of the h + 1 representations (
Verma
5.80) are spanned by e0 , eh and

{wp}h−1
p=1 only, i.e. the corresponding coefficients of {ep}h−1

p=1 in (
Cew
5.78) vanish.

Indeed, by (
Verma
5.80) and (

DR-gen
5.71),

D(V0) = D(V −h ) =
1
2
U2h(C) , D(Vh) = D(V +

h ) = Uh(C) ,

D(Vs) = D(V +
s ) +D(V −h−s) =

1
2

(Us(C) + U2h−s(C)) , 1 ≤ s ≤ h− 1 (5.82)

and (
UpC
5.79) gives

U2h(βp) = 0 = Uh(βp) , 1 ≤ p ≤ h− 1 ,

Us(βp) + U2h−s(βp) =
[s p] + [(2h− s)p]

[p]
= 0 , 1 ≤ p , s ≤ h− 1 . (5.83)

The canonical images of D(V +
p ) in the (h−1)-dimensional quotient with respect

to the Verma modules’ ideal are therefore of the form

dp =
h−1∑
s=1

Up(βs) es =
h−1∑
s=1

[p s]
[s]

es , 1 ≤ p ≤ h− 1 (5.84) dpUp

(note that the coefficient [p s]
[s] ≡ [p]qs to es in the expansion (

dpUp
5.84) of dp is just

the quantum dimension of V +
p evaluated at qs). The algebra of dp follows from

(
Cew
5.78) and the easily verifiable relation

[ps] [p′s] = [s]
p+p′−1∑

r=|p−p′|+1
step 2

[rs] , 1 ≤ p, p′ ≤ h− 1 (5.85) su2rel

by taking into account that, for p+ p′ > h (and 1 ≤ s ≤ h− 1), the terms with
r ≥ h either vanish or cancel with the mirror ones w.r. to h , due to

[hs] = 0 , [(h+m)s] + [(h−m)s] = 0 , m = 1, 2, . . . . (5.86) cancel

Thus, the upper limit of the summation in (
su2rel
5.85) doesn’t actually exceed h− 1

and one reproduces the fusion rules of the primary fields of weights 0 ≤ λ, µ ≤ k
in the unitary ŝu(2)k WZNW model

dλ dµ =
k−|k−λ−µ|∑
ν=|λ−µ|
step 2

dν (5.87) fusion-su2-I
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for p = λ+ 1 , p′ = µ+ 1 , h = k + 2
DFMS
[63].

The centre of Uq is (3h−1)-dimensional, being spanned by the idempotents
es , 1 ≤ s ≤ h and nilpotents w±p , 1 ≤ p ≤ h − 1 such that w+

p + w−p = wpFGST1, FHT7
[87, 120]. The elements w±p do not belong to the algebra of the Casimir operator;
to obtain them one needs to introduce, in addition to the (Drinfeld images of)
q-traces over the IR (

canCh
5.49), certain pseudotraces

GT
[125].

5.3 Extended chiral ŝu(2)k

The structure of the zero modes’ Fock space (
FFp-dim
5.11) suggests that for n = 2 the

chiral state space (
space
4.166) takes the form

H = ⊕∞p=1Hp ⊗Fp , (5.88) HpFp2

where p is the shifted weight labelling the corresponding representation of the
ŝu(2) affine algebra and Uq , respectively. Involving the full list of dominant
weights, the space (

HpFp2
5.88) (on which the quantum group covariant field g(z) acts)

is much bigger than the one of the unitary model
GW
[134] which only has a finite

number of sectors corresponding to integrable affine weights, 1 ≤ p ≤ h− 1 .
In accord with (

HpFp2
5.88), we have to assume that primary fields φp(z) (

Ward
4.26)

with conformal dimensions ∆p = p2−1
4h (

conf-dim-L
4.27) exist for all integer p ≥ 1 . Their

exchange (generalizing (
braidR
4.39)) inside an N -point conformal block satisfying the

KZ equation (
KZW-N
4.30) gives rise to a ”monodromy representation” of the braid

group of N strands BN determined by choosing appropriately the principal
branches and analytically continuing along homotopy classes of paths. The
braid group BN admits a presentation with generators Bi , i = 1, . . . , N − 1
subject to Artin’s relations

BiBi+1Bi = Bi+1BiBi+1 , BiBj = BjBi for |i− j| > 1 . (5.89) Bgroup

We shall recall below, without derivation, the results obtained in
STH, MST, HP
[243, 199, 155]

for the corresponding representations of B4 on the conformal blocks of four
operators φp(za) , p ≥ 1 (as in this case B3 = B1 , the braid group actually
reduces to B3 ⊂ B4). It turns out that they are similar (dual) to those of an
infinite dimensional extension Ũq of the restricted quantum group which we
proceed to review first.

5.3.1 Lusztig’s extension Ũq of the restricted quantum group Uq

Introduce, following Lusztig
L1, L
[191, 192], the ”divided powers”

E(n) =
1

[n]!
En , F (n) =

1
[n]!

Fn for n ≥ 1 . (5.90) divpowEF

Their action on the basis (
base2
5.9) follows from (

Uqprop2
5.13):

E(r)|p,m〉 =
[
p−m− 1

r

]
|p,m+ r〉 , F (s)|p,m〉 =

[m
s

]
|p,m− s〉 . (5.91) UqpropL

Here the (Gaussian) q-binomial coefficients
[
a
b

]
defined, for a ∈ Z , b ∈ Z+ , as

[a
b

]
:=

b∏
t=1

qa+1−t − qt−a−1

qt − q−t
,

[a
0

]
:= 1 (5.92)([a

b

]
=

[a]!
[b]![a− b]!

for a ≥ b ≥ 0 ,
[a
b

]
= 0 for b > a ≥ 0

)
are polynomials in q and q−1 with integer coefficients23. The following general
formula is valid for M ∈ Z , N ∈ Z+ , 0 ≤ a, b ≤ h − 1 (see Lemma 34.1.2 in
L
[192]), [

Mh+ a

Nh+ b

]
= (−1)(M+1)Nh+aN−bM

[a
b

] (M
N

)
, (5.93) q-bin1

23Hence, for q a root of unity they are just polynomials in q .
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where
(
M
N

)
∈ Z is an ordinary binomial coefficient.

It is sufficient to add just E(h) and F (h) to E,F and K±1 in order to
generate Lusztig’s Ũq algebra. Their powers and products give rise to an infinite
sequence of new elements – in particular,

(
E(h)

)n
=

[nh]!
([h]!)n

E(nh) =

(
n∏
`=1

[
` h

h

])
E(nh) = (−1)(

n
2 )hn!E(nh) . (5.94) Edpn

The representations of the extended QUEA Ũq in the Fock space F (
FFp-dim
5.11) are

easily described by the following

Proposition 5.2
(a) The irreducible Uq modules Fp , 1 ≤ p ≤ h extend to irreducible Ũq modules,
with E(h) and F (h) acting trivially.
(b) The fully reducible Uq modules FNh , N ≥ 2 give rise to irreducible Ũq
modules.
(c) For 1 ≤ p ≤ h− 1 , N = 1, 2, . . . the spaces FNh+p are indecomposable Ũq
modules. Their structure is given by a short exact sequence similar to (

shexseqN
5.29),

0 → FN+1, p → FNh+p → F̃N, h−p → 0 , (5.95) shex-eqN

where this time the submodule

FN+1, p = ⊕Nn=0 Span { |Nh+ p, nh+m〉 }p−1
m=0 (5.96) FN+1p

and the corresponding subquotient

F̃N, h−p = FNh+p /FN+1, p (5.97) FNh-p

are both irreducible with respect to Ũq .

Proof Using (
Uqprop2
5.13) and the relation

[
n
h

]
= 0 for n < h , we find

E(h)|p,m〉 = 0 = F (h)|p,m〉 for p ≤ h , (5.98) EhFhzero

proving (a). On the other hand, E(h) and F (h) , shifting the label m by ±h
combine otherwise disconnected equivalent (in particular, of the same parity)
irreducible Uq submodules or subquotients into a single irreducible representa-
tion of Ũq . Together with (

Uqprop2
5.13), the relation

E(h)|Nh+ p, nh+m〉 =
[

(N − n)h+ p−m− 1
h

]
|Nh+ p, (n+ 1)h+m〉 =

= (−1)(N−n+1)h+p−m−1 (N − n) |Nh+ p, (n+ 1)h+m〉 (5.99)

where 0 ≤ n ≤ N , 0 ≤ m ≤ p− 1 ≤ h− 1 and the similar relation for F (h)

F (h)|Nh+ p, nh+m〉 =
[
nh+m

h

]
|Nh+ p, (n− 1)h+m〉 =

= (−1)(n+1)h+m n |Nh+ p, (n− 1)h+m〉 (5.100)

imply (b), for p = h , and the first (submodule) part of (c), for p < h . The
second part of (c) is obtained by using again (

Uqprop2
5.13) as well as (

Eh1
5.99), (

Fh1
5.100)

but this time for 0 ≤ n ≤ N − 1 , 1 ≤ p ≤ m ≤ h− 1 .
According to the ”parity rule” (

GRpb
5.65), each IR of Ũq combines an odd number

of irreducible Uq modules of type V + and an even number of modules V − .

5.3.2 KZ equation and braid group representations

In addition to the KZ equation, an ŝu(2)k conformal block is subject to Möbius
and SU(2) invariance conditions. The components of a primary field φp(z)
form a p-dimensional irreducible SU(2) multiplet Vp so that their 4-point con-
formal block w(p) belongs to the space Inv V ⊗4

p (which itself is p-dimensional).
Realizing each Vp as a space of polynomials of degree p − 1 in a variable

93



ζa , a = 1, 2, 3, 4 , the 4-point SU(2)-invariants appear as homogeneous polyno-
mials of degree 2(p−1) in the differences ζa− ζb . One can express, accordingly,
w(p) in terms of an amplitude f (p) that depends on two invariant cross ratios
ξ and η , writing

〈φp(z1)φp(z2)φp(z3)φp(z4) 〉 =: w(p)(ζ1, z1; . . . ; ζ4, z4) = Dp (ζ, z) f (p)(ξ, η) ,

ζab = ζa − ζb , zab = za − zb , ξ =
ζ12ζ34

ζ13ζ24
, η =

z12z34

z13z24
,

Dp (ζ, z) =
(

z13z24

z12z34z14z23

)2∆p

(ζ13ζ24)p−1 (5.101)

where f (p)(ξ, η) is a polynomial in ξ of degree not exceeding p − 1 . The po-
larized Casimirs are represented by second order differential operators in the
isospin variables and the KZ system (

KZW-N
4.30) is equivalent to the following partial

differential equation for f (p)(ξ, η):(
h η (1− η)

∂

∂η
− (1− η)C(p)(ξ) + η C(p)(1− ξ)

)
f (p)(ξ, η) = 0 , (5.102)

C(p)(ξ) := (p− 1)(p− (p− 1) ξ)− (ξ + 2 (p− 1)(1− ξ)) ξ ∂
∂ξ

+ ξ2(1− ξ) ∂
2

∂ξ2
.

A regular basis of the p linearly independent solutions

{ f (p)
µ = f (p)

µ (ξ, η) , µ = 0, 1, . . . , p− 1} (5.103) fxii

of Eq.(
KZf
5.102) has been constructed in

STH
[243] in terms of appropriate multiple

contour integrals. We shall describe below the explicit braid group action on
the conformal blocks w(p)

µ = Dp f
(p)
µ (

xi
5.101). The braid generators bi , i =

1, 2, 3 act by an anti-clockwise rotation at angle π of the pair of world sheet
variables (zi , zi+1) and a simultaneous exchange ζi ↔ ζi+1 . Then w(p)

µ (ζ, z) →
w

(p)
λ (ζ, z) (B(p)

i )λµ while the invariant amplitudes f (p)
µ (ξ, η) transform as

b1 (= b3) : f (p)
µ (ξ, η) → (1− ξ)p−1(1− η)4∆pf (p)

µ (
ξ

ξ − 1
,
e−iπη

1− η
) =

= f
(p)
λ (ξ, η) (B(p)

1 )λµ ,

b2 : f (p)
µ (ξ, η) → ξp−1η4∆pf (p)

µ (
1
ξ
,

1
η

) = f
(p)
λ (ξ, η) (B(p)

2 )λµ , (5.104)

respectively. The p × p braid matrices B(p)
i , i = 1, 2 are (lower, resp. upper)

triangular:

(B(p)
1 )λµ = (−1)p−λ−1qλ(µ+1)− p

2−1
2

[
λ

µ

]
= (B(p)

3 )λµ , λ , µ = 0, 1, . . . , p− 1 ,

(B(p)
2 )λµ = (B(p)

1 )p−λ−1
p−µ−1 = (−1)λq(p−λ−1)(p−µ)− p

2−1
2

[
p− λ− 1
p− µ− 1

]
(5.105)

(B(p)
2 = F (p)B

(p)
1 F (p) , (F (p))λµ = δλp−1−µ , (F (p))2 = 1Ip ) .

By contrast, the commonly used ”s-basis” braid matrices (where B(p)
1 = B

(p)
3

is assumed to be diagonal) do not exist in this case, yielding singularities for
p ≥ h .

It is instructive to arrange the emerging p-dimensional representation spaces
Sp of B4 spanned by w(p)

µ (ζ, z) , µ = 0, 1, . . . , p − 1 in arrays similar to Fp in
the zero modes’ Fock space depicted on Figure 1 above.

Proposition 5.3 The p-dimensional B4 modules Sp have a structure dual to
that of the Ũq modules Fp described in Proposition 5.2, in the following sense.
The representation spaces Sp are irreducible
(a) for 1 ≤ p ≤ h , as well as
(b) for p = Nh , N ≥ 2 .
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(c) For 1 ≤ p ≤ h− 1 , N = 1, 2, . . . the module SNh+p is indecomposable, with
structure given by the exact sequence

0 → SN,h−p → SNh+p → S̃N+1,p → 0 . (5.106) shex-eqS

Here the N(h− p)-dimensional invariant subspace

SN,h−p = ⊕N−1
n=0 Span { f (Nh+p)

µ }(n+1)h−1
µ=nh+p (5.107) Sh-p

and the corresponding (N+1)p-dimensional quotient S̃N+1,p are both irreducible
under the action of the braid group.

Proof Only the case (c) needs some work. The fact that the subspace SN,h−p ⊂
SNh+p (

Sh-p
5.107) is B4 invariant follows from the observation that the entries of

the (Nh+ p)-dimensional matrices (
B1B2
5.105) satisfy

(B1)mh+α
nh+β ∼

[
mh+ α

nh+ β

]
∼
[
α

β

](m
n

)
,

(B2)mh+α
nh+β ∼

[
(N −m)h+ p− α− 1

(N − n− 1)h+ h+ p− β − 1

]
∼

∼
[

p− α− 1
h+ p− β − 1

](
N −m

N − n− 1

)
, (5.108)

cf. (
q-bin1
5.93), and hence vanish for 0 ≤ α ≤ p − 1 , p ≤ β ≤ h − 1 and 0 ≤ m ≤

N , 0 ≤ n ≤ N − 1 (since β > α ≥ 0 and h + p − β − 1 > p − α − 1 ≥ 0 ,
see (

Gbinom
5.92)). An inspection of the same expressions (

B=0
5.108) for 0 ≤ β ≤ p − 1

allows to conclude that the subspace SN,h−p has no B4 invariant complement
in SNh+p which is thus indeed indecomposable. It is also straightforward to
verify that the quotient space

S̃N+1,p = SNh+p /SN,h−p (5.109) factS

carries another IR of B4 . The ”duality” of the indecomposable representations
VNh+p (of Ũq ) and SNh+p (of B4 ) is summed up by the observation that
each of them contains, in the GR sense, two irreducible components of the
same dimensions, but the arrows of the exact sequences (

shex-eqN
5.95) and (

shex-eqS
5.106) are

reversed.

The B4 invariance and irreducibility of the subspaces Span { f ((N+1)h−1)
(n+1)h−1 }N−1

n=0

(or SN,1 ⊂ S(N+1)h−1 , in our notation (
Sh-p
5.107)) has been noted by A. Nichols in

N1
[204]24. Their dimension is equal to N ; this fact is nicely visualized by revers-
ing the arrows on Figure 1 where these sets correspond to the upper tips of the
yellow and blue (or white and black, in BW print) squares. They possess an in-
ternal su(2) structure where the action of the su(2) generators e and f is given
by that of E(h) (

Eh1
5.99) and F (h) (

Fh1
5.100), respectively, under the identification

f
((N+1)h−1)
(n+1)h−1 ≡ vNn := |(N + 1)h− 1, (n+ 1)h− 1〉 , n = 0, . . . , N − 1 ,

e vNn = (−1)(N−n+1)h−1(N − n− 1) vNn+1 , f vNn = (−1)nh−1n vNn−1 ,

h := [e, f ] ,
(
h− (−1)Nh(2n−N + 1)

)
vNn = 0 . (5.110)

The corresponding N×N reduced braid matrices
(

(Bredi )nm := (Bi)
(n+1)h−1
(m+1)h−1

)
have remarkable properties

N1
[204]. As one can easily deduce from (

B=0
5.108) and

(
q-bin1
5.93), they are proportional to matrices with integer entries; moreover, the

corresponding monodromy matrices B2
i , i = 1, 2 are equal (up to a sign, for N

even and h odd) to the unit one:

(Bred1 )nm = q
1
2 (N+1)2h2

(−1)N+1+(n+m)h+n
( n
m

)
,

Bred2 = F redBred1 F red , (F red)nm = δnN−1−m , n,m = 0, . . . , N − 1 ,

(Bredi )2 = (−1)(N+1)h 1IN , i = 1, 2 . (5.111)
24The scope of the paper

N1
[204] is actually broader, including also fractional levels.
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Explicitly, the first few rows of Bred1 are given by

(−1)N+1q−
1
2 (N+1)2h2

Bred1 =


1 0 0 0 . . .

(−1)h+1 −1 0 0 . . .
1 (−1)h2 1 0 . . .

(−1)h+1 −3 (−1)h+13 −1 . . .
. . . . . . . . . . . . . . .


(5.112) B1red

(for N ≤ 3 , just take the relevant upper left corner submatrix).
Thus, for all natural N there exist N -plets of non-unitary, local chiral pri-

mary fields φ(n)
(N+1)h−1(z) of su(2) ”spin” j = N−1

2 , isospin I = N+1
2 h− 1 and

conformal dimension ∆(N+1)h−1 = ((N+1)h−1)2−1
4h = I(I+1)

h = (N+1)2

4 h − N+1
2

(all these numbers are integers for N odd). The presence of additional su(2)
quantum numbers in non-unitary extended WZNW (and minimal) models has
been confirmed by other methods, see e.g.

N2
[205]. Such models are examples of

logarithmic conformal field theory (LCFT) characterized by Jordan block (in-
decomposable, and hence, non-hermitean) structure of the dilation operator L0Gu
[144]. The latter fact explains the possible appearance of logarithms in con-
formal blocks noticed first in

RozS
[223]. For the recent status of LCFT, see e.g.

Gu13, CR13, GJRSV13
[145, 61, 124].

The singlet field φ(0)
2h−1(z) (the conformal block of which spans the 1-dimen-

sional subspace S1,1 ⊂ S2h−1 ) has isospin I and conformal dimension both
equal to h− 1 = k + 1 ,

2I + 1 = 2h− 1 ⇒ I = h− 1 ,

∆2h−1 =
(2h− 1)2 − 1

4h

(
≡ I(I + 1)

h

)
= h− 1 (5.113)

and hence provides a natural candidate for a local extension of the chiral (cur-
rent) algebra. As the conformal dimensions ∆2Nh−p and ∆p are integer spaced,

∆2Nh−p =
(2Nh− p)2 − 1

4h
= N(Nh− p) + ∆p , 1 ≤ p ≤ h− 1 , (5.114)

it is the ”mirror” counterpart of the unit operator (p = 1) under the duality
p ↔ 2h− p .

