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Abstract

The chiral Wess-Zumino-Novikov-Witten (WZNW) model provides
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non-abelian braid-group statistics and an associated ”quantum sym-
metry”. The canonical derivation of the Poisson-Lie symmetry of the
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seev, Shatashvili and Gawedzki, among others) is reviewed along
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1 Introduction

The WZNW model is a conformally invariant theory of a Lie group valued field
g(z° 2') on the 2-dimensional (2D) space-time My, g : My — G . We shall
concentrate exclusively in this paper on the case when the group G is a con-
nected and simply connected compact Lie group and M, the integration domain
of the 1ln 'ﬁcal v;czil(l)no of the model, is the compactified Minkowski space (see
Eqgs. (%nd %below); in modern parlance, one can say that the model
describes then a closed string moving on a compact group manifold [134]. Al-
ough it was originally formulated_in terms of a multivalued classical action
El&] (exploiting idegs of [260] and [207]), it was first solved in a quantum ax-
iomatic framework %ﬁiming the theory of highest weight representations
of affine Lie algebras 0] an ded up as a textbook example of Fatjo-
nal conformal field theory (CFT) . Following the original ideas of F;ILGX
the correlation functions of the theory have been written as sums of products of
chiral anggﬁl&gl blocks which carry a monodromy representation of the braid
group %32—_]&2] (;l;hepgmid group statistics is associat Wﬁm agguantum group
symmetry mm] or some of its generalizations }96, 44,214]. We point
out that the appearance of such non-trivial features is not just an artifact of
the ambiguity in the splitting of a local 2D field into chiral components. In
fact, the above peculiarities of chiral vertex operators (CVO) show up in the

non-group-theoretic fusion rules of 2D fields and the associated %n—L%te%% sta-
tistical dimension (for backgroun% ang further references — see %9, [88, 123] as

well as more recent overviews in D).

The canoni %l approach to the WZNW model, triggered by work of Babelon
%21 and Blok [39] which related it to the Yang-Bazter, equation (YBE), shed
new light on the problem. After the &git'ﬂl %Shﬂgeﬁm the claggical theory
was developed by Faddeev et al. (| ? 13,51, 6] as well as in %%1] and, in a
sense, completed by Gawedzki et al

althOUg AW NG Wesk BBy Brpquasi, FHTY, FHT2, FHT3, CL, DT
the classical and the quantum problem is stlll going on (|59, I7, 25, 26, 27, 28,

115, 116, 117, 53, 75, 152, 7451 1%FF15191})1.T1\/I()0{e ggee tly it has also included the
boundary WZNW model ( ZI 93, 133, 130, 132, IS‘I ).

The idea of how one exhibits the hidden quantum symmetry is quite simple.
The general solution of the classical equations of motion for the periodic group-
valued field g(z°, 2 + 27) = g(z 1 (the field configurations for fixed time
being elements of the loop group EZT?) G of G) is given by a product of chiral
multivalued fields,

0

g(2°a') = g(a*

o) =gr(zT) gpt(27) et =2t £2°, (1.1)
which satisfy a twisted periodicity condition,
go(x +2m) = go(z) M, C=LR, MeQG, (1.2)

implying that the 2D field is periodic:

gzt +2m 2™ +21) =g(zT,27) . (1.3)

The chiral components gc are not uniquely determined: Eq.(%) is respected
by any transformation go(x) — go(x)S where S is an z-independent invert-
ible matrix. In particular, we do not have to assume that go are unitary,
albeit g(z™,27) is. Moreover, as we shall see, the elements of the monodromy
matric M carry dynamical degrees of freedom (they have non-vanishing Pois-
son brackets among themselves and with go(z)) and it is natural to allow for
”dynamical matrices” S describing the ambiguity in the definition of go. We
use the resulting freedom to impose a Poisson-Lie symmetry on the chiral the-
ory, the classical counterpart of a quantum group symmetry. Requiring that
the left and right components g;, and gr Poisson commute yields a further
extension of the phase space of the theory consisting in introducing indepen-
dent left and right monodromy matrices M¢ . This allows the introduction of
quantum group covariant chiral zero modes (in whose treatment, both classi-
cal and quantum, in particular for G = SU(n), the authors have taken part



T, FHT1, FHT2, FHT3, DT, HIOPT, Goslar, FHIOPT, FHT6, AFH, FHT7, TH10
ﬁmmmmmwmt paper we
combine the phase spaces of zero modes and ”Bloch waves” (chiral fields with
diagonal monodromy M, ) to derive the Poisson brackets of the covariant chiral
fields g¢ , thus preparing the ground for the subsequent discussion of a quantum
group invariant quantization.

There is a price to pay for achieving manifest quantum group covariance of
the chiral theory. While the unitary 2D WZNW model only involves a finite
number of weights (not exceeding the level) we are led to allow all weights, thus
ending with an infinite (non-unitary) extension of the chiral state space. The
resulting theory is related to a logarithmic CFT of the type studied systemati-
cally b GEHJ F&%n,Fés_}\é[ %utg}n%sé.% stafni atQv, §4Yu Tipunin, and
. e review relevant part
of this Work in Sectlon 5 ) An alternatlve p0381b111ty, weakening the require-
ment of quantum group invariance but only allowing for a finite dimensional
unitary extension of the chiral state space has been developed in the framework
of boundary CFT (for a review and references see %4]) It would be interest-
ing to work out a canonical formulation also of this approach starting with the
classical theory.

A few words about the organization of the material, summarized in the table
of content.

We begin in Section 2.1 by showing that the invariance of a 2D sigma model
type action with respect to infinite dimensional chj a]NIOQp group ”gauge trans-
formations” requires a Wess-Zumino (WZ) term 29@ In Section 2.2
we introduce the relevant first order canonical formalism 167]. For a field
theory in a D-dimensional space-time, it is based on a (D+1)-dimensional closed
differential form w . This approach has at least two advantages, compared to the
standard one that starts with a Lagrangean D-form L whose integral gives the
classical action:

(i) w = dL does not change if we add a full derivative term to L (that would
not affect the equations of motion);

(ii) w may exist in theories with no single-valued classical action, in particular,
in the WZNW model of interest.

The integral of w over an equal time surface (a circle, in our case) gives rise
to a symplectic form. We study in Section 2.3 its splitting into monod o,
dependent chiral symplectic forms Q(gc,MC) C = L, R for g given by (j'ﬂ)
The expression for € involves a 2-form p(M), like b@g defined on an open
dense neighbourhood of the identity of the complex1ﬁcat10n G of our compact
Lie group G (using, for G¢ = SL(n,C), a Gauss type factorization of M).
Section 2.4 is devoted to a study of the symmetries of the chiral theory. We
demonstrate, in particular, that the symmetry of €2 with gespect to (constant)
right shifts of the chiral field g is of Poisson-Lie type%ﬂ‘%

Section 3 deals with the classical theory of chiral zero modes which diagonal-
ize the monodromy matrix. They dis ay the Poisson-Lie symmetry in a finite
dimensional context (Section 3.1; cf. [3]). In Section 3.2 we recall some facts
from the theory of the semisimple Lie algebras and prepare the ground for ob-
taining the chir J; [Poisson brackets. Section 3.3 reviews the result of Gawedzki
and Falceto , 83] that establishes a one-to-one correspondence between 2-
forms p(M) such that

5p(M) = %tr (M50 =: 6(M) (1.4)

and non-degenerate solutions of the (modified) classical Yang-Bazter equation,
see Proposition 3.2. b B6

The Schwinger-Bargmann theory of angular momentum EZB(),_Z{& gives rise to
a model of the finite dimensional irreducible representations of SU(2) by quan-
tizing the 2-dimensional complex space C? equipped with the Kéhler symplectic
form i (dz Adz! + dz? Adz?) . Tt yields the Fock space of a pair of creation and
annihilation operators. In Section 3.4 we first present the classical 4-dimensional
phase space involved in this construction as a submanifold of codimension two in
a 6-dimensional space consisting of a 2 x 2 matrix a = (a?,) and a 2-dimensional

(0%
weight vector p; , i = 1,2. Then we generalize this construction to the case of



SU(n) in which the classical phase space is a submanifold of codimension two
in a n(n + 1)-dimensional space. Finally, we construct a g-deformation of the
resulting algebra, corresponding to the classical counterpart of a model space
construction for the finite dimensional irreducible representations of the quan-
tum universal enveloping algebra U,(sf(n)) for generic ¢. The computation of
the Poisson (and Dirac) brackets of the Poisson-Lie covariant zero modes in-
volves the full complication of a theory with a non-local Wess-Zumino term. It
is dealt with in Section 3.5.

The Poisson brackets (PB) for the infinite dimensional Bloch waves u(x)
(Section 3.6) are simpler to compute. A peculiarity of our treatment is the fact
that the determinant of u(z) depends on the weights p (and is so chosen that
only the product of det u(x) and det a is equal to 1). The resulting PB for the
Poisson-Lie covariant chiral field g(z) = u(z)a (= (uf(x)a)) are spelled out
in Section 3.7 where the reconstruction of the 2D model is also explained.

Chapter 4 is devoted to the study of the quantum chiral WZNW model. The
quantization of the current algebra Gy, (Section 4.1) involves the renormalization
of the level & — h = k+ g" (where g¥ is the dual Coxeter number of
the Lie algebra G of G) in the Sugawara formula , ; e state space
construction reproduces the representation theory of affine Kac-Moody algebras
supplemented with a derivation of the Knizhnik-Zamolodchikov equation. The
exchange algebra of the chiral field g(x) is constructed (Section 4.2) in terms of
the constant SL(n, C) quantum R-matrix. In Section 4.3 we derive the exchange
relations for the monodromy matrix M which acquire a particularly simple form
for its Gauss components M1 that give rise to the quantum universal enveloping
algebra Uy (sf(n)) . The zero modes’ algebra involving, in addition, the quantum
dynamical R-matriz R(p) is introduced in Section 4.4.

Section 4.5 is devoted to the study of the chiral state space. For generic
q (i-e. ¢ # 0, not a root of unity) the Fock space of the zero modes’ algebra
provides a model for the finite dimensional representations of Uy (sé(n)) (Section
4.5.1). The problems arising for ¢ a root of unity (still unresolved for n > 2) are
discussed in Section 4.5.2. The braiding properties of chiral quantum fields are
displayed in Section 4.5.3. The exchange relations of the right chiral field are
displayed in Sections 4.6.1 and 4.6.2. (To avoid subtleties with matrix inversion
in the quantum case, we work with ”bar” rig fsector variables in terms of which
g9(z,7) = g(x) g(z), (x,z) = (zt,27), cf. (I.1).) It is shown in Section 4.6.3
that the two dimensional field, expressed in terms of products of left and right
components, is locally commutative and quantum group invariant.

The study of the quantum WZNW model for n = 2 and of its (non-unitary)
chiral extension is pursued further in Chapter 5.



2 2D and chiral WZNW model. Symplectic den-
sities
2.1 Chiral symmetry requires a Wess-Zumino term

The dynamics of the group valued WZNW field g is, in effect, determined by
the symmetry of the WZNW model. Combining the conformal invariance with
the internal symmetry generated by the currents one ends up, as we shall see,
with an infinite dimensional left and right chiral symmetry.

We proceed in two steps, beginning with the natural (non-linear) sigma
model action on a compact Lie group G

Solgl = A / tr (g™ 0ug) (g~ 0"g) dada’ = — / tr (99) (9" g™ ") dade’
M M
(2.1)
where the world sheet is oriented, dzdx! = dz"Adz! = —dz' Adz® (we omit the

wedge sign for exterior products of differentials) and A > 0. We are denoting by
tr (XY) the Killing form (X,Y") on the Lie algebra, proportional to the matrix
trace (see Appendix A). In a second step, we shall complement Sy[g] with a
non-local term that will ensure the infinite chiral symmetry.

It is appropriate to carry the integration in (2.1) over the compactified two
dimensional Minkowski space M (= M) which we proceed to describe in some
detail. M is a somewhat degenerate special case of the D-dimensional compact-
ified Minkowski space

Mp = {z=(%,a=12,....,D | z* =e"u*, t,Lu* cR; v* =1} =
D
= st xsP1/{1,-1} (u® = (u")?) (2.2)
a=1

equipped with a real O(2) x O(D)-invariant metric of Lorentzian signature

D
ds? = du® — dt? | where w.du := Z u®*du® =0 . (2.3)

a=1

The universal cover of Mp for D > 2 is the cylinder ./,\/lvD = R x SP~!. For
D =2, My = M is diffeomorphic to the flat Lorentzian torus (with identified
opposite points)

M={:= e’ sin ! , 22 = e cosal; ds? = (dz')? — (dz®)?} (2.4)
which can be obtained from its universal cover R? factoring by the relations
(29 2') ~ 2+ 72t +7), (2% 2Y) ~ (2% 2" +27) . (2.5)
c1M1 ) L -
Eqgs. (b.Si are equivalent to 2m-periodic boundary conditions
(zt,27)~ (@T + 2T,z +2m7), nteZ (2.6)

LR
in each of the cone variables z& defined in (h_l),
1
zt =at +4° 0y = 5((’91 + ), detde™ = 2dadat . (2.7)

We are looking for an action invariant with respect to the infinite dimensional
group of chiral ”gauge transformations” of the type

g(z gzt z7)x(z7) (2.8)

where both [ and v are loop group (G-valued, periodic) functions of the cor-
respond'g&g light cone variables. Computing the variation of the sigma model
action (2.1)

ta7) — l(z

5S0lg] = 2A/ tr (g~ 9ug) (g~ O g)da"da’ =
M

= —2A / tr (g_lég au(g_la“g) — 3H(g_légg_18“g)) deVdzt =
M

= -2\ / trg '0g (0+(97'0_g) + 0_(g97'0+9)) datdx™ (2.9)
M

ds2

cl

=

Q ) )
o [ [
B = =
0] N =
<

e
=]
=Y
g
[a]



1M
(the boundary term can be neglected due to (l 3T and (EF%), we see that 6 .5y[g]
does not vanish, in general, for

g~0g =g~ 'ol(aT)g + dr(27) (2.10)

(here 6l(zT) and dr(z~) are assumed to be G-valued periodic functions of the
respective chiral variables).

The possibility o gbtaining an invariant theory found by Witten Pf'262] amounts
to adding to So[ (2:1) a WZ term! proportional to

/ d~tr (g7t dg)® = tr(g~* dg)® €277 (2.11) |Gwz

which has a single valued variation due to the relation

1
bd (g dg)* =tr (909 (g™ dg)?) - (2.12)
totdiffo
Using (iZOIZi and
datdz’ = — e dalda! (e = =", pur=0,1, =1, "¢, = oy

)
(2.13)

we obtain
1 - - - v
51—‘[9]:4—/ trg~ 8¢ (g 18#9) (g710,9) dz" dz¥ =
T JM

1
= [ 0 0,0) (07 0ug) i =
T Jm

1
= — trg 109" 0, (g 10,9) dx’dat =
4 M
= trg~'0g (0-(97'049) — 04 (97 0_g)) dztdz™ . (2.14)
T JM

The partition function, the exponent e*S[9] of the action functional, which de-
termines the correlation functions in the Feynman path integral formulation, is
single valued if we set the coefficient of the WZ term equal to an integer,

Slg] = Solgl +kT[g],  keZ (2.15) [swz

so that
5Slg) = —(2A+-0) / trg 099y (971 0-_g) datdaT —
47T M

—(2X— g) /M trg '0g0_(g 'y g)dxTdx™ . (2.16)

Now, for g~'dg given by (bmfl(icionffhe first term vanishes, due to 9, (¢~*0_g) =
~19_((91.9)g ) g and
trg~'6g 0. (97 '0-g) =
=tr (¢7101(2")g g7'0-((0+9)9™ ") g+ de(x7)d4 (97 0-g)) =
— 0t (e )(Drg)g ™) + 0y tr (Be(e ) (gD g) (217)

while vanishing of the second term implies A = % . Thus w igp(% up with the
WZNW action functional which is invariant with respect to (b 8;,

k 1 1
Slg] = yp /M tr (2 (97'0,9)(g~ 0" g) dadx* + 3 d=tr(g™? dg)3) (2.18)

(with k a positive integer).
In order to get around the absence of a single valued WZ term we proceed to
formulating the dynamics of the WZNW model in terms of a canonical 3-form.

1’8_}@ possible continuations of the form 6(g) from the 2D compactified Minkowski space
M (&T) to the 3-dimensional real compact manifold with boundary, the bulk

B:={(z%p), a=12|(z%)=2zeM,0<p<1}, 9B=M,
spht Nnt(lzI eqélemrlenﬁgl%lasses labeled by the elements of the third homotopy group 73(G) ~ Z

see



2.2 First order canonical formalism with a basic (D + 1)-
form

The first order Lagrangean and covariant Hamj]tonian formalism has been ap-
plied to the WZNW model by Gawedzki (see [128] where the reader can also
d early references; for more recent developments and further applications, cf.
%7]) Here we shall give a brief introduction to the subject and shall then
apply this truly canonical approach to the 2D WZNW theory of interest.

In general, a field theory lives on a fibre bundle £ described locally by a
collection of charts U* x F, where U; U forms an atlas of the D-dimensional
(base) space-time manifold M and the values of the fields belong to the fiber
F . We shall use, correspondingly, two exterior differentials, a horizontal one,
d, acting on M, and a vertical one (the variation) §, acting on F so that the
exterior differential on the total space £ will appear as their sum:

d=d+6, *=0=0%, d>=0=[d,d]s (2.19)

(note that, in contrast with the convention adopted in ﬁG?], d and ¢ necessarily
anticommute in order to have their sum satisfying the condition d2 = 0 for an
exterior differential). Each differential form can be decomposed into homoge-
neous (a,b) forms of degrees a in d and b in 4 .

If an action density L (a D-form) exists, in the first order formalism it is
assumed to be a sum of (D,0) and (D —1,1) forms. The exterior differential

w:=dL (2.20)

(which does not change if we substitute L by L + dK for any (D — 1)-form
K) provides an invariant characterization of the system: equating to zero the

pull-back of its contraction with vertical vector fields (like 5%1:’ in a discrete
basis) such that
5 5 .
§b: + 6, — = §t 2.21
6¢i d)J + (bj 5¢1 70 ( )

one reproduces the equations of motion, while the integral of w over a (D — 1)
dimensional space-like (or, for non-relativistic systems, just equal time) surface
in M defines the symplectic form of the system. A closed (D + 1)-form w may
exist, however, even when there is no single-valued action density. The resulting
more general framework is the only one appropriate for classical formulation of
the WZNW model.

Before going to the model of interest we shall display the role of the form w
in the simple example of a classical mechanical system for which M =R is the
time axis (i.e., D = 1), and F is a 2f-dimensional phase space parametrized
by coordinates ¢ = (¢, ...,¢’) and momenta p = (p1,...,p;). We shall write
the action density 1-form as a Legendre transform,

f
L=pdq—H(p,g)dt, pdg:=Y pdq,
i=1
H H
w=dL=dpdgq—0H(p,q)dt =dpdq— (88—5q+%5p)dt5 (2.22)
q P

. O0H . OH . .
Eép(Sq—&—(Q—a—p)(Spdt—(p—i—a—q)éth (dp =pdt, dq =qdt)

(we omit throughout the wedge sign A for exterior products of differentials). It
is clear that for dt = 0, w reduces to the standard canonical symplecti V%" rm
Q = 0pdq. Contracting, on the other hand, w with 5‘; and S%i (using (2.21))
and equating to zero the pull-back of the result (which amounts to setting

0p = 0 = dq), we obtain the Hamiltonian equations of motion

oOH i OH
q —

q' Op;

0, di=1,...,f. (2.23)

In general, to any function A on the phase space one associates a vertical
Hamiltonian vector field X; such that its contraction with the symplectic form

HamO



XnQ (zix, Q) = QX),.) equals dh:

X0=oh e X=0 OO0y 0 ij:—%).
' (2.24)
A Poisson structure on (a smooth manifold) N is a skew symmetric bilinear
map {, } : C®°W) x C®(N) — C®(N) satisfying the Jacobi identity and
the Leibniz rule. This is equivalent to defining a bivector (a skew symmetric
contravariant 2-tensor) P € TAN'ATN such that {g,h} = P(g,h) = P (5g20h).
A covariant tensor defining a symplectic form gives always rise to a Poisson
tensor defined by its inverse; in general, the Poisson tensor may not be invertible.
In the above case of a finite dimensional mechanical system P = 6% A % =

—% A % and, for any pair of functions g = g(p, q), hd:ﬂf]L p,q), the PB {g,h}
e
is given in terms of the symplectic dual vector fields (2. by

; , dg Oh g Oh , ,
{9.h} = X h=X,0h (==X, 09) = 2 2 _IT0 o (g p} =6

i
(glee%g Sh = P%ag + %Z dq is the total variation of h). It follows from (2:23),
(bﬁ and (bZS; that the time evolution of any phase space variable g(p, q) is

governed by its PB with the Hamiltonian:

dg . g . (aHa OH 8

= ap +5q dp 0qg  Oq Ip

) =—Xng={g H}. (2.26)
emark 2.1 The definition of a Hamiltonian vector field in the first e yation
€ K . . >

( is not universal. Many authors set instead Ly 2 = —dh (see e.g. SO

that L;, = — X}, , leading to the opposite sign of the PB and, correspondingly, to

equations of motion = Ly g. Both choices, however, provide a representation

of the Liegkge%slsof Eoisson brackets that is an ingredient in the prequantization
Y )

(see e.g. ). We have, in particular,

[Xgaxh] = X{g,h} : (227)

We proceed now to defining the classical WZNW model. We shall only con-
sider the case when the I’%(f skoup QM i, ggmpact and the corresponding quan-
tized theory is rational , 10, (These two requirements single out
combinations of WZNW models on Compact semi-simple groups and ”lattice
vertex algebras” ké\lgﬂ]) Albeit we only provide details for our main example

G = SU(n), most results remain valid in the general case.

In the first order formalism the fiber F consists of a pair of periodic in at

maps (g, J) such that, for z = (20, 21) € My

g(x) € G, g(2®, 2! 4+ 21) = g(2°,2") = g(z), (2.28)
= ju(@)da”, ju(x)€iG, ju(2%a' +2m) = ju (2% 2") = ju(),

where G is the Lie algebra of G (our conventions are such that, for G compact,
the current is Hermitean). Note that the i G-valued 1-form J(z) is horizontal.

We define the basic 3-form w by

1 1

4w =dtr((ig~'dg + % J)T)+ kb(g), 0(g) :== 3 tr(g~*dg)® . (2.29)
Kil

Here tr is the Killing form (&Yll) on G, k is the real ”coupling constant” that

will be ultimately restricted to (positive) integer values to ensure the single

valuedness of the exponential of the action, and %7 is the Hodge dual to 7,

J(x) = Euvj#(x)dzy (en=1). (2.30)

. . omWZ . .
0 Jdentify (M with the more customary (component) expressions, one uses
(2.13) an

JT = jujrda’da’ = =7 7. (2.31)

time-evol
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For compact G we shall use the physicist’s convention introducing a Her-
mitean basis T, € 1 G for which

1
7 [To, Ty = fu’ Te tr (ToTp) = Nab (2.32)

with real structure constants f,,° and a positive metric (14) (see Appendix A).
The tensor fupc, defined by

%tl’ (Ta [Tba TC]) = nadfbcd = fbca = fabc (233>

is totally antisymmetric (due to the cyclicity of the trace). For z-independent

v € G so that dy = 0 and v~ 1§y = iFw where I'® are basic left-invariant
G-valued 1-forms, the WZ term 0(v) (2.29), is Just the invariant 3-form on G

corresponding to the tensor fup. (see e.g.

1 . 1 1 1
0(y) = g tr (v loy)? = i rere “tr (Ta [T, Te]) = 5 fane T° rere. (2.34)
omWZ
The 3-form w (M is well defined and single valued while the corresponding
WZNW action density 2-form

dr L= tr ((ig~'dg + %J) )+ kdt0(g) (2.35)

cannot be globally defined on G since the 3-form 6(g) , albeit closed, d8(g) =0,
is not exact. (Accordingly, the s%%lr%sponding WZ term in the WZNW action
in the second order formalism (}‘2.18; is multivalued.)

If we identify ig='9,9 with the velocity on the qup m jfold, then j,

plays the role of covariant canonical momentum (cf. (2:28) — (2:30)), and Eihewz
acdae:.

coefficient to the space-time volume form dz¥ % dm (with a minus sign) in
is the covariant Hamiltonian H = H(j), jus 1as —H was the coefficient to dt in
the classical mechanical a tlg)n&%ﬂblty L ( . Note that the only such term
in the right-hand side of E?Bx)‘ﬁmes from
tr(J77) = L jtdatdat = : —H(j) dxod—f”l (2.36)
87k 8k Jnd J 27 '

. omWZ . . .
It is remarkable that the 3-form (szg}f contains the full information about
the model: it allows to derive both the equations of motion and the symplectic
structure. To begin with, we note that

dtr (J7) =0tr (T T) = 2tr (j,05") dada’ . (2.37)
We shall denote the pull-back of a form by ¢g* ; by definition,

9" (f(dg,dT,d’T ; 69,07,87)) = f(dg,dT,d’T ; 0,0,0) . (2.38)
Introduce, for arbitrary Y € i G (in particular, for any n x n Hermitean traceless
matrix, for G = su(n)), the vertical vector field Y. := tr (Yéj—.u) so that

Viu(05")=Y08,  (Viu(0T) =Ydr, , Yju(3T)=Yeudz"). (2.39)
dxd
Using (b%), we derive the first equation of motion:
g (YH w) _ L trY (ig= 10,9 + lj )dx%dxt =0 or
J . 0 LI )
Ju=—ikg 109 = J = —ikgldg . (2.40)
To obtain the remaining equations, we introduce the vector field Yy := i tr (g Y%)

satisfying

Y, (g7 'dg)=iY = Y, 0(9) =itr (Y(g~'dg)?) . (2.41)

can3



Equating to zero the pull-back of )A’g w,

* () 1 * - — — *
9" (Ygw) = —trY (47 +ik (97" dg)* +[g7"dg,"T]4) =0 (2.42)

1bk
together with the first equation of motion (57[0% and the anticommutativity
relation (b?l) ‘
i
lo~tdg, Ty = 17, T ] =0 (2.43) [0+

implies the second equation of motion which can be written entirely in terms of
currents:

. . U s
dj:7;72 g au]#:_ﬂgl [jlmjl/]

1.e., aljl + 80]0 = 7% []0731] . (244)

Next, we compare the result with the horizontal (d-) differential (the curl) of

&0y,

o i , P
dJ =ik (g ldg)2:—EJ2 e 0y = = 5l ]

Le., 61.]0 + 80.]1 = % [.]07.71] . (245)

This yields the easily solvable equation

d(T+%)=0 & (Do +01)(° +5H)=0. (2.46)

In order to write down its general sohégilger‘l, we introduce the light cone variables
(and the corresponding derivatives) (2.7). We can summarize the result as
1

dijr=0  for  jr:= 3 (° +4Y) = —ikgto_g. (2.47) [eqsmR

This (second order in g = g(z™,27)) equation is equivalent to

1

0-jr=0 for  jri=5g(" =™ =ik(Ds9)g™", (2.48)
since 01 jr = —g~1(0_jr)g, or alternatively, to the closedness of the corre-
sponding current 1-forms

T = ik (0y9)g tda™ Jr = —ik (g7 0_g) dx™
(J=Tr—9 " Ty, T=Tr+g 'Trg),
dJp=0=dJg . (2.49)

Remark 2.2 In the pioneer paper Pf’262] on non-abelian bosonization Witten
starts with the observation that a set of vector currents

@) = i@y Tap(x) , HF=1=-7, [vo,ml+=0 (2.50)  |Wjj

where 1) is a (2-component) free massless fermion field with values in the fun-
damental representation of G, splits into conserved left and right components
obtained by substituting v* with 39*(1 F~s), v5 := 7°y' and depending on
x* | respectively. Demandi S h a splitting into chiral components for the Lie
algebra valued current j, I(I%IO{ one comes to the necessity of add'gé e the
"standard” action, given by the first term in the right-hand side of (2.I8), the
second, Wess-Zumino term.