The locality of φ(0)
2h−1(z) implies that the corresponding conformal block

w
(2h−1)
h−1 = w

(2h−1)
h−1 (ζ, z) (

xi
5.101) is a rational function of zij . This means, in

turn, that f (2h−1)
h−1 (ξ, η) is a polynomial in η of order not exceeding 4∆2h−1MST

[199] such that

f
(2h−1)
h−1 (1− ξ, 1− η) = f

(2h−1)
h−1 (ξ, η) = ξ2(h−1)η4(h−1)f

(2h−1)
h−1 (

1
ξ
,

1
η

) . (5.115) rat

The corresponding solution of Eq.(
KZf
5.102) has been found in

HP
[155]:

f
(2h−1)
h−1 (ξ, η) = (η(1− η))h−1 ph−1(ξ, η) , ph−1(ξ, η) =

2(h−1)∑
m=0

h−1∑
n=0

Ch−1
mn ξ

mηn ,

CImn = (−1)I+m+n

(
I

m+ n− I

)(
m+ n

n

)(
3I −m− n
I − n

)
. (5.116)

A characteristic property of f (2h−1)
h−1 is that it belongs to the regular basis of

S2h−1 . Writing the braid invariance requirement in the form

(bi − 1) f (2h−1)
inv = 0 , i = 1, 2 , f

(2h−1)
inv = sµf (2h−1)

µ , λ, µ = 1, . . . , 2h− 1 ,
(5.117) w-br-inv

we verify that the common eigenvector problem has the predicted solution,
f

(2h−1)
inv = f

(2h−1)
h−1 :

(B(2h−1)
i )λµs

µ = sλ , i = 1, 2 for sµ = δµh−1 . (5.118)
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Note that, as the matrices B(p)
1 and B(p)

2 (
B1B2
5.105) do not commute, they possess

common invariant eigenvectors only in special cases.

Remark 5.2 All polynomial solutions of the KZ equation (
KZf
5.102) for integrable

weights 0 ≤ p ≤ h − 1 giving rise to local extensions of chiral current algebra
ŝu(2)h−2 have been found in

MST
[199]. The list corresponds to the D2`+2 series in

the ADE classification of modular invariant partition functions
CIZ1
[54],

D2`+2 : h = 4`+ 2 , p = 4`+ 1 = h− 1 ( ∆4`+1 = ` ) ,

f
(4`+1)
inv = f

(4`+1)
inv (ξ, η) = (ξ − η)4` , ` ∈ N (5.119)

and a few exceptional cases occurring for

E6 : h = 12 , p = 7 ( ∆7 = 1 ) ,

f
(7)
inv = f

(7)
inv(ξ, η) = (ξ − η)2

(
(ξ2 − η)2 − 4 ξη(1− ξ)2

)
(5.120)

and

E8 : h = 30 , p = 11 , 19 , 29 ( ∆11 = 1 , ∆19 = 3 , ∆29 = 7 ) .

It can be easily verified
HP
[155] that the regular basis components of (

Deven-inv
5.119) are

D2`+2 : f
(4`+1)
inv = sµf (4`+1)

µ , sµ =
(−1)µ

[µ+ 1]
, µ = 0, . . . , 4` ; (5.121) Deven1

to prove that (B(4`+1)
i )λµs

µ = sλ , i = 1, 2 (for h = 4`+ 2), one makes use of a
well known q-binomial identity25 written in the form

4∑̀
µ=0

(−1)µqλ(µ+1)

[
λ+ 1
µ+ 1

]
= 1 for 0 ≤ λ ≤ 4` , q = e−i

π
4`+2 . (5.122) Deven2

Solving the common eigenvector problem in the E6 case (h = 12 , p = 7 , cf.
(
E6
5.120)), one gets f (7)

inv = sµf
(7)
µ with

E6 : s0 = s6 = 1 , s1 = s5 = − 1
[2]

, s2 = s4 =
1
[3]

, s3 = − 3
[3][4]

. (5.123)

6 From chiral to 2D WZNW model

6.1 The right chiral sector

It is usually assumed that, instead of solving anew the quantization problem, the
exchange relations for the right sector quantities can be recovered in a straight-
forward way from those for the left sector. This is true in general, yet the
change of chirality needs some care. Writing the quantum analog of (

LR
1.1) in the

form g(x , x̄) = g(x) ḡ(x̄) for x = x+ , x̄ = x− and following the reasoning for
the classical case considered in Section 3.7.4, one concludes that the exchange
relations for ḡ(x̄) are obtained from the left sector ones by just inverting the
order of terms in matrix products.26 One can then verify directly that their
quasi-classical expansions match the corresponding PB brackets. We shall dis-
play in what follows all the relevant right sector exchange relations in terms of
the bar fields. Our guiding principle in the choice of quantization conventions
is the implementation of local commutativity and monodromy invariance of the
2D field and of the quantum group covariance of its chiral components.

25We have in mind the one obtained by setting z = −1 in the equality

λ∏
m=0

(1 + q2mz) =

λ+1∑
µ=0

qλµ
[
λ+ 1

µ

]
zµ for λ ≥ 0

which is elementary to derive by induction in λ (see 1.3.1(c) and 1.3.4 in
L
[192]).

26The heuristic derivation uses the fact that the constant R-matrix (
R
4.53) evaluated at the

inverse deformation parameter (
height-h
4.58), q → q−1 equals the inverse matrix, R−1

12 (equivalently,

R̂12 → R̂−1
21 ). The exchange relations for ḡ(x̄) contain however the original R-matrix (at the

original value of q).
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6.1.1 Constant R-matrix exchange relations for the right sector

Starting with the left sector equalities (
ggR
4.33), (

Rx
4.34) and following the procedure

described above, we obtain the exchange relations

g1(x1) g2(x2) = g2(x2) g1(x1) (R12 θ(x12) +R−1
21 θ(x21)) ⇒

ḡ2(x̄2) ḡ1(x̄1) = (R12 θ(x̄12) +R−1
21 θ(x̄21)) ḡ1(x̄1) ḡ2(x̄2) ⇔

ḡ1(x̄1) ḡ2(x̄2) = (R−1
12 θ(x̄12) +R21 θ(x̄21)) ḡ2(x̄2) ḡ1(x̄1) , (6.1)

where

xi = x+
i , x̄i = x−i , i = 1, 2 , −2π < x12, x̄12 < 2π . (6.2) xxbar

The next step is to derive the exchange relations including the general mon-
odromy matrix M̄ defined by

ḡ(x̄+ 2π) = M̄ ḡ(x̄) ( M̄ = M−1
R ) . (6.3) defbarM

The consistency of the last exchange relation in (
ggbarLR
6.1) for 0 < x̄12 < 2π requires

ḡ1(x̄1) ḡ2(x̄2 + 2π) = R21 ḡ2(x̄2 + 2π) ḡ1(x̄1) , i.e.
ḡ1(x̄1) M̄2 ḡ2(x̄2) = R21 M̄2 ḡ2(x̄2) ḡ1(x̄1) = R21 M̄2R12 ḡ1(x̄1) ḡ2(x̄2)
⇒ R+

12 ḡ1(x̄) M̄2 = M̄2R
−
12 ḡ1(x̄) (R−12 = R12 , R

+
12 = R−1

21 ) . (6.4)

The latter exchange relation can be derived alternatively from the one for the
left sector, (

Mgq
4.69) by using again the procedure described in the beginning of

this subsection. From (
Mexch
4.71) one obtains in a similar way the reflection equation

for the bar sector,

M1R12M2R21 = R12M2R21M1 ⇒ M̄1R21 M̄2R12 = R21 M̄2R12 M̄1 .
(6.5) Mbarexch

The same rule suggests that the factorization of M̄ into Gauss components (the
right sector counterpart of (

M+-q
4.66)) reads

M̄ = q
1
n−n M̄−1

− M̄+ , diag M̄+ = diag M̄−1
− ( M̄± = M−1

R± ) . (6.6) M+-qbar

Before discussing the ”quantum coefficient” in the definition of M̄ , we shall first
note that the (homogeneous – and hence, normalization independent) exchange
relations for M± (

Mpmq
4.68) imply the same relations for M̄± ,

R12M±2M±1 = M±1M±2R12 , R12M+2M−1 = M−1M+2R12 ⇒
R12M̄±2M̄±1 = M̄±1M̄±2R12 , R12M̄+2M̄−1 = M̄−1M̄+2R12 (6.7)

and thus provide, by the FRT construction, another (identical) copy of the
QUEA for the left sector. Further, from (

Mg
4.67) one obtains

g1(x)R∓12M±2 = M±2 g1(x) ⇒ M̄±2R
∓
12 ḡ1(x̄) = ḡ1(x̄) M̄±2 . (6.8) Mgbar

By taking (
M+-qbar
6.6) into account, (

Mbarexch
6.5) follows from (

Mpmq-bar
6.7) and (

Mbargq
6.4), from (

Mgbar
6.8).

We shall now argue that the overall coefficient q
1
n−n in (

M+-qbar
6.6) (the inverse

to the factor e−2πi∆̄ in (
gzM
4.64)) is consistent with the QUEA invariance of the

”bra” vacuum vector (
Uqlvac
4.236) implying27

〈0 | (M̄±)αβ = ε((M̄±)αβ) 〈0 |= δαβ 〈0 | . (6.9) lvac-inv

To this end we multiply the bar sector equality in Eq.(
gzM
4.64) by z̄2∆̄ and take

into account the definition of ”bra” (or ”out”) states

( 〈∆̄ | = ) lim
z̄→∞

z̄2∆̄ 〈0 | ḡ(z̄) ≡ e−4πi∆̄ lim
z̄→∞

z̄2∆̄ 〈0 | ḡ(e−2πiz̄) , (6.10) def-bra-out

see e.g. Eq.(4.70c) in
FSoT
[122] (or Eqs. (6.4), (6.5) in

DFMS
[63])).

27Recall that, by (
Mpmq-bar
6.7), the diagonal elements of (M± and) M̄± are expressed in terms of

Cartan generators while the off-diagonal ones contain step operators of the same type, either
raising or lowering; see Section 4.3 for the FRT construction of the QUEA.
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Following a line of reasoning similar to the one in the beginning of Section 4.5,
we shall further assume that the quantized chiral field ḡ(z̄) splits as in (

guaq
4.163)

and that the right chiral state space is again a direct sum of subspaces created
from the vacuum by identical homogeneous polynomials in the corresponding
zero modes āj = (āαj ) and generalized CVO ūj = (ūjB(z̄)) , respectively:

ḡαB(z̄) = āαj ⊗ ū
j
B(z̄) , H̄ =

⊕
p̄

F̄p̄ ⊗ H̄p̄ . (6.11) guaqbar

The monodromy matrix of the field ū(z̄) = (ūjB(z̄)) is, by definition, diagonal,

e−2πiL̄0 ūjB(z̄) e2πiL̄0 = e−2πi∆̄ ūjB(e−2πi z̄) = ūiB(z̄)(M̄p̄)
j
i . (6.12) uuMpqbar

On the space H̄ (
guaq
4.163), M̄p̄ is ”inherited” by the zero modes, in the sense that

āαj ⊗ ūiB(z̄)(M̄p̄)
j
i = āαj (M̄p̄)

j
i ⊗ ū

i
B(z̄) = M̄α

β ā
β
i ⊗ ū

i
B(z̄) . (6.13) inhMpbar

This happens since ūjB(z̄) and āαj satisfy identical exchange relations with the
commuting operators p̄i , i = 1, . . . , n (where

∑n
i=1 p̄i = 0 ⇒

∏n
i=1 q

p̄i = 1),

p̄i ū
j
B(z̄) = ūjB(z̄) (p̄i + δji −

1
n

) , p̄i ā
α
j = āαj (p̄i + δij −

1
n

) ⇒

qp̄i` ūjB(z̄) = ūjB(z̄) qp̄i`+δ
j
i−δ

j
` , qp̄i` āαj = āαj q

p̄i`+δij−δ`j (6.14)

and hence, both F̄p̄ and H̄p̄ are eigenspaces of p̄i corresponding to the same
common eigenvalues. We set, accordingly

M̄ ā = ā M̄p̄ , (M̄p̄)
j
i = q2p̄i+1− 1

n δji , qp̄i |0〉 = q
n+1

2 −i |0〉 (6.15) barMMp

and assume that the field ūjB(z̄) and the zero modes āαj act on the (bra or ket)
vacuum as their left sector counterparts do, i.e.

ūiB(z̄) |0〉 = 0 = āαi |0〉 for n ≥ i ≥ 2 , resp.
〈0 | ūiB(z̄) = 0 = 〈0 | āαi for 1 ≤ i ≤ n− 1 . (6.16)

Applying (
uuMpqbar
6.12) to the vacuum we see that its consistency is guaranteed by

(
barMMp
6.15) (and in particular, by the ”quantum normalization factor” of M̄p̄) since

e−2πi∆̄ |0〉 ≡ qn− 1
n |0〉 = q2p̄1+1− 1

n |0〉 . (6.17) Mpbar-cons

It is easy to verify that if iµ 6= iν for µ 6= ν , then
∏n
µ=1 q

−2piµ = 1I and hence,

āα1
i1
q2p̄i1+1− 1

n āα2
i2
q2p̄i2+1− 1

n . . . ainαn q
2p̄in+1− 1

n = āα1
i1
āα2
i2
. . . āαnin (6.18) qsumbar

so that

(M̄ā)α1
i1
. . . (M̄ā)αnin ≡ (ā M̄p̄)α1

i1
. . . (ā M̄p̄)αnin = āα1

i1
. . . āαnin . (6.19) qbarsum

The exchange relations of ā with M̄± are identical to these of ḡ (
Mgbar
6.8):

M̄±2R
∓
12 ā1 = ā1 M̄±2 . (6.20) Mabar

6.1.2 Dynamical R-matrix exchange relations for the right sector

The comparison between the left and right diagonal monodromy matrices, (
Mpq
4.172)

and (
barMMp
6.15) (for ā = a−1

R and p̄ = pR) indicates that while qR = q−1
L , we should

assume, when passing from the left to the right sector, that qpL → qpR ≡ qp̄ .
The origin of this rule can be traced back to the p-dependent symplectic forms
for the Bloch waves and the zero modes, (

OB
3.6) and (

Oq
3.7) with Mp as defined in

(
uuMp
3.3), which change sign when we only change the sign of k but not that of pk .

28

Another important feature of the left-right correspondence (the classical
counterpart of which has been mentioned in Remark 3.7) is that the left and

28This observation is confirmed after performing a careful examination of both the extended
and unextended forms, including ωex

q (p) (
oexqp
3.82) and ωq(p) (

unextoq
3.85), with fj`(p) given by (

f01
3.87).
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right dynamical R-matrices need not coincide, as functions of the respective
variables p and p̄ , in the presence of the chiral zero modes. One can take
advantage of this fact to make the bar sector zero modes’ exchange relations
identical to the left sector ones (

ExRaa1
4.95) by setting the ”bar” dynamical R-matrix

ˆ̄R12(p̄) equal to the transposed matrix (
RRp2
4.107):

R12 ā1 ā2 = ā2 ā1 R̄12(p̄) ⇔ R̂12 ā1 ā2 = ā1 ā2
ˆ̄R12(p̄) , ˆ̄R12(p̄) = tR̂12(p̄) .

(6.21) ExRaabar

To show that (
ExRaa1
4.95) and (

ExRaabar
6.21) actually coincide ( for p↔ p̄ ), one uses the sym-

metry of the constant braid operator R̂ = PR corresponding to (
R
4.53), as well

the property (
Rpvv
4.105) of the dynamical one (which is in general not symmetric)

together with the exchange relations (
barMp
6.14) between āαj and qp̄i .

We shall now describe how the exchange relations (
ExRaabar
6.21) can be obtained.

Let R̂α12(p) be an arbitrary solution of the dynamical YBE (
QDYBE
4.99) from the set

(
RRp2
4.107) (for a certain choice of αij(pij) satisfying (

canRp
4.106)). One first shows that,

following the rules above describing the left-right correspondence of p-dependent
quantities, one derives

(R̂α)−1
21 (pR) aR1 aR2 = aR1 aR2 R̂

−1
21 ⇔ R̂12 ā1 ā2 = ā1 ā2 R̂

α
12(p̄) . (6.22) exRpR

Then it remains to just note that transposing the matrix (
RRp2
4.107) (having in

mind our preferred one for which αij(pij) = 1) is equivalent to choosing

αij(pij) = α(pij) =
[pij + 1]
[pij − 1]

. (6.23) a-a

The quasi-classical expansion

α(pij)±1 =
[pij ± 1]
[pij ∓ 1]

=
1± tan π

k cot(πk pij)
1∓ tan π

k cot(πk pij)
= 1± 2

π

k
cot(

π

k
pij) +O(

1
k2

)

(6.24) a-b

shows that this choice of αij(pij) changes the sign of the diagonal terms in the
classical dynamical r-matrix (

dyn-r-matr
3.112), (

f01
3.87) (for β(p) = 0 and β(p) = 2 cot p

Eq.(
f-alpha
4.109) gives fj`(p) = ±i πk cot

(
π
k pj`

)
, respectively).

Remark 6.1 The unique symmetric matrix in the family (
RRp2
4.107) is not rational,

the corresponding αij(pij) being given by the square root of (
a-a
6.23).29 This

choice has been used, for n = 2 , in
BF
[49] (see Eq.(2.22) therein) in connection

with the Uq(s`(2)) 6j-symbol interpretation of the entries of R̂(p)
F1, AF, BBB
[80, 3, 23].

As √
[pij + 1]
[pij − 1]

= 1 +
π

k
β(
π

k
pij) +O(

1
k2

) for β(p) = cot p , (6.25) sqrt-a

it follows from (
f01
3.87) that the respective r12(p) (

dyn-r-matr
3.112) has no diagonal terms,

i.e. fj`(p) = 0 .
We shall assume in what follows that (

ExRaabar
6.21) holds which implies that āαi

satisfy exchange relations identical to those for aiα , (
aa2
4.187).

The exchange relations of the ”bar” chiral fields ū(x̄) corresponding to (
ExRaabar
6.21)

(and reproducing together with them (
ggbarLR
6.1)) are

ū1(x̄1) ū2(x̄2) = (R̄−1
12 (p̄) θ(x̄12) + R̄21(p̄) θ(x̄21)) ū2(x̄2) ū1(x̄1) . (6.26) uubarLR

If ū(x̄) is the ”Bloch wave (or CVO) part” of the respective chiral field with
general monodromy matrix ḡ(x̄) (i.e., if it is accompanied by the bar zero modes’
matrix), the dynamical R-matrix R̄12(p̄) in (

uubarLR
6.26) should be the same as in

(
ExRaabar
6.21).

If however we only consider (left and right sector) fields with diagonal mon-
odromy, then R̄12(p̄) should match the one for the left sector, (

uuRp
4.260) in order

the field uAj (x)⊗ ūjB(x̄) to be local (in this case p = p̄).30

29As already mentioned (in the comments after (
aa2
4.187)), we prefer to consider our algebra

over the field of rational functions of qpj .
30As discussed in Section 4.5.3, this could be only sensible if there was a way to truncate the

common spectrum of (shifted) weights to integrable dominant ones (pi i+1 ≥ 1 , p1n ≤ h−1).
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6.1.3 Right sector zero modes and Fock space for n = 2

We shall display here the right sector zero modes’ algebra and its Fock repre-
sentation for n = 2 .