The definition of the (conserved and tgzcxgglm) stress energy tensor T*, is
encoded in the first order action density (bTSB?.—ItS form illustrates the obser-
vation that the WZ term only influences the symplectic structure, respectively
the PB relations, while the stress energy tensor is determined by just the coef-
ficient H to the space-time volume. Expressing 77, in terms of the covariant
Hamiltonian (2.36) and its functional derivatives,

T (2) = tr (%]’m)) — it = gt (@ - i) ) L (251)



we recover the classical Sugawara formula?.
The same expression can be obtained by Hilbert’s variational principle vary-
ing the action density
1
—H(j,h)V=h= 1 hPtrjajsV—h  (h=det(hag), h* hes=055)
(2.52)
with respect to h*" in the neighbourhood of the flat Minkowski space metric
hyuw = N . Using the Jacobi formula

§h = h b Shy, = —h By 6™ (2.53)
we find
1 . / ]- 14 v
ﬁé(H(J7h) 7h) = 571#1/ ohH (T'L;‘L = ht J_ZU.V = 0) (254)

stre:
which reproduces (b.5| for Ay = M-
The two independent chiral components of T# are quadratic in the corre-
sponding chiral components of the current:

1 1
Ty == (Th—T) = — tr (j° = j')? t
L 2( 0) = < v =) =5 rjt

1 1
T T% + T — 2.
R 2( +T7) = Sktr(J +4)? = thrJR (2.55)

The conservation of T follows trivially from the chirality of j;, = jr(z*) and
R . B conev leqsm egsm!
Jr = Jjr(z™) (cf. (b.?), (2:47), (bEIS} :

0_T, £0,Tr =0 & 0,1, =0. (2.56)

.The traditioggc}edﬁélvation of the equations of motion from the multivalued
action density (b.35; 1s based on the easily verifiable relation

1., e
d5tr(g”dg)* = —dtr(g7'9g (9™ 'dg)*) (2.57)

implying that the vertical (”variational”) differential of the multivalued WZ
term d=1g*(0(g)) is single valued,

§d~"g"(0(g)) = tr (9769 (97" dg)?) (2.58)

otdiff0 acdenWzZW .
. JE 12; Taking 6 of the pull-back of the action density (b 35; and using
(b 37), we thus obtain

1 L 1
§g*(L)=—da— Etr{(yy(zg 1dg+%\7)}—
— o tr{gTlg (AT +ik (g7 dg)? + [g7Mdg, T} (259)

s
where « is the Noether form HfG?] (of degree (a,b) = (D —1,1) = (1,1))

i -1 *
=—t 1) . 2.60
a=_—tr(g0g97) (2.60)
The v?ja)rishing of §¢g*(L), up to the PD% ndary term d o, reproduces (after
using(2.43)) the equations of motion 571’0%

In the second order formalism the eq %kqns of motion are expressed directly
in terms of g and its derivatives. From (2.16) we get

6Sg]

- / tr{8gg10_((049)g™ ")} do*da
™ JM

,i/ tr{g 1690, (g7 0_g)}daTdx™ (2.61)
2w M

2The ”Su wara formula” has in fact many authors — see, e.g. the bibliographical notes to
Section 4 of , p.75 and references cited there.

Hjh
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varL leqsm
gdsm quating (b.Gl% to zero for arbitrary variations dg reproduces (b.EISi and

In accord with the general rules formulated in the beginning of this section,
the true symplectic dgg%%y wqo for the WZNW model is obtained [128] by re-
stricting the form w (2:29) to an equal time surface, i.e. taking the coefficient of
dz' . Noting that J lazo—o= jdx!, we see 1at teh% resulting (1,2) form differs
from 6 o |gz0—0= 7= 0 tr (j° g~ 'dg) da', cf. m%%_kvhich is a special case of the
(D — 1,2) symplectic density considered in [I67]) by a contribution from the
WZ term:

k
wo =0 |ggo—o +E tr (g_lg'(g_lég)2) dat, g =019 . (2.62)

The symplectic form Q) of the theory is obtained by integrating wy (2
over a constant time circle i.e., over a period in z! :

™

0® = /wodxlz

—T

T

1 /.0 — _ _

= I da! tr (zé (797" 69) + kg g (g 1(59)2> = (2.63)
1 / 1 . .1 ko4 -1 !

= %/ dz* tr (zé(jRg 6g) + 59 d9(g 59)) = (2.64)
1 f 1 . . -1 k -1 —1\/

= ﬂ/ dz" tr (zé(jL 5997 ") — iégg (6g97") ) . (2.65)

In verifying the equivalence between these three forms of Q) we use the rela-
tions
3°=2jp+ikg g =29 g —ikg g, (2.66)

2.3 Splitting g(z*,2~) into chiral components

Given the equations of motion, the classical phase space S of the 2D WZNW
model can be identified with the manifold of their initial data,

S =TG ~GxG, (2.67)

where G is the loop group corresponding to G, and G — its Lie algebra On\l?eVe Gam
choose, for example, the parametrization in terms of g and jr, , see (2.6%;, SO
that

S={g() loo=0€ G, ji(2) lso=0€ G }. (2.68)

. Cal be viewed, alternative ly. a the space of solutions of the equation of motion
(2:47) (or, equivalently, of (2.4%))

0:(g7'0-g) =0 (& 0_((0s9)g™ ") =0) . (2.69)

The general solution of (E%g)u%sngiven by the factorized expression g(z,z7) =
gr.(zt) gp'(z7) (IPE)Fl), where the chiral components go, C = L, F@Zatisfy the
twisted periodicity condition go(x + 2m) = go(z) M, M € G (I.2)3. Note
that the currents jo can be expressed in terms of the corresponding chiral
components of g,

jr(a) =ikgp (@ N)gr (aF) . jr(aT) =ikgr(aT)ggp' (7). (2.70)

3To simplify notation, we shall often denote, in what follows, by = the single argument of
any of the chiral fields. It;should not be confused with the vector z = (%, 2') which only
appears in the 2D field g (hﬁ)

egqmotion
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The space of pairs of twisted-periodic maps with equal monodromies from
the light rays to the group,

S={(9r(x"),gr(@7)), 2" €R | go'(¥)go(z +2m) =M € G} (2.71)

is an ex %Sion of S. More precisely, S can be viewed as a principal fibre bundle
over S [[26] with respect to the free* right action of G on S

(gngR) - (thath)7 M — h_th' (he G) )
the projection pr: S — & being defined as
S3(gr(x"), gr(@™)) = (9(x)gg'(2), ikgy(x)g, (2) €S. (2.72)

OmegaWZL _ |
By rewriting the symplectic form Q(2) (bB%; on § in terms of the chiral fields
gL, gr it is extended to a closed (but degenerate) form Q) (g, gr) on S.

G1
Proposition 2.1 (Gawedzki %28]; Falceto & Gawedzki %3]) One can present
Q@ (gr,gr) as the difference of two chiral 2-forms:

QP (g, 9r) = Qlgr, M) — Qelgr, M) (2.73)

k

Qe(ge, M) = Etr{/9515gc(w) (95'09c(2)) dz + Sgcgs’ (—m) Sgcgs ()

koo . _ .
=5 / 96" 89¢ () (95" 89c (@)’ da + bg'bo SMM ™ } (2.74)

C = L,R, where bc := gc(—m) and go(z + 27) = go(x) M so that the mon-
odromy

M =bg'go(m) (2.75)
is independent of the chirality C' .
LR iLR
Proof From the expressions for g (h) and j, (5—70) we get
699" = g1 (97" 691 — 9r'09r) 97",
tr(jLogg™") =iktr (97 9%(9z ' 09L — 95" 09R)) (2.76)
so that
i5tr(jrdgg ") = ktr ((97'09L — 95" 69r) (97 69%, — 97" 9% 97" d9r))
(2.77)
tr (699~ (099~ ")") =2t ((97"091 — 95" 09r) (97 697, — 97" 9% 95" 09r)) —
—tr ((97"09z — 9" 09r) (91 "091) + (93" 0gr)")) -

0-0
Hence, Q@ (g1, gr) d??S) is expressed as

Q@ (gz,gr) = ﬁ tr {(g;,"09.(x) — 95" 69r(x)) (97 ' 091 (x)) + (9 ' Sgr(x)))} dx .

—T

( 118) Olr
To complete the proof, it remains to note that the two mixed terms in (2.78)
combine to
[ ot (97800 0) 975 g (2)) = (67 591 (=)a5 Sgm() — b7 B ) =
= tr ((b;'0by, —b'dbr) SMM ™) =
= tr (099, (—7) S99, ' () — dgrgg' (—m) dgrgg' (7)) (2.79)

41.e., without fixed points, for h # e € G.



since gélégc(—ﬂ) = balébc , go(m)=bcM , tr (5MM_1)2 =0, and
95" 0gc(m) = Mo o(be M) = M~ (b5 dbo + SMM )M (2.80) [gpi
or, conversely,

OMM ™" = 6(bg' gc (m)) go(m)~'be = ~bg' dbe + b dgcge’ (m) be . (2.81)

- JlextP 0-0
As already mentioned, as a 2-form on S (E}.{? ], Q) (9L, 9R) (b73) is still
closed but is degenerate. The closedness follows from the fact that, for g; and
gr having the same monodromy M , one has § Q.(gr, M) = § Q.(gr, M) :

T _
3990, M) = = gt [ do (95090 (@)? (95" Bgc(2) +
+(bg'dbe + MM 1) b5 dbe MM ™'} =

= 45 { / d0(gc(x)) — tr (bg'dbe + MM 1) bg'obe SMM ™'} =
7I

_ O(bcM) — 0(be) — tr (b5 dbe + MM Y b 6bo SMM ™1} =
4 C C

= it]r(M—15M)3 _F

o - 0(M) (2.82)

(we have used again (E%O); note that the 3-form 6(M) is purely vertical since
M is z-independent). The degeneracy of Q) (gr, gr) on S is due to its i vari-
ance with respect to simultaneous equal right shifts of g and ggr, see @72’),7
accordingly, if Y, is the vertical vector field generating the 1-parameter group

g — gr e, gr — gre™” (iYeg), (2.83)
. d , ‘ o ‘
Yrdgo =Yrgc = - (g9c M=o =igcY , Yi(g95'090) =iV

0lr N
for C' = L, R, it follows immediately from (b?S) that ¥, Q@ (g1, 9r) =0.

In order to define symplectic forms on each of the chiral phase spaces we
shall, following Gawedzki [128], further extend S introducing independent chiral
monodromies Mo, C' = L, R so that the left and the right sectors Sp, , Sg where

Sc ={gc(x) ,x €R | gg'(x)gc(x +2m) = Mc € G} (2.84)

fully decouple. To avoid overcounting variables, we shall consider each of
the chiral phase spaces S¢ as being parametrized by the smooth functions
go(z), —m < =z <z d their boundary data, bo = go(—7) and Mg =
bg'go(m) . Due to (b@% it appears natural to set

Qgc, Mc) = Qe(gc, Mc) — %p(MC) : (2.85) [o]

demanding that the 2-form p(M) (defined in some neighbourhood of the unit

element) satisfies
5 p(M) = 6(M) . (2.86)

The resulting Q(gc, M¢) is closed and non-degenerate (we shall see in what
follows that it is invertible), thus equipping each S¢ with a true symplectic
structure.

Unless not being explicitly specified otherwise, by ”the chiral WZNW model”
we shall understand below the theory with

PC
e phase space S¢ (bBZl),

drho

0
e symplectic form Q(gc, M) (b.85) (for certain p(M¢) satistying (2.86)),

Tchir [iLR
e and (conformal) Hamiltonian T ( 55 ) (B—?O)



coinciding with the left WZNW sector described above, and shall omit in most
cases the chirality index. (The only difference between the two sectors is in the
opposite signs of the corresponding symplectic forms; recall that the one of the
right sector is — Q(gr, Mr).) We shall return to the problem of reconstructing
the 2D theory from the chiral ones at the end of the next Section.

0-0 -
The 2-form (b73) on S is thus recovered by imposing the constraint of equal
chiral monodromies

Q3 (gr, 9r) = (Ugr, M) — Ugr, MR)) |rroanrr - (2.87)

The sign difference between the left and right symplectic forms forces us to dis-
tinguish between left and right monodromy since the resulting Poisson brackets
for My and Mg will also differ in sign. The monodromy invariance of the 2D
theory will have to be restored at a later stage as a constraint on the observ-
able quantities. Hence, recovering the 2D WZNW model from the extended
phase space (the product of two independent chiral spaces with different mon-
odromies) requires a gauge theory framework.’ The irl observables are functions
of the periodic (i.e., monodromy free) 2D field g (II.1). The projection of the
observable algebra on a chiral (say, left mover’s) phase space is generategRby
the chiral currents jo, C' = L, R which can be expressed, according to (2.70),
in terms of the cor sponding chiral variable gc and allow to write down the
chiral components 5555}) of the stress energy tensor.

As already noted, the WZNW form 6 i s ot exact, hence there is no globally
defined smooth 2-form on G satisfying ()286) However, a form p with this
property can be constructed locally, on an open dense neighbourhood of the

{@(—fgécit}ésé of G. For example, if the monodromy matrix can be factorized
, 218] as

M =M M™', Mi € Ge (2.88)
where G¢ is the complexification of G, one can prove directly that the 2-form
p(M) = tr (M '6MyM-'6M_) (2.89)

satisfies (B%%) provided that

1
O(My) = St (M*SMy)® = 0. (2.90)
Trov

Indeed, a simple computation using (2.90) gives

O(M) = %tr(M’lcSM)?’ = étr (M{'6My — M~'SM_)3 =
=tr (M7 oMy (M- 'SM_ — M7 '6M)MZ'OM_) =65p(M) . (2.91)

s
According to the Cartan criterium for solvability (see e.g. Hiﬂ)él]), a Lie algebra
IC is solvable iff its Killing form satisfies

Xek, YelK,K] = a(XY)=(X,Y)=0. (2.92)

3
By (bciaDBZI), Egs. (B%%) follow automatically if My '6My take their values in
a solvable Lie subalgebra of G¢. We shall assyme that these are the Borel
subalgebras b , in which case we shall call My (2:88) the Gauss components of
M (other possibilities are considered in [55]).
For G = SU(n), our main example in this paper, G¢ = SL(n) and we

choose G to be the set of the matrices M = (M§) € G such that My # 0 #

Mnfl Mnr—1

det ( M’;L_l ]\’/}n ) etc., while M1 belong to the Borel subgroups BL of
n—1 n

SL(n) of upper and lower triangm@r unimodular matrices, respectively. The

uniqueness of the decomposition (2.88) is ensured by the relation

diag My = diagM_-" = D = (du63) (2.93)

5In the quantum theory, imposing the constraint of equal left and right monodromy cor-
responds to singling a physical quotient of the extended state space; see Section 5.4.2 where
the n = 2 case is treated.



where the diagonal matrix D has unit determinant, []_, do = 1.

Being a function of the monodromy matrix M Eé only, the 2-form p(M)
can be presented in terms of an (M-dependent) operator Ky € End G as

p(M) = %tr (MM Ky (SMM™Y)) (2.94)

(without loss of generality, Kj; can be assumed to be skew symmetric with
respect to the Killing form defingd by the trace). For p(M) given by (b89) in
terms of the Gauss components (2:88) of M , so that

SMM ™' =M M ' —Ady (SM_MZ")  (Ady(X):= MXM™'), (2.95)
the corresponding K, acts simply as
Ky (MM~ =M M' + AdM (6M_M~1) . (2.96)
AMM+= KMMM defr
Indeed, inserting (b.95+) and (b%) into ( 4 We recover (| b%Q

p(M) = tr (6My My ' Ady (SM_MZY)) = tr (M7 oMy MZ'6M_) . (2.97)

2.4 2D and chiral gauge symmetries

WZ
It is readily seen that the basic 3-form w (BETJ%! of the 2D WZNW model is
invariant with respect to both left and right constant group translations,

L:g—hg (¢9'dg—g'dg, T =T, T—=7T), (2.98)
R: g—gh (g7'dg—h g 'dg)h, T —h*Th, T —h 1 Th).

eqsm!

Ite iél)n ows trivially from the transformation properties of the currents (2

7

)
Lo, . L. . R . . R, _q.
ju = hjeh™' . jr=jr,  jo—jr, Jjr—h"'jrh (2.99)
that the same a c]}ilgfs to the stress energy tensor 7%, and its chiral counterparts
Te, C=L,R (355)
A canonical way of displaying the symmetries consists in letting the cor-

responding vector fields act on the symplectic form. In particular, the vector
fields implementing the left and right group translations,

gL e gL e Y (iY eg), (2.100)
Yisg=Yog=iYg, Yi(bg9~')=14iY, Yp&jp=YrjL=1i[Y,jL]
and
g5 ge™ | g B e jp et (2.101)
Yrég=Yrg=igY, Ygr(g '09)=iY, Ygdjr=Ygrjr=1iljr Y]

ing on Q) m%w%ﬁlse to the left and right (zero mode) charges. Indeed, from

(2:100) and (b G5) we obtain

. 1 ™ . L . _
v, 0% = —5-tr | {[V.jr]dgg V6L 4+ [V, 699 "] pdat =

—T

1 T .
gtr(Yé _Wdeacl): tr(Yo5L) for jp = %j emire! (2.102)

. . . X OmegaWZL
‘Ethe contribution from the second term under the integral in (bG%; vanlswgnslé as o

2D field g is periodic in 2! and Y is constant). Similarly, using now (
(2101), we get

. 1 ™ B , o
YRQ@):_%“/ {lir, Y19 '0g — 6jrY — jr[Y,9"'0g] }da' =

—tr (Ya/ jrdzt) = tr (Y58, jr= Zjﬁe—ml. (2.103)

reZ



In the case of the more general infinite dimensional symmetry (585 which cor-
responds to periodic (rather than constant) ¥ = Y(') = X, Y.e~irt' in
(2:100) and (2:101), the vector fields Y7, and Yr now act on the basic 1-forms
as

ifL((sgg_l):ZY ) YLéjL:i[ijL]_kY/ )
Yr(g~'0g) =iY , Yrdjr=iljr Y] +kY", (2.104)

and their contractions with Q) involve all current modes:

. 1
2) _
YLQ()—%tr/_ Y 6z, dat —Ztr Y,85t.) (2.105)
rel
?RQ(2)—— / Y 8jp dzt —ZtrY5] (2.106)
re’l

Of course, Egs. (5%02) and (EQ%OS) are special cases of (5%5) and (Y9R16),
respectively (for Y =Y (z!) = Yp).

Eqgs. (%02) an%g(g%rw), as well as (5%5) and (5%1%6)7 have the standard
Hamiltonian form ( . The same is true for the periodic (or constant) left
shifts of the chiral field (we shall take g = g1, for concreteness). Let g1 :=
g(—m), g2 := g(m); then, from M = g7 1go and Y.0g = i Yg we find

SMM™"' = g7 69295 "1 — gy 091 , hence (2.107)
Yo(MM™) =igi'Y(m) g1 —igy 'Y (~7)g1 =0 = Yrp(M)=0
defrhokK iLR

(cf. (2:91)). A gjgpple computgpion using (BWO) allows to reproduce the chiral

counterpart of (2.105) (or of (2.102), for constant Y'):
e Q( M) = V7, Qu(g, M) =
= tr{/ “WYylgleg) — 9709 (97 Y g) ) du + g7 'Y i dMM T =

ik 1 i
= ;— trd Yg'g_1 dr = 5t Yéj(z)dx . (2.108)

—T —T

By contrast, the symmetry with respect to constant right shifts of the chiral
field is of a rather different nature. To begin with, we note that Yz dg =igY
implies

YR(OMM ™) =iglgY g tgr —iY =i (MYM™' —Y) =i(Ady —1)Y .
(2.109) | YRM
As a result, the contraction Yz g, M) of Yr with the chiral symplectic é(c)rm
y= Qelg, M) — £ p(M) (2.85) depends crucially on p(M). Eqs. (2.74)
and (2.109) give

Yi Q(g, M) = — tr{/ g 109)de +YSMM ™" — g7 g1 (Adyr — 1)V} =

ik _ _ 1, -
= trY{g; 692 + oMM — AdM1(91 og1)} =

ik
- fT trY{SMM™" + M~'6M} ; (2.110)
™
Mg12
for the last equality we have used (ngU'?) implying

92 '0g2 = M~ 197 (81 M + g10M) = Ady/ (g7 '0g1) + M71OM . (2.111) MM

A defrhoK
Evaluating Yz on p(M) (2.94), we obtain

YRP(M) =
= %tr{( (Ady = DY ) (Kp (MM 1)) = 6MM ™ Ky ((Ady = 1)Y )} =
=itrY (Ady} — Ky (SMM™1) . (2.112)



3 [YROc YRrho
Note that both expressions (2.110) and (bl [2) only depend on the monodromy

matrix. Combining them, we get

Vi (g, M) = Vi Qul9, M) — - Ve p(M) =
= katrY{(AdM +1— (Ady —1)Kpy) (MM ™1} . (2.113)

M -
For p(M) given by g@?) in terms of the Gauss compgnents ( 3 bt M,
the general expression (2.113) leads, taking into account (2.95) and (2.96), to

» ik _ - -
YrMg, M) = trV{(Ady + 1 — (Ady} — 1)) (6My M) —

—(Adpr +1— (Adpr — 1)) (SM_MZ")} =

= ;ﬁtry(smM;l —OM_M~"). (2.114)

We thus see that in the cas Ye&(e.g., constant) left translations the 1-form
=6 ["_j(z)dx =2mbjo (cf. (b 08)) is exact (and hence, closed) so that the
correspondlng Sygnmetry is of Hamiltonian type. By contrast, the forms Z, =

SMyiMi" in (2.114) satisfy the Maurer-Cartan (non—abehan flat connectﬁfl) S-T-s D

equation 0Z4+ = Z2 , a fact which signals a Poisson-Lie (PL) symmetry (
231, 71]) with respect to constant right translations. (An infinite dimensional
generalized PL symmetry with respect to non-constant translations satisfying
special boundary conditions has been found in hgl?ﬂ)

1, S-T-

We recall the definition of a PL gr. P and of its Poisson action hQTU,_ZBT]S’ In
the terminology of Lu and Weinstein [T89], a PL group is a Lie group equipped
with a multiplicative Poisson structure. In more details (cf. the first chapter
of [55]), one introduces first the notion of a Poisson map between two Poisson
manifolds, ¢ : £L — N as a smooth map that preserves the Poisson bracket,
{f,ginop = {fo ¢,go ¢}z Vf,g € C®°WN). Now a PL group is a Lie
group G with a Poisson structure {f, g}a(z) on it (z € G, f,g € C(G)) such
that the group multiplication m : G x G — G is a Poisson map, and a (left)
Poisson action of a PL group G on a Poisson manifold N is a Poisson map
¢ : G x N — N. The product Poisson structure, e.g. on G x N' > (z,y), is
defined by

{f.gtaxn (@y) ={f(.v), 90, 9)}c (@) + {f(z, ), 9(z, )}n(y) 5 (2.115)
in the case of a PL group, N' = G.

So a PL group action preserves the Poisson bracket (PB) provided one takes
into account the non-trivial PB on the group as well. Indeed, we shall see
below that the Poigson bracket {g1(z1), g2(x2)} , obtained by inverting the chiral
symplectic form (2.85) with p(M) defined by ( EQQ is invariant with respect
to the right shift g(z) — g(«)T (T € G) prov1ded that the matrix elements
of T (Poisson commuting with g(z)) are viewed as dynamical variables with a
non-trivial PB given by the Sklyanin bracket [238]

{1, T2} = A [7’12 T T3 ] (2.116)

where r19 is a classical r-matrizx.

PBSkl

%;mark 2.3 In (bTTG) we introduce the familiar Faddeev’s shorthand notation

] for operations on multiple tensor products of a (finite dimensional) vector
space V. (A similar notation is used sometimes for tensors in VoV ® -+ ®
V'.) The subscript ¢ = 1,2,... refers to the i-th tensor factor: if, e.g. A5 =
> Xi®Y; ® I where X;,Y; € EndV, then A3 = ), X; ® 1®Y; while
Ay = 2,0 X; @ I, ete. If Py = Py (P% = 1) is the permutation
operator acting on V@V as Pox®y =y ® x, then Ay = PioA12P1o. The
Kronecker product of the operator matrices in a given basis of V' relates the
compact notation with the multi-index one, e.g. the matrix of 4B = A® B



for A = (A}), B = (Bf,) is (A® B)¥ = AiBf (we shall always assume the
lexicographic order of indices).%

Respecting the unitarity of the monodromy matrix M (for the general case

of non-diagonal monodromy) forces one to consider qu%glg%ti%]FEB {g9(z1),9(x2)}

involving a monodromy dependent r-matrix r(M) Thus T_'tli(le non-
uniqueness of the splitting of the group valued field 2D field g(«°, ') (T.1) into
chiral components and the associated freedo% the choice of the monodromy
manifolds and of the 2-form p(M) satisfying (2.86) leave room for different types
of symmetry of the chiral field under right shifts. Allowing for more general non-
unitary M, we shall be able to end up with PB involving constant r-matrices
(for =27 < Faki T2 < 27). Their PL symmetry with respect to transformations
satisfying (bTTG) is the classical counterpart of the Hopf algebraic (quantum
group) symmetry of the corresponding quantum exchange relations considered
in Section 4.

Remark 2.4 The above considerations only apply to the case of general mon-
odromy matrix M. One can restrict, alternatively, the chiral phase space S¢ to
a subspace Sg of chir Jelds u(z) with diagonal monodromy M), (such fields
are called Bloch waves LZQ 26]). Since the 3-form 6(M,) vanishes on the Carfan
subgroup’, the chiral form Q.(u, M,) itself is already closed, in view of (M
Hence, the freedom introduced by th chiral splitting is reduced in this case to
an arbitrary closed 2-form p(Mp) in (2.8 C4 . Further, since
(SM},MP’1 16M = dlog M, , it follows from ETI that the symmetry of
such fields Wlth respect to constant right shifts is still Hamzltoman.

So it is meaningful to denote a chiral field with a diagonal monodromy
matrix M, by a different letter, u(z). As we shall see in the next section, the
PB of the Bloch waves contain singularities depending on the eigenvalues of
the monodromy matrix M, . Thus, at the classical level, the intertwining map
a between u(z) and the chiral field g(x) defined by g(x) = w(z)a can only
be regular in a restricted domain of diagonal monodromies. We shall face a
similar problem when considering the quantization in Section 4 where the above
mentioned feature manifests itself in the vanishing of the quantum determinant
det(a) .

3 Chiral phase spaces and Poisson brackets

3.1 Diagonalizing the monodromy matrix

As anticipated in the preceding, section, we shall write down the chiral group
valued, twisted periodic field (2.84)

g9(x) = (92(x)) , glz+2m) = g(x)M (3.1)
as a product _
9 (z) = u (z) al, (32)
A

of an (z-dependent) Bloch wave u(z) = (uj (z)) and a (constant) zero mode
matrix a = (a?,) . (We identify in this paper the Lie groups and the Lie algebras
with their defining representations. Thus, for G = SU(n) all the indices A, j, «
take values from 1 to n.)

The Bloch waves are defined to be twisted-periodic fields with diagonal (i.e.,
belonging to the subgroup corresponding to the chosen Cartan subalgebra §)

monodromy M,:

u(x + 2m) = u(z)M, , M, = e peyh. (3.3)

6Note that the relation Ay By = BsA; means that the entries of A and B commute,
A;Bfn = Banz.. In particular, A;As is not equal to A2A; for a matrix A with non-
commuting matrix elements. This remark will be especially important for the quantum case,
see below. can3

"This follows from (E_Zﬂj applied to the (commutative) Cartan subalgebra. In general,
O(M) =0 iff M~16M takes value in a solvable Lie subalgebra of Gy, cf. g_gﬂj

ggM



Iﬁgﬁﬁenerall e may assume that M, has a normal Jordan form.) Compar-
mg and , we see that M, and M are related by

Mpa =aM . (3.4)

Hence, if the zero modes’ matrix a is invertible, then M is diagonalizable and
its diagonal form is M, . To guarantee this, we have to restrict p to belong to
the interior Ay, of the positive \%‘egyl alcove defined ip Eq.(3.13) below (for a
discussion on this point, see e.g. [83] and Section 3 of [132]).

The separation of variables (E%) is analogous to the so called "vertex-IRF
interaction-round-a-face) transformation” originally used in lattice models, see
%22] As the current j(z) which gengpgtes the left group translations is the same
for g(z) and u(x), it follows from (2.70) that each of them satisfies the classical
Knizhnik-Zamolodchikov (KZ) equation

d d
k@) = @) gle), k(@) = () u() (35)
The corresponding solutions (glven by ordered exponentials) can only dlffer by
their initial values, say at x = —m. Hence, the zero modes’ matrix in (3. ) is
just a = u(— )g_l(—ﬁ) .

We now proceed to introducing individual symplectic forms on the infinite
dimensional manifold of Bloch waves and on the zero modes’ phase space

There is an ambiguity in splitting the chiral symplectic form Q(g, M b 85)
into a Bloch wave and a finite dimensional (zero modes’) part. The followmg
statement is verified by a straightforward computation.