The quantum group transformation properties of the bar zero modes (cf.
(
AdXa1
5.8) for their left sector counterparts)follow from the exchange relations (

Mabar
6.20)

which are equivalent to S(M̄±2) ā1 M̄±2 = R∓12 ā1 , or

k̄ ā1
i k̄
−1 = q−

1
2 ā1
i , k̄ ā2

i k̄
−1 = q

1
2 ā2
i ,

q Ē ā1
i = ā1

i Ē − ā2
i , Ē ā2

i = q ā2
i Ē ,

[F̄ , ā1
i ] = 0 , [F̄ , ā2

i ] = −K̄−1ā1
i ⇔

Ad−1
X̄

(āαi ) ≡
∑
(X̄)

S(X̄1) āαi X̄2 = (X̄f )ασ ā
σ
i , X̄ ∈ Uq . (6.27)

The 2 × 2 matrices X̄f ( = Ēf , F̄ f , k̄f ) in (
AdXa-bar
6.27) coincide with those given in

(
bUf
5.37), and the relevant coproducts are displayed in (

coalg2
5.19), (

dk2
5.30).

Remark 6.2 The action of X̄ on āαi is the same as that of σ(X) on aiα where
σ is the Uq-algebraic homomorphism

σ(X) = S(X ′) , i.e. σ(E) = −q−1F , σ(F ) = −qE , σ(k) = k−1 ,
(6.28) sig

cf. (
EFH
5.15) (supplemented by k′ = k) and (

coalg2
5.19), (

dk2
5.30). From here one can find

the action of the bar generators on a Fock basis analogous to (
base2
5.9):

| p̄, m̄〉 := (ā1
1)m̄(ā2

1)p̄−1−m̄ |0〉 ,
(q ˆ̄p − qp̄) | p̄, m̄〉 = 0 , p̄ = p̄1 − p̄2 ; (K̄ − qp̄−2m̄−1) | p̄, m̄〉 = 0 , (6.29)
Ē | p̄, m̄〉 = −q−1[m̄] | p̄, m̄− 1〉 , F̄ | p̄, m̄〉 = −q[p̄− m̄− 1] | p̄, m̄+ 1〉 .

Defining the quantum determinant of the bar zero modes’ matrix for n = 2 as

det (ā) :=
1

[2]
εαβ ā

α
i ā

β
j ε
ij = [ˆ̄p] ( ε21 = 1 = −ε12 ) , (6.30) qdet-abar

it follows from the analog of (
detc-n2
5.4) (cf. Proposition 4.1) that

āαi ā
β
j ε
ij = εαβ [ ˆ̄p] , εαβ ā

α
j ā

β
i =

{
[ ˆ̄pij + 1] for i 6= j
0 for i = j

. (6.31) barPr4.1

The zero mode parts of Eqs. (
bara-onvac
6.16) and (

barMp
6.14) for n = 2 read

āα2 |0〉 = 0 , 〈0 | āα1 = 0 ; q
ˆ̄p āα1 = āα1 q

ˆ̄p+1 , q
ˆ̄p āα2 = āα2 q

ˆ̄p−1 , (6.32) bara-vac

respectively. We further define the transposition as

(qp̄)′ = qp̄ , (āαi )′ = ˜̄aiα := āβj ε
jiεβα , i.e., (6.33)

(ā1
1)′ = q−

1
2 ā2

2 , (ā2
1)′ = −q 1

2 ā1
2 , (ā1

2)′ = −q− 1
2 ā2

1 , (ā2
2)′ = q

1
2 ā1

1

and, comparing (
transp-bar
6.33) with (

transp2
5.14), deduce that the inner products of vectors

(
basis-bar
6.29) are obtained from (

bilin2
5.16) by complex conjugation, i.e.

〈p̄′, m̄′|p̄, m̄〉 = δp̄p̄′ δm̄m̄′ q
−m̄(m̄+1−p̄)[m̄]![p̄− m̄− 1]! . (6.34) bilin2bar

Eqs. (
transp-bar
6.33) and (

barPr4.1
6.31) imply

āαi ˜̄aiβ = δαβ [ ˆ̄p] ⇒ ā M̄p̄ ˜̄a = M̄ [ ˆ̄p] , where M̄p̄ = q
1
2

(
q ˆ̄p 0
0 q− ˆ̄p

)
(6.35) aMpa-bar

(cf. (
barMMp
6.15)). Presenting further M in the form (

calcMbar2
6.37) and using C̄ = q ˆ̄p + q− ˆ̄p

allows one to express the quantum group generators as bilinear combinations of
the bar zero modes (cf. (

EFH
5.15) for the analogous left sector relations):

F̄ = q
1
2 ā1

1 ā
1
2 , qK̄−1Ē = −q− 1

2 ā2
1 ā

2
2 = F̄ ′ ,

K̄−1 = q
1
2 ā2

2ā
1
1 − q−

1
2 ā1

1ā
2
2 = q

1
2 ā2

1ā
1
2 − q−

1
2 ā1

2ā
2
1 = (K̄−1)′ . (6.36)
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Using the (identical) bar analogs of (
apmn2
5.12), it is a simple exercise to show that

Eqs. (
EFHbar
6.36) reproduce (

basis-bar
6.29).

Recall that the left sector monodromy matrix M (
calcM2
5.34) is related to the

universal oneM (
Mmatr
5.40) by (

piidM
5.44). We shall conclude this section with a remark

on a similar relation for M̄ .
As the exchange relations (

Mpmq-bar
6.7) for the Gauss components of the left and

right monodromy matrices coincide, we can parametrize them in the same way
as we did for the left sector, using the FRT construction described in Section
4.3. The right sector monodromy matrix is thus obtained from (

M+-qbar
6.6):

q
3
2 M̄ = M̄−1

− M̄+ =
(

k̄−1 0
−λ Ēk̄−1 k̄

)(
k̄−1 −λ F̄ k̄

0 k̄

)
=

=
(

K̄−1 −qλ F̄
−λ ĒK̄−1 qλ2ĒF̄ + K̄

)
. (6.37)

By a calculation similar to (
calcM
5.42) one shows that M̄ (

calcMbar2
6.37) is proportional to

(id⊗ πf )M = (6.38)

=
1

2h

2h−1∑
m,n=0

(
q(m+1)nK̄m −λ qm(n−1)+1F̄ K̄m

−λ q(m+1)nĒK̄m (q(m−1)n + λ2qm(n−1)+1ĒF̄ ) K̄m

)
= q

3
2 M̄

which implies that the right sector bar monodromy realizes the alternative ver-
sion of the Drinfeld map, cf. Remark B.1 in Appendix B.3. In accord with this,
applying (

canCh-bar
B.44) for the defining representation πf reproduces (

Tr1
5.53),

Tr (K̄f (id⊗ πf )M) = Tr
{(

q 0
0 q−1

) (
K̄−1 −qλ F̄

−λ ĒK̄−1 qλ2ĒF̄ + K̄

)}
=

= λ2ĒF̄ + q−1K̄ + qK̄−1 = C̄ ∈ Z̄ (6.39)

(C̄ is the Casimir (
C
5.22) viewed as a central element of the right copy of Uq).

6.2 Back to the 2D field

6.2.1 Local commutativity and quantum group invariance

As the left and right (or, bar) variables commute, the local commutativity of
the 2D quantum field g(x, x̄) = g(x) ḡ(x̄) ,

g1(x1, x̄1) g2(x2, x̄2) = g2(x2, x̄2) g1(x1, x̄1) for x12 x̄12 > 0 (6.40) qloc-q

follows from Eq.(
ggbarLR
6.1) (the quantum counterpart of (

gloc
3.227)).

Further, Eqs. (
Mgbar
6.8) imply that the entries of the 2D field commute with

those of M̄±M± ,

M̄±2M±2 g1(x, x̄) = M̄±2 (g1(x)R∓12M±2) ḡ1(x̄) =
= g1(x) (M̄±2R

∓
12 ḡ1(x̄))M±2 = g1(x, x̄) M̄±2M±2 (6.41)

(we have used the mutual commutativity of operators in different sectors31); see
(
Mpm2dg
3.228) for a classical analog of this relation. Having in mind a realization of

the 2D operator theory in the tensor product of the chiral state spaces H⊗H̄ ,
we can rewrite (

2Dinv
6.41) as(

(M±)σβ ⊗ (M̄±)ασ
)
gAρ(x)⊗ ḡρB(x̄) = gAρ(x)⊗ ḡρB(x̄)

(
(M±)σβ ⊗ (M̄±)ασ

)
(6.42) 2Dinv-ind

and, as M± and M̄± satisfy identical exchange relations, interpret their (ma-
trix) product as the opposite coproduct in the natural coalgebra structure (

Hopf-FRT
4.75).

The above property reflects the ”quantum group invariance” of the g(x, x̄) .
In order to discuss the periodicity of the 2D field (or, which amounts to the

same, its monodromy invariance), we have to be able to impose the constraint of
31As [(M±)αβ , (M̄±)γδ] = 0 , only the matrix multiplication is important here, not the order

of the left and the right matrix elements: (M̄±M±)αβ ≡ (M̄±)ασ(M±)σβ = (M±)σβ(M̄±)ασ .
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equal left and right monodromy (
constrC
3.224) at the quantum level. In gauge theories

this procedure corresponds to finding an appropriate ”physical” subspace of the
extended space of states which, in the case of general monodromies, is of the
form

H⊗ H̄ = ⊕p,p̄Hp ⊗Fp ⊗ F̄p̄ ⊗ H̄p̄ (6.43) HHbar

(see (
guaq
4.163), (

space
4.166), (

guaqbar
6.11)). We shall study this problem in what follows by

exploring in detail the ”2D zero modes’ kernel” Qij = aiα ⊗ āαj (acting on the
spaces Fp⊗F̄p̄) which is responsible for the ”gauge” quantum group symmetry.
We shall only notice here that, since the exchange relations of the chiral zero
modes with M± and M̄± (

aMpm
4.155), (

Mabar
6.20) are the same as those of the chiral

fields (
Mg
4.67), (

Mgbar
6.8), a relation similar to (

2Dinv-ind
6.42) holds for Qij as well:

[ (M±)σβ ⊗ (M̄±)ασ , a
i
ρ ⊗ ā

ρ
j ] = 0 , or [ ∆′(M±) , Q ] = 0 . (6.44) Qinv

It is also easy to verify that for p = p̄ the left and right monodromies cancel so
that uAB(z, z̄) := uAj (z)⊗ ūjB(z̄) is single valued:

e2πi(∆−∆̄)uAB(e2πiz, e−2πiz̄) v = (Mp)`j u
A
` (z)⊗ ūmB (z̄)(M̄p̄)jm v =

= uAj (z) q−2pj−1+ 1
n ⊗ ūjB(z̄) q2pj+1− 1

n v = uAB(z, z̄) v , ∀ v ∈ Hp ⊗ H̄p . (6.45)

(We have used (
uuMpq
4.164), (

Mpq
4.172), (

ExRup
4.178), (

uuMpqbar
6.12) and (

barMMp
6.15).)

Hence, deducing the diagonality (p = p̄) and the truncation of p to integrable
weights from the properties of Qij , we would have a bridge from the canonically
quantized to the unitary WZNW model. We shall first show how this idea can
be realized in the n = 2 case, and then try to extend the results to general n .

6.2.2 The physical factor space of the unitary 2D model for n = 2

We shall construct in the present section, for n = 2 , a truncated (finite di-
mensional) Fock representation of the Uq-invariant bilinear combinations of left
and right zero modes and obtain, as a result, a description of the unitary 2D
WZNW model as a rational CFT in a gauge-field-theory-like setting.

Before discussing the action of the WZNW field g(z, z̄) on the extended state
space (

HHbar
6.43) we shall tackle the intermediate problem concerning the 2D zero

modes acting on the tensor product of chiral Fock spaces F ⊗F̄ = ⊕p,p̄ Fp⊗F̄p̄FHT2, FHT3, Goslar, DT, FH1
[116, 117, 74, 75, 112]. To this end, as mentioned above, we have to introduce
the matrix of operators

Q = (Qij) =
(
Q1

1 Q1
2

Q2
1 Q2

2

)
≡
(
A B
C D

)
, Qij = aiα ⊗ āαj . (6.46) Qmatr

It is convenient to write down the left and right sector zero modes’ exchange
relations in the form (

detc-n2
5.4), (

altEx
5.5) which only involves the constant (but not

the dynamical) R-matrix and also reflects the determinant conditions det(a) =
[p̂] , det(ā) = [ˆ̄p] ,

q
1
2 aiρa

j
σR̂

ρσ
αβ = ajαa

i
β − q1−p̂ijεαβ , ajαa

i
β ε

αβ = [p̂ij + 1] ,

q
1
2 R̂ρσαβ ā

α
i ā

β
j = āρj ā

σ
i − q1− ˆ̄pijερσ , εαβ ā

α
j ā

β
i = [ˆ̄pij + 1] ( i 6= j ) , (6.47)

q
1
2 aiρa

i
σR̂

ρσ
αβ = aiαa

i
β , q

1
2 R̂ρσαβ ā

α
i ā

β
i = āρi ā

σ
i ⇔ aiρa

i
σε
ρσ = 0 = εαβ ā

α
i ā

β
i

(here, as usual, p̂ = p̂12 , ˆ̄p = ˆ̄p12). With the help of (
altExbar
6.47) we are able to show

that

BA = (a1
ρ ⊗ ā

ρ
2) (a1

σ ⊗ āσ1 ) = a1
ρa

1
σ ⊗ ā

ρ
2 ā

σ
1 = a1

ρa
1
σ ⊗ (q

1
2 R̂ρσαβ ā

α
1 ā

β
2 + q1− ˆ̄pερσ) =

= a1
αa

1
β ⊗ āα1 ā

β
2 = (a1

α ⊗ āα1 ) (a1
β ⊗ ā

β
2 ) = AB (6.48)

and similarly, CA = AC , BD = DB , CD = DC , i.e. the off-diagonal elements
of the matrix Q commute with the diagonal ones.
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On the other hand, we obtain

BC = (a1
α ⊗ āα2 ) (a2

β ⊗ ā
β
1 ) = a1

αa
2
β ⊗ āα2 ā

β
1 = (q

1
2 a2

ρa
1
σR̂

ρσ
αβ + εαβq

p̂+1)⊗ āα2 ā
β
1 =

= a2
ρa

1
σ ⊗ (āρ1ā

σ
2 − q

ˆ̄p+1ερσ) + qp̂+1 ⊗ [ ˆ̄p+ 1] = (6.49)

= a2
ρa

1
σ ⊗ ā

ρ
1ā
σ
2 − [p̂+ 1]⊗ q ˆ̄p+1 + qp̂+1 ⊗ [ ˆ̄p+ 1] =

= CB +
N −N−1

q − q−1
, N±1 := − q±p̂ ⊗ q∓ ˆ̄p .

Eq.(
ExRapn2
5.6) and its right sector counterpart (

bara-vac
6.32) imply

NB = q2BN , NC = q−2CN . (6.50) NBC

Similarly, for the diagonal elements of Q (
Qmatr
6.46) we find

AD = (a1
α ⊗ āα1 ) (a2

β ⊗ ā
β
2 ) = a1

αa
2
β ⊗ āα1 ā

β
2 = (q

1
2 a2

ρa
1
σR̂

ρσ
αβ + εαβq

p̂+1)⊗ āα1 ā
β
2 =

= a2
ρa

1
σ ⊗ (āρ2ā

σ
1 − q1− ˆ̄pερσ)− qp̂+1 ⊗ [ ˆ̄p− 1] = (6.51)

= a2
ρa

1
σ ⊗ ā

ρ
2ā
σ
1 − [p̂+ 1]⊗ q1− ˆ̄p − qp̂+1 ⊗ [ ˆ̄p− 1] =

= DA+
L− L−1

q − q−1
, L±1 := − q±p̂ ⊗ q± ˆ̄p

as well as
LA = q2AL , LD = q−2DL . (6.52) ADp

To summarize, the entries of the operator matrix Q (
Qmatr
6.46) generate two

commuting Uq(s`(2)) algebras. The first one contains the off-diagonal elements
B and C as well as the operators N±1 , and the other the diagonal ones, A
and D , together with L±1 .

As a unitary rational CFT, the WZWN model on a compact group only
involves integrable representations of the corresponding affine algebra. In the
ŝu(2)k case these correspond to shifted affine weights with 1 ≤ p ≤ k + 1 =
h− 1 . We shall sketch in what follows how such a physical space can be defined
within the extended state space (

HHbar
6.43). As a first step we consider the tensor

product of quotient zero modes algebraM(h)
q (

ah
4.256), (

qhpij
4.257) and its right sector

counterpart M̄(h)
q , determined by the additional relations

(aiα)h = 0 = (āβj )h ( i, j, α, β = 1, 2 ) , q2hp̂ = 1I = q2h ˆ̄p . (6.53) ABCDh

The corresponding ”restricted” Fock representation

F (h) ⊗ F̄ (h) =M(h)
q ⊗ M̄(h)

q |0〉 (6.54) Fock-h2

forms a h4-dimensional subspace of F ⊗ F̄ . (F (h) contains the IR Fp ' V +
p

for 1 ≤ p ≤ h as well as the irreducible quotients of Fh+p isomorphic to V +
h−p

for 1 ≤ p ≤ h− 1 , cf. (
shexseq
5.28) so its dimension is 2 (1 + · · ·+ h− 1) + h = h2 .)

As we shall show below, Eqs. (
ABCDh
6.53) imply that the the four entries of the

operator matrix Q (
Qmatr
6.46) generate two commuting restricted Uq algebras (

Uq-res
5.20).

The vacuum representation of the one formed by the diagonal elements A and
D (

ADL
6.51), (

ADp
6.52) defines the zero modes’ projection of the unitary 2D WZNW

SU(2)k model physical space in F (h) ⊗ F̄ (h) . Indeed, introducing

A1 = a1
1 ⊗ ā1

1 , A2 = a1
2 ⊗ ā2

1 ⇒ A2A1 = q2A1A2 (6.55) A1A2

(the implication follows from the last two equalities (
altExbar
6.47) which are equivalent

to ai2a
i
1 = q ai1a

i
2 and ā2

i ā
1
i = q ā1

i ā
2
i , respectively) and similarly for B,C and

D , one derives the relations

Ah = 0 = Dh , L2h = 1I ; Bh = 0 = Ch , N2h = 1I . (6.56) ADLh

The calculation is based on the q-binomial identity

A2A1 = q2A1A2 ⇒ (A1 +A2)m =
m∑
r=0

(m
r

)
+
Ar1A

m−r
2 (6.57) qbin
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where(m
r

)
+

=
(m)+!

(r)+!(m− r)+!
, (r + 1)+! = (r + 1)+(r)+! , (0)+! = 1 ,

(r)+ :=
q2r − 1
q2 − 1

= qr−1[r] ⇒
(m
r

)
+

= qr(m−r)
[m
r

]
(6.58)

implying, in particular,

Ah = (A1 +A2)h = Ah1 +
h−1∑
r=1

(
h

r

)
+

Ar1A
h−r
2 +Ah2 = 0 . (6.59) Ah

From Eqs. (
a-vac
5.7), (

bara-vac
6.32) and (

a2.n
4.183), (

barMMp
6.15) we obtain further

D |0〉 = 0 , 〈0 | A = 0 , L |0〉 = −q2 |0〉 ,
B |0〉 = 0 = C |0〉 , 〈0 | B = 0 = 〈0 | C , N |0〉 = − |0〉 . (6.60)

Hence, the vacuum representation of the Uq triple formed by the operators B,C
and N (commuting with A,D and L , see (

BAp
6.48)) is equivalent to V −1 . Applying

powers of A on the vacuum, we generate a h-dimensional representation of Uq
equivalent to the Verma module V−1 (

Verma
5.80) (for E → A , F → D , K → L).

Indeed, defining

| m〉 :=
Am

[m]!
|0〉 , m = 0, . . . , h− 1 , (6.61) m-vect

we derive

A | m〉 = [m+1] | m+1〉 , D | m〉 = [m+1] | m−1〉 , (L+q2(m+1)) | m〉 = 0
(6.62) ADm

(assuming that D | 0〉 = 0 , see the first Eq.(
Dvacetc
6.60)). It follows from (

specK-Vp
5.26) that

the 1-dimensional submodule spanned by the vector |h−1〉 is isomorphic to the
IR V −1 (note that A | h − 1〉 = 0 = D | h − 1〉), and the (h − 1)-dimensional
irreducible subquotient spanned by the vectors | m〉 for m = 0, . . . , h − 2 , to
V +
h−1 .

Assuming that (X ⊗ Y )′ = X ′ ⊗ Y ′ , Eqs. (
transp2
5.14) and (

transp-bar
6.33) imply

L′ = L , N ′ = N as well as (Qij)
′ = εi` ε

jmQ`m , i.e.

A′ = (Q1
1)′ = Q2

2 = D , B′ = (Q1
2)′ = −Q2

1 = −C . (6.63)

(Note that the transposition (
transpQ
6.63) differs from (

EFH
5.15).) Applying (

ErFr
5.55), we

obtain (for P playing the auxiliary role of the Casimir operator C)

0 = λ2AD |0〉 = (P − q−1L− qL−1) |0〉 = (P + q + q−1) |0〉 ⇒ (6.64)

DmAm |0〉 = λ−2m
m∏
s=1

(q2s+1 + q−2s−1 − q − q−1) |0〉 = [m+ 1] ([m]!)2 |0〉

and finally,

〈m′ | m〉 = [m+ 1] δmm′ , 〈m′ |:= 〈0 | D
m′

[m′]!
, m = 0, . . . , h− 1 . (6.65) m’m

We see, in particular, that the vector |h − 1〉 spanning the 1-dimensional sub-
module V −1 is orthogonal to all vectors in the Verma module.

The fact that the Gram matrix diag (1, [2], . . . , [h − 1], 0) of the vectors
{|m〉}h−1

m=0 is real (in contrast with (
bilin2
5.16), (

bilin2bar
6.34)) allows to introduce a Her-

mitean structure on their complex span
DT
[75].32 To this end we define a sesquilin-

ear (antilinear in the first argument and linear in the second) inner product
( . | . ) which coincides with the bilinear one (

DmAm
6.64) on the real span of (

m-vect
6.61).

The corresponding antilinear antiinvolution (hermitean conjugation of operators
X → X†) defined by (u|X†v) = (Xu|v) is given by

D† = A , L† = L−1 ( q† = q−1 ) . (6.66) HermF

32In
DT
[75] the nilpotency (Ah = 0 ) of the operator A is used to define a BRST-type operator

by generalized (as h > 2) homology methods.
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It thus differs from the transposition (
transpQ
6.63) when applied to L , still leaving the

relations (
ADL
6.51), (

ADp
6.52) invariant.

We shall denote by F ′ the h-dimensional (complex) vector space spanned by
{|m〉}h−1

m=0 and endowed with the (semi)positive inner product described above,
and by F ′′ its 1-dimensional null subspace C |h−1〉 . By construction, F ′ is the
subspace of the tensor product of left and right Fock spaces F ⊗ F̄ generated
from the vacuum by the diagonal elements of the matrix Q (

Qmatr
6.46). We shall

show below that the action of Q on it is monodromy invariant, in the sense that

QM v = Qv ≡
(
A 0
0 D

)
v ∀ v ∈ F ′ , (QM )ij := (aM)iα ⊗ (M̄−1ā)αj .

(6.67) QMQm

Indeed, using (
aMMpa
4.151), (

Mpq
4.172) and (

barMMp
6.15), we obtain

(QM )ij = (Mp a)iα ⊗ (ā M̄p̄)αj = Qij (q−2pi ⊗ q2p̄j ) ,

Q =
(
A B
C D

)
→ QM = −

(
A 0
0 D

)(
N−1 0

0 N

)
−
(
L−1 0

0 L

)(
0 B
C 0

)
. (6.68)

Eq.(
QMQm
6.67) now follows from

B v = C v = 0 , N±1 v = −v ∀ v ∈ F ′ . (6.69) BCNm

The relation (
Qinv
6.44) (valid for general n) implies that every vector v ∈ F ′ is

Uq-invariant, X v = ε(X) v , where X ∈ Uq is given by the Fock representation
of the opposite coproduct:(

(M±)σβ ⊗ (M̄±)ασ
)

= πF ⊗ πF̄ ∆′((M±)αβ) . (6.70) MbMDp

Indeed, (
MbMDp
6.70) shows that (

Qinv
6.44) is equivalent to

[πF ⊗ πF̄ ∆′(X) , Qij ] = 0 ∀X ∈ Uq (6.71) QDp

which can be alternatively substantiated for n = 2: by using the relations (
AdXa1
5.8),

(
AdXa-bar
6.27) and the coproduct formulae (

coalg2
5.19), (

dk2
5.30), one can easily verify that the

operators Qij = ai1 ⊗ ā1
j + ai2 ⊗ ā2

j commute with

k ⊗ k̄ , K ⊗ Ē + E ⊗ 1I , 1I⊗ F̄ + F ⊗ K̄−1 . (6.72) kKEF

Thus the Uq-invariance of all vectors in F ′ follows from the invariance of the
vacuum vector.

We thus have a finite dimensional toy model realizing typical ingredients
of the axiomatic approach to gauge theories (see e.g.

BLOT, Str
[41, 244]) – an extended

state space F (h)⊗F̄ (h) , a pre-physical subspace F ′ on which the scalar product
is positive semidefinite, a subspace of zero-norm vectors F ′′ , and a physical
subquotient

Fphys = F ′/F ′′ ' ⊕h−1
p=1Fphysp , Fphysp := C |p− 1〉 = CAp−1 |0〉 . (6.73) Fph

In this picture the entries Qij of the operator matrix (
Qmatr
6.46) play the role of ob-

servables and Uq , of the (generalized) gauge symmetry leaving them invariant,
see (

QDp
6.71).

It follows from the above that it is consistent to present the 2D field cor-
responding to the unitary rational CFT ŝu(2)k WZNW model in the following
diagonal form:

gAB(z, z̄) =
2∑
j=1

uAj (z)⊗Qjj ⊗ ū
j
B(z̄) , acting on Hphys = ⊕h−1

p=1Hp⊗Fphysp ⊗H̄p .

(6.74) 2Dg

(The fact that p = p̄ follows from the triviality of the action of the off-diagonal
entries of Q on F ′ (

BCNm
6.69).) Note that the monodromy invariance of Q (

QMQm
6.67)

ensures the periodicity (
gzzbar-per
4.63) of g(z, z̄) on Hphys:

(QM −Q)Fphysp = 0 ⇒
(
g(e2πi z, e−2πi z̄)− g(z, z̄)

)
Hphys = 0 . (6.75) 2dper
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Recalling that M = ML , M̄
−1 = MR (cf. also (

gzM
4.64)), one can assert that

Eq.(
2dper
6.75) is the quantum implementation of the constraint (

O2alt
2.87) of equal left

and right monodromy matrices.
The physical representation space Fphys reproduces the structure of the

ŝu(2)k fusion ring (
fusion-su2-I
5.87) generated by the integrable representations of the

affine algebra
V, P, DFMS
[255, 208, 63] in the following way. The (binary) fusion matrices

F
(λ)
h encoding the action of the operator (A + D)λ for λ = 0, 1, . . . , k (that

corresponds to a primary field of weight λ) in the basis |m〉 (
m-vect
6.61) have Perron-

Frobenius eigenvalue [λ+ 1] and provide a representation of the ring (
fusion-su2-I
5.87).

The simplest non-trivial example is given by the step operator (for λ = 1)
when the characteristic polynomial Dh(x) of the (h−1)× (h−1) fusion matrix

F
(1)
h =


0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1
0 0 0 . . . 1 0

 (6.76) F1

satisfies, as a function of its index, the recurrence relation and initial conditions

Dh+1(x) = −xDh(x)−Dh−1(x) , D2(x) = −x , D3(x) = x2 − 1 . (6.77) char-eq-F1

It follows from (
recurseUm
5.68) that, for h ≥ 2 , Dh(x) = Uh(−x) where the polynomials

Um(x) are defined in (
Um
5.70). Hence, the eigenvalues of the real symmetric matrix

(
F1
6.76) coincide with the roots xj = 2 cos πjh , j = 0, . . . , h − 1 of Uh(x) . In

particular, the maximal (Perron-Frobenius) eigenvalue of F (1)
h is 2 cos πh = [2] .

The above results shed light on the mechanism by which the quantum group,
albeit remaining ”hidden” in the 2D model, leaves its imprints on the fusion
rules.

6.2.3 The Q-algebra for general n and its Fock representation

The general n case is much harder to explore, partly because the n-linear de-
terminant conditions for the chiral zero modes are not so powerful for n ≥ 3 as
they are in the n = 2 case.

We assume that āαi satisfy exchange relations identical to those for aiα
(
aa2
4.187):

āβj ā
α
i [ ˆ̄pij − 1] = āαi ā

β
j [ ˆ̄pij ]− āβi ā

α
j q

εαβ ˆ̄pij ( for i 6= j and α 6= β) ,

[āαj , ā
α
i ] = 0 , āαi ā

β
i = qεαβ āβi ā

α
i , α, β, i, j = 1, . . . , n . (6.78)

The commutation relations of pj with aiα and their action on the vacuum are
given in (

pacomm
4.170) and (

a2.n
4.183), respectively; the analogous formulae for the bar

quantities are contained in (
barMp
6.14), (

barMMp
6.15) and (

bara-onvac
6.16).

Define the 2D zero mode n×n matrix of quantum group invariant operators
as in (

Qmatr
6.46), Q = (Qij) , Q

i
j =

∑n
α=1 a

i
α ⊗ āαj .

Proposition 6.1 If (aiα)h = 0 = (āαi )h ∀ 1 ≤ i, α ≤ n , then (Qij)
h = 0 .

Proof The indices i and j play no role in what follows; denoting

Qij =
n∑
α=1

Qα , Qα = aiα⊗ āαj ( (Qα)h = 0 , QαQβ = q2Qβ Qα for α > β ) ,

(6.79) Qhn

we can perform the proof by induction, observing that

Qα (Q1 + · · ·+Qα−1) = q2(Q1 + · · ·+Qα−1)Qα , α = 2, . . . , n (6.80) Qrh1

and hence, by (
qbin
6.57) and (

Ah
6.59),

(Q1 + · · ·+Qα)h = (Q1 + · · ·+Qα−1)h + (Qα)h = (Q1 + · · ·+Qα−1)h . (6.81) Qrh
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Alternatively, we can use the following explicit formula that can be proved by
induction as well:(

n∑
α=1

Qα

)h
=

n∑
α=1

(Qα)h + (h)+!
∑

m1+m2+···+mn=h
0≤mi≤h−1

(Q1)m1

(m1)+!
(Q2)m2

(m2)+!
. . .

(Qn)mn

(mn)+!
= 0 .

(6.82) Paolo

We shall use for short in what follows the term ”Q-algebra” for the free
algebra (over the rational functions in qpi ≡ qpi⊗1I and qp̄j ≡ 1I⊗qp̄j ) generated
by the entries of the matrix Q modulo the relations following from those for
the chiral zero mode algebras, (

aa2
4.187) and (

aa2barn
6.78). Further, we shall call ”Q-

vectors” those generated from the vacuum by elements of the Q-algebra; thus
any Q-vector v is of the form v = P (Q) | 0〉 for some polynomial P in the
(non-commutative) entries of Q . It is convenient to call a Q-vector ”diagonal”
if it is generated by a polynomial in the diagonal entries Qii , i = 1, . . . , n only.

We shall prove below the following

Proposition 6.2 Any Q-monomial containing off-diagonal entries of Q an-
nihilates the vacuum vector.

Recall that in the n = 2 case this property is valid, due to the commutativity
of diagonal and off-diagonal entries of Q (

BAp
6.48). It ensures the monodromy

invariance (
QMQm
6.67) and further, the periodicity of the 2D field (

2dper
6.75), as well

as the diagonality of the model (p = p̄ ). Inspired by this example, we shall
introduce the space of diagonal Q-vectors also in the general n case:

Fdiag = {v | v = P (Qnn , . . . , Q
1
1) |0〉} ⇒ (pij − p̄ij)Fdiag = 0 . (6.83) diagF

(We assume p-dependent coefficients in the polynomials; the equality of pij and
p̄ij as operators on Fdiag simply follows from the identical exchange relations
they satisfy with the corresponding zero modes.) Let further F ′ be the subspace
of Fdiag that is annihilated by the off-diagonal elements of Q:

F ′ ⊂ Fdiag , Qj` F
′ = 0 for j 6= ` , 1 ≤ j , ` ≤ n . (6.84) Th6.1

As Proposition 6.2 is equivalent to the statement F ′ = Fdiag , proving it would
allow us to identify F ′ as simply ”the Q-vector subspace” of F ⊗ F̄ .

We shall first describe the structure of F ′ starting from the following list of
conditions satisfied by the algebra of p̂ij ( = p̄ij ) = −p̂ji and Q`` , 1 ≤ i, j , ` ≤ n
((Y 1) – (Y 3)) in its vacuum representation ((Y 4) – (Y 6)) :

(Y 1) [p̂ij , p̂`m] = 0 , p̂ij Q
`
` = Q`` (p̂ij + δ`i − δ`j) , 1 ≤ i, j , `,m ≤ n ,

(Y 2) (Qjj)
h = 0 , 1 ≤ j ≤ n ,

(Y 3) [p̂ij + 1]QiiQ
j
j ≈ [p̂ij − 1]Qjj Q

i
i , 1 ≤ i 6= j ≤ n , (6.85)

(Y 4) p̂ij |0〉 = (j − i) |0〉 , 1 ≤ i, j ≤ n ,
(Y 5) Qjj |0〉 = 0 , 2 ≤ j ≤ n ,

(Y 6) QnnQ
n−1
n−1 . . . Q

1
1 |0〉 = [n]!

n−1∏
`=1

([`]!)2 |0〉 , (6.86)

(Y 7) [p̂ij + 1] v = 0 , v ∈ F ′ ⇒ (Qii)
2Qjj v ≈ 0 . (??or just for i = j + 1??)

The ”weak equality” sign in (Y 3) refers to an identity that only holds on F ′ ,
i.e. we omit the off-diagonal elements which annihilate it, cf. (

Th6.1
6.84); the full

equality is displayed in (
preF
6.131) below. Condition (Y 2) reflects the restriction

to the quotients of the chiral zero modes’ algebras, see Proposition 6.1. All the
remaining relations are simple corollaries of corresponding chiral relations; for
example, (Y 6) follows from (

vn-q-anti
4.202), its right sector counterpart and (

een!
4.130),

and (Y 7) – from ...
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Found 12-16.09.2013:

Actually (
pij-anti
4.240) is generally true, as an operator identity,

aiαa
j
β − ajα aiβ = −q−εαβ (aiβ a

j
α − a

j
β a

i
α)

(moreover, without any restrictions on the indices)! To prove it, just use (
aa2
4.187),

the relation [p ± 1] ∓ q±εp = q−ε[p] for ε = ±1 and finally, (
pij0
4.241) ([pij ] v =

0 ⇒ aiαa
j
β v = ajαa

i
β v). We also obtain

[pij ] (aiαa
j
β + ajα a

i
β) = qεαβ [pij ] (aiβ a

j
α + ajβ a

i
α) + (qεαβpij + q−εαβpij ) (aiβa

j
α − a

j
β a

i
α) .

The last two relations imply (on top of (Y 3) (
3cond
6.85)!)

2 [pij ]2 (QiiQ
j
j −Q

j
jQ

i
i) ≈ [2 pij ] (aiαa

j
β − ajαaiβ)⊗ (āβi ā

α
j − ā

β
j ā

α
i ) .
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Found 13-14.10.2013:
We shall show in what follows that the basic exchange relations (

aa2
4.187) for

the zero modes,

ajβa
i
α [pij − 1] = aiαa

j
β [pij ]− aiβ a

j
α q

εαβpij ( for i 6= j and α 6= β) ,

[ajα, a
i
α] = 0 , aiαa

i
β = qεαβ aiβa

i
α , α, β, i, j = 1, . . . , n , (6.87)

take a very simple and transparent form when written in terms of the q-symmetric
and q-antisymmetric projections of the bilinear combination aiαa

j
β ,

aiαa
j
β = Sijαβ +Aijαβ , Sijαβ = qεαβSijβα , Aijαβ = −q−εαβAijβα (6.88) SA

where

[2]Sijαβ :=
{

qεαβaiαa
j
β + aiβa

j
α , α 6= β

[2] aiαa
j
α , α = β

, (6.89) Sdef

[2]Aijαβ :=
{

q−εαβaiαa
j
β − aiβajα , α 6= β

0 , α = β
. (6.90) Adef

Indeed, rewriting the first relation (
aa2-again
6.87) in terms of Sijαβ and Aijαβ using (

SA
6.88),

[pij − 1] (Sjiβα +Ajiβα) = [pij ] (qεαβSijβα − q
−εαβAijβα)− qεαβpij (Sijβα +Aijβα) =

= (qεαβ [pij ]− qεαβpij )Sijβα − (q−εαβ [pij ] + qεαβpij )Aijβα . (6.91)

we obtain, with the help of the q-identities

q±ε[p]∓ qεp = [p∓ 1] , (6.92) q-id2

the following relation between the matrices Sij := (Sijαβ) , Aij := (Aijαβ) :

[pij − 1] (Sij − Sji −Aji) = [pij + 1]Aij . (6.93) rel1

Exchanging i and j in (
rel1
6.93), we get

[pij + 1] (Sij − Sji +Aij) = − [pij − 1]Aji . (6.94) rel2

Now adding both sides of (
rel1
6.93) and (

rel2
6.94), we obtain

([pij − 1] + [pij + 1]) (Sij − Sji) = [2] [pij ] (Sij − Sji) = 0
⇒ Sij = Sji (6.95)

(we use [p − 1] + [p + 1] = [2] [p ] ; the implication follows from the fact that if
[pij ] v = 0 , then aiαa

j
β v = ajαa

i
β v , see (

aa2-again
6.87)). Returning to (

rel1
6.93) or (

rel2
6.94), we

also derive
[pij + 1]Aij + [pij − 1]Aji = 0 . (6.96) rel-A

So the first relation (
aa2-again
6.87) is equivalent to following pair of (matrix) equalities:

Sij = Sji , [pij + 1]Aij = [pji + 1]Aji .

Albeit derived for (i 6= j and) α 6= β , these identities also hold for α = β ,
Sijαα = Sjiαα reproducing the second relation (

aa2-again
6.87). The last relation (

aa2-again
6.87)

implies their counterpart for equal upper indices:

Aii = 0 .

Identical relations follow for the right (bar) sector quantities S̄ij = (S̄αβij ),
Āij = (Āαβij ), p̄ij :

S̄ij = S̄ji , [p̄ij + 1] Āij = [p̄ji + 1] Āji , Āii = 0 .

Comparing (
Adef
6.90) and (

A1const
4.115), we see that

[2]Aijαβ = aiα′a
j
β′A

α′β′

αβ , [2] Āαβij = Aαβα′β′ ā
α′

i ā
β′

j (Aαβα′β′ = q−εαβ δαα′ δ
β
β′−δ

α
β′ δ

β
α′ ) .

(6.97) AAconst

110



Hint: Derive the implications of the first two relations (
q-antisymm
4.113) forA1 ≡ A12 , A2 ≡

A23:

A2
i = [2]Ai , i = 1, 2 , A1A2A1 −A1 = A2A1A2 −A2 .