Proposition 3.1 For g(x) given by 2%’%) and for every choice of the closed
2-form wq(p) , the chiral symplectic form Q(g, M) (2.85) splits into a sum of two
closed forms, a Bloch wave form

Qp(u, M,) = Q(u, Mp) + we(p) , (3.6)

Qu, M) = %tr {/Tr dru~t () du(x)(u™ (z) du(x)) + b 15b5 M, Mpl}

—T

(with b := u(—m)) and a finite dimensional one,

k _
Oa, Mp) = Qq(a, Mp) — 1~ p(a P My a) — wy(p) . (3.7)
k _ 1o _
Qq(a, M,) = Etr{éaa Y(M,saa™? M, '+ 26M, M, Hy.
The proof of Proposition e 1s based on the following observations. The

2-form Qfu, M) (3:6) is just (2.74), with gc replaced by v and M by M,,. In
view of (b 82; to conclude that it is closed it is sufficient to note that 6(M,)
vanishes. On the other hand, computing §(M) for M = a~'M, a, we obtain

k _ koo

E(Sp(a 'M,a) = Eﬁ(a 'M,a) = (3.8)
k

=t {(6aa=")*(20M, M " + My daa™ "M, " — M, '6aa™" M,) —

—daa oMM, (M, 6aa™ Mt + M Saa” " M,)}

0
which is equal to § Q4(a, M,), so that Q(a, M,) (%97) is closed as well. |
It is not difficult to verify that for infinitesimal r1 t shifts of a (leaving
M, invariant) the finite dimensional form Q(a, M ) transforms in the
same way as the infinite dimensional one Qc(g, M . Indeed, if Yrda =

taY YR§MpfO, we find

aintertw

. ik
Vi Qq(a, M,) = f?r trY (MM~ + M~16M}  for M=a'Mya, (3.9)



ggl% repradpcing th ht hand side of bTIO Taking further into account
(2.112), (

and ( We verify the PL symmetry of the zero mode sym-
plectic form Qa, M ) with respect to right shifts:
- ik
Vi Qa, M,) = ;—trY((SMJrM;l —SM_MTYy, M M '=a'M,a.
s
(3.10)

There is also a Hamiltonian symmetry with respect to transformations a —
et g with diagonal a(p) (€ b), that do not change the monodromy:

Dr(daa™) =ia(p) , ZA)L(cSMpMp_l) =0 = Drpa*Mya)=0,
Dy, Q(a, M,) = —tr (a(p) dp) . (3.11)

Remark 3.1 In order to have the infinite and the finite dimensional parts fully
decoupled, we should further extend the chiral phase space, distinguishing the
diagonal monodromy of the zerg modes and that of the Bloch waves. After do-
ing this, the symplectic forms ((%6) and (%97) become completely independent.
As a corollary, on the extended phase space My := u(x)u(x + 2m) automati-
cally Poisson commutes with a}, (while M, and M , related by (m not);
on the other hand, both M and M, Poisson commute with u(z). To recover
the original g(x), one has to make a reduction of the extended phase space,
imposing the relations M, ~ M, as (first class) constraints and accordingly,
after quantization, (M, — M,)H = 0 as a gauge condition characterizing the
chiral state space H .

0q Lt 18 easy to see in the SU(n) case that both Qp(u, M,) (%6) and Q(a, M)
(b’q?) remain invariant with respect to multiplication of w(z), resp. a, with
scalar functions of p; of course, such a transformation breaks the unimodularity
property so one should further extend the corresponding phase spaces. We shall
make use of the resulting freedom as well of the one in choosing the form w,
to fit the quasi—classiﬁgl lipgit }&Egzpngggplamical) R-matrix exchange relations
conjectured earlier in [8U; 81, ) and derived (by exploring the br 'g,}ng
properties of the chiral correlation functions in the quantum model) in [I54].

To this end, we need the PB of the chiral zero modes and of the Bloch waves
which are obtained by inverting the corresponding symplectic forms.

3.2 Basic right invariant 1-forms for G semisimple

Both the 2-form Q(a, M)) (EQY) and the 3-form 6 (a='M,, a) (%%e‘gexpressed
in terms of Lie algebra valued right invariant 1-forms. In this section we shall
present Q,(a, M,) in terms of ”ordinary” (C-valued) basic right invariant 1-
forms. (The relevant notions and conventions about semisimple Lie algebras
are collected for convenience in Appendix A.)

We shall identify, by duality, the fundamental Weyl chamber Cy, and the
(interior Ay of the) level k positive Weyl alcove with the following subsets of
the Cartan subalgebra h 2 p=>""_ pa, h'

Cw={peh, pa, >0}, Aw={pcCw, > a/pa, <k} (3.12)

i=1

M
({a} }7_, are the dual Kac labels, cf. EX_18 ). One can show that p in (Eﬁi is
fixed unamb1gu0 y, for a given M € G, by (%Z[ il it belongs to Ay (B.12)
(see Section 3 of‘}[(‘zliBQ] for a detailed explanation). In the case of sf(n), af =1
and Ay is just the set
n—1 n—1
s@n
( ={yp= Zpal ,pai>0,2pai<k}. (3.13)
i=1

The finite dimensional manifold M, with coordinates {a’_, pn.} and sym-
plectic form Qg (a, M,) (B:7) can be viewed as a deformation (3, of the sym-
plectic manifold M; obtained in the limit & — oco. The role of the deformation
parameter is played by 7 or, better, by its exponential

g=qr:=e'* (gg=1, limg=1). (3.14)

k—o0

CAG



M
To show this, let the diagonal monodromy matrix be expressed as in (Eu3 with
p=>1Pa;h’ € Aw, and ©°, %> b cLhe_right invariant 1-forms in T*Gc
&%)

corresponding to the Cartan-Weyl basis , so that
—idaa"t = Z ©’h; + Z(@aea + 07 %_,) (3.15)
Jj=1 a>0
and, conversely,
07 = —itr(6aa™'h?) , ot = —; (Oga) tr(daa tesq) - (3.16)

For a compact group G and a given by an unitary matrix, a=' = a* the
forms ©7 are real, V\H}ilte O©~% is complex conjugate to ©%. We note that the
. € S . .
matrix valued form (%3 I 5; is not closed but satisfies the Maurer-Cartan relations
(defining thus acoiill%rggnnection) which lead to corresponding equations for the

basic 1-forms (B.16). We shall use, in particular,

567 = zZtr [ease—a]) @O = ZZ (AMaV)o e (3.17)

a>0 a>0

cf. (%\_67 b\_é %_15 -

0
Inserting the expression (3.3) for M,, into the second term of Q4 (a, M,,) (b97),
we get

k 1 - 1
2—tr6aa OM,M, " = itr(éaa” " 0p) = E tr (h; 0p) © E 6pa, ©7 .
(3.18)

The first term of Q4(a,M,) is expressed as a sum of products of conjugate
off-diagonal forms @+

k 10 Saa— M ko 3 2 0°0-
47 tr(daa™ M, daa™ "M, ") 4 @9 (ala) [2pe] (319

a>0
([z] := q;:gm ). Here we are using [h7, e1o] = £(A|a) exq to derive
Myero My' = Adpy, ex0 = ¢7 P e1q (3.20)

pa::Z(A”a)po&jE(A‘Q)a peAw = 0<pa<k Ya>0,
J=1

converse 2ter: .
as well as (t} 6). Combining ( &3 8) and (3.19), we arrive at

=00~ -0 )Y s ereT . (321

a>0

As the weight manifold is simply connected, the closed 2-form wqy(p) is ac-
tually exact:

1 &
wq(p) = 5T] 5pa 5ZTJ 5pa] = 5 Z w" (p) 6po¢¢5paj )
=1
oari 9!

Wil — _
8pai apaj

=—uwit, (3.22)

0
One can therefore expressthe difference Q; —w, in (b97) as a kind of a gauge
transformation of Q, (cf. [26]):

Qy(a, M) — wy(p) = Qu(eTPa, M,) , Y(p)=Y(p)hich. (3.23)

Taking further into account that the monodromy M = a~'M, a (and hence the
2-form p) is invariant under the substitution a = e~*Y®)a’ | one can compute
the PB of a from those of a’ obtained for w, = 0.

converse



The WZNW term vanishes in the undefoymed limit ¢ — 1 (k — o0). Indeed,
taking into account the definition of p,, in (%207 and Eq.(B.17), we derive that

Q4 (a,p) = lim Qq(a, M,) =

ik 2 2TPa,
7Z5pa]® + hm Z—Zis‘ “MPa ga g=a — (3.24)

= oo 27 O(a\a) k

*Zép%@ﬂﬂz PO 0" a—azp%eﬂ = _idtr(poaa)

7j=1

is not only closed but even exact by itself. As Ay (E.A%Q) 7expands” to Cyy for
k — oo, (B.24) is defined on the phase space G x Cy of dimension (dim G +
rank G) which, after complexification, coincides with that of the (symplectic)
cotangent bundle T*(B) of a Borel subgroup B C G¢, considered in [49].

The symplectic form Q;(a,p) (8.24) can be readily inverted to obtain the
corresponding Poisson bivector field

ZV/\ +zZ—V AVieg , (3.25)

a>0 Pa

where the vector fields are dual to the correspogldmg basic 1-forms (e.g. V 0! =
don

(5’ V e, =0 = V ©%, etc.; note that p, (B:20) is positive for p € Cy and
>e Og The correbpondlng PB of the zero modes follow simply from here, as

?g—ﬁ%lmplies
Vida=ihja, Vada=ieqa . (3.26)

o 01
The expression (b.Zval j looks very similar to (&24), but one should remember
in 27
that Q,(a, M,) is not closed (and is degenerate for p € Aw as [2p,] = T Ere

sin =
may vanish). To find t 6 PB of the zero modes, we have to invert the true sym-
plectic form Q(a, M,) (8.7), taking into account the presence of the additional
2-form p (a=* M, a).

3.3 WZ 2-forms and solutions of the classical Yang-Baxter
equation

ﬂédgggcorrespondence between the WZ 2-forms p(M) satisfying dp(M) = (M)

(2-86) and the non-degenerate constant solutions of the classicql Yang-Baxter

gyation ("r-matrices”) has been first described by Gawedzki [128] (see also

gg])F Vge proceed to review this relation, taking subsequent work, especially
, , Into account.

o We saw in Section 2.3 that the possibility of presenting p(M) in the form
(2:89) for a given factorization of the monodromy matrix M = M, M_' implies
PL symmetry with respect to right shifts of the chiral field, see Eq.(2.114) (or
of the zero modes, Eq. (%TU)) The so called classical r-matriz gives rigse to a
solution of an infinitesimal version of the factorization problem i

We shall briefly recall the basic facts about the PL symmetry ;;] The Lie
algebra of a PL group G possesses a natural Lie coalgebra structure (and is,
thus, a Lie bialgebra (G, dg)), the cocommutator 6g : G — G A G being a (skew
symmetric) linear map satisfying the 1-cocycle condition

og([X,Y]) = [0g(X), V1 + Vo] + [ X1 + X2, 6g(Y)] VX, Y €G. (3.27)

(The crucial fact is that the PB on G induces a Lie bracket on the dual of
G, 0;:G"® G* — G*; one defines, for any £,n € G* obtained as differentials
of appropriate functions f,h € C*°(G) at the identity element e € G, (d f). =
gv (d h)e =1,

[§;mlg- =6 (§ @n) = (d{f,h})e - (3.28)

Then the cocommutator is just dg = (65)°, Eq.(t%%?) being implied by the
invariance of the PB with respect to the multiplication map in G .) Coboundaries



are those 1-cocycles for which there exists a (not necessarily skew symmetric)
element 15 € G ® G such that

og(X) = [X1 + X2, 112] ; (3.29)

sléggv symmetry of dg implies that 712 + r2; has to be ad(G) invariant, while
(B:27) requires ad-invariance of

[[r]l12s := [r12,713] + [r12,728] + [r13,723] €EGRG R G . (3.30)

If the Lie algebra G is semisimple (complex or compact), every 1-cocycle
dg on it is a coboundary. Besides, then there is a one-to-one correspondence
between elements Ao of G ® G and linear operators A € End G,

Aip — A s AX = trg (A12X2) VX eg s (331)

the element corresponding to ‘A (where tr (XAY) = tr (Y'AX) VX,Y € G)
being just As1 . The polarized Casimir operator C12 € Sym (G®G) corresponding
to the quadratic invariant (b%_ZT) is

Ciz (= C91) = 1 Tu1 Tyz = hihs + € eq, - (3.32)
The invariance of Ci5 with respect to the ad-action of G on G R G,
[Xl + X, 012] =0 VX eg (333)

fab
follows from the antisymmetry of the structure constants f,p. (bfaBICZ), since [Ty1+
Taz, Cr2] = i (fabe + facr) 1515 = 0 . One also finds the following identities in
the triple tensor product of G,

[C12,C13] = [C13, O3] = —[C1a, Cog] = i fape 151515 (3.34)

cc
the right hand side of (%3{% being the (unique, up to normalization) G-jpyariant
tensor in G A G A G. As the operator C' : G — G corresponding, by (3-31), to
C12 € G ® G is just the identity operator on G since

CT, = try (C12Ths) = Ty tr (T.T,) = °neaTy = T, | (3.35)
A-A
the relation (%31) assumes the following convenient form:
Alg = A1 012 (<:> A21 = AQ 012) . (336)

_T_
Following ;231 , we shall use an operator formalism to introduce the classical
r-matrix. For any Lie algebra G and a skew symmetrict € End G, 't = —t (so
that ro; = —r12 € GAG) one defines the following two linear maps GAG — G,

X,V = [eX, Y] + [X,tY] = [V, X], (3.37)
and
B.(X,)Y) :=[tX,pY] —¢[X,Y], = —B:(Y, X) . (3.38)
It is easy to prove that the Jacobi identity for [X,Y]. is equivalent to the
2-cocycle condition

[Bt(Xa Y), Z] + [Br(}/a Z),X] + [Bt(ZaX)vy] =0, (339)

hence Eq.(%.%?) defines g, second Lie bracket on G (one denotes G equipped
with it by G.) whenever (3:39) holds. An obvious (bilinear) sufficient condition
this to happen is the validity of (the operator version of) the modified classical
Yang-Baxter equation (CYBE)

B.(X,Y) =a?[X,Y] (3.40)

MCYBEa
for some constant . If & # 0, in the complex case one can always reduce (3.40),

by rescaling t, to

B.(X,Y)=-[X,Y] & F[X,)Y],=[X,cTY], Fti=c+T (341)

cob

mCYBE-0

ad-invi12

CCrel

A-A12

XYr

Br

req



(the minus sign in the right-hand side of the first equation is crucial for what
follows). Hence, the maps t* : G — G are Lie algebraic homomorphisms, their
images G+ := t* G, are Lie subalgebras of G and, since %(t+ —t7) =1, any
X € G can be decomposed in a unique way as

1
X=X,-X_, Xiy:=_-t"XecGy sothat tX =X, +X_ (342

2
(this is the iﬁgj@%ﬁsimal darm of the factorization theorem of M One can
prove, using ( and (B.34), that the modified CYBE Bﬁll ) is equivalent to
the following equation (in G ® G ® G) for the classical r-matrix 119 = —7r91 €
GAG :
[[rl]123 = [r12, m13] + [r12, r23] + [r13, 723] = [Ch2, O] (3.43)
+

The matrices corresponding to the operators t™ are, accordingly,

TitQ =712 + Clg . (344)

. ad-invi2 . . .
Applying (b.33;, 1t is straightforward to show that they both satisfy the ordinary
CYBE:

[[Tiﬂlgg = 0 . (345)

Remark 3.2 In ge%%;'i%l, (non-skew-symmetric) solutions 115 € G ® G of the
CYBE [[r]]i23 = 0 (B.45) are called non-degenerate if their symmetric part,
3 (£12 + 721) is such. In this case the corresponding Lie bialgebra (G, dg) (cf.
(829)) is called factorizable. The other extrem gase riz + 1o = 0 is usually
referred of as ”the classical unitarity condition” [218].

CYB CYBE
As we shall see below, Eqgs. (ETZS% (or (b45)) imply the Jacobi identity of
the chiral PB.

The operator formalism described above implies the following
defrhoK
Proposition 3.2 Let p(M) = tr (MM 'Ky (MM™")) (2.97), where

Ky € End G is defined in terms of the skew symmetric operator v (for M
such that (v — Adpst™) is invertible) by

Ky = (‘C+ + Adpr t_) (t+ — Adyy t_)_l . (346)

drho
Then p(M) satisfies § p(M) = 0(M) (2.86) whenever 1 solves the modified
CYBE (3.41).

Note that K1 = (t7+t7)(tT—t~)~! = t; the skew symmetry of Kys, 'Ky =
— Ky follows from that of v, taking into account the orthogonality of Ady;,
*(Adyr) = Ady; and the equality

(v7 + T A ) (cT — Adpre) = — (v — T Ad) (e + AdyeT) . (3.47)

The proo ef Proposition 3.2 can be obtained by adapting a more general
statement in to the case of monodromy independent t.

The importance of (g%f[%) stems from the fact that the r-matrix r1o € GA G
corresponding to the same operator gppears in the PB of the the zero modes as
well in those of the chiral field g(z )%ZE] we provide a proof in Section 3.5
bel For G compact the modified CYBE (3.40) only has solutions for real v,
see%] Thus Eq.( 1) cannot hold in this case. The pﬁg%lgm can be overcome
by a more general Ansatz f BrFlpl( f% }p still of the type (3.46), but allowing the
operator ¢ to depend on M } . 26]. Then the Jacobi identity for the emerging
PB is equivalent to a generalized version of the modified dynamical CYBE (see
below), including differentiation in the group parameters, for t(M).

Alternatively, if we insist on working with monodromy independent 7 Umautrlceb
we have to extend the chiral ph se space and its symplectic form b
monodromy (and hence, due to ?E}mro mode) matrices belonglng to the
complexified group, M € G¢ .

£rhoK ofM drh
The fact that p(M), given P}ay beEJZIr “and (b7[6) is a solution of (b%%) follows

also from the fa tog} Hﬁq ) of the monodromy matrix M il Gauss
components, see 128, 84, 115]. Indeed if M = M, M~" (so that (bQ%; holds),

rpmcl



the 1-forms X := (5MiMi and Yy = AalMli ((5MiM b = Mi 5MiK;cPlvll<e
values in the respective Borel subalgebras Gy . Then (b@b’) k42 and (3.46),

which implies
Ky (‘C+ —AdM’C_) =t + Adyv” & (348)
Ky Ady, (Ady) v — Ady ©7) = Adag, (Ady) v + Ady) o),
KMM
lead to ( .

relation in (}Z
simple form

drh
grovm ;hus m9 and hence, (ES%) Comparing the second

, we see that K, can be presented in the following

Ky = Adyg, e Ady) (3.49)

Thergactorization of M into Gauss components is related to a special solution
of (bﬁll) given by

thi =0, teqtqa=Fets, a>0. (3.50)

A-A12 C dd Cu CYB
Using (ETJG%, (&3?352 ;a ESZT) we obtain the corresponding solution of (E7[3%,

the standard classical r-matrix:

ri2 = 11 Ci2 = Z(eaﬂi—az —e_q1€a2) (= —To1). (3.51)
a>0

We shall restrict ourselyes in what follows to G = SU(n) (so that G¢ = sl(n))
and to the 2-form p (bjSQ) corresponding to the factorization of M into Gauss
components (thus related to 712 (ETS%)—IH this case G+ are just the upper
and lower triangular traceless matrices, respectively, the uniqueness of the de-
composition being guaranteed by the ad iti |l condition that the diagonal
elements of X and —X_ are equal (cf. (E. . This choice is dictated by the
quasi-classical correspondence, if we postulate e chfvarngﬁlrelatlons for the quan-
tized chiral field g(z) in terms of the standard% 82] constant Uysl(n)
quantum R-matriz. 1t is appropriate, assuming that the complexification only
concerns the zero modes a?, and does not affect the properties of the 2D ”gauge
invariant” field g(z*,2~) € G (which should still transform covariantly, in the
usual sense, under both left and right shifts of the compact group G).

3.4 Extending the zero modes’ phase space

For the sake of simplicity we begin by exploring the PB for the undeformed
(¢ = 1) case corresponding to the symplectic form

Q(a,p) = ;qu (Qq(a, Mp) — wy(p)) = Q(a,p) — wi(p) (3.52)

01 i{Y
where Q(a,p) is given by (ET.?ZL), and wi (p) is ghe limit of wy(p) (E%’Z) This
i ggmdily done using the Poisson bivector field (&T25) and the prescription after

{Pa; Pacy =0, {ad,pa,} =i(he)ias (3.53)
{a1, a2} = Zwﬂ(p hjihes 712%1;7_0‘2 ajap (3.54)
AL a o

(note that the last summation goes over all, positive and negative, roots «).

Going to the special case G = SU(n) we first observe that the assumption
deta = 1 (as part of the requirement a = (a) € G) is more restrictive than
what is needed to ensure that the classical chiral field g (%2) belongs to G,
i.e. that detu.deta = 1. We shall use the ensuing freedom to impose a Weyl
invariant relation between a and the weight variables p. This can be done most
conveniently in the barycentric parametrization of the sf(n) roots and weights
presenting the simple roots as ay = ¢ — 441 for (¢;|€;) = d;; so that the root
space is the hyperplane in the auxiliary n-dimensional Euclidean space spanned
by {e;}!; orthogonal to € := Y7 | & (see Appendix A). A linear combination

altkM
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of the weights can be expressed, accordingly, in terms of barycentric coordinates
pi,1=1,...,n as

p= me, (ply=0 = Y p=P=0. (355
i=1

Using ( ﬁQS we find, for p =Y, 1pr

= Zpae - 5 Zﬁpw = Doy (E Pa; it ) =Pi — Pi+1 - (356)
—i —1
lnroot Ad
Further, from (SA 997 and (%ﬁﬁ% it follows that in general
n—1
Pasy = O (M| i) pay = pi —pj = pij - (3.57)
=1

The action of the sf(n) Weyl group S, in the orthonormal basis is easy to
describe: the reflection s; with respect to the root a; (i = 1,...,n — 1) is
equivalent to the transpositions g; < i1, Di < Pitl. It is natural to assume
that S,, also permutes the ro 3 = (a},) of the matrix a, as the upper index
() refers to the weights, cf. We shall equate the determinant of a which
changes sign under odd permutatlonb of rows to a natural pseudoinvariant of
the weights p; :

D(a):=deta= [[ pij = Dlp). (3.58)

1<i<j<n

We shall exhibit the effect of this constraint in the simplest (rank r = 1) case
corresponding to G = SU(2) in which wg(p) = 0 so that the form (3.52) involves
no ambiguity. To see what is going on, we parametrize the matrix a by a 2-
component spinor z = (z1, 22) and its complex conjugate z :

1 5
a= ( A1 ZZ) ,a = D) (Zl ZQ) , D(a) =Zzz:=Zz121 + Z222 . (3.59)

—Z2 21 z22 Z1

D 01
For D(a) = p12 = p (according to (Bé‘ﬁg%) the (exact) 2-form 4 (b4) can be

written as

Q =60, ¢ l,tr{<g _()p)5aa1}:pM L (252~ 25%) .

21 2izz 21
(3.60)
Thus, for D(a) (= zz) = p, ;1 coincides with the standard Kéhler form on C2:
Qq(a,p) =idz6z (for zz =p) . (3.61)
The non-trivial PB,
{20,238} =100p = {2a,p} =120, {ZaD}=—1%2a, (3.62)

reproduce the classical limit of the canonical commutation relatj ops a pair of
SU (2) spinors of creation (z,) and annihilation (z,) operators %Iﬁ =zZ
playing the role of the classical weight equal to twice the isospin).

D
Remark 3.3 Note that, had we set D(a) = 1 (instead of (E§5§”})7 we would have
obtained the awkward PB {z1,21} = |2212, {22,220} = . 12112 (|2a]? = 2aZa)

instead of
We shall use in what follows the n x n Weyl matrices {eij} yih,j=1,...,n,

(e,)) = 555% satisfying

K2

e ef = dlet, tr(e,/e,l) = o007, Zeii =1, . (3.63)

slnweightsl

slnweights2

Ophi

On2

classCCR2

eij



the sf(n) roots and weights, cf. , are expressed in terms of the diagonal

In the n-dimensional fundament 1C Jepresentation, the Cartan algebra duals of
(bﬁ L}g)
Weyl matrices e,’ by replacing in (A.28) &, — ¢;" and ay — hy, AJ — hJ:

. J . n
hé:e/‘%iﬁl , W :(1_1)Zerr_l Z e,

n r=1 nr:j+1
tr (heh?) =6, , 1<jl<n—1. (3.64)

A}alg condition that p belongs to the interior of the level k positive Weyl alcove
(B.I3) becomes

AR = (= peesah’) = piey | P=0;0<py <k, Vi<j},

i=1

, (3.65)
nd the raisjng (lowering) operators are eq,; = e,/ fori < j (j <i). From
(IA~28) and (B.32) we get

_zhhm_z I <f>2—§m - (3.66)

j=1
Ciz =012+ Y (e )2 —P12—*112 , Pa=) (e)i(e):
i#] 1,j=1
((P12)¥ 1= 0% 67, is the permutation matrix) which is a well known formula for

the polarized Casnmr operator in the tensor square of the defining n-dimensional
representation of sf(n).

Proceeding to the general (deformed, SU(n), n > 2) case, we shall view

M, as a submanifold of co-dimension 2 of the K%H— 1) dimensional phase space
/\/lex of all {a’,, p;}. The constraint P ~ 0 in 233%%%7)’11 be supplemented by a
(

gauge condition which is a ¢-deformed version of (3.58),
@ —qP .
D(a) ~ Dq(p) = H [p”} s [p] = W for q=e€ vk (367)
1<j
cl
(cf. (ETZL)) The determinant D(a) may be defined by either one of the relations

€ininaly ...all =D(a)eay. 0, , ay ...al e =¢m 1 D(a)  (3.68)
(we assume summation over repeated upper and lower indices and normalize
the totally skew symmetric tensors by €, 1 = 1 = ¢*!). The corresponding
adjugate matrix A = (A¢) such that

i Aa % o i for : -1\ A?
anAf = D(a)d; , Afaz = D(a)dj ie, (a1 = D) (3.69)

can be determined from either one of the following equivalent equations:

—

in 17 11 Qg __ _fp..lp...b] AO0
A’ + o oy« - Gy € =¢n ALl
—
. . - qlin ig i1 Oéz ( )
€in.ig.irQq,, -+ Qo -+ - Qg = A €ay,...oq...a1 > 3.70

the hat meaning omission (note that missing indices in the left hand side, e.g.
ay in the second equation, correspond to summed up ones in the right hand
side).

The choice (Egg?) will leaﬂ fo BB r%;:rig%ns expressed in terms of a standard
classical dynamical r-matrix ; pon quantization it will reproduce
for n = 2 the Pusz-Woronowicz ¢-deformed oscillators [215] (see Section 5.1
below). For the time being we only note that the expression Dy(p) (8.67) (just
as D1(p) = D(p) M) is a pseudoinvariant with respect to the su(n) Weyl
group. As [p;;] > 0 for 0 < p;; < k (i < j), Dy(p) and hence, D(g&%re positive
if and only if § is an internal point of the positive Weyl alcove, (B.65).



One can verify, using Y7 = 1, that the following equality holds:

s=1 s
- 1< n-l ¢ P
p= Zpsess = (n ZPg) I+ ZWHIF/ for hf= Zess - Zess
s=1 s=1 =1 = pat
(3.71)

We shall assume that the extended diagonal monodromy matrix is given by

M, =P =g?(GPH)  pe Ay, (3.72)

eq— uM AWn1
cf. (b? ;, (E%B), (8.65). Further, it is convenient to expand the form daa~!
(having non-zero trace in the exztended, non-unimodular zero mo le case) into
n? basic right-invariant forms ©7 using the n x n Weyl matrices (8.63):

—idaa! = ejé o) (= Z eje 0)) & ©O)=—itr(e/daa"t). (3.73)
=1

Taking into account the Maurer-Cartan equations
6(6aat)=(6aa"1)? = 50, =i00;, (3.74)

of
we can thus write the extension of the form Qg(a, M)) (E}.Zva (for G = SU(n))
as

% =Y in0i- a-a ) L Eadeel. G
Jj<t
So the second term in the right hand side is not sensitive to the extension,

while the first ( iirndependent) one can be rewritten singling out the ”total
momentum” P (3.55) as

n—1
Z(Spse) = 0pjj1©® +5PO", (3.76)
s=1 7j=1

where

1——2@5—729 j=1,....n—1,

s=j+1

n_ ls~,s  i6D(a)
S _n;@s . (3.77)

~ n D(a)
Hence (cf. (%),

0D(a)

D(a) -
drh

As the 2-form p(M) is only restricted by (b%%) and 6(M) does not change upon

extension (thlS is easy to check using M~16M — M~'6M + 2% §P), we can

assume that p®* = p, and shall looggf?m" a closed, Weyl 1nvar1ant 2 form ng(p)
such that the extended version of (3.7),

ex Z
Qg = Qy(a, M) — 6P (3.78)

k
Q% = Q- 2 (p) (3.79)
reduces to Q(a, M,) for D(a) = Dy(p) and P ~ 0. More specifically, we shall
demand that

D(a)
Dy(p) -

1
O = Q(a, M,) —idP oy , X = — log (3.80)

Taking into account the definition of Dy ( bE(()l? and bg78 , this means that

Wi P)=wa(p) = =5 n [pje] kn 22

(3.81)

i 0 Dy(p) 5P — 1z Z 3 [pe] 5P = EZ cot (%pﬂ) dpjedP .



The (closed) 2-form w,(p) is by definition P-independent while, splitting the
terms proportional to 6 P in the most general expression for wg*(p), we obtain

Zf;z )0p; 0pe =Y _ cje(p) 6pje 6P+ > djem(p) pje 5pem

]7“ j<e j<l<m

where fjo(p) = —fe;(p) and

n> cie(p)Spje =Y fie(p) 0pje s ndjem(p) = Fie(D) + fom (D) = Fim (D) -

i<t j<e

(3.82)

(3.83)
f_ -
To derive (&3.821113;, Sve have used the identities

npl:P+Pl> PE::ZPZS7

> i) opjedPe="Y " (f;e(p) + fom(P) = fim(P)) 0pje opem - (3.84)

Jj<t j<t<m
- f_ d_
It follows from (&03?8}{1 - (£3.8an3) that the corresponding unextended p-dependent
2-form is

)=~ S (Fu) + o) ~ ) s bpem - (385)

j<t<m

. lunexto . .
Note that the expression (k3.85) vanishes for n = 2 as it should, due to the
restrictions on the summation indices.

Remark 3.4 One could write a more general Weyl in z}rlant second constraint
x ~ 0 replacing D,(p) (B-67) in the definition of x ( El? 80)

() =[] Flpje)  for F(p)=—F(-p). (3.86)
j<e

(It requires a suitable change in Eq.(bo%x_l where the logarithmic derivative of
D,(p) has to be replaced by that of @(P .) Assuming that ®(p) is proportional
3.

to Dy (p) gives rise to a wy* of type with
F'(p; T T T
o) = 1 g = (<o) =B pan)) 3¢ (B0) = (D))

(3.87)
This freedom fits the quasi-classical limit of t X general solution of the quan-
tum dynamical Yang-Baxter equation found in [I59]. Identifying F'(p) with the
”quantum dimension” [p] is equivalent to making the Ansatz

¢ J
0 =Gy =Gy )+ VO=Shosbal (0 =10V ) o).
(3.88)
As ong can see from BXHI below, this choice (which amounts to setting 3(p) =
0in (3.87)) smlphﬁes the expression for the classical dynamical r-matrix r12(p) .

Remark 3.5 We observe that Egs. (E%‘a}}, (E.%?) defing a non-trivial cohomol-
ogy class of closed meromorphic 2-forms. (The Ansatz (%BSj_does ngf contradict
this since the logarithm is not meromorphic. We can still use Eq.(bTSX)_Focally,
say inside the positive Weyl alcove, in verifying that the form wg* (p) is closed.)
The same remark holds for the change of variables a — da’ = Dq(p)% a (for-
mally relating D(a") = Dy(p) with D(a) = 1) which is not a legitimate ”gauge
transformation” in the class of meromorphic functions.

3.5 Computing zero modes’ Poisson and Dirac brackets

Our next task is 49 deri Ve, 4 the IZB relations among a’, and p; inverting the
symplectic form %79 E3 B775), (B and taking into account the second class

unextoq
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constraint (in Dirac’s terminology %%])

Q

P :2@- ~0, X(zilogié}?) 0. (3.89)

If we regard P =~ 0 as a natural constraint, then y =~ 0 plays the role as

associated (Weyl i variant) gauge condition.
We recall (cf. (%23}{1( .25)) that given a symplectic form € and a Hamilto-

nian vector field Xy obeying the defining relation X 2 =4f, we can compute
the PB {f,g} by setting {f, g} =Xr9 = Xy 0g. As the dependence of
(B-79) on P and y is split (cf. (bQBU)), the corresponding Hamiltonian vector

fields are 5 5
5P Xp:—za = {x,P}=i. (3.90)

The PB on M, is reproduced by the Dirac bracket on Mg*:

X, =i

1 1 .
PBD (3.91)
In fact, the second term in the right-hand side of (%91) vanishes in most cases
of interest since, as we shall verify it by a direct computation below, x is central
for the zero modes’ Poisson algebra restricted to the hypersurface of the first

constraint P = 0: '
{xat} =0={x:pje} - (3.92)
Dex
To obtain the PB on Mg*, we have to invert the symplectic form (%79)

q

k k
Q% = o tr 5aa*15MpMp*17weX(p) + y= (trdaa™ ' Ady, 6aa™" — pla™ My a)) .

" (3.93)

defrhokK
In order to write iE down in a manageable form, we use Eq.(b.egzir For pla=*M, a)
noting that Kps (8.46) can be recast as

Ky = ((1+ Adpp)e 41— Adpy) (1 — Adag)e + 1+ Adpg) ™, (3.94)

and introduce the notation

n . k 3 )
bp = dpoeS =5 OMM,",  ©:=) Ojc/,
s=1 J#L
Ay =1+ Ady, , = Adg v Ad; b
K= Adg Kq-1p, 0 Ady ' = (Ape® + AL)(Ax* + Ay) 7 (3.95)

£0 KofM
(To derive the last equality in (%) from (bo@ﬁ, we use that Ad,-1p7,4 =
Ad; ' Adyg, Ad, .) Tt is easy to show that the operators K and t* are skew
symmetric together with K, and v. We obtain

% e M) — (3.96)
_ S%tr{(éMpMp‘1 — A_(daa” 1)) K* (OM, M, — A_(6aa™"))} =

k 2m o 2m
k

1 1
—  Ctrdp LK p+ —tropKA_© — —trA_OK"A_0O
2 k 2 8
Oex- .
while the other term in (&3?9X13va(l;ontaining ©; with j # ¢ can be rewritten as

; 1
tréaa" Ady,daa™" (= (7—q))_[2p;]©] 0% ) = —5trA_©4,0 . (397)
j<t

eqlinew.20

eqlinew.22

PBD

chi-center

Oex-var

KofM2



Summing up the two terms pairing the off-diagonal forms and taking into ac-
count that

KaA, — A+ = (A+ta =+ A,)(A,ta + A+)_1A, — A+ =

A

= (A4 + A) (" + A—*)*1 — A, =

_ a a A+ a A+ -1 __

= <A+t + A_ A+(t + A_)> (t +Z) =

oA

A_

Ay
A_

Adag,
A

(" + %)—1 , (3.98)

(v + Y h=—4

we obtain

% (trA_OK“A_©0 —trA_0A,0)=

k Ade a A+ 1 _ 1 k‘ a

A+

-1
A,) O .

The last equality follows from the fact that A = Adyy, is orthogonal with respect
totr (ie. ‘A= A"1) hence (1 - A)A=(1—A"1)A= A—1 sothat, for 1 — A
is invertible, one has

A A-1

Hence, in the basis of vector fields {%, Vi, Vf} dual to the 1-forms {dps, ©F, @g} ,
respectively (all the indice Zunning from 1 to n, and j # ¢), the Poisson bivec-
tor matrix we obtain for (E%.QS) has the following block form (in which B is an

n x n square matrix and the block D™! is n(n — 1) x n(n — 1) while C is an
n x n(n — 1) rectangular matrix, and fe; := Y, frje,):

-1

B 1 C 0 -1 0
1 0 0 |7 B+cptc -cp)|
—tCc 0 D! 0 -DtC D

T R T, Ay

Equivalently, the Poisson bivector is just

§ 1 , o .
P =tr (V/\(Sp—i—2V/\FV> , V::Zer/EZVi’ei’—&—Zer/,
gl i

7 @

where the skew symmetric square matrix

- (" b (3.102) [Pn2

t _
o <B+CD C CD)
BCD
is the n? x n? block in the lower right corner of (kIOO).
We shall show that, by usipg repeatedly the equality K “(A_tv 4+ Ay) =
Ayvt + A_ following from (ET)B) and the fact that

Adpyg, e = E erPreglele’ = qu”ei] =
r,s

Ajef =" e =2¢, Aef=U e =0 (3.103)

S

i bY_def
(cf. (E%?))), the action of P (E.IU j can be actually simplified. We find that for
Jj# L,

. . _ A .
—tre;,'CDe, = % tre,"K* A_(x* + f)e/ =

™

ot eitte) (3.104)

m i a j
= ﬁtrei (Ath —‘rA,)e/



and, due to the skew symmetry of K* and t*,
tre; (B +CD tC)ejj =tre;i(—f + f Ko+ 1(A+ta + A_)tA_tKa)ejj -

=—fij — CHKY(A_x® +A+)] —fij + tre e e . (3.105)

Ty

2k‘
AdM

It follows further from (LTT%S) that

A+ ¢ 1 + q2p]Z e e_i%pje + ei%pﬂ ¢ X T ¢ .
1Y =10 q2pﬂ = e e Y zcot(E pje)e; forj#L.
(3.106)

On the other hand, as Ad;llcu = Ad,,C12, we conclude that

-1
’I"%Q ajay = ('C%CHQ) aiay = (AdaltlAdal 012) a1y = (Adalaz'f'lz) a1y = a1ag 112 -

A ] (3.107)
Combining these results and using V/ dal, = i6%af, (cf. Eq(bg?*a’)) we finally
obtain the PB on Mg*:

{pjapi} =0 ) {a apZ} - Zaj 6; )

s ™
{(117(12} = Tlg(p) — 77"12 a] ag = 7"12(}7) ay gy — — a1 azr12 . (3108)
k k

rstandard
Here the (standard) constant classical r-matrix (&3.5 ) Which corresponds to the
operator t acting as

tef=0, vel=¢’,i<j, velf=—e i>j (3.109)

? ?

1
(cf. (E%O)) has the form

1, a>p
Py = —sd3 0, ep=4 0 , a=pf (3.110)
-1, a<p

while the matrix

riap) = Y (Fie®)eale)s iz cot (Trie) (e01(e)2)  (Fielw) = =frs(p))

i#t
cor (3.111)
(where fje(p) is given in (}37‘3’7)), with entries

@) = fﬂ( ) 87,04, — i% cot (Epje) 6,0%, for j# ¢ and j # '
¢ forj=¢ or 7=V
(3.112)
is the classical dynamical r-matrix solving the (modified) classical dynamical
YBE

[r12(p), 713(p)] + [r12(P), 23(P)] + [113(p), 723(P)] + Alt (dr(p)) =

7.{.2

-5 [C12,Cas] (3.113)

Alt (dr(p)) == —i Z

v CDYBE CYB
(cf. %76]) The difference between (krm) and the modified classical YBE (Eﬂ%
satisfied by 712 is in the term Alt (dr. containing derivatives in the dynamigcal
variables p; . It is easy to see that (B. apgl its dynamical counterpart (Eg [2)

guarantee the J ?;gobl 1dent1ty EO]i tﬁl?;e PB ( )

8pé J1723(p) — (€5)27m13(p) + (e2)3712(p) )

Comparlng , We see that % cot ( % Dj g) substitutes its un-
deformed (k — 0) limit, the dlagonal term reflects the gauge freedom in
choosing wg* M and the determinant condition. On the contrary, the

presence of the constant r-matrix term is purely a deformation phenomenon.



In order to ggove tl%at the constraint x is central on the hypersurface P =0,
chl—center

i.e. that Egs. (B. ake place, one first derives
j 1 j ¢ 1
{ag, ag, - a5, } = ijg(p) apag ... g, ... G, —
i
T T ¢ _j e 1
—iy Z cot(Epjg) agal, ap ...ab, ...an —
i
T ¢ j - 1
- ZGB‘” agal, ap ... ab, ...a;, . (3.114)
¢

The second and the third terms in (E%l%lzl) vanish when multiplied by e®n -1
and summed over repeated indices, due to

—

W ¢ .
. 7 n Vi 1 _ap..op...on
E cot(Epjg)aﬁawa%...aw B I

#i
71' . e .
= Z COt(Epje) ag al, Ay = Z cot(Epﬂ)a% D(a)d) =0 (3.115)
i 5
and
Z €8a, ag aiz ag, ... af;é . aél gL —
¢
= €pa, al, Ay* afy = €pa, al, D(a) 55" =0 (3.116)
¢
D AA
(cf. (%%8) - (kT?O)) Hence,
. 1 , .
{a},log D(a)} = D) {a}, D(a)} = ijg(p) aj . (3.117)

£
PB
On the other hand, the PB (ﬁ8) imply
{D(a),pe} =iD(a) = {D(a),pje}=0 = {x,pje} =0, (3.118)
as well as

{ad, U(p)} = M&pe}%(p) Zi@(p) al, . (3.119)

[Phigen

U
I particular, the calculation of the PB (Hw) for U(p) = log ®(p), see (3.86),
(B.87), gives the same result as (3.117),

{al, log®(p)} = fu(p) <5Z pm) al, =Y fielp)al, . (3.120)

i<t J L#£]

D 11
As x = Llog gé;)) , it follows from (E._ﬁ?) and (%120) that

{x,al}=0 = {g((g,ag}o. (3.121)

. . . avar
The first of these equations together Wl‘E}:}l,the last one in (ETTB) confirm the
chl—center

centrality of the constraint y for P = 0 (3.92).

The passage to the (n-+2)(n—1)-dimensional (unextended) plase space Mg
is straightforward; using (1'3791)7 we see that of the three PB (3.108) only the
second one is changing and, as

, o 1 i
{a ,P}=ial,, {6 pe} = - {log D(a),p¢} = - (3.122)

(cf. (Eéf%lé)), it follows that

oo =i (8- 2)ah = (@hpindp = {ohopin) =i60] ~ 8},
(3.123)

pavar

aUp



On the other hand, D(a) and p;, have a vanishing Dirac bracket:

=0.
(3.124)

From now on we shall assume that all the brackets are the Dirac ones, skipping
the subscript D.

3| -

{D(a);peyp = {D(a),pe} +i{D(a), PY{x,pe} = iD(a) +i.in D(a) .

We now p aoi%(%%crlt Yo computing the PB of the monodromy matrix M =
a~'M,a, cf. (E}.ZU, and its Gauss components M .

Remark 3.6 As we shall see, in the quantized theory p;;+1 become opera-
tors whose eigenvalues label the representations of the current algebra, while
the entries of the quantum monodromy matrix M are functions of the U,sf(n)
generators which commute with the currents. We should therefore expect, in
particular, that in the classical case M Poisson commutes with p;; and hence,
with the diagonal monodromy M, . Another implication of this fact would be
that the PB of M with the zero modes, as well as the PB between the ma-
trix elements of M itself, do not contain the dynamical r-matrix. All this is
confirmed by the results of the explicit calculations carried below.

PBapD AWn1
It follows from (ﬁ%?,) and (b%llﬁ) that

{al,pecs1} =i(hea)), < {p1,a2} =—iorzas (3.125)

( 2.5 h{hgg is the diagonal part of the polarized Casimir operator C1s, see

8—1}_ ma
(&3.66 Fand hence,

2w
{Mphag} = ?0'12 Mpl a9 ({MphMpg} = 0) . (3126)
PB Mpa0
From (b“%S) and (%6) one gets
{My, a2} = {a] ' Mpia1,a2} =
= —al_l{al, ag}al_lMpl a; + al_l{]\/[pl, as}ay + al_lMpl{al, as} =

T
=7 as(rioMy — Miria) +

_ 2T
+ay  (Mpim12(p) — r12(p) Mp1 + & o12Mp1) aras . (3.127)

dyn-r-matr
The classical dynamical r-matrix r12(p) (b [2) obeys the relation

™

(1— Ade1) T‘1Q(p) = A (I—F Adel) (012 — 0'12) s (3128)

AdMe
cf. (bTOG) (only the off-diagonal part of ria2(p) survives after applying I —
Adyy,, ), which can be rewritten as

2w s
Mplrlg(p) — le(p)Mpl + ? 0'12Mp1 = E (MplCu + C12Mp1) . (3129)

(the n? x n? matrices M, and o2 are diagonal and hence, commute with each
other). We have, therefore,

e ™ _
{My, a2} = % as(rioMy — Mirio) + 70 Y( M,y C1a + CraM,yy) aras =

e T —
= E CLQ(’I"lng — M17‘12) + - CLl 1(Mp1a1a2 012 + aia9 012 al lMplal) = (3130)

k

e s ™ _
=7 az(rigMy — Miryz) + T az(M,Chz + C12My) = ¥ as(riyMy — Myri,)
. ) o CYBE
where r{5; = rio & Cho are the r-matrices satisfying the CYBE (b.ZIS). The ma-
trix elements of the monodromy M Poisson commute with those of the diagonal
one M, :

{Mp1, Mo} = {Mp1, a5 Mz az} =

2T
= ? Qaq I(Mpg J12 Mpl — 012 Mpl MpQ) ag = 0 (3131)



Mpa0Q M BMM
(we have used (%6)) Finally, from (bgf%O) and (H) we obtain the PB of

two monodromy matrices M:

{My, My} = {Mq,a; ' My az} =
= aglMp2{Mlv ag} — agl{M1,az}a§1Mp2 ag =
_ _ ™ _
= M2 5] I{ML 012} — Qo I{Ml,ag}Mg = E [MQ ,TEMl — M1T12] =

T

k (M1T1_2 M2 + MQ ’I“IBMl — MlMg T12 — 7“12M1M2) . (3132)

As already mentioned (at the end of STfs}tioQ_ 2y a£basic property of the PB

listed above is their Poisson-Lie symmetry [70, ) with respect to constant
right shifts of a,

a —alT, M - T'MT (Teq), (3.133)

provided that the PB of the t%%ormation group (are non-trivial and) are

given by the Sklyanin bracket (2.116) {T1,Th} = I [r12, T1T>] (assuming that

{a1,To} = 0 = {M;,T>}). It follows from (8. f,the diagonal monodromy

matrix M, = aMa~" is invariant with respect to (g"FZSB%, cf. Remark 3.6. The
L symmetry of the chiral classical WZNW model, leading to ¢ gntym group
1] symmetry of the quantized theory, has been first explored in [16, 128].

matrix Af = M, M~" in a systematic way, we can use the fact that, by (
and (2.96),

To derive the PB of the Gauss components M4 from those of the monodEd%ﬁy

1
2
and hence, for any (matrix) function F' on the phase space,

(Ky + D) SMM ™' =M, M;! (3.134)

1
{My1,Fp} = 5((KM1+1){M1,F2})M_1 . (3.135)
The corresponding PB for M_ can be now found from

{M_1,F} = My ({My1, By} — {My,F,} M) . (3.136)

1 M->M M PBMM KofM
Combining (El.l IeZSS) and (bl3%$ with (b.el n30) or (bﬁZ) and using (b%%), from
which it follows that
1 _
5 (K]y[l + 1) (7‘15 - AdM1T12) = T;rz (3137)
we get, respectively,
s m
{Mil,ag} = Eag TliQ Mil 5 {Mil’MQ} = E [MQ,TE}Mil . (3138)

1 M->M
As M Poisson commutes with py , (%l.ll IeSSS), (bl3%% imply the same for M:

{My,pe} ={M,ps} =0. (3.139)
Note that the PB of My displayrql%ls)ove are simpler than the analogous brack-

ets for M . Applying once more (3:135), we can obtain the PB among the Gauss
components themselves. For example,

(M1, Myz} = 5((Kaps + 0 {M, Moo} My =

= — o (K + 1) (i — Adag 1) ) My Mo My =

— f% (K + 1) (rfy, — Adpg,ryy — 2C12) ) My My g =

_ % (M1 Mo,y = %[M+1M+2,T12]. (3.140)
To evaluate (K1 + 1) Ch2 in (M.mfr ?Pirve have used (E%%’ from which it follows

that

(K + 1) Crg = Adpyy, (11 + 1) Ad&lﬂ Cr2 =
= Ad]w+1 (7"1 + f) AdAI+2 012 = M+1M+2 T‘B M;;M;ll . (3141)

PLleft

KM+1

= H

<]
\4 =
= ®
g 7]
8

KofM+1

=
E
Lo}

=

=
g

=]

o



Here is the complete list of PB among My :

{My1, Myo} = [MilMﬂ,ﬁz] , AMy, Moo} = [MilM:FQarm] .
(3.142)

3.6 PB for the Bloch waves

The requirement that the covariant group valued chiral field g(z) (E%) is uni-
modular implies that the determinants of the zero mode’s matrix (af,) and of
the Bloch waves (u]A (x)) have inverse values (after identifying p and p, cf. Re-
mark 3.1). We shall denote the determinan of the extended Bloch wave matrix
by D(x) := detu(z) so that the analog of (8.:68) holds,

uﬁl (ac)ujA;z (z).. .uﬁ:‘ (z) gVIz+dn = D(x) Az An o

~ 1

D(z) = —€a,4,. Anuﬁl (x)uﬁf (x).. u]A () ghtdz—in  (3.143)
A1 A A

Here again €4,4,..4,, =€ n is the fully antisymmetric Levi-Civita tensor

of rank n , for which
EyAy...A, €D A = (n = 1)165 (3.144)

In the extended Bloch waves’ phase space D(m) is mecessaril Og:e—dependent; in-
deed, we set, in complete analogy with the zero mode case (%

)

M, = u(—7) " u(r) = ZQZT’Seg , P:= Zps #0 = detM,= P
s=1 s=1

(3.145)
and hence, D(7) = D(—7) e’ P where D(z) is an abelian group valued field.
To study i gependence we take the derivative in x o tfg h sides of the second
equation ( . . Using th@ o gLSSlcal Z XSl uation” written in terms of

u(z) , the first equation in ( , we obtaln
d‘iD() ;1 M., LEIUP u ul t
—Fuj1 ]B2 %...uﬁ +- +u A"’. jgn ﬁ } girdzdn —
- 7% il e As...A, (i) D(@)eP A2 An 4 jp2 D(w)ehBrdn 4oy
it Dla)et APy = 1 LDy 4+ i) =
= L (j@)D) = —+ J@) D), ) =trjn) . (3.146)

We shall parametrize D(x), setting accordingly

~ ~ i J ;
D = —%t(x) — ; T —irx .
(x) =De ®"%) t(x) =Jox+1 E e , (3.147)
r#0
so that
. 4 . dx
tl — — - —rT = re ,
(z) = J(x) TEEZ Jre , J » J(z)e -
t(r) =t(-m)+2ndy = Jo=-P. (3.148)

Thus, the extension amounts to adding the modes of b(x) which form a denu-
merable (countably infinite) set of degrees of freedom. Denoting

X = %log (DD,(p)) , (3.149)

the reduction from the extended Bloch waves’ phase space to the unextended
one (in which u(z) has inverse determinant D~! = D,(p) !) is performed,
accordingly, by imposing the infinite set of constraints

Y~0xJ,, re’. (3.150)

tildeDabel



Writing u(z) as a multiple of an (unimodular) element ug(x) € SU(n),
w(z) = ug(z) D(z)w (3.151) [uut
and denoting the corresponding (Lie algebra valued) left invariant 1-forms by
U(z) := —iu~"(x) du(z), Uo(z) := —iug () Sug (), (3.152) |LL1

tildeDabel
we obtain from bTE)l and (&31 17) the following expressions for U(z) and its
derivative U’(x) :

Ula) = Uo(m)—iég((;)) , 55((;)) D

(1), U'(e)=U'() - 0J(x)

(3.153)

In terms of Up(x bTSQ , the symplectic form for the Bloch waves Qp = Q+w,
(B:6) becomes

Qg (uo, 72) = tr <4’<7rr /” dz U (2)Up(z) — % Up(—n) 5;5) +we(p), (3.154)

—T

and the extended symplectic form given by

QF (u, Mp) = tr (f /Tr dz U (2)U(z) — %U(—W) 5p> +wi¥(p)  (3.155)

T J_xn

97
reduces again (as it happens in the zero modes case, cf. (EQBU)) to the sum of
ki 15%

B and a part representing the (second class) constraints:

. [ee] 5 _7«5 i
Q% (u, M) = Qp(ug, 7*) — i 6P OX + é Z % : (3.156)

r=1
OPchi
Deriving (é;f:j?), we have assumed  that wexl(gg iven by ( E%%{% is related to
wq(p) by (£3.8I ] and have used &; IZIQ1 and , the latter implying, in par-
ticular,
/ drzdJ(z)dJy == / drze "6, 0P =
-7 r0 YT
—1)r
=-2mi y (=1) 6J,. 6P = =27 0t(—7) 5P . (3.157)
r#0 r
d the PB for the Bloch waves u(zx), we need to invert the symplectic
form . To this end, we shall introduce loop group (periodic) variables

;P

Uz) =u(z)e '*" | (x4 2m) = L(x) (3.158) |1-u

(the exponential factor compensating the non-trivial diagonal monodromy M, =
@*” of u(x)), in terms of which the left invariant, matrix valued Bloch waves’
1-forms are expressed as

, , 5
iU(z) = u 2) dulz) = e k=01 (2) 50(x) e k™ +ifx. (3.159) [u-1
The mode expansion of the periodic matrix valued 1-forms

n

—ik 07! = Epem Em= Y Emie) (3.160)

= jb=1

allows to write the extended symplectic form simply as

- % > ope (B0)i+ 5 z Z Z pﬂ Eom)iEm)) . (3.161)



y AWni OLinThet
(Note that |22 | < 1 for p € Ay, cf. (b.6n5).) To derive (EZ 161 f we deduce from

k
5(07160) = —(¢=150)? that
- 1 - _ - 1 - =
5:% - % Z Sn—mSm = 5:0 = % Z SomSm (3162)
and use _ s _
p, ejz] = pjs ejl , ke ejz — i ejZ etk (3.163)

as well as the relations

=Y (—m)50(—r) — /_W de

1 r T dx 1 _ i:
el @at) = [ e @) = 15

(3.164)

OLinThet
The form Qex(u M,) (&3 I61) can be readily inverted in terms of the vector
fields (V™) 5 dual to the 1-forms (Z,,)}, 6pe, respectively, to obtain the
corresponding P01sson bivector:

= ’“Z (Vo) AVOE + (3.165)

Zfﬂ
ey

m#0 £

AV +ZZm+M A (V™

mj#EL

-1
From Eq.(E.T59) we obtain the contractions with du(x):

(Vm)f du(z) = L u(x) eje e~ im0z ) 5%)[ du(z) = %mu(m)eg . (3.166)
This gives (trivially) {p;, p¢} = 0 and
, 2m
{05 (@), pe} =i (@) = {(Mp)i, uj ()} = 5=t () (M) 0y -
(3.167)

The PB of two Bloch wave fields, on the other hand, is quadratic,

{wi (1), ua(2)} = P (u(z1), u(w2)) = —wi(@1)uz(w2) Y fe(p)(e/
Jj#t

z(m+ = £ )w12

71' .
+ur(@n)uz(z2) | (i) > (ef)i(er): + Z M- T (e )1(e))a
¢ kidimez ™
= %ul(xl)uz(xg) e(z12) Z (e + Z 5% Z12) ) (ejé)2 _
¢ A

- U1($1)U2(9C2) 7‘12(10) .

dynr
Here the classical dynamical r-matrix r12(p) coincides with (EHI), and the
discontinuous functions e(x) and e,(x) (it is appropriate to consider them as
distributions) are given by the series

1 eimr o 2 N sinmx x
_1 z_2 z 3.169
£(®) i m%:o m + T mZ::l m + '’ ( )
1 ez(m+z)x -1
(1) = — AR 3.170
s =g NI e .170)

respectively. The first one is just a twisted periodic generalization of the sign
function sgn(x),

e(x+27N) = e(0)=0,

e(x) = sgn(x)

e(x)+2N (NeZ),

for —27<ux<2m, (3.171)

intermed

basic-on-v

(ef")2 +

(3.168)



and its derivative is twice the periodic d-function

1 imr

Oper(@) = o D et =3 "5(z +2mm) . (3.172)
epsz

The properties of the second one, €, (x) defined by (B [70), follow from the Euler

formula® for cot(nz) yielding (for z € R, 2 ¢ Z)

N i(m+z)x

1 (
lim — m;N emﬁ = cot(mz) +ic.(x), e(0)=0.  (3.173)

The derivative of ,(z) in z is proportional to a twisted version of the periodic
d-function,

10
2 Oz
which implies that, for —2m <z < 27, e.(z) =59n(z) = £(x). One concludes
that for —2m < 212 < 27 the two terms in (ETGB% containing ¢(z) and e,(x)
combine to produce the sign function times the permutation matrix Po =

Yiseles

() = € Gper () (3.174)

™
{ur(z1) , uz(w2)} = ur(21)ua(w2) (E sgn(r12) P2 — r12(p) )
for —2m<wio <2m. (3.175)

BPB
By the twisted periodicity of u(z) and with the help of (3. eX)7 one can recon-
struct the PB {ui(x1), uza(x2)} for general 1 and x5 from the one in which
the values of both arguments are restricted to intervals of length 2m (as e.g. in

(B. . On the other hand, using the twisted periodicity of e(z) (3. and
the tw1sted periodicity property

ei(m+z)(x+27r) omin ei(m-{-z)x
—_— =7 _ fi VA 3.176
P ey S (e sgz).

one can show that the relation

{ui(z1 + 2m) , uz(w2)} = {(u(z1)Mp)1, ua(z2)} (3.177)

PB PB
holds, which provides a consistency check for (E%.I%X?) and (E%l.ll G8).