N.B.: Introducing the symmetrizers

Si := [2]−Ai ⇒ S2
i = [2]Si , AiSi = 0 = SiAi , i = 1, 2 , (6.98) SiAi

we can rewrite the last identity in the box in various forms, for example

S1 − S1 S2 S1 = S2 − S2 S1 S2 ,

[3]A1 −A1 S2A1 = [3]A2 −A2 S1A2 ( [3] ≡ [2]2 − 1 ) ,
[3]S1 − S1A2 S1 = [3]S2 − S2A1 S2 ,

A1S2A1 + S2A1S2 − [2](A1S2 + S2A1) +A1 + S2 = [2] ,
S1A2S1 +A2S1A2 − [2](A2S1 + S1A2) + S1 +A2 = [2] . (6.99)

It follows from (
AAconst
6.97) and (

SiAi
6.98) that

[2]Sijαβ = aiα′a
j
β′S

α′β′

αβ , [2] S̄αβij = Sαβα′β′ ā
α′

i ā
β′

j ,

Sαβα′β′ = [2] δαα′δ
β
β′ −A

αβ
α′β′ =

{
qεαβ δαα′ δ

β
β′ + δαβ′ δ

β
α′ , α 6= β and α′ 6= β′

[2] δαα′ δ
α
β′ , α = β or [2] δαα′ δ

β
α′ , α

′ = β′
. (6.100)

The free term in last two relations (
ASA
6.99) implies that a 3-tensor v = vαβγ that

is q-symmetric in the first pair of indices (vA1 = 0) and q-antisymmetric in the
second (vS2 = 0), or vice versa, is zero (something we have already proved, cf.
(
wabg
4.203) and (

b
4.244), respectively).

Written in components, the braid relation in terms of the antisymmetrizers
(
q-antisymm
4.113) reads

A1A2A1 −A1 = A2A1A2 −A2 , Aαβα′β′ = q−εαβ δαα′ δ
β
β′ − δ

α
β′ δ

β
α′ ⇒

(q−εµν − q−ενρ) δαµδβν δγρ − δαν δβµδγρ + δαµδ
β
ρ δ

γ
ν =

= q−εµν−ενρ(q−εµν − q−ενρ) δαµδβν δγρ −
−(q−εµν−ενρ + q−ενµ−εµρ − q−εµρ−ενρ) δαν δβµδγρ +

+(q−εµν−ενρ + q−ερν−εµρ − q−εµν−εµρ) δαµδβρ δγν . (6.101)

Note that
Sijαβ ⊗ Ā

αβ
`m = 0 = Aijαβ ⊗ S̄

αβ
`m (6.102) SA=0

since e.g.

Sijαβ ⊗ Ā
αβ
`m = (qεαβSijβα)⊗ (−q−εαβ Āβα`m) = −Sijβα ⊗ Ā

βα
`m , (6.103) SabAab=0

hence

Qi`Q
j
m = (Sijαβ +Aijαβ)⊗ (S̄αβ`m + Āαβ`m) = Sijαβ ⊗ S̄

αβ
`m +Aijαβ ⊗ Ā

αβ
`m . (6.104) QQSA

The properties of Sijαβ , A
ij
αβ , S̄

αβ
`m, Ā

αβ
`m (

SA
6.88) with respect to the exchange of

α and β and the definition of εαβ (
stand-r-matr
3.110) imply

Sijαβ ⊗ S̄
αβ
`m = q2εαβSijβα ⊗ S̄

βα
`m , Aijαβ ⊗ Ā

αβ
`m = q−2εαβAijβα ⊗ Ā

βα
`m

⇒ q
∑
α>β

Sijαβ ⊗ S̄
αβ
`m = q−1

∑
α<β

Sijαβ ⊗ S̄
αβ
`m ,

q−1
∑
α>β

Aijαβ ⊗ Ā
αβ
`m = q

∑
α<β

Aijαβ ⊗ Ā
αβ
`m . (6.105)

Hopefully, the identities derived above could help finding some missing (tri-
linear?) relations for the diagonal Q-operators suggested by the conjectured
Young diagrammatic description of the diagonal Q-space.

111



Clearly, we can restrict our attention to diagonal Q-vectors that are also
eigenvectors of all p̂ij ; we shall call them ”p-vectors” for brevity. By (Y 1)
and (Y 4) they are generated from the vacuum by homogeneous (diagonal) Q-
polynomials. Let ms ≥ 0 , r = 1, . . . , n be the order of homogeneity in Qss of
the polynomial generating the p-vector v ∈ Fdiag from the vacuum, then the
eigenvalue of p̂j` evaluated on v is found from (Y 1) (

3cond
6.85) and (Y 4) (

3cond-vac
6.86):

p̂j` v = pj` v , pj` = mj −m` + `− j , j 6= ` . (6.106) inc

So to any p-vector v ∈ Fdiag there corresponds an n-tuple of non-negative
integers (m1, . . . ,mn) . These can be arranged in a table with n rows, the s-
th row containing ms boxes. As the diagonal Q-algebra is not commutative,
a non-zero p-vector v is not uniquely determined by its diagram (for n ≥ 3).
We shall show however that for p-vectors in F ′ the diagram characterizes the
one-dimensional space spanned by it.

It turns out that the restrictions imposed by (
3cond
6.85) and (

3cond-vac
6.86) imply that

the tables corresponding to p-vectors in F ′ ⊂ Fdiag are actually s`(n) Young
diagrams which not only satisfy the requirement

m1 ≥ · · · ≥ mn−1 ≥ mn = 0 (6.107) Young1

but is also such that its maximal hook length33 does not exceed h− 1 , i.e.

p1j = m1+j−1 ≤ h where mj−1 > 0 , mj = 0 ( for 2 ≤ j ≤ n ) . (6.108) maxhook

By (
inc
6.106), Eq.(

maxhook
6.108) is equivalent to the restriction p1j ≤ h on the eigenvalue

of the corresponding operator evaluated on v . (Thus, for n = 3 two-line dia-
grams are admissible only if they have m1 ≤ h − 2 columns while for n ≥ 4
three-line diagrams are only allowed if m1 ≤ h − 3 , etc. In general, (n − 1)-
line diagrams can have at most m1 ≤ k + 1 columns where k is the level; the
”physical” ones corresponding to integrable highest weights obey m1 ≤ k.)

The mere fact that the admissible diagrams are bounded to a rectangle of
size (h − 1) × (n − 1) already shows that F ′ is finite dimensional as all the
possible vectors that could correspond to a given diagram could differ at most
by permutation of the boxes (i.e., of the diagonal Q-operators applied to the
vacuum), which would give another finite factor. We shall prove however that
the factor is actually equal to 1 , i.e. that all possible ways of building a vector
(by successive application of diagonal Q-operators, but respecting at each step
conditions (

Young1
6.107) and (

maxhook
6.108)) to which such a given s`(n) Young diagram is

attached, are equivalent, i.e. the resulting vectors are proportional with non-
zero relative coefficients. On the other hand, it is easy to see that p-vectors with
different attached diagrams are linearly independent (relations (Y 1) – (Y 5) are
homogeneous, and (Y 6) does not change the eigenvalue of any p̂ij). It would
then follow that the dimension of F ′ is equal to the number of different diagrams
satisfying (

Young1
6.107) and (

maxhook
6.108), that is

dim F ′ =
(

h

n− 1

)
+ n− 2 (conjecture; valid for n = 2, 3 only?) . (6.109) dimFprim

After confirming Proposition 6.2, this result will also apply to dim Fdiag .
So we proceeding to the proof of the following

Theorem 6.1 The non-zero p-vectors in F ′ are indexed by s`(n) Young
diagrams of maximal hook length h− 1 .

Proof of Theorem 6.1
We shall start with one-row diagrams of the type (m1, 0, . . . , 0) (for m1 ≥ 1)

corresponding to v = (Q1
1)m1 |0〉 Condition (Y 2) tells us that, in order v to be

non-zero, we should have m1 ≤ h−1 . We proceed with ”hook shaped” diagrams
33The hook length of a box in a s`(n) Young diagram

Ful
[109] is defined as the sum of numbers

of boxes to the right of it and below it, plus 1 for the box itself. The hook length of the
diagram with no boxes at all (that corresponds to the vacuum vector in our setting) is 0. If
we enumerate the boxes by their row and column, the maximal hook length of a diagram
containing at least one box is that of the box (1, 1) (the upper left one, in the standard
”English” ordering

Mac
[193]).
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corresponding to vectors of the type QjjQ
j−1
j−1 . . . Q

2
2(Q1

1)m1 | 0〉 for 2 ≤ j ≤ n .
Already j = 2 restricts further the maximal value of m1 ; indeed, using (Y 3)
and evaluating the p-dependent quantum brackets, we obtain

[p̂21 + 1]Q2
2(Q1

1)m1 |0〉 = [p̂21 − 1]Q1
1Q

2
2(Q1

1)m1−1 |0〉 , or
[m1 − 1]Q2

2(Q1
1)m1 |0〉 = [m1 + 1]Q1

1Q
2
2(Q1

1)m1−1 |0〉 and hence,
[2]Q2

2(Q1
1)h−1 |0〉 = [h]Q1

1Q
2
2(Q1

1)h−2 |0〉 , i.e. Q2
2(Q1

1)h−1 |0〉 = 0 .(6.110)

One infers that in this case we should have m1 ≤ h− 2 . The case m1 = 1 is, in
a sense, ”irreducible” – both sides of the equation vanish (the right-hand side
by (Y 5) , and the left-hand side because [p21 + 1] = −[m1− 1] = 0) so, in effect,
we don’t get any non-trivial identity.

The fact that the diagram (h−1, 1, 0, . . . , 0) is not admissible is universal, i.e.
it applies to all vectors of the type (Q1

1)mQ2
2(Q1

1)h−1−m |0〉 for 0 ≤ m ≤ h− 2
which are proportional to each other (with non-zero relative coefficients). One
can summarize this phenomenon by simply noting that ”adding a box either to
the first or to the second row of the diagram (h − 2, 1, 0, . . . , 0) is forbidden”.
in particular,

[p12 + 1]Q1
1Q

2
2(Q1

1)h−2 |0〉 = [p12 − 1]Q2
2(Q1

1)h−1 |0〉 (6.111) Yh2

First of all, by (Y 3) and (Y 6) the case j = n is reduced to the previous
one:

Qnn . . . (Q
1
1)m1 |0〉 = (Q1

1)m1−1Qnn . . . Q
1
1 |0〉 = c (Q1

1)m1−1 |0〉 , c 6= 0 .
(6.112) red1

Introduce first ”backbone” diagrams. Prove that (
maxhook
6.108) should hold for

them. Note that such diagrams appear as subdiagrams of any diagram. Deduce
that (

maxhook
6.108) should hold in any case; then derive (

Young1
6.107). Finally, show that

any order that respects (
Young1
6.107) and (

maxhook
6.108) is OK, i.e. gives the same result up

to a non-zero coefficient.

To begin with, we note that Qj` |0〉 = 0 if either of the indices j , ` is different
from 1 . We shall proceed by deriving quadratic exchange relations for the entries
of Q and then using induction in the number of the diagonal Q-elements acting
on the vacuum, starting with |0〉 itself and Q1

1 |0〉 to prove that actually (
Th6.1
6.84)

holds on the whole diagonal space, Qj` Fdiag = 0 for j 6= ` .
To this end, our first step will be the following
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Lemma 6.1 It follows from Eqs. (
aa2
4.187), (

aa2barn
6.78) that the entries of Q belonging

to the same row or column commute:

[Qji , Q
`
i ] = 0 = [Qij , Q

i
`] . (6.113) QQcomm

We have, in particular,

[Qji , Q
i
i] = 0 = [Qij , Q

i
i] . (6.114) QQcomm-d

Proof It is sufficient to explore the case in (
QQcomm
6.113) when the different indices

(j and `) are carried by the left sector variables since the bar quantities satisfy
identical relations. We obtain (assuming implicitly that equal upper and lower
greek i.e. quantum group, indices are summed over all admissible values from
1 to n , if no restrictions are indicated under a summation symbol)

[p`j − 1]Qji Q
`
i = [p`j − 1] (ajβ ⊗ ā

β
i )(a`α ⊗ āαi ) = [p`j − 1] ajβa

`
α ⊗ ā

β
i ā

α
i =

= [p`j − 1]
∑
α

ajαa
`
α ⊗ āαi āαi +

∑
α6=β

[p`j − 1] ajβ a
`
α ⊗ ā

β
i ā

α
i =

= [p`j − 1]
∑
α

a`αa
j
α ⊗ āαi āαi +

∑
α6=β

(
a`αa

j
β [p`j ]− a`β a

j
α q

εαβp`j
)
⊗ āβi ā

α
i =

= [p`j − 1]
∑
α

a`αa
j
α ⊗ āαi āαi +

∑
α6=β

(
a`αa

j
β [p`j ]⊗ qεβα āαi ā

β
i − a`β a

j
α q

εαβp`j ⊗ āβi ā
α
i

)
=

= [p`j − 1]
∑
α

a`αa
j
α ⊗ āαi āαi +

∑
α6=β

a`β a
j
α (qεαβ [p`j ]− qεαβp`j )⊗ āβi ā

α
i =

= [p`j − 1] a`β a
j
α ⊗ ā

β
i ā

α
i = [p`j − 1]Q`i Q

j
i i.e., [p`j − 1] [Qji , Q

`
i ] = 0 (6.115)

(we have applied (
aa2
4.187), exchanged the dummy indices α and β in a term on

the fourth line and then used the identity qε[p]− qεp = [p− 1] for ε = ±1). The
first relation (

QQcomm
6.113) [Qji , Q

`
i ] = 0 follows since, by exchanging the upper (left

sector) indices j and ` , we can also derive that

[pj` − 1] [Q`i , Q
j
i ] = [p`j + 1] [Qji , Q

`
i ] = 0 , (6.116) ij-exch

and there is no vector on which the operators [p`j + 1] and [p`j − 1] vanish
simultaneously. One obtains in a similar way from (

aa2barn
6.78) that [Qij , Q

i
`] = 0 .

Instead of applying separately the chiral exchange relations (
aa2
4.187), (

aa2barn
6.78),

we can follow a different path, observing that

R̂12(p) a1 a2 = a1 a2 R̂12 , R̂12 ā1 ā2 = ā1 ā2
ˆ̄R12(p̄) ⇒

R̂12(p)Q1Q2 = Q1Q2
ˆ̄R12(p̄) ⇔ A12(p)Q1Q2 = Q1Q2 Ā12(p̄) , (6.117)

where, according to (
dyn-braid
4.110) and (

biAi
4.111),

q−
1
n R̂(p)iji′j′ = q−1 δii′ δ

j
j′ −A

ij
i′j′(p) , q−

1
n ˆ̄R(p̄)iji′j′ = q−1 δii′ δ

j
j′ − Ā

ij
i′j′(p̄) .
(6.118) dyn-braid0

If we choose αij(pij) = 1 in (
A1dyn
4.133) and ˆ̄R12(p̄) = tR̂12(p̄) (see (

ExRaabar
6.21)), then the

dynamical antisymmetrizers take the form

A(p)iji′j′ =
[pij − 1]

[pij ]
(δii′ δ

j
j′ − δij′ δ

j
i′) for i 6= j and i′ 6= j′ ,

A(p)iji′j′ = 0 for i = j or i′ = j′ ;

Ā(p̄)i
′j′

`m = A(p̄)`mi′j′ =
[p`m − 1]

[p`m]
(δi
′

` δ
j′

m − δj
′

` δ
i′

m) for ` 6= m and i′ 6= j′ ,

Ā(p̄)i
′j′

`m = 0 for ` = m or i′ = j′ . (6.119)

It is easy to realize that the last equation (
QjiQii1
6.115) as well its bar analog are

particular cases of the last identity in (
RQQ0
6.117):

A(p)`ji′j′ Q
i′

i Q
j′

i = Q`i′ Q
j
j′ Ā(p̄)i

′j′

ii ⇔ [p`j − 1] [Qji , Q
`
i ] = 0 ,

A(p)iii′j′ Q
i′

` Q
j′

j = Qii′ Q
i
j′ Ā(p̄)i

′j′

`j ⇔ [p̄`j − 1] [Qij , Q
i
`] = 0 . (6.120)
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Analogously, getting rid of the denominators, we derive from (
RQQ0
6.117) that the

following exchange relations complementing Lemma 6.1 hold:
Lemma 6.2 The entries of Q that belong to different rows and columns satisfy

([pij − 1]⊗ [p̄`m]− [pij ]⊗ [p̄`m − 1])Qi`Q
j
m (≡ [pij − p̄`m]Qi`Q

j
m ) =

= [pij − 1]⊗ [p̄`m]Qj` Q
i
m − [pij ]⊗ [p̄`m − 1]QimQ

j
` , i 6= j , ` 6= m . (6.121)

Remark 6.3 Here and below we make use of the following q-identities and
notations:

[p± 1]⊗ [p̄ ]− [p ]⊗ [p̄± 1] = ∓ [p− p̄ ] := ∓ qp ⊗ q−p̄ − q−p ⊗ qp̄

q − q−1
,

[p± 1]⊗ [p̄ ]− [p ]⊗ [p̄∓ 1] = ± [p+ p̄ ] := ± qp ⊗ qp̄ − q−p ⊗ q−p̄

q − q−1
,

[p ]⊗ qεp̄ − qεp ⊗ [p̄ ] = [p− p̄ ] , ε = ±1 . (6.122)

Proof of Lemma 6.2 Eq.(
QQijlm
6.121) can be also derived from (

aa2
4.187) and (

aa2barn
6.78):

[pij − 1]⊗ [p̄`m]Qj` Q
i
m − [pij ]⊗ [p̄`m − 1]QimQ

j
` =

= [pij − 1]⊗ [p̄`m]
∑
α

ajα a
i
α ⊗ āα` āαm +

∑
α 6=β

([pij ] aiα a
j
β − q

εαβpijaiβ a
j
α)⊗ [p̄`m] āβ` ā

α
m −

− [pij ]⊗ [p̄`m − 1]
∑
α

aiα a
j
α ⊗ āαm āα` −

∑
α 6=β

[pij ] aiβ a
j
α ⊗ ( [p̄`m] āα` ā

β
m − qεαβ p̄`m ā

β
` ā

α
m ) =

= [pij − p̄`m]
∑
α

aiα a
j
α ⊗ āα` āαm + ( [pij ]⊗ qεαβ p̄`m − qεαβpij ⊗ [p̄`m] )

∑
α 6=β

aiβ a
j
α ⊗ ā

β
` ā

α
m =

= [pij − p̄`m]Qi`Q
j
m , i 6= j , ` 6= m . (6.123)

Remark 6.4 Exchanging i↔ j and `↔ m in (
QQijlm
6.121) and then summing both

sides of the obtained relation with those of the original one we obtain, with the
help of the second line of (

ids
6.122), simply

[pij − p̄`m] [Qi`, Q
j
m] = [pij + p̄`m] [Qim, Q

j
` ] , i 6= j , ` 6= m . (6.124) QQijlm2

So the commutativity of the diagonal and off-diagonal elements of Q for n = 2
(see e.g. (

BAp
6.48)) is a particular case of (

QQcomm-d
6.114), while Eqs. (

BCN
6.49) and (

ADL
6.51) imply

(
QQijlm2
6.124) (there is only one non-trivial relation of this type for n = 2). It is not

surprising that the n = 2 Q-relations are stronger than those for n ≥ 3 ; recall
that in the former case we could effectively make use of the chiral determinant
conditions as well.