Proceeding to the Dirac brackets we first note that, as it follows from (3.156),
the infinite matrix of PB between the independent constraints

- 1 ~
@={P, ¥, J, 140} (P=—Jo, x=-log(DD,(1))  (3.178)
consists of 2 x 2 non-degenerate (canonical) blocks

0 {Px}
{x.pp 0
(et =1 0 0 | BT
(Jrdi} 0

Hence, the Dirac bracket of any two phase variables b(x1), ¢(x2) from the Bloch
waves sector is

{b(z1), c(x2)}p = {b(z1), c(22)} +
+{P, X} ({b(z1), P}{X, c(w2)} — {b(x1), X} {P,c(x2)}) + (3.180)

A3 (e o} (b)), S (T (@)} = {b(21), =} { s ela2)})

r=1

epsz-cot BL
8See e.g. 261 An integrated version of (ES I73) appeared in h@}, we thank L. Fehér for
indicating this reference to us.

dtwisted

tw-per



i.e., to compute it we need to find the B}?oili,rf(} , {Jr, J_} as well as those of
b(x1) and c¢(x2) with the constgi,ic%%s (B. .

As it follows directly from (3.156), the Hamiltonian vector field correspond-
ing to J.,r #01is Xy, = —ikmﬂ% and that for P = —Jy is Xp = —i%,
hence

{J, Xy =160 ({P,X}=—1), {Jy, Js} = —iknr 6,140 (3.181)

and

(P} =i, {J,J ) l=——1 r=12.... (3.182) [imvjj1]

" knr

PBex
The PB of P with the basic variables follow immediately from (E% I[67):
{P, u(z)} = —iu(x), {P, pe} =0. (3.183) |PB-P

The PB of the modes J,. of the abelian current J(x) an be computed, by taking

the trace, from those for i(z) = ik o (x)u=t(z) (cf. (B-5)) which follow, in turn,
from those for u(zx), ( :

{j1(z1),u2(z2)} = 2mi Pig ua(x2) Sper(z12) , {j(z1),pe} =0. (3.184)

(Due to the periodicity of the current, j(z + 27) = j(x), the first PB including
the periodic J-function (b T79) s valid for arbitrary real 1, z5.) Taking the trace

in the first space and using triPig = 3, ; 6§(eij)2 = 1, , we obtain

{J(z1),u(x2)} = 2miu(x2) dper(z12) , {J(x),pe} =0 (3.185)

. JrDabel
or, in terms of modes (3. ,

{Jp,u(z)} = ie™u(x) , {Jr,pe} =0. (3.186)

hitild
Wgc}f;llnally note that the only non-trivial PB of y (C. 110) with the variables in

(bTSG) is tg%%%lle W(lgklllg’z % Jarticular, X Poisson commutes with the differences

Z;jg. Eqgs. | ), ( implying a% u(z) = 4 u(z)) and the equality p, =
7 (P =325 1 pje) give

(Fou@)} = (L PYE ) = —uw) . () =~ {0 P) =
(3.187)

Hence, the terms that have to be added to {u1(z1), u2(z2)} to obtain the cor-
responding Dirac bracket (B.180) are

{P,x} ! ({ur(21), PY{x ua(22)} — {wi(z1), X} {P,ua(22)}) =

= —% u (z1) up(z2) | (3.188)

D AT I} ua(n), T ua(@2)} = {un (1), T} { U ua(@2)}) =

= kin M Ul(xl) u2(x2) = —% Z Sin:rm u1($1)UQ($2) .
r=1 r=1

uPBsgn [Pchitterm
Combining (E%l 75) and (&3.[88 , we obtain, for —27 < 12 < 27

{un (1) un(w2)} o = {un (1), ua(22)} = s (1) wa(2) sgn(an) =

T

= w1 (w1) uz(w2) (E sgn(zi2) Cia — r12(p)) (3.189)
Cn-sigma

v%here Cio = Pig — %1’12, see (3. and we have made use of the expansion

(B%GQ) for the twisted periodic e(z) as well of (E.Sl 715 The Dirac bracket of
uf(x) with py is

{ut(@), petp = {uf (@), pe} + i {ut(x), PHX. pe} = iul(z) (60 — %) (3.190)



implying

{u;;(x), pee1}p =i (u(z) hl)}q ) {ui(z), Mp2}p = —2% uy(x)Mpa 0132 .

. (3.191)
D Mp-P
Due to the twisted periodicity of u(z), (%) and (E% P91) allow to calculate
{u1(z1), uz(z2)}p for arbitrary values of z; and zo.

The Dirac PB involvine the su(n) current j(z) can be obtained ejther di-
rectly from (B.189) and (B.5) or by applying the Dirac reduction to (% [84). One
gets

{71(z1),u2(z2)}p = 2mi Cra ua(x2) Oper(r12) <
{Ga(z1),u(z2)}p = 27rz'Tf1 u(x2) Oper(x12) , O (3.192)
{m-u(@)}p = (z)e™”

) itu
for j(z) =j%z) Ta (= ja(z)t*) = ijn T, e ime

and further (from now on we shall skip the subscript b for the Dirac brackets),

{j1(21), ja(2)} = 2mi [Cha, j2(22)] Oper (212) + 27k C12 0y, (212) &
{ja(xl)vjb(xZ)} =27 fabch(xQ) 5per(x12) + 27k Nadb 5;767“(1.12) , Or
(e, 5y = e —ikmn® o (%) =dif*0 1) . (3.193)

KacM1

Eq(b“[%’) is the classical (PB) counterpart of the defining relations of the affine
(current) algebra G at level k while (Cl.lr ), whose form could be actually antici-
pated from the fact that j(z) is the Noether current generating left translations,
shows that w(z) is a primary field corresponding to the fundamental represen-
tation of G = su(n) . .

The PB of the chiral component of the Sugawara stress energy tensor (T?hl ,
T(x) = K—lkc‘%jg(x) = 5= 1"ja(x)ju(x) are easy to compute from those of the
curre%%ézm). Making use of the total antisymmetry of the structure constants
Save ( ), we obtain

{Ja(@1), trj?(@2)} = 0" {Gal@1), Jo(w2)je(w2)} = 47k ja(22) 6}, (212) ,  OF

(Gt e Y 3% dore} = —2ikm g, (3.194)
¢

and hence,
{j(@1), T(22)} = 27 j(22) 0, (212) - (3.195)

£1 1Kz
On the other hand, the current-field PB (E%Q‘Z), together with (E“S), imply

211

{T(x1)7 U(ﬂig)} = ? j($1) U(JZQ) 5;067“(3312) =27 u/(l‘g) 6per (1‘12) . (3196)

Introducing the mode expansion T(z) =Y, Lme ™ one derives from Egs.
(8:195) and (8. , respectively, the following PB characterizing the chiral
stress energy tensor modes as generators of local diffeomorphisms:

U@ La} = - (G@e™) & (o = —im i,

{u(z),L,} = ™ Z—z(w) . (3.197)
Eq.(B.IIQS) also implies
{T (1), T(22)} = 2% tr (j(21)5(22)) Oper (12) - (3.198)

1K DPBdiffer?2
Clearly, Eqgs. (&%.5% and (&3 9111) frlilply that the current j(z) (and hence, the
stress energy tensor T'(x)) commute with py, i.e.

{jzmpf} =0 3 {Lnapé} =0. (3199)



We shall finalize this sec iogn by showing how the basic properties of a classi-
cal dynamical r-matrix (see [76]) arise as consistency conditions for the Poissq
structure of the Bloch waves, i.e. how the mere existence of (ELSI 89) and (E‘Fﬁ'ﬂ%
restricts r12(p) . The most important a them, that r12(p) solves the clas-
sical dynamical Yang-Baxter equation (r@{f%), follows from the Jacobi identity
for the PB (E I89). Indeed, performing the calculation, one gets the triple
tensor product wy(x1) us(z2) us(xs) multiplied from the right by an expression
containing three different kinds of commutators, of C-C', C-r, and -1 ERe,
respectively. The first group of termgcgeroduces the right-hand side of (krr:s),
Z—z [C12,Ca3] . To see this, one uses (3. and the following quadratic identity
satisfied by the sign function, invariant with respect to point permutations:

sgn (z13) sgn (x32) + sgn (z21) sgn (x13) + sgn (zs2) sgn (x21) = —1. (3.200)

The second group containing mixed commutators isa%ggu%lgy zero, due to the
invariance of Cio with respect to the adG action (%ﬁ%ﬂplying, for exam-
ple, [r13(p) + 7"23(]?),012] = 0. The third group (of r-r terms) multiplying
uy(x1) ug(z2) us Ca{)x{Bgives rise to the left hand side of the modified classical
dynamical YBE (|

The skew- eft% ) implies "unitarity”, r12(p) + m21(p) = 0.
Finally, Egs. ( %ﬁ( and the Jacobi identity involving uq (1), uz(x2)
and py (or peey1, respectively) impose the zero weight condition on r12(p),

[(e)1 + (ef)2, T12(p)] =0, (=1,....n
= [ +he, r2(p)) =0,  L=1,...,n—1.  (3.201)

One can explicitly check that r12(p) given by ( bYTIl %eed satisfies
M he three conditions specified above. Note that our classwal dynamical YBE
(% [13) is written in a form that keeps t%ai%l-{lf (in the term Alt (dr(p))) of the
extension.of the phase space. Also, r12(p) (B.111) only depends on the differences
pje (cf. (B.87)), but its diagonal part does not belong to su(n) A su(n) .

The first expression for the dyngmical r-matrj Pappeaured already in the early
studies of the chiral WZNW model [24] (see also %6} for further generalization in
a direction different from ours). Classification theorems for classical dynamical
r-matrices in various cases (for Kac-Moody algebras, simple Lie algebras etc.
as well such with a spectral parameter) can be found in [76].

3.7 PB for the chiral field g(z). Recovering the 2D field

We have described so far (in full details, for G = SU(n)) the two basic canonical

versions of the chiral WZNW model, the first one described in terms of the

BIOClE yave field u(x) with diagonal monodromy matrix M, , whose quadratic
uullr

PB (B.1I89) involve the classical dynamical r-matrix r12(p) and the second, in

terms of chiral field g(z) with general (G-valued) monodromy. matrix M. These

two pictures are intertwined by the zero modes a obeying &3 1)

3.7.1 The Poisson brackets of the chiral field g(z)

We shall now use the PB for the zero modes a, and the Bloch waves u(x);4
to find the PB for the chiral field g(z)2 (ﬁ%) As explained in Section 3.1,
the two constituents of g(z)2 can be treated as independent (and therefore,
Poisson commuting), only at the end we should identify the variables p (for the
Bloch waves) and p (for the zero modes) and hence, the corresponding diagonal
monodromies. This prescription is equivalent to introducing an additional set

of first class constraints:

Cpi=p—p~0 = M, (=u(x)  ulz+2r)) ~M,. (3.202)



So the PB of the covarjgnt group valued field g(z) = u(z)a are obtained by
combining (E;.ISQ) and (B.108):

{91(21), g2(22)} = ({ua(@1), uz(22) araz + ur(z1)ua(z2){a1, az}) e ~o =

= ul(xl)uz(xz) ((% Cia sgn(xlg) - 7”12(10)) ayag + 7”12(10) ayaz — %alaz 7”12) =

9
= E
- %

(l’l)gg(xg) (7’;2 0(.%12) + TE 9(5621)) R =21 < x99 < 27

. . stand-r-matr . . .
where r15 is given by (£3.I [0) and 0(z) is the Heaviside step function,

0,2<0 o
O(x) = { 1 250 ° 0(z) — 0(—=x) = sgn(z) . (3.204)
Identifying the dromyw}natrix M with that of the zero modes, one trivially

fg

0) and (3°138)

_ 7r
g2 () (ris My — Miry) , {Myq,g2(2)} = T g2(x) 1 My
(3.205)
b M
The compatibility of the PB (EEZOS) and (E}%ﬁ%) can be easily checked, e.g.

obtains, from (

{My,g2(2)} =

Ma

{91( 92(1‘2)} =% 91(331)92(332)7“1+2 for —2r<z12<0 =
{g1(z1 +27), g2(22)} = {91(21), g2(w2) } M1 + g1 (21){ M1, g2(w2) } =

T _
% g1(1) ga(2) (T12Ml Miry,) =

™ _
=-7 g1(x1 +27) ga(22) 715 for gi(z1+27) = g1(z1)M; . (3.206)

T
=% g1(z1) g2(z2) T My +

The current and hence, the stress energy tensor, Poisson commute with the zero
moﬁc%%f $0 that ]@gir PB with the chiral field g(z) are analogous to those given

in (8:192) and (3.197), respectively. We have, in particular,
- ) imx dg
(it 9(@)} =it'g(x) ™, {g(x),Ln} =e™ T @) (3.207)

3.7.2 Symmetries of the chiral PB

A guiding principle in quantization is to retain the invariance of the classical
system replacing, if needed, the classical notions of symmetry by appropriate
quantum analogs. The set of chiral PB is preserved by the following transfor-
mations (the first two of them are inherited from the corresponding properties
of the Bloch waves, while the third is shared with the zero modes):

(1) G-valued periodic left shifts

g(x) — h(x)g(z), h(z) e G, h(zx+2m)=h(x) (3.208)

are generated by the chiral current j(x) (cf. Section 2. 4) This transformation
does not affect the zero modes; accordingly, the PB of j(x vvlgl the left chiral
field g(z) is the same as its bracket with the Bloch wave, (b.l92

{j1(z1), g2(22)} = 27mi C12 g2(22) Oper(T12) - (3.209)

To prove that the PB (%Q)is also invariant with respect to (glftf}%) (the current
itself transforming as j(x) — h(z)j(z) h(z)~!), we use the fact that the tensor
product hq(z1)he(z2) commutes with C1o when multiplied with the periodic
delta function.

(2) Chiral conformal symmetry with respect to smooth monotonic coordinate
transformations of the type

r — f(z), f(x)>0 (flEm) =47, —wt<z<T). (3.210)

b chiralconf
Checking the invariance of Eq.(EPZOZ’») with respect to (b.le()i, one uses the
following obvious property of the step function under such mappings:

0(f(x1) — f(x2)) = 0(z12) . (3.211)

(21)g2(22) (Cr2 sgn(w12) — r12) = (3.203)

heavi

iTg

curg



Alternatiyely, using (B%O?), one can validate the infinitesimal conformal invari-
ance of (B. 03%2%8%1@%6(1 by the modes Ly, of the stress energy tensor. The
invariance of ( ) and (B.209) is equivalent to the following easily verifiable
relations:

{{ms Lo by dn} + g s Lo} = f Gy Lo}
{{im: L}, 9(x)} + (i {g(2), Ln}} = it*{g(x), Lp}e™ . (3.212)

This is the classical prerequisite of the invariance of the quantized chiral model
with respect to infinitesimal diffeomorphisms (implemented by the Virasoro
algebra).

(3) Poisson-Lie symmetry with respect to constant right shifts of the chiral
field g(x) . The left sector PB are invariant with respect to the transformations

gr(x) — gu(x)Tr, My — T;'M T, (TLeG), (3.213)

provided that

{911, T2} =0, {T11,T12} = [7’12 yTr1Tre] (3.214)
PBSk1 ) . R, F1, AS, G
cf. (2.116). It was proposed already in the early papers on the subject , 80,
16, 128] that the PL symmetry is to be replaced, in the quantized chiral WZNW
theory, by quantum group invariance of the corresponding exchange relations.

3.7.3 The classical right movers’ sector; the ”bar” variables

As already noted in Section 2.3, transferring the PB structure from the left to

the right movers’ Sector (Written i ferms of chiral fields g; and ggr such that

gr(z™ r%_1)) amounts to a mere change of sign, see

b?él and m b 85 The extreme simplicity of this ”rule of thumb”

makes it quite suitable for practlcal applications concerning the classical model.

This will be exemplified in the following section 3.7.4 where the locality and
monodromy invariance of the 2D field will be examined.

It is easy to foresee, however, that the pair of chiral variables g, , gg will not
be convenient in the quantum case when the interpretation of the matrix inverse
would lead to considerable difficulties. In addition, being formally equivalent to
replacing the lev e} k by its opposite —k, the thumb rule forces us to use ¢
rather than ¢ (3°14) as a classical deformatlon parameter for the right sector,
and this fact will persist in the quantum case as well. Both problems are trivially
overcome by just setting

§(@) = g5'(@) . g@+om) = Mg (M=Mg'), 3()=au() (3215

for z = 2t, # = 2~ so that now g5(z,%Z) = g2(v)g%(7). With the "bar”
variables the left and the right sector are put on equal footing; we shall also
have, eventually, the same deformation parameter ¢ for both sectors.

As the chiral Poisson brackets provide the basis for the canonical quantiza-
tion performed in the following Chapter 4, we shall collect below those already
obtained for the left sector and also derive the corres ondingi%%s foggtf%e right
sgetor in the bar variables by changing the sign in (8.203), (8.139), (8.108) and
(B°T30) and then substituting (§SZT5) We thus get

{91(@1), g2(@2)} = T 91(21) g2(w2) (Caz sgn(w1z) — r12) =

™ _
=7 91(21) g2(w2) (rp 0(z12) + 15 0(x21)) . =27 < w12 < 27,

{91(21),G2(Z2)} = % (r12 — Ci2 sgn(T12)) §1(Z1) G2(T2) =

= % (T1_2 9(:2‘12) + TB 9(@’21)) gl(fl)g2(f2) s =2 < Ty < 27 ; (3216)



{ur(@1), ua(z2) } = ur(21) uz(x2) (% Ciz2 sgn(z12) — ri2(p)) =
= —uy(x1) ug(w2) (rip(p) O(x12) +175(p) O(221)) ,  —2m < w19 < 27,

{u1(Z1), 02(Z2)} = (F12(p) — %012 sgn(T12)) w1 (T1) u2(Z2) =
= (F12(P) 0(T12) + T15(D) 0(Ta1)) U1 (1) U2 (T2) ,  —27 < Ty < 27 (3.217)

(fOI‘ 7“12 =rig+Cha, TliQ(p) = 7“12(])) + % C12 and fliz(ﬁ) = ’fm(ﬁ) + % C5 with
D= pr), as well as

s s
{a17a2} = 7’12(17) ai az — E a1 azriz2 = 7’%)(10) ap az — E a1 a2 T%) s
™ ™
{C_Ll7 (_12} = E T12 C_Ll (_12 — C_Ll 5,2 7:12(1_)) = E T§§)51 (_12 — C_Ll C_LQ fgét) (Z_)) (3218)
DPBdiffer2 [PBapD
for @ = a' . The PB involving p follow from (&3.I91(H and (E{f‘%&), so we have

@} =i G- )l {dopd =6 - 2)al
{@) (%), pe} =i (6] — %)ﬂi\(a’?) ) (@S, pe} =i (60— %) as . (3.219)

bar

The PB of the general monodromy matrices (vecall that M = My' (8215)) are

T _

{My, g2(2)} = *QZ(x)(TEMl — Miry,)

{My,g2(2)} = — (T12M1 Myrih) ga(7) (3.220)
T _ — _

{Mi, a2} = A GQ(TEM1 — Myri,) , {Ml,az} =7 (7"12M1 M17"1+2) az,

of. (B5508), (B°130), (B1%2), and

{My, M2} =

el

(erl_2 My + My ri, My — My My s — 1My M)

{Ml,MQ} = — (M1M2 T12 + ’I"12M1M2 — M1 T12M2 MQ 7’1_2 Ml) . (3221)

Finally, the PB of the Gauss components of the monodromy matrices (such that
M =M M-" and M = M_'M,, My = Mp}) with the chiral fields or zero
modes read

™ _
{Mi1,92(2)} = %92(@7”#2 Myy, {Mi1,52(2)} =— Mil 115 92(Z)

— _ T _
{My1,a2} = a2 ’I“12 My, {Mij,as} = % My, 7“12 as (3.222)

f (ngO%), (%EISS)) It is remarkable that the PB of My with themselves are
identical to those of My (bP‘M'E)
{My1, Myo} = [MilMi%TlQ] o AMiq, Myo} = [MﬂM:Fzﬂ“f:g] ,

{Myi1, Mo} = [MilMizﬂ“lﬂ , AMy, Mo} =

SEAE

[May Meo,ri] . (3.223)

|

3.7.4 Back to the 2D WZNW model

To complete the ”classical part” of this review, we shall s#l,‘(])w that expressing
the 2D field g(z",27) in terms of its chiral components (I.1) is selfconsistent.
This is not obvious since we have allowed the left and right monodromy ma-
trices My, , Mg to be independent, cf. (2.84), whereas the single valuedness of
g(z® 2h) (strlct periodicity in the compact space variable z' or, equlvalenﬁly,
condition % for g(x*,27)) requires My, and Mg to be equal, see Eq.(IT.2).

The latter relation cannot be imposed ”in the strong sense” since the PB of left
and right chiral variables differ in sign, but it is perfectly sound as a constraint.
Indeed, to obtain the 2D field from its (independent) chiral components, one has



. ~ QXtP . . .
to project the phase space S, x Sg on S (b( I i, and this amounts to imposing
the (matrix valued) gauge condition

My ~ Mg , (3.224)

02al
cf. (b.Saiti. Now the fact that left and right PB only differ in si s exactly what
is needed for the constraints C := My — Mg to be first class %26]

{C1,Co} = {Mp1 — Mp1, M2 — M2} = {Mp1, Mpa} + {Mp1, Mp2} =~ 0 .
N (3.225)
The ”observable” ﬁelcg %{136+7$_) = gr(z) g (z7) (h) has to be gauge
(3-205)

invariant. Indeed, using and its right sector analog, we obtain

{C1,912 9pa} = {Mr1,912} 9o + 912 Gra {MR1, gr2} 99 =

s _ _ ™ _ _
= Eng(TEMLl — Mpir1,) 9ps — Eng(TEMRl — Mp1733) 9pa =

™ _ _
= 29215 C = Cirpy) gy ~ 0, (3.226)

hg 2D field is also local (already ”in the strong sense”) since, according to
(8:203), for —27 < a3, < 27 we have

+gr1(a7) gra(zy )931 (z1 )932 (z3) {gm1(=
)

{o1(2f,27), 92(a3, 25)} = {gra (), 91223 )} 9o (23) gy (7)) +
= %(5971 (12 )

— sgn (213)) g1 (27) gra(23

and sgn (z7,) = sgn (x7,) for 12 spacelike (i.e., 1, 27, > 0, see (bc?nie)vi.

Remark 3.7 The reason for Egs. (Elzc&%%sf (%7) to hold, i.e. the fact that
the left and right sector PB only differ in sign, presupposes the equality of the
classical constant r-matrices appearing in both. If we restrict ourselves to chiral
ﬁelds with diagonal monodromy matricesbo(%lfét I%emark 2.4 (ar%d hence, do not
introduce zero modes), we should replace (&TZZZE)—by the gonstraint M, ~ My, .
To ensure the locality of the 2D field u(z) @(Z) as in (3:227), we should choose
in this case equal classical dynamical r-matrices for the left and right sectors.
In the presence of the chiral zero modes, however, the dynamical r-matrices in
the two sectors can be given by different functi B of the respective arguments.
(This amounts to choosing different 5(p) in (3.87); we shall make use of the
quantum counterpart of this fact to impose, in Section 4.6.2 below, identical
exchange relations for the left and right zero mode operators.) What is needed,
on top of the mentioned equality of the left and right constant r-matrices, is to
choose identical dynamical r- %tt;llg grfor tagbBloch waves and zero modes of
same chirality (i.e., r12(p) in?@ZT?%iand (3:218) should be the same, as well
as 712(p)). This requirement stems from the decomposition (E?) of the chiral
fields into Bloch waves and zero modes, cf. Remark 3.1.

Assuming that the left and right sector constant r-matrices coincide, we can
also prove that the matrix elements of the 2D field g(z,z7) Poisso1E commute

with those of M EilM Ry > again "in the strong sense”. Indeed, using (3:205) and
its right sector counterpart, we obtain
{(MpL)1(Mpy)r, go(a®,27)} =
=— (M jlc) {(Mp )1, gra(z®)} (M ) (MR:I:)lgRZ(x ) —
— (ML) gra(a?t) gpa (e ){<MRi)1 , 9r2(27)} gpa(27) =
T, 1,
% (Mlec)l 9L2(CU+) 12 (Mpi)19p, »(@7) +
T _ 1,
+r (Mp)1ga(@®) ris (Mpy)igps(a™) = 0. (3.228)

m2d,
Clearly, the zero mode analog of (gEZZS% (w ich Wg shall write using the inverse
product (Mg )1(Mp )1) is also valid, cf. (3

{(Mpi)1(Mp)1, Q} =0,  Q:=agag" . (3.229)

) gr2(%3)} 951 (27) g (w3) =
Cra g (1) gy (23) ,  (3.227)



In the quantized theory, where the factors My of the monodromy matrix (%8)
(satisfying R-matrix quadratic equations) can be convenie Ly parametrized in
terms of the generators of the Hopf algebra Ugy(sf(n)) (seen%ESZ] and Section 4.3
below), the vanishing of the commutators of (Mpy)1(M;, )1 with g(z®,27)
and Q = a Lal_{l implies the ”gauge invariance” of the latter with respect to the
(inverse) coproduct action of the quantum group. In this sense the yantum
group symmetry remains “hidden” in the 2D WZNW theory, see e.g. 9].

4 Quantization

Quantization of a classical system involves two steps:

(i) a deformation of the algebra of dynamical variables such that the commutator
of any two of them, f and g, is given by a power series in the Planck constant
h with leading term proportional to their PB:

[f, 9 = in{f.g} + O (4.1)

(ii) constructing a state space, i.e. an inner product vector space which carries
a positive energy representation of the above quantum algebra.’

The first step is rather straightforward for a classical observable algebra of
conserved currents (like the chiral currents ji(z7) = j(x%) and jg(z™)) that
span a Lie algebra under Poisson brackets. It is more involved when dealing with
group-like objects like g(z,27), and especially with their gauge dependent
chiral components. We shall start with the quantization of the chiral current
algebra reviewing, in particular, the change in the level in the Sugawara formula
and then proceed to our main task, the R-matrix quantization of the group
valued chiral fields g(z) and of the zero modes in the case of G = SU(n) and
the quantum group symmetry of their exchange relations. The chiral state space
will be then constructed as a representation of the chiral fields’ algebra built
on a non-degenerate (cyclic) lowest energy vector, the vacuum |0), satisfying
Ly | 0) = 0. The inner product on such a space is defined by introducing a left

("bra”-) vacuum such that (0| Lo = 0. (We sxpect that the reader is familiar
with the basic notions of 2D CFT — see e.g. ) .

4.1 The chiral conformal current algebra

3 KacM1
The quantum counterpart of the classical current PB (b 93) are the standard

relations for the affine Kac-Moody (current) algebra G at level k:
s dn) = i G + k0™ G0 (4.2)

The Planck constant £ is hidden here in a rescaling of the current, j — hj and
c@ﬁzhe level, k — hk =: k, cf. Remark 4.1 below, so that the right-hand side of
(1.2) written in terms of the new variables ig,proportional to /.

The local diffeomorphism invariance (bﬁQ?) can also be extended to the
quantum theory:

[i(2), La] =i - (5(@)e™) . (4.3)
As (%&)ollmmplies
Ums Inl =miin = Lodp | 0) = jp (Lo —m) |0), (4.4)

it follows from the positive energy requirement that
e 10y =0 for m>0. (4.5)

Keeping with tradition in the quantum CFT, we shall introduce at this point
the analytic z-picture using the complex variables

zi=e® | Zi=e (4.6)

9 Any positive linear functional on a C*-algebra of norm 1 defines a state via the Gelfand-
Naimark-Segal copgtgpction. For a review and applications of the GNS construction to ax-
iomatic QFT, see % .

=
H

jLcomm

Ljvac

jonvac

zzbar



in which a chiral field ¢(z) of dimension A is substituted by a field ¢(z) such
that

plx) =22 (2) . (4.7)
Note that in Fuclidean space-time (defined as the set of real Wick-rotated points
(iz%, 2t) — (2%, 2') € R? C C?) the variables z and z are complex conjugate,

2 4izt > 29—zt

0 = 2z — e , Z — e (4.8)

20— —izd

and that the infinite future/past limits #° — oo and 2#° — —oo correspond to
|z| — oo and [2] — 0, regpectively.

The counterpart of (e&k@_ﬁ)r an arbitrary primary (with respect to the Vira-
soro algebra) chiral field ¢ of dimension A reads

Lo 6] = 2" (e + (04 1) A) 6(2) (19)
The deviation of A from its canonical (integer or half integer) value signals a
field strength renormalization.
We shall have, as a consequence of energy positivity, analyticity of the vac-
uum expansion in both z and Z; for example, for a primary chiral field it only
involves non-negative integer powers of z,

$(2) [0) = b_m-naz"]0). (4.10)
m=0

. hionvac | .
Calculating the norm square of (E.Hi; provides a power series convergent for
|z| < 1, by the following general argument. Conformal (M&bius) invariance
implies

L,|0)=0=(0| L, for n=0,+1. (4.11)

notion of z-picture conjugate of a complex ¢ L lcgimen!d g?o(é) ﬁ)sf dimension A
and the 2-point function (determined from (#.9) an (&I ),

0(2)" =220 (271 . (0167 (z1) d(=2) |0) = Ny 2352 (4.12)

bi
yield the following expression for the norm square of the vector (E 10 ;Yac
I o(2) [0)[1* = 2722 (0] ¢*(271) ¢(2) |0) = Ny (1 — [2*) 722 . (4.13)

gr the z-picture current (which, abusing notation, we again denote by j),
Eq.(#.3) takes the form

d

Lo j* ()] = — ("T15%2) () = dmz T AG)=1) . (414)

dz

Proceeding to the quan version of the Sugawara formula, we shall use the
following definition (cf. ]) for an infinite sum of normal products of current
modes,

oo oo oo oo
Y e =tr <Z+ > > J—tJn+t = Tab <Z+ > > 320 e
‘ (=1 t=n =1 (=—n w15)

where j,, := j2 T, . It has the virtue that, applied to a finite energy state, only a
finite number of terms survive. We shall prove (comparing thF resulting commu-
tator with the mode expansion of T'(x) in the PB relations (3:195)) that the sum

Xz

Eucl

phiLcomm

phionvac

Moebius

phistar

normphionvac

jzLcomm

npcm



cm
(% [5) is proportional to L, and will compute the proportionality coefficient:

oo o0

[]ﬁm tr Z : jfljnJrZ :} = Tbe <Z+ Z > []Zz ) jgljrcz+é] =
L

=1 {4=-—n

=kmj, <Z<6m€70 + Omtnte,0) + Z (Om—r,0 + 5m+n+z,o)> +

=1 l=—n

o0 o0
, b a4 dq q q .
+ine ™ (Zom_wm — i) D U tdoie — J_zjfn+n+z)> =

/=1 l=—n

e’} 0 o0 0
P <Z+ 3 )am <Z+ 5 )amw,()) \
=1 f=—00 =1 [{f=—0c0
0, m=0
—n—1 . .
imeft oy (SIS ) 30 draed s m>0 o
—n—1 . e
— ( ‘4:‘1 +Zlf_j‘ﬂ? ) 3 U Jpingel s m<0
ab

=2kmjl ., +im o i =2hmis ., . hi=k+gY. (4.16)

dff
(In the last equality we have used (a. ).) As an icipated. only finite sums
are involved at the final step of the computation (4.16). The quantum shift

of the level k to the height h affects the normalization of the WZNW stress
energy tensor so that, to co EIE v%jﬂth the standard commutation relations of
the Virasoro algebra (see e.g. ;68, 70]),

(Lo, Ln] = (M = 1) L + ~— m(m? = 1) 6msn.o » (4.17)

12
one should set
L= a0y )i = “gimg  (418)
= —1{r _ = — dim .
Y o i J—£ JIn+e & n

086
(cf. [I38] where one can find a list of the authors who have contributed to
deriving the correct result). The Sugawara formula (h—lS) and (H.S) imply

L,]0)=0 for n>-1. (4.19)

The local diffeomorphisms in z and z are generated by the mutually com-
muting modes L,, and L, of the left and right component of the stress energy
tensor

T(z)=)_ Zf% N OEDD ;n’_g . L, Ln]=0. (4.20)

m m

LR
We shall write the quantum analog of the 2D group valued field (h) as

9(2,2) = 9(2) §(2) = (92 (2) §8(2)) , (4.21)

iT
where g replaces g;il . Then the current-field PB in (%7507) yields the commu-
tation relation

Ums9(2,2)] = =2" 1" g(2,2) . (4.22)
hi L
Requiring that g(z, z) also satisfies (B9licf%mrmn =0 and Lg given by (&EIS),
L—ltr(l'%i' im) (4.23)
0 — h D) .70 m:1.77m‘7m .

z, T
is equivalent to imposing the Knizhnik-Zamolodchikov equation [T78, 249] in an
operator form,

Do 9(2,2) = = 23(2) 902 2): = ~T (34 () 902, 2) + (22 57, (2))

it ()= it @) = me (4.24)
m=0

m=0

Lonvac

Tz

LRq

LO



and fixes the conformal dimension A of g to

A= Galm) -1 (4.25)
2h 2nh
A similar equation involving the rig tocurrent dictates the same value for A.
er%ng m5) = n — = is the value (A. )213) of the quadratic Casimir operator
%.2 ) in the deﬁmng n-dimensional representation 7, of su(n Theseagvo
operator KZ equations are the quantum counterparts of the deﬁmtlons
of the classical chiral currents.

More generally, if ¢5(2) is a Q\—primary chiral field transforming under an IR
of weight A of the simple compact Lie algebra G, i.e. if

) (21) 0 (a2)] = ~ma () dn(z2)
[On(21) 138 (22)] = TA(t) — 62 (21) | (4.26)

212

then ¢4 (z) has conformal dimension

A(A) = CQQ(ZA) (4.27)

and satisfies the KZ equation

h d% ¢a(2) = =7a(Ta) (4304 (2) oa(2) + 0a(2) () (2)) - (4.28)

Here 74 (T;,) and 74 (t°) are dual bases in Egr Jfinite dimensional) representation
space of G of highest weight A and —— in ( ) is understood as the power series

% > o (z—z) for |z1] > |22| (therefore it is not strictly antisymmetric but

SoT, Kac98 h_z
satisfies Z + —ard* 6(212) 1122, 169]). The KZ equation (H.28), the operator
Ward identity (5%26) and Eq.(#.5) allow to write a system of partlal differential
equations for the vacuum expectation value

Wi = (0] ¢rw (21) - oaen (2n) |0) (4.29)

in its primitive domain of analyticity in which |z1| > |z2|--- > |2n]:

A A(J)) N0y (AW, A
z] o i 5 Wn =0
ha +Z > | W =0,

= Zij
= j=i+1
i=1,...,N, Cjy (A(Z),A(j)) =0 wp (To) @ Taoy (Th) - (4.30)

To summarize: the infinite chiral symmetry of the WZNW model, which
involves both a local chiral inge%al symmetry expressed by the current-field

commutation relations <Q1§1 ). G(m; ) and (infinitesimal) diffeomorphism invari-
nee %f LLimary fields (4.9), allows to compute the anomalous dimension A
?Eézzme primary field ¢, deriving on the way the operator KZ equation
(B28). This is a remarkable non-perturbative result and deserves recalling its
main ingredients.
(i) The requirement of infinite chiral invariance at the classical level led ) the
addition of the multivalued Wess-Zumino term to the classical action S[g] (g 3]
(ii) Demanding the path integral measure involving the factor €*5l9) to be single
valued yields the quantization of the coupling constant k (ultimately identified
with the affine Kac-Moody level). o
(iii) The quantum Sugawara formula (&1718)7 which gives rise to a (non-perturba-
tive) renormalization of k, relates the internal sym etry_with the conformal
properties. The non-integer anomalous dimension A?I?T)Wplies, in particu-
lar, the presence of a non-trivial monodromy in the chiral theory.
(iv) The non-perturbative character of the outcome is displayed by the fact
that the renormalized coupling constant h appears in the denominator of the
anomalous dimension A.
(v) The operator equation (| %FZS ) along with the Ward jdentity (E%%) allows to
write down the system of partial differential equatlow for the correlation
functions. The operator in the left hand side of ( has a nice geometric

interpretation as a flat connection (see e.g. 2]). Th E‘.ys&_emﬁdr&}ts %e%pmt
solution in terms of a multiple integral representatlon [78, 68, 264, 57, 243, 111].

KZL



4.2 The exchange algebra of the chiral field g(x)

The naive idea of just replacing PB by commutators fits the cases of free or Lie-
algebra valued fields but is no longer applicable to group-like quantities which
have quadratic PB relations. The simplest example is provided by the Weyl
form of the canonical CR involving the groups of unitary operators e’*? and
eiﬁz )

eiocp eiﬁz _ eihaﬁ eiﬁr eiocp ) (431)

We can recover the PB as a quasi-classical limit of the quantum exchange rela-
tions setting

. , 1 . , o

iap iz _ 7;  [ptap Bz iBx _iap

{e'P e'P"} %li%ih[e e = af e'Pr et . (4.32)
b

To quantize the classical chiral WZNW, BB relatigns G(E}.?ZO?)), we shall look

for quadratic exchange relations for g(x) ;Zl, 201,80, 16, 128], setting in the

real (z-) picture

g1($1) gz(xz) = gz(l‘g)gl(l‘l) R12(1‘12) s =21 < x12 < 27 (433)
where
Riz(7) = Ry, 0(x) + R1+2 0(—x) , Ry =Rz, R1+2 = Rgll ) (4.34)

the quantum R-matriz R12 being an invertible matrix satisfying the quantum

Yang-Bazter equation (QYBE)
Ry3 Ry3 Ro3 = Ra3 Ri3 R (4.35)

and reproducing the classical r-matrix r, in the quasi-classical limit. The
relation between R~ and R™ in (4.34) ensures the compatibility between the
exchange relations for 1 < x9 and x; > zo while the QYBE is a consistency
condition for the associativity of triple products of chiral field operators.

The properties of the quantum exchange relations are revealed by studying
their quantum group symmetry, the quantum counterpart of the Poisson-Lie
structure (discussed in Section 2.4). A key to understanding quantum groups 2,
in particular quantum universal enveloping algebras (QUEA) U,4(G) is provided
by the notion of coproduct A : A — 2, which teaches us how to ”add” quantum
numbers passing from a single particle to a many particle system and has a
bearing on the quantum statistics. The crucial property which distinguishes the
QUEA coproduct from that of the standard undeformed universal enveloping
algebra U(G) = U1(G) is the poEEie}%i ;tesé A to be non-symmetric, i.e. (using the
convenient Sweedler’s notation

AX) =) X10Xo# > Xo@X; = A(X). (4.36)
(X) (X)

The breaking of cocommutativity, i.e. of the symmetry of the coproduct, implies
that quantum mechanical multiparticle wave functions (or correlation functions,
in QFT) cannot transform covariantly under the group of permutations. The
exchange symmetry that replaces it should commute with the coproduct A(X).
One can construct such a substitute of permutation for almost cocommutative
Hopf algebras (see Appendix B where this and related notions are recalled and
illustrated on examples) for which a special element R € 2A ® A, called the
universal R-matriz, exists that intertwines between the coproduct A(X) and
its opposite A’(X):

RAX)=A"(X)R . (4.37)

This notion l;3\}7{111 be applicable to the above exchange relations if the matrix
R = Ry5 in (4:34) can be obtained from R when applied to the tensor square of
the defining representation of U,(G). The object of main interest for us is the
braid operator that combines R with the permutation operator P = Pj5 so that
it commutes with the coproduct

R:=PR, A(X)=PAX)P = A(X)R=RA(X) (4.38)

CCR

WCR

geR



and satisfies the braid group relations (for R; = R“-_H)

Ri Ri+1Ri = Ri+1RZ’ Ri+1 s ,Z%Z Rj = Rj Ri for ‘Z —j‘ >1 s (439)

YBE
the first of which follows from the Yang-Baxter equality (&3‘5) for R;j .
The analytic (2-) picture exchange relations are then expressed in terms of
the corresponding matrix R:

Y%
9o (21) 95 (22) = g, (22) 95 (1) R" 5 (RIG;=R05) , (4.40)
(212 3oy = e 2y for |z1| > |z2| , ™ > arg(z1) > arg(z2) > —7) .
They involve analytic continuation along a path that exchanges two neighbour-
ing arguments of the multivalued chim%gz%nformal ) blacks, (Analyticity in the
domain indicated in the last equation (440), cf. e.g. . is a consequence of
energy positivity.)

The multivaluedness of chiral blocks reflects the fact that the (complex) con-
figuration space is not simply connected. The quantum group symmetry and
the braid group statistics generalize in a sense the Schur-Weyl duality between
an internal unitary symmetry group and the permutation group'® to the case of
correlation functions with non-trivial monodromy. There is a gauge freedom in
the choice of the braid operator related to the ambiguity in the definition of the
chiral components g(z) and g(%,zpf g(z,2) (A.21). We shall opt for the simple,
numerical SL,(n) R-matrix of [82] for the SU(n) WZNW model under consid-
eration ensuring the simple covariance and braiding properties of the matrix
chiral fields at the expense of dropping chiral covariance under the (antilinear)
complex conjugation and the related unitarity property, which will be only sat-
isfied by the 2D field g(z,z) (4.21). We shall only require that the regularized
quantum determinant of g(z)

D . — L ﬂntLl A, A, aq...0p
(G321, 2n) i 20" €Ay A, oy (1) - gor (2n) €
T 1<i<ji<n

(4.41)
belongs to the conformal class of the unit operator. The necessity to use the
deformed (”quantum”) e-tensor € will be explained in Section 4.4 below
where we introduce the similar notion of quantum determinant for the zero
modes'!. Here we shall only provide the argument for the z-depending prefactor.

Let G = SU(n) and denote by w, the n-point conformal block

Wa = wa(21, o 20) A = (0] g2 (1) . g (20) [0) (4.42)

) . KZu-
It satisfies the KZ equation (M for N =n and all mys = 7y so that

o 1
Cij(A@,A(J)):cij:P,—Efijzcji, i,j=1,...,n, (4.43)

Cn-si
cf. (&31.166S . Aas the full antisymmetry of €4,.. 4, implies

A A
€A1A1A7A7,PBZB7J == €AlB7B7A.y, == 7€AlB7B7An 9 (4'44)
) KZW-
the KZ linear system (4.30) reduces to
0 n+1 Zz_i 1 i: 1 )
—_—— — — P21,y 2n) =0, i=1,....n
Ozl- ﬂh =1 Zji j=it1 Zij
(4.45)
for .
Pnl21, ... 2n) 1= W €A, A, Wn(21,... ,zn)Aojl‘zjfi’”; gLn (4.46)

iTH
10Gee hZBO} for a pedagogical survey of Schur-Weyl duality and references to the pioneer
work of Arnold that links the braid group with the topology of configuration space. The

%ilarity between Schur-Weyl duality and Doplicher-Roberts theory of superselection sectors
]

is commented in ]. antis—1
M1 The ”quantum factorial” [n]! is defined in (h 6).

Wni



and hence,
n+1

P21,y 2n) =c H z; ™", c=const. (4.47)
1<i<j<n

D(g) _
For c=1and Dy(g;z21,...,%,) given by (ﬁI), Eq.(H?) is equivalent to

(0] Dy(g;21,---52n) |0y =1 (4.48)
f-dim-L
The prefactor can also be deduced from (E?Zn?) and the identity

n+1 (
nh

2A(AY) — A(A?) = = A(2AY) —2A(AY)) (4.49)

and then verified by the KZ equation (the values of the quadratic Casimir in
the symmetrized and antisymmetrized square, mop1 = 75 and mp2 = 7, , of the
defining representation mo1 = 7 are, respectively

Oo(m) =27 HD gy DD gy

11lab f-dim-
cf. (ﬁ)) Note that (%) 2l = nA for A the dimension (E?ZIIS) of the

2
primary field g(z).

Eq.( EEZB is also invariant with respect to G-valued p(i fOflzc lif 1‘%@1?69:1?‘11(1

chiral conformal transformations (the yantum version of
invariance of the exchange relations (4.33) with respect to constant right shifts

g(z) — g(x) T, (4.51)

the counterpart of heFIE_oisson—Lie symmetry of the corresponding PB, implies
the RTT relations ]

RixTh Ty = To Ty Ryp & Ry'Ti Ty = To Ty Ry, . (4.52)

So a natural choice for &e quantum R-matrix is the Drinfeld-Jimbo 7[ 163]
n? x n? matrix used in }E%Z

2 ] to define the quantum group SLq(n),
Rip=(R,), R, =gt (53/5;3, F (gt = goo) 5;;,55,) (4.53)

(all indices running from 1 to n and the sign convention on the skew-symmetric
€qp being fixed in (k}.l I(Hi, where ¢ is the corresponding quantum deformation

parameter.

R 1
The value of ¢ in (h.53) may 1ot coincide with the ”classical” one (E’SI4) but
the quasi-classical expansion of (4.53) with

q—l—z +O( 5) (4.54)

. rstandapsitand-r-matr _ . .
has to reproduce the standard sf(n) r-matrix (b.Sl ;, (E% [0). To this end, it

is convenient to rewrite Rio and r12 in the following compact form using the

diagonal n? x n? matrix €12 = diag(eag) (i-e., ezfaﬁ, = €ap (52,5?,) satisfying
€12 Pio = —Pio€a:
L - €12 J—
Ris=qv (Lo + (¢ ' — ¢*) P1o) , r12 = — €12 P12 . (4.55)

Remark 4.1 To show that the quantum exchange relations reproduce the
WZNW model PB in the quasi-classical limit we can introduce at an intermedi-
ate stepg the ]glanck constant 7 and the dimensionful overall coefficient k to the
action (Msettlng k= E so that, effectively, h — 0 < % — 0. If one consid-
ers angular momentum type variables p;; which also have the dimension of an
action, then the corresponding dimensionless quantities are given by p;; = & =
so that the quasi-classical limit can be recovered from their scaling behaviour:

1 i .
h—0 <« E—>07 Dij — 00, % finite . (4.56)

Dgil

id-pre

RTT

aq-k

Rr-compactly



The undeformed quantum limit, on the other hand, corresponds to finite p;; ,
neglecting all terms of the type 2 % in the expansion in powers of 1

R: £l
Using (hr55C N afcls stralghtforward to show that right-hand 51de of the PB
(8- 03) is reproduced up to an i-factor, by the leading term in the expansion in
powers of of the commutator following from (#:33). In particular, the classical
- matrlces r* appear in the expansion of the quantum R-matrix,
K
Rig =Ty — i

_ 1 K 1
T+ O(ﬁ) , Roy=To+i-rl+ (9(?) , or

k k
T 1 _ _
RL, =1 — i rE + (’)(ﬁ) (Ry,:=Ris, R, :=Ry'). (4.57)

To verify the compatibility of (%57) for rliz = r13 &= C12, we take into account
that 712 = —r9; and Cy1o = C1. (The overall coefficient q% of Ryo is impor-
tant: the first non-trivial term in it, LEXpansion contributes to the polarized
Casimir operator C15 = Blgiﬁ 112 (gm%_These expansions also ensure that
the Sklyanin. bracket (ETTG) emerges as the quasi-classical limit of the RTT
relations (4.52). (In both cases one has to take into account the fact that the
matrix elements of g(z), as well as those of T, commute in this limit so that
g1(71) g2(w2) = ga(w2) g1(w1) and Th'Tp = TpT1.)

Demanding that the eigenvalues of the braid matrix R agrees with the con-
formal dimensions implies that the correct value of the quantum deformation
parameter ¢ (satisfying (ESM)) is

q=eth | h:==k+g" (4.58)

i.e., the level k& of the classical expression ( @Tél has to b replacgd again bly the

g(i)tt h. To begin with, we note that for R given by (£.53), (h 55), R = PR
(4.38) satisfies the Hecke algebra relation

(" R=q¢ )¢ " R+q)=0 (4.59)
and hence, has only two different eigenvalues'?, q_1+711 and —q“'% . These have
to be compared with the braiding properties following from the exchange rela-

(;E 10

tions ). Conformal invarj ge ggcoels the 3-point functions of primary fields
up to normalization (see e.g. %g [22]) so that we have

(Ag] g1(21) g2(22) [0) = N3 20722, (Pa— 1) Ny =0,
(Aol g1(21) g2(22) |0) = N 28722 | (P + )N =0, (4.60)

where the normalization matrices N(*®) = (N<S=a>;‘§) have both SU(n) and

quantum group indices inhc%ri‘fcegl_ from the chiral fields. The conformal dim%nzison
ni—-aim- -

A in (B.60) is given by (h.25 > while A o = 02(;: 2) — 02(;;‘“) (cf. (M))

are the conformal dimensions of the WZWN primary ﬁelds conjugate t géc

sympgnetric and antisymmetric SU (n) tensors, respectively. Applying now (%ZU)

o (4.60), we obtain

NG R = e=if (Calm)=3Ca(m)) p N(9) = =ik (=14+7) N(o)

N@ R — ¢—i7(Ca(my)=35C2(ma)) p N(a) — _ =i (1+3) N(a) (4.61)
Hence, the matrices N(* @ intertwine the corresponding symmetric and anti-
symmetric eigenspaces of the permutation P and the braid operator R which
have the same dimensions "+1) and ( )7 respectively. Comparmg the eigen-

values of R following from *foil with thOSGE Erédtlched by ( &[ 59 we fix the value

of the quantum deformatlon parameter ¢ ( or G=SU(n )

g=e¢ ", h=k+n (qFn = eFinn ) . (4.62)

12This is the main reason for constraining ourselves to the case of G = SU(n). The braid op-
erators obtained from the R-matrices foggthe deformations of other simple (compact) classical
groups have three different eigenvalues%ﬂ and are more difficult to handle.



4.3 Monodromy, its factorization and the QUE algebra

Noting that Ly — Lo is the generator of translation in z' and that the spin
(or, rather, the helicity) A — A vanishes (1 e. g(z z) is a Lorentz scalay field),
we deduce that the periodicity of g(z°, 2!) in 2! (cf. (I.3), (A7) and (&6% is
equivalent to the univalence property of ¢(z, z):

Zwi(Lo—Eo) (Z 2) eQm’(EU—LO) _ g(esz’ z,e —27i )_ g(z Z) ] (4.63)

b _
Eq.(EZGZ3;rwc?uld be satisfied if the monodromy matrices M (= M) and M (=
My") of the chiral components of g(z, %), defined by

eQﬂ'iLo ggl(z) 6727riL0 _ 2mA g(,:l( 271 Z) _ g?(z) MUOL ,

672772'L0 g%(z) 627riLo — 67271'1A g%(672ﬂ'i 2) _ MO;) g%(z) (464)

were inverses of each other. (The classical counterpart of this pr perty of the
chiral splitting is spelled out in Proposition 2.1, see further Eq. (EW‘} As al-
ready mentioned, it requires a gauge theory framework which, in the quantum
case, involves singling an appropriate physical space of states. This problem is
approached, for n = 2, in Sectio on, 5.4.2. )

f-dim-
Applying the first relatlon (A64) to the vacuum vector |0) and using (&IC(.)ZHSL =

we obtain that )
% 10) = ¢~ %(")65 | 0) = g7 765 | 0) (4.65)

i.e., the vacuum is annihilated by the off-diagonal elements of M and is a com-
mon eigenvector of the diagonal ones, corresponding to the common) eigenvalue
qn ™. This suggests a modification of the factorization (2-88) of the quantum
monodromy matrix M in upper and lower triangular Gauss components:

M=q¢ "M M~ (diagM, =diagM~") . (4.66)
We postulate the following quantum exchange relations for My :

g1(x) R, Myo = Mys g1 () (R =Ri2, Ry =Ry'), (4.67)

RioMyoMyq1 = MyiMyoR1o, RioMyoM_y =M_1MsRi5 . (4.68)

Using the quasi- classical asymptotics (| %57 of the quantum R-matrix, it ig not
hard hcck that the 1 + expansions of the commutators following from (H.67)
agp_m% ) reproduce the corresponding PB in the second relation (%) and

), respectively. The resulting exchange relation between M ( ) and

91(x) RigMy = M g1 (z) Ry, - (4.69)

R
It guarantees the compatibility of Eq.(ﬁ%?)) for x5 < 1 < x9 + 27 when we
have

91(z1) 92(72) = g2(22) 91 (1) Ry
g1(21) go (22 + 27) = go(w2 + 27) g1 (z1)RY (4.70)
gz({EQ + 27’1’) = gg(xg)Mg .

The exchange relations for the maﬁé}é lgents of M following from (%‘%’g) can

be written as a reflection equation [ that is quadratic in the R-matrix:

M Rip My Ryy = Rig Mo Ry My < Ryg My Ryg My = My Ryg My Ry .
(4.71)

?Tglé%j%uaa classical, | Hﬁuts of %ggg and (%?X? i ; agree with the first PB relation

and with ( respectlvely

Using the ex icit form (4.53) of the quantum R-matrix, one can write the
RMM relations (4.68) for My in components:

[(M )“ (M+)ﬁ
= (g~

Mgq



We shall denote

diag My = diagM~" =: D = (dad}) , detD:=][da=1 (4.73)

a=1

di RM
(cf. (blga%;% From (&F72) we obtain, in particular,

do dg = dg dq (M) =do, (M-)% =d;"), (4.74)
do(M1)’, = ¢~ (M)’ do ,  dp(My)5, = q (M), dg a>pf,
doa(M-)% = q(M-)%da , dg(M-)% = q"! (M-)%dg , a>pf,
[(M_)%, (My)%,] = A(dy'ds —dady?),  a>B  (A=q—q').

AM
(Using the triangularity of My and M_ in deriving (ﬁ) is crucial; as d,
commute, their order in the product defining det D is not important.)

A natural coalgebra structure on the algebra generated by the entries of M
is given by
A((Mx)%) = (Mx)% ® (M+)% ,
e((My)%) =05, S((Mx)%) = (M£')% - (4.75)

(In computing My ! one shou ,Pake into account the non-commutativity of the
matrix elements) Following [82], we are going to show that the Hopf algebra
determined by (4.72), (4.73) and (E 75) is a cover of the QUEA U,(sf(n)) defined
in Appendix B.

opf~FRT
Due to the triangularity, the coproduct (% 55) of a matrix element of My or
M _ belonging to the corresponding ”m-th diagonal” (for m = 1,...,n) contains
exactly m summands. Thus, the diagonal elements d, , a = 1,2,...,n (m =1)
are group-like (A(dy) = do ® dy, e(dy) =1, S(dy) = d3 '), while
A((My)' 1) = di @ (My)' iy + (Ma)'s 1 @ diga
A(M)T) = (Mo)TH @ di +diyy @ (M) (4.76)

CO
for 1 <i<n—1 (here m = 2). The comparison with (@‘%}) suggests that

(My)'py =2 Fidipr, (M) ' =wyid 4 B, di'digr=K;  (4.77)

where x; and y; ar pome yet unknown g¢-dependent coefficients. The second
and third relation (4.74) (for « =i+ 1, 8 =1) are satisfied if

do = ko1ky' (ko=kn=1) = J[da=1, (4.78)
a=1
the new set of independent Cartan generators ki, ..., k,_1 obeying

7
ki=[d;", Ki=k\Ek}y, i=12..,n-1,
/=1

kik; = kjki , kiE;j =9 Ejki, kiF;=q %Fjk,
Alk))=ki®k , elki)=1, Ski)=k". (4.79)

F M
Igserting (%.m? {i into the last Eq(&f’?lznl) and using the second and third relation
(gﬁ*‘h ) from which it follows that [d; 1, (M_)""(M5)?,, ] = 0, we obtain

Ty = =M\, i=1,....,n—1. (4.80)

We note further that the commutation relation (%72) of (M4)", 5 with dg (%{%8)
suggests that (M), , contains the step operators F; and Fy;; only. Assuming
that it is proportional to (F;41F; — 2F; F;11)D;12 where D; o is group-like and z
iE ggq‘%]&gfr unknowgegggepggdent coeflicient, taking the corresponding coproduct

(B7r5) and using ( , (B-4) gives

(M) i = =25 [Fion, Flydiva . ([A,Bly = AB—qBA) . (481)

dkk

xiyi



A similar calculation shows that

(—7\47)1;r2 = yiy;rl d;_‘_lQ [EiaEi+1]q—1 . (4.82) |M-i2

From now on we shall fix the coefficients z; and y; satisfying (E{Flgb) in a sym-

metric way:
Bi— A, =) (4.83)
RM , , .
Computing from (&72) the commutators of (M), , with (M)?;,; and (My)'F,,
and of (M_)"F? with (M_)"" and (M_)"{?, , we obtain relations equivalent to
[(M-i-)ii-&-l’ (M+)ii+2]q =0, [(M+)iz'+2a (M-s-)i;r-rlz]q =0,

(M) (M) Plg =0, [(M2)7 (M) 73l =0  (4.84)

S
which are in fact the non-trivial g-Serre relations (bq2) written in the form

[E3, [Fy Figalg-1lg = 0= [Fig1, [Fipr, Filg g
[Ei, [Biy Eitilg-1lg = 0 = [Eiy1, [Bit1, Bilg g1 (4.85)

q

Proceeding in a similar way, one can obtain the higher off-diagonal terms of the
matrices My (for example, (M) = —\[F3, [Fa, Fig]q da).
The result can be summarized in

My =(I-AN,)D, M_=D1'(I+\N_) (4.86)

where the nilpotent matrices N, and N_ are upper and lower triangular, respec-
tively, with matrix elements given by the corresponding (lowering and raising)
Cartan- Weyl generators of Ug(sl(n)) (see e.g. , 174]), while the non-triyial
tries do, @ = 1,...,n of the diagonal matrix D are determined by (4.78),
(1.79). Writing K; = ¢fi would allow us to present the Cartan elements k; as
k; = g™ where H; = Z;:ll ci;H? = 2H" — H"' — H'*! 5o that an inverse
formula expressing k; in terms of K; would involve "n-th roots” of the latter
(as det(ci;) = n; cf. also (a. )). In this sense the Hopf algebra Uén)(sﬁ(n))
generated%%y E;, F;,k;, i=1,...,n—1 (called the "simply-connected rational
form” in [55]) is an n-fold cover of U, (st(n)) .
+ MO
Taking into account (hﬂ%), the condition (hTiB) turns out to be consistent
with the QUEA invariance of the vacuum vector,

X |0) = ¢(X) |0) (4.87)
Hopf~FRT
where £(X) is the counit (ho% ); in accord with the above we may assume that
X e UM (st(n)).