We are now ready to present a
Proof of Proposition 6.2 We know that for n = 2 the statement is correct.
For n ≥ 3 and i 6= j 6= ` 6= i Eq.(

QQijlm
6.121) implies, in particular, the following

relations:

[pij − 1]⊗ [p̄i`]Q
j
` Q

i
i = [pij ]⊗ [p̄i` + 1]QiiQ

j
` − [pij + p̄i`]Qi`Q

j
i ,

[pij ]⊗ [p̄i` − 1]Qj` Q
i
i = [pij + 1]⊗ [p̄i`]QiiQ

j
` − [pij + p̄i`]Q

j
i Q

i
` . (6.125)

There is an obvious filtration of Fdiag (
diagF
6.83) by subspaces FdiagN ⊂ FdiagN+1 ,

given by the overall order N ∈ Z+ of the polynomials P (Qnn, . . . , Q
1
1) . We shall

perform our proof by induction, assuming the following

induction hypothesis : Qrs F
diag
N = 0 for r 6= s . (6.126) ind-hyp

Eq.(
ind-hyp
6.126) certainly holds for N = 0 (Fdiag0 is just the vacuum subspace) and

also for N = 1 . Indeed, Fdiag1 is two dimensional, being spanned by | 0〉 and
Q1

1 |0〉 and, in case r or s equals 1 , this follows from Lemma 6.1. Otherwise,
at least one of the indices, say r , must be not smaller than 3 , and then (

aa2
4.187),

(
pjl-on-vac
4.197) and (

a2.n
4.183) imply

arαa
1
β |0〉 =

{
a1
αa

r
α |0〉 , α = β

1
[r−2] ([r − 1] a1

βa
r
α − q(1−r)εαβa1

αa
r
β) |0〉 , α 6= β

= 0

(6.127) Qr

115



and hence, QrsQ
1
1 |0〉 = 0 .

So we have proved that FdiagN ⊂ F ′ for N = 0, 1 . If we are able to prove
this inclusion for any N , Proposition 6.2 would follow by comparing it with
F ′ ⊂ Fdiag (

diagF
6.83) and having in mind that F ′ is actually finite dimensional.

Let us assume for the moment that at least one of the two p-dependent
coefficients in the left-hand sides of (

no1
6.125) does not vanish. Then we can

reduce the number of diagonal Q-elements by 1 in any diagonal monomial of
order N + 1 applied to the vacuum for i 6= j 6= ` 6= i , and Lemma 6.1 provides
the proof that this also happens for j = i or ` = i .

The problem is thus reduced to the cases when v ∈ FdiagN satisfies

[pij − 1]⊗ [p̄i`] v = 0 = [pij ]⊗ [p̄i` − 1] v for i 6= j 6= ` 6= i . (6.128) probl

If [pij ] v = 0 or [p̄i`] v = 0 , then (
aa2
4.187) and (

aa2barn
6.78) imply

[pij ] v = 0 ⇒ ajα a
i
β v = aiα a

j
β v ⇒ Qj` Q

i
i v = Qi`Q

j
i v = 0 ,

[p̄i`] v = 0 ⇒ āβ` ā
α
i v = āβi ā

α
` v ⇒ Qj` Q

i
i v = Qji Q

i
` v = 0 , (6.129)

respectively (see (
pij0
4.241)). So the only case that seems to be non-trivial is

[pij − 1] v = 0 = [p̄i` − 1] v for i 6= j 6= ` 6= i . (6.130) probl1

As pij |0〉 = (j− i) |0〉 and p̄i` |0〉 = (`− i) |0〉 , we conclude that such v 6= |0〉 .
Therefore one needs to consider the subcases of (

probl1
6.130) for (non-zero) vectors

of the type v = Qrr w , where w ∈ FdiagN−1 ⊂ F
diag
N .

Our main tool will be the following exchange relation for the diagonal ele-
ments of Q implied by Eq.(

no1
6.125):

[pst]⊗ [p̄st + 1]QssQ
t
t = [pst − 1]⊗ [p̄st]QttQ

s
s + [pst + p̄st]Qst Q

t
s

⇒ [pst + 1]QssQ
t
t ≈ [pst − 1]QttQ

s
s ( for s 6= t ) . (6.131)

(The ”weak equality” sign refers to an identity that holds on F ′N ; we omit
the off-diagonal elements which should annihilate a vector by the induction
hypothesis (

ind-hyp
6.126).) To derive (

preF
6.131) we have used the fact that p and p̄

coincide on F ′ (we can restrict our attention to vectors that are generated by
diagonal Q-monomials and hence, are common eigenvectors of p and p̄ ) and
have taken one more time into account (

pij-or-pil
6.129) implying

[pst] v = 0 , s 6= t ⇒ QssQ
t
t v = 0 = QttQ

s
s v . (6.132) QsQt

Presumably (if Proposition 6.2 is correct), the weak equality (
preF
6.131) is actually

a strong one, i.e. holds on the whole diagonal subspace F ′ .
Assume first that v = Qrr w with r = j (and hence, r 6= i). As [pij−1]Qjj w =

0 implies pij w = (Mh + 2)w , it follows that [pij ]w = (−1)M [2]w 6= 0 , and
(
preF
6.131) is equivalent to QiiQ

j
j w = 1

[3] Q
j
j Q

i
i w ([3] 6= 0 for n ≥ 3 and k ≥ 1).

Hence, Qj` Q
i
iQ

j
j w = 0 by Lemma 6.1. The case r = ` is resolved by an identical

argument.
We shall show in what follows that any v = Qrr w ∈ F ′N satisfying (

probl1
6.130)

(and the induction hypothesis) can be presented in fact as

v = Qjj w
′ or v = Q`` w

′′ for some w′ , w′′ ∈ F ′N−1 (6.133) pres-v

which would allow us to reduce every case to the previous one.
Let ms ≥ 0 , r = 1, . . . , n be the order of homogeneity in Qss of the monomial

generating v from the vacuum, then the eigenvalue of pj` evaluated on v is

pj` = mj −m` + `− j , j 6= ` . (6.134) inc2

Note that, due to Eq.(
probl1
6.130), we have [pj`] v = 0 ( j 6= ` ) which, by (

inc
6.106),

is equivalent to mj −m` = j − ` modh . As (h >) n − 1 ≥ |` − j| ≥ 1 (> 0) ,
the latter is not compatible with mj = 0 = m` , i.e. the monomial in question
contains at least one copy of Qjj or Q`` .
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We could thus try to make use of (
preF
6.131) and pull to the left, step by step,

the one of these Qjj or Q`` which is at the leftmost position in the monomial,
until we finally get (

pres-v
6.133); the idea would be successful if we are able to show

that the relevant p-dependent coefficients (the quantum brackets) in (
preF
6.131) do

not vanish. To check if and how it will work, we need to unveil the structure of
F ′N itself.

It is clear that the problem involves the combinatorics of partitions: to
each vector v ∈ F ′N generated by a diagonal Q-monomial there corresponds
an n-tuple of non-negative integers (m1, . . . ,mn) (such that

∑n
s=1ms ≤ N ).

These can be arranged in a table in which the s-th row contains ms boxes.
(As the diagonal Q-algebra (

preF
6.131) is not commutative, a non-zero vector v is

not uniquely determined by its diagram for n ≥ 3 ; the latter characterizes just
the one-dimensional space spanned by it.) We shall prove in what follows that
the restrictions imposed by (

preF
6.131) imply that the table corresponding to v is

actually an s`(n) Young diagram which not only satisfies the requirement

m1 ≥ · · · ≥ mn−1 ≥ mn = 0 (6.135) Y1-2

but is also such that its maximal hook length34 does not exceed h− 1 , i.e.

m1 + j − 1 ≤ h where mj−1 > 0 , mj = 0 ( for 2 ≤ j ≤ n ) . (6.136) Y2-2

By (
inc2
6.134), (

Y2-2
6.136) is equivalent to the restriction p1j ≤ h on the eigenvalue of

the corresponding operator evaluated on v . (Thus, for n = 3 two-line diagrams
are admissible only if they have m1 ≤ h− 2 columns while for n ≥ 4 three-line
diagrams are only allowed if m1 ≤ h− 3 , etc. In general, (n− 1)-line diagrams
can have at most m1 ≤ k + 1 columns where k is the level; the ”physical”
ones corresponding to integrable highest weights obey m1 ≤ k.) Obviously, all
diagrams that are admissible for a given n are also admissible for n+ 1 .

34The hook length of a box in a s`(n) Young diagram
Ful
[109] is defined as the sum of numbers

of boxes to the right of it and below it, plus 1 for the box itself. If we enumerate the boxes
by their row and column, the maximal hook length of a diagram is that of the box (1, 1) (the
upper left one, in the standard ”English” ordering

Mac
[193]).
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(Albeit we shall use (
preF
6.131) which is only correct in case the induction hy-

pothesis takes place, there is no loophole in this consideration since the hypo-
thetical property is reproduced at the next level.)

B) Let now the index r be different from any of the indices i , j and ` ; then
Qrr does not change the eigenvalue of pij or p̄i` (coinciding with that of pi`)
so that (

probl1
6.130) implies [pij − 1]w = 0 = [pi` − 1]w for v = Qrr w 6= 0 . The

case [pir]w = 0 is trivial since then QiiQ
r
r w = Qri Q

i
r w = 0 (cf. (

pij-or-pil
6.129); of

course, also Qrr Q
i
i w = 0). If [pir]w 6= 0 , the next step depends on whether

[pir + 1]w ≡ − [pri − 1]w 6= 0 .
B1) If this is the case, we can use Eq.(

probl1
6.130) to replace Qj` Q

i
iQ

r
r w by

Qj` Q
r
r Q

i
i w (or get immediately zero, if [pir − 1]w = 0 or Qii w = 0). Then

we can make use of the first equality (
no1
6.125), in case the eigenvalues of both

[prj − 1] and [pr`] on Qii w ( 6= 0 ) do not vanish, or else

[prj − 1]Qii w = 0 (Qii w 6= 0 ) ⇒ [prj − 1]w = 0 (6.137) contra1

which, together with [pij − 1]w = 0 would imply [pir]w = 0 – and hence,
QiiQ

r
r w = Qri Q

i
r w = 0 = Qrr Q

i
i w as above, or

[pr`]Qii w = 0 ⇒ Qj` Q
r
r Q

i
i w = Qjr Q

r
` Q

i
i w = 0 . (6.138) contra2

So it remains to inspect the last two possible cases,

B2) Qj` Q
i
iQ

r
r w for i, r, j, ` all different and [pri − 1]w = 0 as well as

[pij − 1]w = 0 = [pi` − 1]w (⇒ [pj`]w = 0 ) (6.139) problB2

and that of r = i , i.e.

C) Qj` Q
i
iQ

i
i w for i 6= j 6= ` 6= i and w satisfying

[pij − 1]Qii w = 0 = [pi` − 1]Qii w (Qii w 6= 0 ) ⇒
[pij ]w = 0 = [pi`]w (⇒ [pj`]w = 0 ) . (6.140)

Note that

[pij − 1] v = 0 = [p̄i` − 1] v ⇒
1) aiα a

j
β v = qεαβaiβ a

j
α v , (6.141)

2) (aiαa
j
β − a

j
α a

i
β) v = −q−εαβ (aiβ a

j
α − a

j
β a

i
α) v .

These relations remain valid for α = β; similar relations exist for the bar zero
modes. (In fact, the second relation is universal, i.e. an operator one, see
(
pij-anti
4.240).) It follows from (

no1
6.125) for [pij − 1] v = 0 = [p̄i` − 1] v that e.g.

[Mh+ 1] [Nh+ 2]QiiQ
j
` v = [(M +N)h+ 2]Qi`Q

j
i v ,

i.e. QiiQ
j
` v = Qi`Q

j
i v = Qji Q

i
` v . (6.142)

On the other hand,

[pij ] v = 0 ⇒ ajβ a
i
α v = aiβ a

j
α v ⇒ Qj` Q

i
i v = Qi`Q

j
i v ,

[p̄i`] v = 0 ⇒ āβ` ā
α
i v = āβi ā

α
` v ⇒ Qj` Q

i
i v = Qji Q

i
` v . (6.143)

On a diagonal vector v , the simultaneous validity of the two relations [pij−1] v =
0 = [p̄i` − 1] v implies [pj`] v = 0 = [p̄j`] v .

The next steps should involve
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• an effective description of the combinatorics of the diagonal Q-vector space
(presumably, coinciding with the pre-physical space F ′) in terms of s`(n)
Young diagrams; conjecture:

F ′ = ⊕p∈Inh F
′
p ( dim F ′p = 1 ; finite sum ! ) , (6.144)

Inh = {Λ , λi ≥ 0 , h− 1 ≥ λ1 + . . . λn−1 ≥ 0}
≡ {p , pii+1 ≥ 1 , h+ n− 2 ≥ p1n ≥ n− 1 } ,

dim F ′ = card Inh =
h∑

µ1=1

µ1∑
µ2=1

· · ·
µn−2∑
µn−1=1

µn−1 =
(
h+ n− 2
h− 1

)
≡
(
h+ n− 2
n− 1

)
.

Two bases in F ′ : define Si := Qii . . . Q
1
1 , then

A) (Qn−1
n−1)mn−1 . . . (Q1

1)m1 |0〉 , h− 1 ≥ m1 ≥ · · · ≥ mn−1 ≥ mn ≡ 0 ,

B) Sλ1
1 . . . S

λn−1
n−1 |0〉 (λi = mi −mi+1 ≥ 0 ) , h− 1 ≥ λ1 + . . . λn−1 ≥ 0 .

Explanation: Vectors in F ′p are indexed by a (restricted) set of admissible
s`(n) Young diagrams – shapes only, no filling (i.e., no tableaux)! The
space F ′ is a representation space of the (diagonal) Q-algebra. (Can we
realize Uq(s`(n)) in terms of it, and how? If so, a quotient would be the
”physical” symmetry, see below.)

Taking into account that the ”maximal Q-string” is proportional to the
vacuum vector,

QnnQ
n−1
n−1 . . . Q

1
1 |0〉 = εαnαn−1...α1ε

αnαn−1...α1 |0〉 = [n]! |0〉 , (6.145) DetQ

cf. (
een!
4.130), we conclude that the pre-physical Q-state space is of the form

F ′ = {v | v = P (Qn−1
n−1 , . . . , Q

1
1) |0〉} ; (pij − p̄ij)F ′ = 0 ,

[pij ] ([pij + 1]QiiQ
j
j − [pij − 1]Qjj Q

i
i)F ′ = 0 . (6.146)

E.g., for n = 2 , i = 1 , j = 2 , p = p12 so that p |m〉 = (m + 1) |m〉 and
(cf. (

ADm
6.62)) A |m〉 = [m+ 1] |m+ 1〉 , D |m〉 = [m+ 1] |m− 1〉 ,

[p] ( [p+ 1]AD − [p− 1]DA ) |m〉 = (6.147)
= [m+ 1] ( [m+ 2] [m] [m+ 1]− [m] [m+ 2] [m+ 1] ) |m〉 = 0 (OK!) .

N.B. For n = 2 the representations in I2
h themselves play in

the same time the role of a basis of a specific (indecomposable)
representation of the quantum group!

• singling out the physical subquotient Fphys ,

Fphys = ⊕p∈Pnh F
phys
p ( finite sum; dim Fphysp = 1 ) , (6.148)

Pnh = {Λ , λi ≥ 0 , k ≥ λ1 + . . . λn−1 ≥ 0}
≡ {p , pii+1 ≥ 1 , k + n− 1 ≡ h− 1 ≥ p1n ≥ n− 1 } ,

dim Fphys = cardPnh =
(
k + n− 1
n− 1

)
≡
(
h− 1
n− 1

)
=
(
h− 1
k

)
,

and, hopefully,

• recovering the ŝu(n)k fusion ring (of the unitary WZNW model) in this
setting;

• is there a relation to the phase model algebra of Korff and Stroppel
KS, Ko1, Ko2, Wa2012
[183,

181, 182, 257]?;

7 Discussion and outlook

...............
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Appendix A. Semisimple Lie algebras

Here we shall introduce some relevant notions and fix our conventions about
semisimple Lie algebras (see e.g.

FulH
[110],

FS
[104],

Hum
[157],

Serre
[237]).

Let GC be the complexification of the Lie algebra G of a compact semisimple
Lie group G . We shall use throughout this paper the notation tr for the Killing
form. It is proportional to the matrix trace Tr = Trπ in any (non-trivial) finite
dimensional irreducible representation π of G ,

tr (XY ) ≡ (X,Y ) :=
1

2 g∨
Tr (ad(X) ad(Y )) =

1
N(π)

Tr (π(X)π(Y )) (A.1) Kill

for all X,Y ∈ G . Here ad = adG is the adjoint representation of G (ad(X)Y =
[X,Y ] , dim (adG) = dimG), g∨ is the dual Coxeter number defined in (

gCox
A.19)

below,

N(π) = C2(π)
dimπ

dimG
(A.2) secD

is the second order Dynkin index of the representation π and C2(π) is the cor-
responding second order Casimir invariant. Eqs. (

Kill
A.1) and (

secD
A.2) are consistent

since
N(ad) = C2(ad) = 2 g∨ , (A.3) NC2g

see (
Cpiad
A.24).

For a pair {Ta} , {tb} of dual bases of GC (such that tr (Ta tb) = δab ) we
define the Killing metric tensor ηab (

etaab
2.32) and its inverse, ηab as

ηab = tr (TaTb) , ηab = tr (tatb) ⇔ ta = ηabTb . (A.4) Killeta

Conversely, for a given semisimple GC , its (unique) compact real form G can be
characterized by the fact that (ηab) is negative definite on it. A Cartan-Weyl
basis of GC is given by {Ta} = {hi, eα} where hi , i = 1, 2, . . . , r ≡ rankGC
span a Cartan subalgebra h ⊂ GC and eα are the step operators labeled by
the roots α of GC . If we define a Hermitean conjugation on GC acting on the
Cartan-Weyl generators as h∗i = hi , e

∗
α = e−α , then its compact form consists

of the antihermitean elements; hence, G is the real span of

ihi , i(eα + e−α) , eα − e−α , i = 1, . . . , r , α > 0 . (A.5) compf

Denote by {αj}rj=1 the simple roots and by α∨ := 2
(α|α) α the coroot corre-

sponding to α . Let ( | ) be the Euclidean metric induced by the Killing form
on the (r-dimensional) real linear span of all roots; then (α|β∨) ∈ Z for all pairs
of roots α and β (see e.g.

FS
[104]). A root is either positive or negative, depending

on the (common) sign of the non-zero integer coefficients in its expansion into
simple roots. The Gauss decomposition of GC as a vector space reads

GC = G+ ⊕ h⊕ G− , G± = span {eα , ±α > 0} , (A.6) Gauss

where all the three direct summands are in fact Lie subalgebras (G± are nilpo-
tent and the Borel subalgebras b± := h ⊕ G± are solvable). In the Chevalley
normalization of the step operators characterized by

[eα, e−α] =: hα , tr (hαhβ) = (α∨|β∨) (A.7) hee

which we shall adopt here, the components ηij = tr (hihj) , ηiα = tr (hieα) and
ηαβ = tr (eαeβ) of the Killing metric tensor read

ηij = (α∨i |α∨j ) , ηiα = 0 , ηαβ =
2

(α|α)
δα ,−β (⇒ ηαβ =

(α|α)
2

δα ,−β )

(A.8) CCWC

while the Lie commutation relations assume the form

[hi, hj ] = 0 , [hi, eα] = (α|α∨i ) eα ⇒ [hi, e±j ] = ±cjie±j

for cij := (αi|α∨j ) ≡ 2
(αi|αj)
(αj |αj)

, e±j := e±αj ,

and [ei, e−j ] = δij hj , (A.9)
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where (cij) is the Cartan matrix. The Lie algebra GC admits a presentation
in terms of generators and relations: it is generated by the 3r generators
{hi, ei, e−i}ri=1 (forming the Chevalley basis), subject to the Lie bracket relations
in (

CWbasis
A.9) and the Serre relations

(ad(e±i))1−cjie±j = 0 =
1−cji∑
`=0

(−1)`
(

1− cji
`

)
e`±ie±j e

1−cji−`
±i = 0 , i 6= j .