MpmNpmD
We shall display below the matrices Ny and D (h.SmG imln the cases n = 2 and
n=3:

n=2: D(k(gl 2) (K =k?), N+<8 1;) ,N_<27 8); (4.88)

EYo0 0
n=3: D= 0 Fkky' 0 (Ky =kky ', Ko =k{'k3),

0 0k
0 F [Fy,F, 0 0 0

Ny=(0 o F, , N_= E; 0 o), (489
0 0 0 [E1, Es]y-1 B> 0

0 0 0
(I+AN_)t=1-)\ Ey 0 0

. . Jfix-xiyi e .
The symmetric choice (h.83; of the normalization is singled out, up to a sign,
by the following additional requirement. There exists a transposition X — X',



an involutive linear algebra antihomomorhism (and coalgebra homomorphism,
(®)oA(X)=A(X"), e(X") =e(X)), acting on the generators as

ki=k (= K'=K;, d/=d.),
E =d;'Fdiy = q 'FK;, F'=d;\Eidi=qK;'E; (4.90)

(cf. @ EQ and tB'% respectively). We observe that demanding x; = —y;
(cf. (.77) and (&F%O)) is equivalent to requiring the standard matriz transgosed
‘M4 to coincide with the algebraic transposition of Mz 1 determined by (#.90)
(so that these two different transformaﬁiorns give the same result when applied
to the monodromy matrix M ; see Eq.(h’?ZSél) below):

(Me)fy = ((MF)%) = My=(M%) . (4.91)

The parametrization (%%%ﬁ%f the matrix elements of My in terms of the
QUEA generators relates two Hopf algebras that seem very different. As g%lgas

en Iread Hgngpﬁ?ned, the deep result that the Hopf algebra defined by (| )
(E 73) and 3&?‘5)1'5& cover of the QUEA Ug(sf(n)) has been obtained by Fad-
deev, Reshetikhin and Takhtajan in [82] (in fact it is more general, applying, for
suitably chogen numerical R-matrices, to the quantum deformations introduced
by Drinfeld [71] and Jimbo [163] of all classical simple Lie algebras G).

The main idea in [82] is that an appropriately defined deformation Fun(G,)
of the algebra of functions on a matrix Lie group G should be dual to a certain
cover of the QUEA U,(G) where G is the Lie algebra of G. The ”classical”
counterpart of this duality is the realization, due to L. Schwartz, of U(G) as the
(non commutative) algebra of distributi g on G supported by its unit element,
U(9) *(@G) (see Theorem 3.7.1 mT%ST})

In%z the Hopf algebra covering U,(G) (generated, in our notation, by the
matrix elements of ML) was constructed as the dual of a quotlen&%gtheMR

ebra (1.52) defining Fun(G,). In particular, the Hopf algebra (| h 73%
(ETEB) 1s dual to Fun (SL4(n)), the dety(T') = 1 quotient of the RTT algebra
(A:52) (for an appropriate definition of the quantum determinant) with coalgebra
relations written in matrix form as

A =101, AT =TT, «T)=1, S(T)=T"". (4.92)

m mD opf-FRT
Moreover, it has been shown that relations (%%%), (% 73%, (% 75] can be derived
from an explicitly given pairing (M, T) expressed in terms of RT .

4.4 The zero modes’ exchange algebra

Our next step will be to find appropriate quantum relations corresponding to
the PB of tp§ 7610 modes. We shall first postulate the exponentiated quantum

version of (%_?53),

o . () ; . 1 o ; Lsi_gt
¢ al, = al, gt W =6 = = gPral = al Pt (4.93)
n

where the operators ¢P7 , ¢ =1,...,n are mutually commuting and their prod-
uct is equal to the unit operator:

qPigqP = qPighi H = (4.94)

As the quantum matrix a is a group-like quantity, natural to assume that

ol
it obeys quadratic exchange relations of the form

Ri2(p) a1 a2 = az a1 Ry (4.95)
involving th quantum dynamical R-matriz Ri2(p) exvvell as the constant R-
matrix Ry (453). that rgproduc the PB {a1, a2} (3:108) in the quasi-classical
limit. Eqs . %94) %95; determine the quantum matriz algebra
My(R(p), R



R R Raal
As one may expect from (5%3), (E?)él), Eq. (E}.(%a; has two equivalent forms,
Ri(p)araz = asa1 Ry, Rip(p) := Ri2(p) , Rf(p) := Ryt'(p)  (4.96)

which can be also written as a braid relation (note that Rj» = PRy, implies
Ry, = PRY,):

Rig(p)araz = araz Ria ,  Ria(p) := PR,(p) = Ry (p) = PR (p) -
uasicl (4 97)
Usi%%g%% 56; to determine the leadmg terms in ~ in the quasi-classical expansion
of ( '% we conclude that R3,(p) have to reproduce in the large k limit the
classical dynamical r-matrices 5, (p)

Riz<p>=f—m2<>+0< 5 () =) £ 7 Cr (4.98)

d
with 712(p) given by ( k} [11), ETX? Indeed, assuming ( %98conand kf57 and

taking into account that the entries of a classmally Gommute (so that ajay =
agg%%{) we conclude that the leading terms in E of (%96% exactly match the PB
(3-108).

Applying the t FEudes of Eq.( ﬂo the right of the triple tensor product
as az a1 and using ‘(’E%’? and the CR (4.93), we obtain, as consistency condition,
the quantum dynamical YBE

Ria2(p — v3y) Ras(p) Ras(p — v(1)) = Ras(p) Ris(p — v(z)) Ri2(p) &
R12(1?) 1:323(17 - U(1)) ng(p) = R23(p - U(1)) 1%12(19) R23(p - U(1)) . (4.99)
The following example explains the above short-hand notation:

Raz(p — w12t = 51t R(p — v(™))iziz (4.100)

J1J233 J273

DYB N
Eq(%gg% appeared in the early days of the 2D CFT in the paper hGBG] by
Gervais and Neveu on the Liou (lalle grlodel and attracted wide interest ten years
later due to the work of Felder‘%z% o

Following Etingof and Varchenko h‘é?'?} Wgeshall call quantum dynamical R-
matriz an invertible solution Rya(p) of (gﬂ% satisfying, in addition, the zero
weight condition

[h£1+h42,R12(p)]:O, éZl,...,’l’L—l . (4101)

R
Eq.(&fm) Illgl(f%{rs ﬂ%tural as it implements at.the quanturr.l level the classical
condition (&3.2()13 for r12(p) . Tt strongly restricts the off-diagonal elements of
the n? x n? matrix Ri2(p), implying the ice condition
RY

Z/j/

-/ . VA -/

(p)=0 unless i=4i,j=5 or i=j,j=1i (4.102)

which is in turn equivalent to

_1onij e .
q R le/(p) = Q4j (p) 5]"62?’ + bij (p) 51"6;’ (bii(p) = 0) . (4.103)
Ro-i
(The last convention makes the representation (h 103 unambiguous.)
The Hecke relation (4. for R implies a similar equation for R(p):
(" R(p) = ¢ ")(g " R(p) +q) =0 (4.104)

Finally, the property of the operators Rii+1(p) to generate a representation
rtgll raid group (namely, the commutativity of distant braid group generators
is ensured by the additional requirement

ng(p—i-v(l) +v)) = ng(p) & R%e( )akaﬂ = akagR ,(p) . (4.105)

Heck
eneral solution for R )) the type ( h I()B; sa §fy1ng &99% h‘ecliezlli
and 5 has been found in (based on the paper [I59]; see also %77}) It
can be brought to the following canonical form:
[pij — 1] o
aij(p) = aij(pij) — ——, bij(p) = , TF]
’ T ) ’ [pi;]
1 _
(i(pyi) = ), aulp)=q"", bulp)=0. (4.106)

@ij(pij)

pvl

nRp

ice

Rp-ice

HeckeRp

Rpvv



For any given pair (i,j) (i # j), the ice condition provides a convenient rep-
resentation of the (7,7) block of R(p) as a 4 x 4 matrix which, assuming the
ordering (i4), (if), (ji), (jj) of the rows and columns, takes thus the form

g ! 0 0 0
- 0 ¢ @ij(pi ) Lo 0
RO(p) = ¢ [pis] Lo il . (4.107)
0 (Ol” (plj)) ! [p[z;:] ] pr}
0 0 0 q !

Using the expansions

[p+1]
[p]

s T 1 gt* 7 T . 1
Rp-cond
one rec?/eg_sri_%atclrle quasi-classical limit (&[?‘Jg"jﬂfhe classical dynamical r-matrix

ri2(p) (3. or

aij(pij) =1+ ﬁ( pu)+0(k2) (6(p) = =6(=p)) ,
Jiep) =7 (cot(Epm—ﬂ(Epm) , (4.100)

f01 ., 1
cf. (ETS? [é;f_.sHege again, the expansion of the coefficient g» provides the % term
for 012 ( .

In contrast with the constant R case, the representatj f the braid group
generated by R(p) is "nonlocal”. The second equation (E%%Dsuggests that the
braid operators corresponding to the dynamical R-matrix should be defined
by R (p) = 1%12(10)7 Rg(p) = R23(p — wv(y)) . In general, we shall define the
(renormalized) i-th braid operator as

i—1
bi(p) = ¢~ * Ri(p) = q" " Risa(p — Y v(e)) (4.110)
(=1

raidR
which guarantees that the braid group relations (E.BQ; are satisfied.
Th Het(’:ke_ ézonditi n 1f(or the r or alized braid operators b; := q_%Ri and
n-brai écke ecke . .
bi(p) (%%H—UX)_(EQS. (E.SQ) and (%.l()%, respectively) can be equivalently ex-

pressed in their spectral decomposition in terms of two orthogonal idempotents
+1 X . .
% with coefficients ¢!

this, more suitable for the root of unity case, is to set

and —gq, respectively. A renormalized version of

bi=q 'T—A;,  bi(p)=q ' 1-Ap), (4.111)

where A; = A;;+1 and A;(p) are the consta ta Qdyn ikceal q-antisymmetrizers,
respectively. Now the full set of relations ( and % ;95 satisfied by the braid
operators,

b =(¢ ' —qbi+1,

bibjbi:bjbibj for |i—j|:1,

bibj:bjbizo for |’L—j| 22 (4.112)

can be rewritten equivalently as

A=24 (Pl=q+a ),
AzAjAz_Az:AJAzAJ_A] for |Z—]|:1,
[A, Aj] =0 for |i—j|>2 (4.113)

(identical relations exist for b;(p) and A;(p)).
Remark :gecl;he abstract algebra generate b%tl 5 %, ooy b1, subject to
relations (4. (or by 1, Ay,..., Apm—1 and (4 , Tespectively), is known as

ifOt
131n (l3_8'7)7 the condition Bj,(p;¢) = B(pj¢) has been imposed to ensure the Weyl invariance
of the constraint x .

dyn-braid



the Hecke algebra H,,(q71) (see e.g. %5,—(;1%6%. Regarded as an one-parameter
deformation of the group l%?[ls)ra of a Coxeter group (here of the symmetric
group of m elements, see (g\_ﬁ), it is also called the Iwahori-Hecke algebra of
type A . Its quotient defined by imposing the stronger condition

L
is the well known Temperley-Lieb algebra T L,, %48 for g = [ ]?) that has
numerous applications in lattice Jaqd dels of statlstlcal mechamcs . Note that
the second set of relations in E I ;; E 35 are only relevant for m > 2

(and the third set, even for m > 3).

The operators A; and A;(p) provide two different deformations of the projec-
tor on the skewsymmetric part of the tensor s Hare of an n-dimensional vector
space. We shall 1(l)rcee(g),S following the paper %’EZ’ (in which ideas, techniques
and results fronﬂ{iﬂm,—mﬂ and [I59] have been further developed), with the
definitions of the corresponding higher order antisymmetrizers acting on the
(tensor products of the) auxiliary index spaces and the Levi-Civita (e-)tensors
related to them. This will allow us to introduce the notion of quantum determi-
nant D,(a) of the zero modes matrix (with non-commuting entries) (a, Bm?
find the appropriate quantum counterpart of the determinant condition (

The constant solution of the YBE h 53) gives rise to %Hl with

A]_ = A12 = q_5112 — P12 = (Aaf,ﬁ,) s Aaf,ﬁ, = qsﬁ‘* (Sg/ (56, — (Sg/ (SB

(4 115)
Following 52 , we shall introduce inductively higher order antisymmetrizers
Ay projecting on the g-skewsymmetric tensor product of n-dimensional spaces

with labels £,/ +1,....,m, 1 </ <m by
1

Appni1 =q¢ "V Ay — ——— Apm b Ap s A =1
tm+1 = ¢ ‘ [ — 1! ‘ tm s o )
[m]! = [m]m—-1]', [0'=1. (4.116)
The operators Ay, (for £ < m) are thus multilinear functions of by, bpy1, ..., bm—1 .

Their projector properties follow from the general relation
AgmAlj:Aleng[m—g—Fl]!Alj for lgﬁgmgj ; (4117)

P
in particular, A}, = [j]! A1;. In the non-trivial case when ¢ < m, Eq.(EJ._‘H?)
can be proved by induction, starting with

Agprl Alj = Alj Agprl = [2] Alj <~ be Alj = Alj bz = —q Alj (4118)

P
for 1 < £<j_1.Indeed, suppose that (%17) is correct for 1 </l <m <j—1.

Then,_frogl (En 167 one obtains

mf— m— £+ 1]!2

AlerlAlj:AleZerl: q +e 1[m—€+1]'+q¥ Alj:
[m — ]!

= m =+ 1 (¢ g m — L+ 1)) Ay = [m — L+ 21 Ay (4.119)

tis<1
One can verify that the definition of A4, j=1,2,... implied by (ElanT%%ﬁ

unP

) 1 1 .
Ajrr=q 7 Ay — T A1jbj Ay = G= AvjAj Ay — 1 — 1Ay
)
is equivalent also to
Ay = Uy Ay, Ugpi=q7 —¢7M+ -+ (=1)7bi . bjaby
A1j+1 = Alj ‘/ijJrl s ‘/lj+1 = q_j - q_J+1bj + -+ (—1)]bjbj,1 ce b]_ . (4121)

14 An infinite ”tower” of such algebras defined in terms of projectors satisfying (EZ2 = E;
and) BE; EjE; = E; for |i —j| = 1 hag beegaused by V.F.R. Jones in the classification
of inclusions of vop Newmann subfactors %ﬂﬁd in the construction of a new polynomial
invariant of links%ﬂ%ﬁ]i



a%§§g_a1ternative expressions for Aj;11 can be obtained from the first one in
(4. by using the same definition for A;;, then availing of the fact that b;
commutes with A;;_1, etc. Note that Uy; and Vi, obey the recursive relations

Uyjy1 = q 7 =Uybj, Un=1 (Upp=A41),
Vijgr = ¢7—-0b0;Vi;, V=1 (Via = A1), (4.122)

A ti
respectively. We can now confirm (%118); indeed, Eq(%ﬁ% extends to

Ajr1 = Uy UeriUe A1 = Ag i VieVieyr - Vigyr, £=2,...,75 .

(4.123)

Now Ai2b; = byA1s = —q Ao whereas, for 2 < ¢ < j, b, commutes with
Ayg_1, and

Urp41U1ebe = —q U111 Uxg be VieVieyr = —q VieVie - (4.124)

%‘%e proof of ([%%24) can be performed by induction which goes as follows (see
6]), e.g.

Unes1Ure = (¢ = Uiebe) Ure = ¢ Ure — Urgbe (7 = Urp1 bp—y) =
=q Ui — ¢ " Urebe + Urebe Urg—1 e =

Uret1Ure by = (4.125)
=q " Ureby —q ' Ure (1= (q— a7 ") be) + Ure Urp—1 by—1be be—1 =
=—q(¢ " U — ¢ Ure by + Urebe Urg—1 be—1) = —qUie1Ure

We use consecutively the Hecke property b7 = 1— A by, the braid relations (im-

plying bg Ulg_l = Uu_lbg and) bz bg_lb[ = bg_lbg bl—l and ﬁnally, Ulg Ulg_l bg_l =

—qUyp Uyp_1 which is the induction hypothesis.
. . . antis—j
Alternatively, the antisymmetrizer A;;41 (h.l?m can be presented as

1 .
Arj1 = =1 Agjy1 A2 Agjyr — [ — 1 Agjin (4.126)

tis<j 1t-anti ~anti
the equality of (%[al.ll 307 and (ha.IZaG é%neralizing the first relation (E g

As already mentioned, the unusual normalization of the antisymmetrizers
adopted here is suitable for the case when ¢" = —1. Indeed, as h =n+k > n,
all Ay; are well defined for 1 < j < n + 1. Further, one can show that the
dimension of the image of A;; (i.e., its rank) is equal, for any j in this range,
to the dimension (?) of the fully skew-symmetric IR of the symmetric group

S; corresponding to the single column Young diagram with j boxes so that, in
particular,

Al n+l = 0, rank Ay, =1 = Aln = (Eal”'a" 561...ﬁn) . (4.127)

The Levi-Civita tensors € with upper indices belong to the eigenspaces corre-
sponding to the eigenvalue [2] of all A;, j=1,...,n—1 and those with lower
indices, to the corresponding eigenspaces of the transposed A4;, i.e.

QG411 X1...0;0441...0pn, _ (S PPRe THe TR RRR e 70)
A Gronn € =[2]e ,
Oi0it1
€a1'~0'i0'i+1~~~an [eFYe 7HE N [2] €a1~~-aiai+1~~0¢n (4'128>

bA Alconst
(see the first relation (hlS)) By (&I i oInSi, this implies e.g. that

Eaj.airiai..an — “q4€aj..asaiqr...ap for i1 < @, Cay...aa...an, — 0 P

: €a:a;
1.e. Eal...ai+1o¢i...aﬂ, - _q G it1 60&1...0¢iai+1...an ) (4~129)

stand-r-matr . . . o' g af
see (m le maftrix of the operator A;;y1 is symmetric, A° /5 = A5,
the solutions of (4. with identical ordered sets of upper and lower indices
only differ by a proportionality factor and, in partic lnag, ca Alfg chosen to be
equal. Then the normalization condition implied by (4.T17), (4.127)

A%n = [n]'Aln = 50(1“.&"5041.“&71 = [n]' (4130)

een!



fixes them up to a sign. Thus, the constant Levi-Civita tensors vanish whenever
some of their indices coincide while, in our conventions,

n(n—1) n...1

a1 ... Qp
(4.131)
where S, is the symmetric group of n objects and ¢(o) is the length of the per-
mutation!® o . The ¢ — 1 limit of E&‘E’ﬁ) reproduces the ordinary (undeformed)
Levi-Civita tensor €,, ..o, normali Y €n1 = 1 whose non-zero components
are simply (—1)%?). We also have?fﬁ%;’?,

£QO1-Tn—1 €o1.0m 1 = (_l)n—l [n _ 1][55 = €801...0n_1 g0l On—1a (4132)

lAThe Xnagnc aunt1symme£1‘%1 er A1(p) = A12(p) = (A(p)" Z/j,) deduced from
%H ( ) has the form

i ii — 4 i s .. o, L,
A(p) Ji/j/ = [p[;”]] (63 5} — ;i (pij) 05 §,) for i#j and ¢ #j,
A(p);; =0 for i=j or ¢ =j". (4.133)

Higher order dynamical antisymmetrizers Aj; 1?81» an be found by a procedure
similar to the one used for the constant ones . In particular, Ay, (p) is of
rank 1 and hence,

Arn(p) = (€ () €jy..5, W) = = A2.() = (e s (p) = [0l

[n]!
(4.134)
The choice «;;(p;;) = 1 simplifies considerably the above expressions and we
shall assume it in what follows, Jnless explicitly stated otherwise. In this case
the dynamical analogs of Eqgs. (4. , (A7129) for the e-tensors read

€ir.ii iy (P) = €11 (p) =0,
[pi;t+1ip + 1] €i1~-»7;#+17;p.'»-in (p) — [piuiwrl + 1] 67;1...1-;1.7;#+1»..’L-n (p) ,

€irviipsripnrin (D) = — €iyigipyaoin (P) fOT dp # dpgr (4.135)

Fixing the remaining ambiguity by choosing the e-tensor with lower 1ndlces to
be equal to the (p-independent) undeformed Levi-Civita tensor €;,  ; = €
eventually leads to the following solution satisfying the normalization condition
in % 34):

€irin (D) =€iri s €V ()= ] i, 21 45

1<pu<v<n [pl“ ]
The non-zero components of the dynamical e-tensor with upper indices (which
should be therefore all different) can be also written as
n(n—1)

a»--iwp):% II buw—1. D)= ][]

1<pu<v<n 1<j

(4.137)

In order to complete the study of the quantum matrix algebra M, , we define
the quantum determinant

1 _ _
det(a) = Dy(a) := ]! €ir.oin (D) Aty - agy €410 (4.138)
-eps
15The length £(o) of a permutation o (ELIT?U is equal to inv(o), the number of inversions
which, in our notation, are the pairs (ay, a;) such that o; < a; for i < j. Lef ,£) be the
number of permutations in Sy, of length ¢. The normalization factor in Eq. (4. is derived
using the well known formula for the generating function of Z(n,¢)

(%)
STt = N ) =N Z(n, 0t = A+ ) (At + 7). (AT (%)
ceSy cESy £=0

n(n 1)

and the relation 1 4 ¢2 + -+ - + g2(n=1) = gn—1 [n], implying EJESn @) = ¢ [n]!.
The discovery (ing970!) of the fact thagfermula (x) has been actually found by Benjamin
Olinde Rodrigues [221] in 1839 (see e.g. ) is attributed to Leonard Carlitz.



D
The definition (ﬁBS) of the qua determinant is justified by the following
statement (see Proposition 6.1 of ).

Proposition 4.1 The product aflll .. af;n intertwines between the constant and
dynamical Levi-Civita tensors:

€ir..i, (D) as ...alr = Dy(a)eay...an > all ... aln g®rn = ¢ltin (p) Dy(a) .

@l QAn a1 QAn

. . ExRa
Proof Denote ayl ...a; =:a;...an; then (&FQB% implies

- Uq,

aj ...0an R“+1 =aj... ai,laiaiﬂf%”ﬂaprg e Qp = (4140)
i—1
=a1...0;-1 Riip1(p)aiaipr1aiyo. .. an = Rijpa(p— U(e)) ai...an
(=1
) ] dyn-braidbidi . . ]
for 1 <4 < n —1 which, due to (4. , (A.111), is equivalent to
ay...an Ay =A;(p)ay...ay = ay...an Ay = A1n(p)ay...ay .

oA (4.141)
Multiplying the last equality (%41) by Ai,(p) from the left, or by Ay, from
the right, we obtain the following two relations,

1
An(p)ar...an = W An(p)ay...an A1y =a1...an A1y, (4.142)
det-intert
which are equivalent to (hel 319:$ frowprove this we use the rank 1 projecto prop-
erties of the congtant and dynamical antisymmetrizers Ay, and Ay, (p) (4.127),
(B.130) and ( . |
D
The quantum counterpart of the vanishing PB (b%f%) is the commuta 'X}itt
of Dg(a) with ¢P7, an immediate corollary of the commutation relations (&9%
and the definition (4.138) of the quantum determinant:

A Ly, .
¢"i Dy(a) = Dy(a) P T==1"%" = D,(a) ¢ . (4.143)

On the other hand, the exchange of D,(a) and a?, produces a p-dependent
coefficient, ‘ ‘
Dy(a) ay, = Ki(p) ay, Dy(a) , i1=1,...,n, (4.144)

where the function K;(p) is given explicitly by

Kilp) = (="t €iproin s T (p = 0®) = T [pi;] (4.145)
[n _ 1]! J1---Jn—1 11 [p” — 1]
J#i
10P
(cf. [T52], Proposition 6.2). So the centrality of a functior}) of the type g:gz)) €
a
M, which reduces, effectively, to the quantum analog of (8.121),
Dy(a)
[=L—=,a.]=0 (4.146)
®4(p)
Dga-K
will be guaranteed if ®,(p) satisfies an equation analogous to ( Nt ),
®y(p) aly, = Ki(p) al, Pg(p) - (4.147)
F
It is easy to prove that (&I?ﬁ?) takes place for
®y(p) = Dy(p) (4.148)

. . feps-D o s . .
(pote that Dy(p) introduced in (h.lS?t coincides with its classical expression
(8-124), only the value of the deformation parameter is different). nggquasr
classical expansions of these relations agree with (3.117), (8:120) and (B.87) (for

B(p) = 0).

It is thus consistent to impose the determinant condition

det(a) = Dy(p) (4.149)

det-intertw

Dga-K

Fpa



as an additional constraint on the quantum matrix a and define the zero modes’
quantum algebra as the guotient of My (R(p), R) with respect to the two-sided
ideal generated by (4. ; we shall denote this quotient henceforth simply as
M, . Not E}t{;&laat the determinant condition is n-linear whereas the exchange
relations 3T9§3 are quadratic so they are only mixing in the degenerate case
n=2.
Mgen

Quantizing (}3%30)7 we obtain the zero modes exchange relations with the

monodromy matrix M which are essentially the same as those for ¢g(z) (4.69):

ay RjyMy = My ay Ry, (R, = Ri2, Rf, = Ry') . (4.150)

int
We shall assume that the classical relation (ba.lzlnjelrs‘c Tetained at the quantum
level:
Mpa =aM . (4.151)

M ExR,
It allows to compare (HBO) with the first relation (ECQ‘%I)) which can be written
in the form
a1 Mys = ¢ Mpoay (¢*72)) = =) 553 (4.152)

Cn-sigma
where 019 is the diagon@ | part of the polarized Casimir operator (3.66). Using

the exchange relations (4.95), we derive a compatibility condition between the
last three equalities expressing the inverse of the dynamical R-matrix in terms
of Ri2(p) and the diagonal monodromy matrix M,

Ria(p) 72 My Ron(p) Myt = iy & (Raa(p)) ™' = ¢°7* My Ria(p) M,,;"

. - R
One can verify that Eq.(h.mSVS) holds for Ry2(p) given by (% llic3;, (Eg%[)%) and
M, proportional to diag (¢~ 2P*,...,q %P") (Seﬁ the next subsection).