(A.10) Serre2

(the second relation using the associative product of step operators takes place
in the universal enveloping algebra U(GC)).

The fundamental weights Λj defined by

(Λj | α∨` ) = δj` , j, ` = 1, . . . , r (A.11) fundw

form another basis {Λj}rj=1 referred to as the Dynkin basis, and the coefficients
of a weight Λ with respect to it, as Dynkin labels. The canonical duality h ∈
GC ↔ GC

∗ established by the Killing form assumes, in particular,

hα ↔ α∨ : α∨(h) = tr (hαh) ∀ h ∈ h ⇒ hi ↔ α∨i , hj ↔ Λj . (A.12) cdual

The orthogonality of the Dynkin and coroot basis vectors (
fundw
A.11) implies that∑r

j=1(x|Λj)α∨j = x =
∑r
j=1(x|α∨j ) Λj for any x ∈ GC . Putting, in particular,

x = Λi , x = αi and x = α∨ in this relation, we obtain

Λi =
r∑
j=1

(Λi|Λj)α∨j , αi =
r∑
j=1

cij Λj and α∨ =
r∑
j=1

(α∨|Λj)α∨j , (A.13) usef

respectively. From the first formula in (
usef
A.13) one derives the Cartan components

of the inverse Killing metric tensor

ηij = (Λi|Λj) , (A.14) etaup

and the last one implies that the Cartan element hα (
hee
A.7) dual to an arbitrary

(i.e. not necessarily simple) coroot is expressed as

hα =
r∑
j=1

(α∨|Λj)hj ⇒ [hα, e±α] = ±2 e±α . (A.15) h-a

Linear combinations of simple roots (coroots, weights) with integral coefficients
form the root (coroot, weight) lattice. The coefficients {ai}ri=1 in the expansion of
the highest root θ =

∑r
i=1 ai αi are called the Kac labels, and the positive integer

g := 1+
∑r
i=1 ai , the Coxeter number of GC ). The elements of the weight lattice,

called integral weights, are the possible (in general, degenerate) eigenvalues of
π(hi) for any finite dimensional representation π of G . The dominant (integral)
weights Λ are the weights whose Dynkin labels are non-negative integers,

Λ =
r∑
i=1

λi Λi , λi = (Λ | α∨i ) ∈ Z+ , i = 1, . . . , r . (A.16) dintw

They are in one-to-one correspondence with the (non-degenerate) highest weights
of the irreducible representations πΛ of G ,

(πΛ(hi)− λi) | Λ〉 = 0 = πΛ(eα) | Λ〉 , i = 1, . . . , r , α > 0 . (A.17) HWpi

The highest root θ is the highest weight vector of the adjoint representation ad
of G . The expansion of θ∨ in terms of the simple coroots {α∨i }ri=1 ,

θ∨ ≡ 2
(θ| θ)

θ =
r∑
i=1

a∨i α
∨
i , (A.18) dCL

defines the dual Kac labels {a∨i }ri=1 and the dual Coxeter number

g∨ := 1 +
r∑
i=1

a∨i . (A.19) gCox
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From now on we shall fix (θ| θ) = 2 so that θ∨ ≡ θ . For s`(n) = An−1 all
a∨i , i = 1, . . . , n− 1 are equal to 1 so that g∨s`(n) = n .

The quadratic Casimir operator C2 = ηab Ta Tb belonging to U(GC) com-
mutes with all the elements of GC and so is proportional to the unit operator 1Iπ
in any irreducible representation π , i.e. π(Ta)π(ta) = C2(π) 1Iπ . On the other
hand, using the definition of the dual bases and (

Kill
A.1), we obtain

N(π) tr (Ta ta) = Tr (π(Ta)π(ta)) = N(π) δaa = N(π) dimG . (A.20) NC2

Taking into account that Tr 1Iπ = dimπ , we find that the second order Dynkin
index N(π) is related to the Casimir eigenvalue C2(π) by (

secD
A.2).

By (
etaup
A.14) and (

CCWC
A.8), C2 assumes the form

C2 = ηab Ta Tb =
r∑

i,j=1

(Λi|Λj)hi hj +
∑
α>0

(α|α)
2

(eα e−α + e−αeα) =

=
r∑
i=1

hihi +
∑
α

eαeα , hi :=
r∑
j=1

(Λi|Λj)hj , eα :=
(α|α)

2
e−α . (A.21)

Computing πΛ(C2) on the highest weight vector | Λ〉 of a given IR for Λ given
by (

dintw
A.16), we obtain

C2(πΛ) =
r∑

i,j=1

(Λi|Λj)λiλj +
∑
α>0

(α|α)
2

r∑
j=1

(α∨|Λj)λj =

= (Λ|Λ) +
∑
α>0

(Λ|α) = (Λ|Λ + 2ρ) , (A.22)

where

ρ :=
1
2

∑
α>0

α =
r∑
i=1

Λi (A.23) Wv

is the Weyl vector. In particular, for the eigenvalue of the Casimir in the adjoint
representation (with highest weight Λ = θ) one reproduces (

NC2g
A.3):

C2 (ad) = (θ| θ + 2ρ) = (θ| θ) (1 +
r∑
i=1

(θ∨|Λi)) = (θ| θ) g∨ = 2 g∨ (A.24) Cpiad

(see (
dCL
A.18) and (

gCox
A.19)). On the other hand, the matrices f .

a . given by the
structure constants are nothing but the generators of the adjoint representation.
This allows to relate them to the dual Coxeter number. Indeed, using (

Kill
A.1),

(
secD
A.2), (

Killeta
A.4) and (

Cpiad
A.24), we find

Tr (ad(Ta) ad(Tb)) = i2 f t
as f

s
bt = 2 g∨ ηab . (A.25) adff

The dimension of an IR πΛ is given by the Weyl dimension formula

dimπΛ =
∏
α>0

(Λ + ρ |α)
(ρ |α)

. (A.26) Weyldim

The Weyl group of a root system is the finite group generated by the simple
reflections si := sαi , i = 1, . . . , r where sα(β) = β − 2 (β|α)

(α|α) α . It is a Coxeter
group with generators si subject to the relations (sisj)mij = 1 , where

mij =


1 , i = j
2 , #(i, j) = 0
3 , #(i, j) = 1
4 , #(i, j) = 2
6 , #(i, j) = 3

(A.27) Wrels

and #(i, j) is the number of bonds joining the ith and jth vertex of the Dynkin
diagram.

The fundamental Weyl chamber consists of the vectors Λ =
∑r
i=1 pαiΛ

i in
the weight space forming the cone (Λ|α∨i ) ≡ pαi ≥ 0 , i = 1, . . . , r , and the
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(level k) positive Weyl alcove, a subset of it, is the simplex whose points are
restricted by the additional requirement (Λ| θ) ≤ k . They serve as fundamental
domains of the corresponding Weyl group and affine Weyl group, respectively.

It is easy to see that for s`(r+ 1) = Ar the nontrivial Eqs.(
Wrels
A.27) (i.e., those

for i 6= j) reduce to the braid relations (
braidR
4.39) for si , i = 1, . . . , r , in accord

with the fact that the corresponding Weyl group is the symmetric group Sr+1 .
In this case it is convenient to use the standard barycentric parametrization of
the roots and weights by imbedding them in an n-dimensional Euclidean space
with a distinguished orthonormal basis {εs , s = 1, . . . , r+ 1 ≡ n} such that the
simple roots and the fundamental weights assume the form

α` = ε` − ε`+1 , 1 ≤ ` ≤ n− 1 , (εr| εs) = δrs , 1 ≤ r, s ≤ n ,

Λi = (1− i

n
)

i∑
j=1

εj −
i

n

n∑
j=i+1

εj , (Λi|α`) = δi` , 1 ≤ i, ` ≤ n− 1 . (A.28)

The set of positive roots then admits a double index labeling ,

αij =
j−1∑
`=i

α` = εi − εj , 1 ≤ i < j ≤ n (α` ≡ α` `+1 ) (A.29) slnroots

and the highest root is θ = α1n = ε1 − εn = Λ1 + Λn−1 . As the weight and
root systems lie in the hyperplane orthogonal to the vector ε :=

∑n
s=1 εs (one

can easily verify that (αij | ε) = 0 = (Λm| ε) for all 1 ≤ i < j ≤ n , 1 ≤ m ≤
n− 1), any weight Λ =

∑r
i=1 λiΛ

i can be expressed in terms of the barycentric
coordinates `j , j = 1, ..., r + 1 such that

Λ =
r∑
i=1

λi Λi =
r+1∑
j=1

`j εj , (Λ |ε) = 0 ⇒
r+1∑
j=1

`j = 0 . (A.30) baryA

The Dynkin labels {λi}ri=1 and {`j}r+1
j=1 can be found from each other by

λi = `i − `i+1 , `j =
r∑

m=j

λm −
1

r + 1

r∑
m=1

mλm . (A.31) lambda-ell

It would be useful to present explicit formulas for the barycentric coordinates
of some important dominant weights Λ. One has, in particular,

`j(ρ) =
n+ 1

2
− j , `j(πf ) = δj1 −

1
n
,

`j(πs) = 2
(
δj1 −

1
n

)
, `j(πa) = δj1 + δj2 −

2
n
,

`j(πs̄) = 2
(

1
n
− δjn

)
, `j(πā) =

2
n
− δj,n−1 − δjn (A.32)

for the labels of the Weyl vector ρ =
∑r
i=1 Λi (

Wv
A.23) and of the highest weights of

the defining representation, Λ1, of its symmetric and antisymmetric powers, 2Λ1

and Λ2, and of their conjugate representations, 2Λn−1 and Λn−2, respectively.
The eigenvalue of the quadratic Casimir operator (

c2piL
A.22) in the IR with highest

weight Λ (
baryA
A.30) can be then expressed as

C2(πΛ) = (Λ | Λ + 2ρ) =
n∑
j=1

`j(`j + 2`j(ρ)) =
n∑
j=1

`j(`j − 2j) . (A.33) C2L

We get, in particular, C2(πf ) = n2−1
n so that, from (

secD
A.2),

N(πf ) = C2(πf )
dimπf

dim sl(n)
=
n2 − 1
n

.
n

n2 − 1
= 1 . (A.34) Npif

It follows that in the fundamental representation of G = su(n) the Killing trace
tr (

Kill
A.1) coincides with the usual matrix trace Tr .
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On the other hand, for s`(n) all a∨i = 1 , hence g∨ = n , so for the adjoint
representation C2 (ad) = 2n = N(ad) , cf. (

dCL
A.18), (

gCox
A.19), (

Cpiad
A.24) and (

NC2g
A.3). The

corresponding level k positive Weyl alcove contains dominant weights (
dintw
A.16)

satisfying in addition

(Λ| θ) ≡
n−1∑
j,`=1

λj a
∨
` (Λj |α∨` ) =

n−1∑
j=1

λj = `1 − `n ≤ k . (A.35) Wslnlambda

As all the roots of s`(n) = An−1 have equal length square, the corresponding
(n− 1)× (n− 1) Cartan matrix c(n) = (cij) (

CWbasis
A.9) is symmetric:

cij = (αi|αj) , cii = 2 , ci i±1 = −1 , cij = 0 for |i− j| > 1 . (A.36) Cq

It is easy to see that det c(n) = n as it obeys

det c(n) = 2 det c(n−1) − det c(n−2) , det c(2) = 2 , det c(3) = 3 . (A.37) detcn

We have, furthermore

ηij = cij , ηij = (Λi|Λj) = min (i, j)− ij

n
(A.38) etas

so that

hi =
n−1∑
j=1

cij h
j = 2hi − hi−1 − hi+1 ⇔

hi =
i∑

j=1

j (1− i

n
)hj +

n−1∑
j=i+1

i (1− j

n
)hj . (A.39)
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Appendix B. Hopf algebras

B.1. The Hopf algebra Uq(s`(n))

We shall spell out the definition of the QUEA Uq(G) as a Hopf algebra for
G = Ar = s`r+1 . It is customary in mathematical textbooks to take first q as
just a central indeterminate and consider at a later stage various specializations
of q as a (complex) deformation parameter. The definition below follows

CP
[55], a

comprehensive text on the subject (see in particular Definition-Proposition 9.1.1
therein), where the ”rational form” Uq(G) is introduced as an associative algebra
over Q(q) , the field of rational functions of q . The n-fold ”cover” U (n)

q (s`(n))
defined by adjoining to Uq(s`(n)) the invertible elements ki , i = 1, . . . , n − 1
(
dk
4.79) then corresponds to the simply-connected rational form

CP
[55].

The Chevalley basis of Uq(Ar) contains r group-like generators Ki and their
inverses K−1

i (such that KiK
−1
i = K−1

i Ki = 1I) which correspond to the clas-
sical Cartan generators, and 2r Lie algebra-like ones, the raising and lowering
operators Ei and Fi, corresponding to the simple roots. They obey the following
CR,

KiEj K
−1
i = qcij Ej , Ki Fj K

−1
i = q−cij Fj ,

[Ei, Fj ] = δij
Ki −K−1

i

q − q−1
, i, j = 1, . . . , r (B.1)

(here (cij) is the Ar Cartan matrix (
Cq
A.36)) and q-Serre relations (that are only

non-trivial for r > 1):

E2
i Ej + Ej E

2
i = [2]EiEj Ei , F 2

i Fj + Fj F
2
i = [2]Fi Fj Fi

for |i− j| = 1 , [Ei, Ej ] = 0 = [Fi, Fj ] for |i− j| > 1 . (B.2)

The definition of an arbitrary Hopf algebra A involves the coproduct (an
algebra homomorphism ∆ : A→ A⊗A), the counit (a homomorphism ε : A→
C) and the antipode (an antihomomorphism S : A → A). The compatibility
conditions on the coalgebra structures read

(id⊗∆) ∆ = (∆⊗ id) ∆ ,

(id⊗ ε) ∆(X) = (ε⊗ id) ∆(X) = X ,

m (id⊗ S) ∆(X) = m(S ⊗ id) ∆(X) = ε(X) 1I . (B.3)

The first property is called coassociativity. In the third relation, m is just the
multiplication in the algebra considered as a map m : A⊗A→ A , m(X⊗Y ) =
XY ∀X,Y ∈ A .

In the case of Uq(Ar) we define these structures on the generators {Ki, Ei, Fi} ,
i = 1, . . . , r as follows:

∆(Ki) = Ki⊗Ki , ∆(Ei) = Ei⊗Ki+1I⊗Ei , ∆(Fi) = Fi⊗1I +K−1
i ⊗Fi , (B.4) copr

ε(Ki) = 1 , ε(Ei) = ε(Fi) = 0 , (B.5) coun

S(Ki) = K−1
i , S(Ei) = −EiK−1

i , S(Fi) = −Ki Fi . (B.6) antip

A Hopf algebra A is said to be cocommutative if the coproduct ∆(X) =∑
(X)X1⊗X2 is equal to its opposite ∆′(X) =

∑
(X)X2⊗X1 , see (

DDp
4.36)35. It

is said to be almost cocommutative if there exists an invertible elementR ∈ A⊗A
called universal R-matrix which intertwines ∆(X) and its opposite, ∆′(X) =
R∆(X)R−1 , see (

intR
4.37). In this case the element

M := R21R ∈ A⊗ A (B.7) univM

is called the (universal) monodromy matrix. Exchanging the order of the terms
in the tensor products we obtain that M commutes with the coproduct:

∆(X) = R21 ∆′(X)R−1
21 ≡ R21R∆(X)R−1R−1

21 ⇒ [M , ∆(X) ] = 0 .
(B.8) UM

35The universal enveloping algebra U(G) of any classical Lie algebra is non-commutative
but cocommutative. The deformed QUEA Uq(G) is however neither commutative nor cocom-
mutative.
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An almost cocommutative A = (A ,R) is quasitriangular if R satisfies, in addi-
tion,

(∆⊗ id)R = R13R23 , (id⊗∆)R = R13R12 . (B.9) qtr

Any of these two relations implies that R solves the Yang-Baxter equation

R12R13R23 = R23R13R12 (B.10) YBE-R

(and also fixes the normalization of R ); for example, the definition of R and
the first equation (

qtr
B.9) (equivalent to (∆′ ⊗ id)R = R23R13) imply

R12R13R23 = R12(∆⊗ id)R = ((∆′ ⊗ id)R)R12 = R23R13R12 . (B.11) derYB

The following relations also hold:

(ε⊗ id)R = 1I = (id⊗ ε)R ,

(S ⊗ id)R = R−1 = (id⊗ S−1)R ⇒ (S ⊗ S)R±1 = R±1 . (B.12)

If (A ,R) is quasitriangular, so is (A ,R−1
21 ) .

Universal R-matrices R for quantum deformations of U(G) for any simple
G can be found by considering in the place of Uq(G) a ”topological” version of
it and appropriately completing the tensor square which requires, however, a
non-algebraic setting. One can consider, as a replacement of Uq(G) for q = et ,
the topologically free C[[t]] algebra (i.e. the algebra over the formal power series
in t ) Ut = Ut(G) generated, in the case G = Ar , by {Ei, Fi, Hi}ri=1 subject
to relations (

CRq
B.1) – (

antip
B.6) (with Ki replaced by ehHi), and use an appropriate

completion of the tensor product Ut⊗Ut . The universal R-matrix R (obtained
by Drinfeld

D
[71] for Ut(A1) , by Rosso

R
[221] for Ut(Ar) , and by Kirillov Jr. and

Reshetikhin
KR90
[175] and, independently, by Levendorskii and Soibelman

LS
[187] for

Ut(G) where G is a general simple complex Lie algebra) is a product of similar
terms for any s`2 triple, appropriately ordered by using a quantum analog of
the Weyl group.

For Ut(s`(2)) the corresponding universal R-matrix has the form

R =
∞∑
ν=0

q−
ν(ν−1)

2 (−λ)ν

[ν]!
F ν ⊗ Eν q− 1

2H⊗H . (B.13) RUq2

Clearly, the infinite series in ν reduces to a finite sum in any finite dimensional
representation of Ut of ”classical type” (i.e. such that E and F are nilpotent).
It is easy to verify, in particular, in the n = 2 case that (

RUq2
B.13) reproduces (

R2
5.36)

for Ef and F f given by (
bUf
5.37) and

(
qH
)f

= qH
f

=
(
q 0
0 q−1

)
, [Hf ] = Hf =

(
1 0
0 −1

)
. (B.14) Hf

For general n , the matrix R12 (
R
4.53) can be obtained in a similar way from the

universal R-matrix R for Ut(s`(n)) .
For q a root of unity (as it is in our case, (

height-h
4.58)), finite dimensional quasi-

triangular quotients of Uq(G) exist so that the construction of their R-matrix
becomes purely algebraic.

B.2. The Drinfeld double

We are going to briefly recall here, following
D, RS, Ka, Ma
[71, 218, 172, 197], the construction

of the Drinfeld double D(A) of a (finite dimensional) Hopf algebra A . Any dou-
ble is quasitriangular and factorizable; moreover, there is a canonical expression
for its universal R-matrix RD . We shall apply further the general theory to the
finite dimensional quotients of the Borel subalgebras in U

(2)
q (s`(2)) .

Formally, the Drinfeld double D(A) is the bicrossed product of the dual
A∗ taken with the opposite coproduct, and A itself (see Chapter IX of

Ka
[172]):
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D(A) := (A∗)cop ./ A . The Hopf structure on (A∗)cop is defined, for X,Y ∈
A , F,G ∈ A∗ , ∆(X) =

∑
(X)X(1) ⊗X(2) etc., by

(F G)(X) = (F ⊗G) (∆(X))

≡∑
(X)

F (X(1))G(X(2))

 ,

∆(F )(X ⊗ Y )

≡∑
(F )

F(1)(X)F(2)(Y )

 = F (Y X) , (B.15)

1I (X) = ε(X) , ε(F ) = F (1I) , S(F )(X) = F (S−1(X)) .

From practical point of view, the following properties of the double D(A) are
sufficient to reproduce its general structure as a quasitriangular Hopf algebra.

• As a vector space, the double D(A) is just the tensor product A∗ ⊗ A .

• As a coalgebra, the double D(A) = (A∗)cop ⊗ A . The tensor product of
coalgebras B and A with coproducts ∆B(F ) =

∑
(F ) F(1) ⊗ F(2) and

∆A(X) =
∑

(X)X(1) ⊗ X(2) , respectively, is a coalgebra with counit
εB⊗A(F ⊗X) := εB(F ) εA(X) and coproduct36

∆B⊗A(F ⊗X) :=
∑

(F ),(X)

F(1) ⊗X(1) ⊗ F(2) ⊗X(2) . (B.16) tens-pr-coalg

• The multiplication in D(A) is defined as

(F ⊗X) . (G⊗ Y ) =
∑
(X)

F G(S−1(X(3)) ?X(1)) ⊗ X(2) Y , (B.17) mult-gen

where ∑
(X)

X(1) ⊗X(2) ⊗X(3) = (id⊗∆) ∆(X) = (∆⊗ id) ∆(X)

and the ? sign in the right-hand side stands for the missing argument of
the functional. Identifying A and its dual with Hopf subalgebras of D(A) ,
e.g. A ' 1I ⊗ A ⊂ D(A) , we derive from (

mult-gen
B.17) the following constraint

on the mixed multiplication in D(A):

X .F =
∑
(X)

F (S−1(X(3)) ?X(1))X(2) , ∀X ∈ A , F ∈ A∗ . (B.18) mult-pm

• If ei ∈ A and ej ∈ A∗ are dual linear bases of A and A∗, respectively,
the R-matrix RD of the double D(A) is given by the (basis independent)
expression

RD =
∑
i

ei ⊗ ei ∈ D(A)⊗D(A) ( ej(ei) = δji ) . (B.19) RDA

We shall now apply all this to the Hopf algebras Uq(b±) where

Uq(b+) : Fk+ = q k+F , Fh = 0 , k4h
+ = 1I ,

∆(F ) = F ⊗ 1I + k−2
+ ⊗ F , ∆(k+) = k+ ⊗ k+ , (B.20)

ε(F ) = 0 , ε(k+) = 1 , S(F ) = −k2
+F , S(k+) = k−1

+

and

Uq(b−) : k−E = q E k− , Eh = 0 , k4h
− = 1I ,

∆(E) = E ⊗ k2
− + 1I⊗ E , ∆(k−) = k− ⊗ k− , (B.21)

ε(E) = 0 , ε(k−) = 1 , S(E) = −Ek−2
− , S(k−) = k−1

−

36Note the flip between F(2) and X(1) which makes (
tens-pr-coalg
B.16) differ from ∆B(F ) ⊗ ∆A(X) .
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are the Borel subalgebras of the QUEA Uq defined in Section 5.2.2.
It is not difficult to prove that (Uq(b±)∗)cop ' Uq(b∓) .37 To this end, we

identify e.g. the elements k− and E with the following functionals (defined by
their values on certain PBW basis of Uq(b+)):

k−(fνn) := δν 0 q
−n2 , E(fνn) := − δν1

1
λ

( 1I(fνn) = ε(fνn) = δν 0 )

for fνn := F νkn+ ∈ Uq(b+) , 0 ≤ n ≤ 4h− 1 , 0 ≤ ν ≤ h− 1 . (B.22)

Applying the first relation (
U*op
B.15), one derives by induction the general relation

(Eµkm− )(fνn) = δµν
[µ]!

(−λ)µ
q
µ(µ−1)−mn

2 (B.23) d+

which can be used to prove, with the help of the other definitions in (
U*op
B.15),

that Eqs. (
B-ex
B.21) hold.

In accord with (
RDA
B.19), theR-matrix for the 16h4-dimensional double D(Uq(b+))

is given by

RD =
h−1∑
ν=0

4h−1∑
n=0

fνn ⊗ eνn (B.24) Rdouble

with fνn as defined in (
PBW+
B.22) and

eµm =
(−λ)µq−

µ(µ−1)
2

4h [µ]!

4h−1∑
r=0

q
mr
2 Eµkr− ( eµm(fνn) = δµν δ

m
n ) (B.25) dual+

forming the dual PBW basis of Uq(b−) . Finally, the mixed relations

[k+, k−] = 0 , k+E = q E k+ , F k− = q k−F , [E,F ] =
k2
− − k−2

+

q − q−1
(B.26) B-mix

which are derived from (
mult-pm
B.18), show that

D(Uq(b+)) = Uq ⊗ Uq(h) , Uq(h) = {κm}4h−1
m=0 , κ := k+k

−1
− (B.27) DBU

where Uq(h) belongs to the centre of the double. Hence, the quotient with
respect to the relation κ = 1I (i.e., k+ = k− =: k ) is isomorphic to Uq . Accord-
ingly, the same substitution in (

Rdouble
B.24) reproduces the R-matrix (

RbD
5.35).

Interchanging the roles of the two Borel subalgebras (
B+ex
B.20) and (

B-ex
B.21) we

obtain the same result (
DBU
B.27) for D(Uq(b−)) . Of course, the corresponding R-

matrix of the double differs from (
Rdouble
B.24); the universal R-matrix of Uq we obtain

from it coincides with (
RbD21
5.41).

B.3. Factorizable Hopf algebras and the Drinfeld map

A (finite dimensional) Hopf algebra A is called factorizable, if there exists a
universal monodromy matrix

M = R21R =
∑
i

mi ⊗mi ∈ A⊗ A (B.28) Mm

such that both {mi} and {mi} form bases of A. Alternatively, a factorizable
Hopf algebra A is such for which the Drinfeld map D̂ (

Dr-map
5.47)

D̂ : A∗ → A , φ 7→ D̂(φ) := (φ⊗ id)(M) =
∑
i

φ(mi)⊗mi

is a linear isomorphism, i.e. D̂(A∗) = A and D̂ is invertible (the equivalence
of the two definitions is a simple exercise in linear algebra). The opposite
extreme is the case of triangular Hopf algebra for which R21 = R−1 and hence,
M = 1I ⊗ 1I . (Cf. Remark 3.2 for the infinitesimal notions of factorizability

37The duality of the quantized Borel subalgebras is a well known fact
D
[71].
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and triangularity, respectively, of a Lie bialgebra defined by means of a classical
r-matrix

RS
[218].)

The space of A-characters (
Ch-Ad*inv
5.46) (functionals obeying φ(xy) = φ(S2(y)x)),

is an algebra under the multiplication

(φ1.φ2)(x) := (φ1 ⊗ φ2) (∆(x)) ∀φ1 , φ2 ∈ Ch (B.29) V-Ch-homo

which, for A quasitriangular, is commutative
D3
[72]:

(φ2.φ1)(x) = (φ1 ⊗ φ2) (∆′(x)) = (φ1 ⊗ φ2) (R∆(x)R−1) =
= (φ1 ⊗ φ2) (((S2 ⊗ S2)R−1)R∆(x) ) = (φ1 ⊗ φ2) (∆(x)) = (φ1.φ2)(x) . (B.30)

(We use consequtively the definition of R (
intR
4.37), the one of A-characters and

apply the last equation (
R-rel
B.12).) Denote by Z the centre of A , and by A∆ the

subalgebra of A⊗A consisting of elements B such that [B , ∆(x)] = 0 ∀x ∈ A .
Drinfeld has shown in Proposition 1.2 of

D3
[72] that

φ ∈ Ch , B ∈ A∆ ⇒ (φ⊗ id)(B) ∈ Z . (B.31) Ch-AD-Z

As M∈ A∆ (cf. (
UM
B.8)), the restriction of the Drinfeld map D̂ to A-characters

sends them into central elements. Moreover, it provides a (commutative) algebra
homomorphism Ch → Z (Proposition 3.3 of

D3
[72]),

D̂(φ1. φ2) = D̂(φ1) D̂(φ2) ∀φ1 , φ2 ∈ Ch (B.32) D-homom

which, for A factorizable, is an isomorphism (Theorem 2.3 of
Sch01
[227]). So in this

case we have an alternative description of the algebra of the characters Ch in
terms of more tractable objects, the elements of the centre Z .

It follows from (
canch
5.50) that all q-traces (

canCh
5.49) are A-characters. The map

from the GR S of A to the subalgebra of Ch generated by the q-traces

Ŝ : S → Ch , V
Ŝ7→ ChgV ∈ Ch (B.33) Shat

is a ring homomorphism since

ChgV1+V2
= ChgV1

+ ChgV2
, ChgV1⊗V2

= ChgV1
. ChgV2

(B.34) V1V2

where the multiplication of characters is defined in (
V-Ch-homo
B.29). The proof uses

the identity (
tens-ring
5.45), the group-like property of the balancing element g (

balance
5.48)

implying ∆(g−1x) = (g−1⊗g−1)∆(x) and the equality Tr (A⊗B) = TrA TrB .
Applying further the Drinfeld map (

Dr-map
5.47) to the q-traces we obtain a com-

mutative ring homomorphism from the GR S to the centre Z of A ,

D̂ ◦ Ŝ = D : S → Z , D(V ) := D̂(ChgV ) ∈ Z . (B.35) DPhi

Indeed, denoting by V1.V2 the tensor product V1 ⊗ V2 in the GR sense, Eqs.
(
DPhi
B.35), (

V1V2
B.34) and (

D-homom
B.32) imply

D(V1.V2) = D̂(ChgV1⊗V2
) = D̂(ChgV1

. ChgV2
) = D(V1)D(V2) . (B.36) D-homom1

Thus, the GR representation theory of A is equivalent to the ring structure of
the Drinfeld images D(V ) of its IR in the centre Z .

Proposition B.1 (
FGST1, FHT7
[87, 120]) The Drinfeld images of the Uq IR

dεp := D(V εp ) =
∑
i

(TrπV εp (K−1mi))⊗mi ∈ Z , 1 ≤ p ≤ h , ε = ± (B.37) Dr-VpA

(for M =
∑
imi ⊗mi (

Mm
B.28) taken from (

Mmatr
5.40))) are given by

d+
p =

p−1∑
s=0

s∑
µ=0

λ2µq(µ+p−2s−1)(µ+1)

[
µ+ p− s− 1

µ

] [
s

µ

]
FµEµKµ+p−2s−1 ,

d−p = −Kh d+
p = Th(

C

2
) d+

p . (B.38)

129



Proof To evaluate the traces in (
Dr-VpA
B.37), one first derives the relation

TrπV εp E
µF νKj = δµν εj+µ([µ]!)2

p−1∑
s=0

qj(2s−p+1)

[
µ+ p− s− 1

µ

] [
s

µ

]
(B.39) TrVa

which follows from

EµFµKj |p,m〉ε =
1
λ2µ

qjH
µ−1∏
s=0

(C − q−2s−1K − q2s+1K−1) |p,m〉ε =

= εj+µ qj(2m−p+1)

µ−1∏
s=0

qp + q−p − q2(m−s)−p − qp−2(m−s)

λ2
|p,m〉ε =

= εj+µ qj(2m−p+1)

µ−1∏
s=0

[p−m+ s][m− s] |p,m〉ε (B.40)

(one uses (
ErFr
5.55), (

specK-Vp
5.26) and (

EFK-eps
5.27)). In view of (

Mmatr
5.40) and (

TrVa
B.39), the computa-

tion of the Drinfeld images dεp = D(V εp ) (
Dr-VpA
B.37) reduces to

dεp =
1

2h

h−1∑
µ=0

2h−1∑
m,n=0

λ2µ qµ

([µ]!)2
qmn+µ(n−m)

(
TrV εp (EµFµKm−1)

)
FµEµKn =(B.41)

=
1

2h

h−1∑
µ=0

2h−1∑
m,n=0

εµ+m−1qm(n−µ)+µ(n+1)λ2µ ×

×
p−1∑
s=0

q(m−1)(2s−p+1)

[
µ+ p− s− 1

µ

] [
s

µ

]
FµEµKn .

For ε = +1 , taking the sum over m makes the summation in n automatic.
Taking ε = −1 (= qh) is equivalent to multiplying the result for ε = +1 by
−Kh , arriving eventually at (

DrVp2
B.38).

Remark B.1 There is one more algebra of A-characters
D3
[72] given by the

functionals

Ch := { φ̄ ∈ A∗ | φ̄(xy) = φ̄(yS2(x)) ∀x, y ∈ A} , (B.42) Ch-Ad*inv-bar

cf. (
Ch-Ad*inv
5.46). The corresponding Drinfeld map is defined as

A∗ → A , φ̄ 7→ (id⊗ φ̄)(M) . (B.43) Dr-map-bar

The q-traces, now given by38

Ch
g

V (x) := TrπV (g x) ∀x ∈ A , (B.44) canCh-bar

belong to Ch (
Ch-Ad*inv-bar
B.42) since

Ch
g

V (y S2(x)) = TrπV (g y S2(x)) = TrπV (g y g x g−1) = Ch
g

V (xy) . (B.45) canch-bar

According to (
calcMbar
6.38) in Section 6.2.1, it is exactly the map (

Dr-map-bar
B.43) which relates

the bar monodromy M̄ to the universal monodromy matrix M for the right
sector copy of Uq ; Eq.(

canCh-bar
B.44) explains, in particular (through the analogs of

(
Ch-AD-Z
B.31) and (

DPhi
B.35)) why the trace (

Tr2
6.39) belongs to its centre Z̄ .

38Note that the balancing element g itself enters (
canCh-bar
B.44) and not its inverse as in (

canCh
5.49).
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Appendix C. The quantum determinants det(M)
and det(M±)

The exposition below follows
FH2
[113]. To understand the meaning of the second

relation (
detaM
4.171) det(a) = det(aM) , we shall first point out that

a1M1 a2M2 . . . anMn = a1a2 . . . an (R̂12R̂23 . . . R̂n−1nMn)n (C.1) aMn

(the proof of (
aMn
C.1) as well as that of (

MRn
C.5) can be found below). Defining

det(aM) :=
1

[n]!
εi1...in (aM)i1β1

. . . (aM)inβn ε
β1...βn , (C.2) detaM1

using (
aMn
C.1) and the first relation (

det-intertw
4.139), we obtain

det(aM) = det(a) det(M) (C.3) det-mult

with the following expression for the determinant of the monodromy matrix:

det(M) :=
1

[n]!
εα1...αn

[
(R̂12R̂23 . . . R̂n−1nMn)n

]α1...αn

β1...βn
εβ1...βn . (C.4) detM

One can further rearrange (
detM
C.4) in terms of the Gauss components of the mon-

odromy matrix, using

(R̂12R̂23 . . . R̂n−1nMn)n = q1−n2
(R̂12 . . . R̂n−1n)nM+n . . .M+1M

−1
−1 . . .M

−1
−n .
(C.5) MRn

The first relation (
Mpmq
4.68) (rewritten as R̂12M±2M±1 = M±2M±1R̂12) implies

A1nM±n . . .M±1 = M±n . . .M±1A1n (C.6) AMMA

where A1n is the constant quantum antisymmetrizer (
A1n
4.127), and Eq.(

AMMA
C.6) leads,

in turn, to

εα1...αn (M±)αnβn . . . (M±)α1
β1

= det(M±) εβ1...βn ,

(M±)αnβn . . . (M±)α1
β1
εβ1...βn = det(M±) εα1...αn (C.7)

where we define originally

det(M±) :=
1

[n]!
εα1...αn (M±)αnβn . . . (M±)α1

β1
εβ1...βn . (C.8) detMpmvar1

(The line of reasoning is similar to the one used in the proof of Proposition 4.1.)
Due to the triangularity of M± , the only nontrivial terms in the sum (

detMpmvar1
C.8) are

the n! products of its (commuting) diagonal elements, hence

det(M±) =
n∏
α=1

(M±)αα = 1 (C.9) detMpmvar2

(cf. (
MpmD1
4.73)). Since

det(M−1
± ) = det(S(M±)) = det(M±)−1 = 1 (C.10) detM-1

(where S is the antipode (
Hopf-FRT
4.75)) and, due to (

eqs-eps
4.128),

εα1...σiσi+1...αnR̂
σiσi+1
αiαi+1

= −q1+ 1
n εα1...αn , i = 1, . . . , n− 1 , (C.11)

so that the q1−n2
prefactor in (

MRn
C.5) is exactly compensated by

εα1...αn

[
(R̂12R̂23 . . . R̂n−1n)n

]α1...αn

β1...βn
= (−q1+ 1

n )(n−1)n εβ1...βn = qn
2−1 εβ1...βn ,

(C.12) epsRij

we obtain from (
detM
C.4), (

MRn
C.5) and (

detMpmvar
C.7), (

detM-1
C.10) that

det(M) = det(M+) det(M−)−1 = 1 . (C.13) MMMpm

Eqs. (
det-mult
C.3) and (

MMMpm
C.13) ensure the validity of the second relation (

detaM
4.171).

We refer to
FH2
[113] for details in the proofs of the two crucial relations (

aMn
C.1)

and (
MRn
C.5). Here we shall content with an illustration, calculating det(M) for

n = 2 by using (
detM
C.4). Indeed, from (

detc-n2-1
4.216), (

R2
5.36), (

calcM
5.42) and (

piidM
5.44) we obtain

det(M) =
1
[2]

εαβ

(
R̂12M2R̂12M2

)αβ
ρσ
ερσ =

1
[2]

(2 q−1−λ2 [E,F ]K+λK2) = 1 ,

(C.14) detqMn=2

as prescribed by (
MMMpm
C.13)

HF2
[151].
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ematik Nr. 468, Preprint ZMP-HH/13-2, arXiv:1302.4683[hep-th]

Ful [109] Fulton W.: Young Tableaux With Applications to Representation Theory
and Geometry. Cambridge University Press, 1997

FulH [110] Fulton W., Harris J.: Representation Theory. A First Course. Springer,
New York, 1997

FGP [111] Furlan P., Ganchev A.Ch., Petkova V.B.: Solutions of the Knizhnik-
Zamolodchikov equation with rational isospins and the reduction to the
minimal models. Nucl. Phys. B394, 665-706 (1993)

FH1 [112] Furlan P., Hadjiivanov L.K.: From chiral to two-dimensional Wess-
Zumino-Novikov-Witten model via quantum gauge group. Rep. Math.
Phys. 43, 123-136 (1999)

FH2 [113] Furlan P., Hadjiivanov L.: Quantum ŝu(n)k monodromy matrices. J.
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mathématiques 16, 187-219 (2005), math.SG/0412502

WZ [260] Wess J., Zumino B.: Consequences of anomalous Ward identities. Phys.
Lett. B37, 95-97 (1971)

Weil [261] Weil A.: Elliptic functions according to Eisenstein and Kronecker. Berlin:
Springer, 1976

W [262] Witten E.: Non-Abelian bosonization in two dimensions. Commun. Math.
Phys. 92, 455-472 (1984)

ZZ [263] Zambon M., Zhu C.: On the geometry of prequantization spaces. J. Geom.
Phys. 57, 2372-2397 (2007), math.DG/0511187

ZF [264] Zamolodchikov A.B., Fateev V.A.: Operator algebra and correlation func-
tions in the two-dimensional SU(2) × SU(2) chiral Wess-Zumino model.
Yad. Fiz. 43, 1031-1044 (1986) (English translation: Sov. J. Nucl. Phys.
43, 657-664 (1986))

146