It should be also mentioned that the PB (prg‘B) quantize trivially to

[(M1)%, pe] =0 = [M%, pe] = [Mxy, Mpo] =0 =[My, My] . (4.154)

We shall conclude this subsection with the quantum group transformation
properties of the quantum zero mode’s matrix. The exchange relations between
the Gauss co onents of the monodromy My and a (the quantization of the
first relation (B.138)) read

Misay = ay REMj:Q ; (4.155)

of course, Eq.( %50 folloxgj fgop&lhere as it should. Recasting (| &Ff&’) ) in a form

involving the antipode S (

Masar S(Me)s = ar Rf,  (ies  (Mx)?,a, S(M2)?,) = ai, (RF)72, )
(4.156)
defines the Giantum group action on the zero modes. Writing down explicitly
equations (H%g)_fﬁat only include the diagonal and next-to-diagonal elements
of My (i.e., fixing v = B or v = f+ 1, respectively), using the parametrization
of My from the previous Section 4.3, as well as the formula

RTQ = R2_11 = qii (112 + (q - qm) P12) (4157)
M - tl
(cf. (&[%7) and (%I.FBSC ,ixcle obtain
ds agdgl — gn—Pas at koal k' = qleem % dl,
for 60 = 1, aza Kyal K71 = glaedat1agl
aq 0, a<a ’ aTa"ta a”
[ ] = 5@-&-104‘13—1 K, , [KaFa, ag] = daa Ka a‘fx—i—l

(or, equlvalently, F,al, = ¢®+1e%0 gl F, + 5,00l 1),

a=1,....n—1, «a,f=1,...,n (4.158)

Maq

aMMpa

(4.153)

R+compactly



(note that 0;; —0;_1,; = (5”) Remarkably, relations %T58 ) imply that the rows

of the zero modes matrlx at= (@) _,,i=1,...,n form U,-vector operators'®
for the n-fold cover U," (sf(n)) of Uq(sﬁ(n)), ie
Adx(al) =a’ (X)) | where  Adx(z ZXle Xo) . (4.159)

(X)
In (%énSs_Q; X + X/ is the defining n x n matrix representation so that
(KD)G = e hriedg . (BD)E =00 10u0 . (FDD= 0001000 (4.160)

(kf and df are defined accordingly, see ( bﬁ8 and X; and X5 are the factors
appearmg in the U, coproduct written as A(X ) Z(X) X1 ® X See

Appe Q&§_B' Hence, albeit quite differently looking, relations ( 5 &Fl'58
and (ETW%Eexpress the same property of the zero modea’M rx{llatrlx ngmely its
covariance with respect to U,. As the initial formulae (4.155) and (4.67) for
the transformation of the zero modes’ matrix a and of the chiral field g(x) are
identical, the same applies to g(z) as well.

W
One can show further that, as devised by Pusz and Woronowicz &15] back in
the late 1980’s, the zero modes’ exchange rea&r);[tincl)ns ( ransform covariantly
with respect to the quantum group action (#.155), in the following sense:

M3 (Rlz(p) ay a2 — az CL1R12) M;; = (312(17) a1 az — az G1R12) leFg, R23 .

4M1
Mpmpl =
To verify (% lGI; one us e relation [My3, R12(p)] (see ( o ), Eq.(4. P56T

all(l t:he qualltulll YBE E:;S ]“ ‘he fOI"m

In the spirit of the discussion at the end of Section 4.3, %ETGTeThaS Eo be, con-
sidered as dual to the obvious invariance of the exchange relatio Wlth
respect to the action a — a T where T obey the RTT relations gf@

All this applies to the exchange relations (#.67) for g(z) as well

4.5 The WZNW chiral state space

Our next task will be to construct the state space of the quantized WZNW
model as a vacuum representation of the quantum exchange relations.

We shall assume that the quantized chiral field g(z) splits as in (ggili),
A ) = ud () @l (4.163)

where the field u(z) = (uf*(z)) has diagonal monodromy,

K
eszOuf(z) e 2milo — 2wl uf(ezm z) = (Mp)é- uf(z) (4.164)

and further 1Hlat the zero modes ”inherit” the diagonal monodromy matrix M,
of u(z) in (Mﬂ), in the sense that

(Mp)iuf(2) @ al, = uf (2) @ (M,)' a, = uf (2) @ al, MZ (4.165)

(cf. (5%4) and (%ﬂ%{i)) To ensure that (%) takes place, we shall require that
(p; —ps) H = 0 as a constraint characterizing the WZNW chiral state space (cf.
Remark 3.1; we shall put temporarily hats on the operators to distinguish Elalem
from their eigenvalues). Clearly, this will take place if the chiral field (4.163)
acts on

H=PHF (4.166)

P

where both H,, and F,, are eigenspaces corresponding to the same eigenvalues of
the collections of commuting operators p = (p1,...,P,) and p = (P1,...,Pn),
respectively, so that

i@ T—T2p)H, @ Fp, =0, i=1,...,n. (4.167)

m -  RS92, S93
Ug-tensor operators have been introduced in ) .

space



Assuming that H is generated from the vacuum vector by polynomials in g(z)
(and its derivatives) automatically provides this structure,
The quantum counterparts of the PB (8.199) and (b 92),

[jgmpf] =0= [Ln’p@] ) Ugnv u?(z)] =—-z" (ta)é uzB(Z) (4'168)

M
show that H,, are representgtion spaces of both the current algebra su(n)g (%2)
and the Vlrasoro algebra (4. 7) WhlggBy(? iy an affine primary field. On the

other hand, the quantum analog of (| written as

[ i 1
peut(z) = w2 e+ o), o =0~ (4.169)

implies that the operators u;(z) = (uf(2) 1%ntslr_;g;[g/me Hp and H, ) ie., are
generalized chiral vertgr gemtors CVO) ].

Likewise, the PB bﬁB ) is quantized to

peal, = ai (pe+v) = [pje,al] = (88— })dl, (4.170)

which implies the first equation (EEIEQR’%]} According to (%EITH%, every F, is invari-
ant with respect to the action of (the n-fold cover Uy of) Ugy(st(n)), the rows
a® = (a?,) of the zero modes’ matrix acting as ”¢-vertex operators” (cf (h%))
The reducibility properties of the corresponding representations will be studied
in detail in what follows.

uM inhl
Having in mind (Hﬂ) and (EﬁlTG%), one should expect that
det(M, a) = det(a) = det(aM) (4.171)

detaM
for appropriately defined det(M,, a) and det(alM ) . The first relation (hﬂ) sug-
gests that the quantum diagonal mon gilﬁomy matrix M, also gets a "quantum
correction” to its classical expression (8.3) (as the general monodromy M does,
cf. (%58)):
(My)i = g~ 2175 5t (4.172)

J

L. ExRa;
Indeed, the non-commutativity of ¢?# and a’, see (h.913 , exactly compensates
the additional factors ql_% when computing

det(M, a) := €ir.in (Mpa)il ... (Mya)iy e o . (4.173)

1
[n]!

To prove this, assume that i, # i, for u # v (so that, in particular, HM 1 q i =

[T, ¢ i = I); we then have

—2pi, +1—-L iy —2p H+1-L iy —2p;, +1-L G, iy o i
q P T waag PR T a2 g P Ty = ag a2, . ag (4.174)

since, moving all q*2p‘#+1 n terms either to the leftmost or to the rightmost

position, we get trivial overall numerical factors:

"I R@H2tedn=1) o gn(-f) =2t S (1424 4n) (4.175)

Hence, defining simply

det(My) :=[Ja " (=1), (4.176)
i=1
we also obtain
det(M, a) = det(M,) det(a) = det(a) det(M,) . (4.177)

Understanding the second relation (ﬁglt%MI) turns out to be more intriguing E'{%S];
it is relegated to Appendix C where we also justify the appropriate definition of
det(M) . m

In accord with ( , it follows fr é_p_? ) that the elements of M com-
mute with ¢ and hence, with M, 72).

pacomm

Mpq

gs

i

detMp

DaDMp



cva
Eq.(E.TGQ) implies that the exchange relations between ¢P7 and u(z) are
identical to those for the zero modes (%93)

¢ ut(z) =ul(2) T = P (z) = u(z) g0
N~ (4.178)
(Together V\EIEH, 1 .167), this is the reason why M, should multiply u(z) from
the left in (4.164).) As expected, in the quantum theory the spectrum of the
commuting operators p;, ¢ = 1,...,n acting on H (hETGB) will be discrete; to
determine it we only need, in &(&gﬁtion to (M.l }72%5), the eresponding eigenvalues
on the vacuum. Combining (h_['f%) with (4.164) and (&.172), we obtain

¢n a0 0) = w0 TR 0) & w0)g [ 0)=q' " uf(0)]
4.179)
ugp-vac
q.-(4. admits the following interpretation. e vacuum eigenvalues p;”’ on
E dmits the following i ion. Th. i 105 i)
are equal to the barycentric coordinates of the Weyl vector .32),
0 1 he b i di f the Weyl p ETZ{’Z
1
pi 0= 10y, PV =t = "0 =i, =10 (4180)
(so that, in particular, q_gpgm =¢' ), and
u(2)|0) =0 for i>2. (4.181)

MM 0
A similar condition appears for the zero modes due to (%1’%%) and (%65)

(My)5al, | 0) = al M7 | 0) & al, g |0y =¢""al | 0) . (4.182)

“Weyl 2,
Hence, the assumption that (hv’fmS(); holds leads us to the counterpart of (Hl)
for the zero modes:

(" —¢"= " H|0)=0, i=1,....n = a,[0)=0 for i>2. (4.183)

xRa

ExR E
As the exchange relations (&IEI%%) (or (4.93)) imply
ul(z) : Hy = Hpppr s, bt Fp = Fpipr s (4.184)

vac-Weyl
they completely determine, together with (&ETSO%‘,Lthe spectrum of p on the
chiral state space (4.166) under the assumption that H is generated from the
vacuum by polynomials in g(z) (4.163). (The uniqueness of the vacuum requires
the spaces H,,©) and F o to be one dimensional, so that H,,w) ® F,0 = C|0).)
The first thing to say about the spectrum is that it is certainly a subset of the
lattice of shifted integral sf(n) weights

n—1

p=A+p & piip1=XA+1 for A:Z/\l/\l, N €7, (4185)
=1

see (%3% (&23) (it follows from (E[EI% that all p;; have integer eigen-
values). The shifted Bzvgi_%ht interpretation is also supported by the observation
that, according to (hgm%? the quantum determinant det(a) = Dy(p) of the
zero modes’ matrix is strictly positive fsr h — 1 for integer values of p; ;41
satisfying p;s41 > 1, p1n < h—1. By (& , these coincide with the shifted
dominant weights lying in the level k positive Weyl alcove, with Dynkin labels
characterized by \; > 0, Z:L_Alw{l\z < k, a fact that might be anticipated by the
classical correspondence, see (3.13).

It is natural to start the study of the WZNW space of states with the rep-
resentation of the chiral zero modes’ algebra M, . Being z-independent, it is a
quantum system with a finite number of degrees of freedom and state space

F =F(My) =M, 10) . (4.186)
. e (BBR3) i s
The dynamigal R-matrix (1.107) is singular for [p;z] =0 so that the exchange
E.QS; thi q"

relations (| are ill defined on F for ¢ given by ( =—1),as [nh| =0
for any integer n . This problem has however a simple solution; indeed, getting

0) .

ExRup

vac-Weyl

u2.n

ap-vac

a2.n

cqvo

sSp-p-r



RRp2
rid of the denominators in (ﬁ?) (for c;j(pij) = 1) and using the identity
[p— 1] — ¢*'[p] = — ¢*P, we obtain the set of relations
i, [pig — 1 = i) byl — ahal g (for i#j and ap),
[a,a’] =0, aaﬁ—qeuﬁaﬁa , a,B,,j=1,...,n, (4.187)

a? a

stand-r-matr
th €ap as defined in (3. e shall replace from now on the relations

(4aag5 by t}eelr regular form” h Thus the al a=% q is defined by
1.187), &I 93; (B 94) and the determmant condition (4. . We assume that
M, contalns polynomials in a’, and rational functions of gPi .

—

To avoid confusion between the operators and their eigenvalues we shall put,
when needed, hats on the operators AQQNote that, evaluated on a given F, , the
operators p;; in the first relation (4.I87) can be replaced by their (integer)
eigenvalues so that the coefficients of the three (bilinear in a’) terms become
just ordinary (¢g-) numbers:

(Pij — pij) Fp =0 = (qPi — qP) F, = 0. (4.188)

4.5.1 Fock representation of M, for generic ¢

We a]%z}llll call the Jvacium representation ( EI 186) of the aﬁg’a M, determined
by (4:183) and (@U%L”Fock resentation”. Due to (M- (Wlth the counit
defined in ( Fﬁ %79 and %FISS , it is clear that F is an Uj-invariant space.
The two questions of prime nnportance for us will be its Uy module structure
and the construction of convenient bases. We shall first explore both of them in
the case of generic i ifo tysflhich we have a satisfactory theory and consider the
root of unity case (h%%ﬂy at the end.

The following result (also valid for ¢ = 1) was first established, for general
n, in for n = 2, cf. [49]).

F
Proposition 4.2 For generic q the Fock space F 2(2.186) is a direct sum of
irreducible Ugy(s€(n)) modules F,

F=r (Fpor =C0)) . (4.189)

Here p runs over all shifted dominant weights of s€(n) and each F, enters j
the direct sum with multiplicity one. In other words, F provides a model [[35]
for the finite dimensional representations of Ug(sl(n)) .

To prove this statement, we shall iptroduce hases of vectors in F,, labeled by
semistandard Young tableaus see e.g. ].and 0]. The key point is to realize
that Egs. (hgT84) and (&I 185) imply that, in the Young tableaux language, the
multiplication by a!, is equivalent to adding a box (labeled by «) to the i-th
row; in particular,

ag, t Yoo = Y=Lt e > t=1,..0,n (4.190)

where Yy, ., , is the Young diagram corresponding to F, (here Yy ¢ is
identified with ) , the one dimensional vacuum subspace). Thus, the entries
of the zero modes matrix appear as natural variables for a non-commutative
polynomial realization of the finite dimensional representations of U,(sf(n)).1”

The correspondence between the labels of 7, and Y, ... x,_, is made explicit
by the following

HIQPT F
Theorem 4.1 (cf. Lemma 3.1 of [TT4]) For generic q the space F &.186) is
spanned by ”antinormal ordered” polynomials applied to the vacuum vector
Pp,_y(@"71) ... Py (a®) Py, () |0)
with my > Mg > -+ > My (4.191)

17Note that this realization has a non-trivial ¢ = 1 counterpart. The proof given below goes
essentially without any modification in the undeformed case as well since, for generic ¢, [n]
vanishes only for n = 0.



where each P,,,(a') is a homogeneous polynomial of degree m; in al,..., al or,
alternatively, by vectors of the type

Py (AW) Py, (A®)) ... Py, (A7) [0)
where A,(fi)mal = afle ...a(lll , i =1,....,n—1 are "strings” of antinormal or-

dered operators of lehgth i.

PolF
One can check that a vector of the type (&FT91) belongs to the space F,
which is a common eigenspace of the commuting operators p = (P1,...,Pn)
with eigenvalues satisfying p;; 11 = A; + 1. If the total nu Sk of zero P%]l(%‘(—iel .
operators acting on the vacuum is N, then the inequalities in (4.191) and (W

correspond to the partition N = TL_; m; = Z;:ll jAj or, in other words, to

t gly_oggg diagram Yy, ., ,;in (4.191) the diagram is built row by row while
. corresponds to a construction column by column.

Proof of Theorem 4.1 We shall start by assuming that n > 3; the case n = 2
is special (and simpler) and will be considered separately at the end. The proof
is based on the following three Lemmas.

Lemma 4.1 If P(a’,...,a') is a (unordered) polynomial in a’, for 1 < ¢ <
(and arbitrary 1 < a < n), then

ayPa',...,a")[0)=0 for B3<i+2<j<n. (4.193)
Lemma 4.2 The "string vectors” of length i > 2

vﬁj}al =al,abl .. al, |0), 2<i<n (4.194)

are g-antisymmetric, i.e.

(2) _ € 1) T X
00, arp = — G (4.195)

String vectors of length n are proportional to the vacuum vector |0) .

Lemma 4.3 The product of two operators of type a’t' annihilates a string
vector of length © for an arbitrary combination of their lower indices:

aiftt a?l USZ)NM =0 for 1<i<n-—-1. (4.196)

L1
Proof of Lemma 4.1 To show that Eq.(h.—l%) takes place, we first note that

ey [0y =p) [0)=(G—0)[0), 1<lj<n (4.197)
-Weyl ExR,
(see (&IV?CI 80)) and hence, by (&I}.{E‘)Ba;,

[ﬁ[j - 1} Pmn...ml (an,anfl’ ey al) |0> =
=[me—mj+3—€—1Pyp,  m(a,a" "t ... a")|0) (4.198)

L1
for any homogeneous polynomial of order m,. (> 0) ina", 1 <r <n. Eq.(&fl%)
follows from the consecutive application of the equality

a‘ZJ a’tl;c Pmi...ml(ai7...,a1) ‘0> =
1 . . )
- ma]ﬁ a’ [pej — 1] P,y (a'y ... at) [0) = (4.199)
Jj
— 1 L 7 . L j €apbej i 1
im(aaaﬁ[pf]]iaﬂaaq .)Pmi'__ml(a,...,a)|0>

for a # (3, with
Doj =me+j—42>2 for 1<I<i, i+2<j<n (4.200) | plj

(it is essential hat pe; — 1 # 0); for a« = 3 the operators al, and af, simply
commute, see (4.187). As j > 3, moving the operators a/ to the right until



2.
they reach the vacuum and using (%T%&, we prove that expressions of the type
(#.199) (and hence, (4.193)) vanish.

Proof of Lemma 4.2 It is clear in the first place that a string vector vanishes
if any two neighbouring indices ayy1 and «ag, for £ = 1,...,4 — 1, coincide (if
this is the case, we can exchange the corresponding operators asz‘il and af, , and
then apply Lemma 4.1). If ayy1 # oy, we can use the first exchange relation

(A.187) in the form

41 L s — gt gt e+1 J4 € Deo+1
Qo) Oy [Dees1] = Uoy Qoyy [Pees1 + 1] — o, q T (4.201)

and, as the first term in the right hand side vanishes when evaluated on 1 11(,,Z 1) a
(v(o =[0)) while the eigenvalue pee41 = 1, dedyce relation (% 195). For i = n
it complies with the properties of the s—tensor (#.129) since

Ugi)...al = ein-»-ilaé"n e aflll |0) = €a,...an Dq(a) 10) = €ap...on Dq(p(o)) |0) ,

n—1
D, = [I Gi-¢= ] (1.202)
1<e<j<n =1
-q- det-int =D
(tlrgz( 15t equality (&IVI}ZHZ follows from Lemma 4.1; we then use (4. T3 ,e
an EE.IQ?M.

L3
Proof of Lemma 4.3 Eq.(h._l%) is a simple consequence of the g-symmetry
of the product a’la o1 and the q—ﬁagltisymmetry of the string vectors (Lemma
4.2). Denote a vector of the type (4:196) by

+1 :
Wapy = Wapy{o} ‘= aH_l aﬁ glz'z 101 ZO¢+1 Ug’YU)—l o1’ l<i<n-1
(4.203)
(the indices o;_1,...,01 are irrelevant for the argument that follows). The

point is that the ensuing symmetry of the tensor w,g- is contradictory, i.e.

incompatible with its non-triviality. Indeed, exchanging the indices arranged

g ,6’,04 ba k o o ? v in the two possible ways and using the last equality
e obtain, respectively

_ _ +ea — +eaytesa

w'yﬁa — qewg wﬁ'\/a - _ qefyﬁ €any wﬁav - _ q€~/ﬂ €CayTER waﬁ,y or
Wyga = — ¢ Wyap = — geerten Waryp = geert ety Wapy , 1.
waﬁ’y — _ q2(6a5+6ﬁ"{+6'ya) waﬁ’y = waﬁ'y = O . (4204)

Returping to the proof of Theorem 4.1, we shall first show that a weaker
form of hm) takes place, namely all vectors in F are linear combinations of
vectors

P, (a™) P, (a1 ... Ppy(a?) Py (a') [0, my >my for i< j.
(4.205)
By making use of Lemmas 4.1 and 4.3, one can easily exhaust the list of vectors
created from the vacuum by a small number (say, N < 3) operators a,:

N=1: a}|0);
N=2: abas|0), aiaé|0):vf)'

B
N =3: aia};a;|0>, aiaéa}/m}, al aﬁ Loy = Sg,y
(a2 ap a}/ |0) = [2] aj v&%v) — g% q vg/)) ;
(4.206)

Due to the g-(anti)symmetry in the lower indices, not all bmatlons &FZUG

¢ linearly independent. Obviously, all vectors in t gllggt MG ) are of the form
(g 205). We shall assume that the arrangement (4.205) can be made for any
number of zero modes’ operators not larger than certain N and then perform
the induction in N. To this end we shall prove that the action of aJB on a vector

P, (a’)...... Py, (a') |0) for N=mj+--—-+m;, 1<i<n (4.207)



PolFn
either produces again vectors of the form (#.205), or gives zero. The former is

certainly correct for j = ¢ 4+ 1 and the latter for n > j > 7 4+ 2, by Lemma
4.1. So it is necessary to show that an operator of type a%, 1<j<n-1
acting on ( . 7) can be moved to the right through P, (a?) for any j <i <n
and m; > 0. This amounts to proving that the corresponding eigenvalue of
[pij — 1], i > j is different from zero; to this end we could write

@} P, (a%) ... Py (a7) ... Py (a') |0) =
= g T s~ Pa(6) P, (@) P () 0) (1209

2
nd apply the first relation (E%IS?) if @ # (. or just use the second relation

evs

(B.187) if « = 3. By the general formula (4.
pij=mi—1—m;+j—i (<=2 for m; <mj; and j<i), (4.209)

@iPmj
hence the quantum brackets in the right-hand side of (%20%;) do not vanish. As
a result, the operator a/ can always join its companions of the same type. Our
ngﬁrgtep will be to show that this will not violate the inequalities among m; in
( ) i.e., if m; =mgji—1,

al, P, (0) P, (@?7Y) ... Py (@) [0) =0, 2<j<n. (4.210)

i=mi-1 . . .
Eq.(%.?l(i) can be proved by pulling consecutively the rightmost operators of
type a2,a,...,a’ until they form a string of length j with the rightmost " free”
a' . Using the property of strings

[prs, AD]=0 for 1<r<s<j<n, (4.211)

) ) i=mi-1 )
we can proceed in the same way, eventually expressing (%.21”) as a linear com-
bination of vectors of the kind

Pry gy 1 (0772) . Py (") @l Py (AD) ]0), 2<j<n—1
_(4.212)
[V 1

(strings of length n that WOUICE appear for j = n are eliminated by (EZHZ . To
confirm (EFZTUff and hence, (4.191), it remains to prove the following general-

ization of Lemma 4.3:
ay Pr(A9)]0) =0  for 2<j<n-1, m=>0. (4.213)

The proof of (E%%%) can be dgne by induction in m . The case m = 0 is covered
by (&rrss) and m = 1, by (4.196). For m > 2 we shall use (&201) to extract
a g-antisymmetric term from Py, (AU)) |0) hich vanishes when acted upon by
ay , due to an immediate generalization of (4.203), (ESZUAL)

aly Py (AY)) 0) = alya), al ! .. al, Py (AY)) |0) =

(1, i i—1 €a; qa, 2] -1
= ajﬁ (2 (agx;‘aflj}l - a]ajflajaj gt )+ 2 ajajllaéj) )
Xl al Paa(A9)[0), 2<<n-1. (214)

Furtgtlegé the operator a{;j from'the remaining last tqm in the 'big parentheses
of (EZ szi can be moved to the right until one gets g%llﬂgar combination of terms
of the type P;(AV)) al) Pr_1(AU)) |0). Thus Eq.(%.ZIB) follows from the same
assumption for m — 1.

A similar procedure (groupir.lg the operators in strings of decrea%%g length)
leads to (4. . By the technique used in (4. , based on Eq.(4.201), one
can prove that any of the strings is g-antisymmetric on its lower indices; this
generalizes Lemma 4.2.

To complete the proof of Theorem 4.1, we shall consider separately the spe-
cial case n_= 2 when the determinant condition is also bilinear as tlgei dexchange
aa2 n
relations (#.187). Denoting p := p12, we have (for a2(p12) = 1 in (1.133))

[P+ 1] (4.215)

D) =p]. @ =-L U e o y

evs-pij

mi=mi-1

prop-str

last-il

genl3



-D det-intertw Dga=D
(cf. (E.Sl 37)) so that, combining (ElBlgi Sia“( T , we obtain

€ij apay (= agap —agaj) = [pleas, o, f=1,2

1 _1
(e12=—q> =", eny =¢q 7 =) = aga? = agag
aiaé e =[p+1], ah aj e =_—[p-1], (4.216)
a. aﬁ e =0 (ie., abal =qalad), i=1,2. (4.217)

is.nqf difficult to see that Eqgs. (EFZTﬁ%g(%vhich are glaomogeneous in @) and
&F?T?STnply the homogeneous exchange relations (A.187) for n = 2. An im-
portant consequence of (| is that the exchange of operators with different
upper indices (in partlcular, their ”antinormal ordering”) can be performed al-
ready at the algebraic level, which directly implies Theorem 4.1. |

Proof of Proposition 4.2

By Theorem 4.1, for generic ¢ any vector in F is a linear combination of
vectors belonging to the spaces F,, where the (barycentric shifted weight) labels
p = (p1,...,pn) are related to the Dynkin labels of Young diagrams Yy, ., ,
of sf(n) type by pir1 =X +1,i=1,...,n—1.

As the U,(sf(n)) generators only change the lower indices of the zero mode
operators, it follows that each F, is a U,(sf(n)) invariant space. In particular,
all vectors generated from the vacuum by homogeneous polynomials are weight
vectors (eigenvectors of all K;, i =1, o I;hﬁ_, weights depending solely
on the set of N lower indices. Both (4.191) and &Fﬂ‘e‘rﬁave an obvious inter-
pretation as filling in the boxes of the Young diagram Yy, .., , with numbers
from 1 to n corresponding to the arrangement of the lower mdlceTTa%long its
rows or columns, respectively. One infers from the last equation (4.I87) the
g-symmetry of the row fillings, and from the generalization of Lemma 4.2, the
gzaptisymmetry of the column ones. On the otherplg d, the exchange operations
(L.I87) we pse to express a vector of the form (1.191) as a linear combination
of vectors (4. and vice versa) leave the set of lower indices invariant. We
thus have the same situation as in the sf(n) case where, for enumerational pur-
poses, one introduces bases of vectors labeled by semistandard Young tableaux,
with indices ”weakly increasing” (i.e., non-decreasing) along rows and strictly
increasing along columns.

Each F, contains a unique, up to normalization, highest (resp., lowest)
weight vectors (HWV and LWYV)

|HWV>p = |/\1 n 1> and |LWV>p = | — )\n—l . = /\1> (4218)
satisfying
(Kz — qA’) )\1 .. ')\n71> =0= (Kz — qi/\"fi) — >\n71 e — )\1> s
Ei‘/\l---An—1> :OzFi‘—)\n_l —)\1> 5 1§z§n—l (4219)

These are given by
A Anmn) = (AR AR AT (AT (o) ~

~ (apZy)™ (apZ3) ™2 L (a3)™ (ag)™ [0)

[ = Anct =) = ARDM AT )N (AT A ) 0) ~

(az™ )™t (ag =)™ 2 (an )™ ()™ [ 0)

~

A(oz-)i-z la =a a+z 1 a;—i-lz 2" ai ’
Ai=m;—mip1 =pus1—1, i=1,...,n—1. (4.220)
As for generic ¢ the U,(sl(n)) (finite-dimensional) representation theory (in-
cluding weight, space decomposition and dimensions) is essentially the same as
that for sf(n) %5'5], we conclude that the spaces Fy for pjip1 = A +1, A = 0 ex-
haust the list of U,(sl(n)) IR. The dimension (g—]&éﬁmd the quantum dimension



of F, are given by

. Pij Dy (p) 1
dim F, = H = = ———Di(p) =:d(p) , (4.221)
e U LD N | Vi
n—1
. [Dij] D,(p) 1
qdim F,, := Trg, K, = = = — D,(p) =: dy(p)
E 191191 1('?)] D‘J(p(o)) He=11 [ﬁ]!

(cf. %5], Example 11.3.10). According to Theorem 4.1, every vector in F has
a finite number of components belonging to different F,. It is obvious from
the definition that vectors belonging to F, and,F, for p # p' are linearly
independent. It follows that the Fock space F (4.186), originally defined as a
vacuum representation space of the zero modes algebra M, , is equal to the

direct sum (4. . This completes the proof of Proposition 4.2 (for generic q).
|

detc-n2-1
Remark 4.3 Note that (kZTG%_tﬁkes place also for ¢ a root of unity. Hence,
for n = 2 Theorem 4.1 applies to the Fock space F = @72, F;, of the WZNW
chiral zero modes as well, where the spaces F,, are generated from the vacuum
by homogeneous monomials in a' of order (A =) p — 1. In this case, however,
Fp carry indecomposable representations of Uy .

HIQPT
We define next a linear antiinvolution (”transposition”) on M, y
(XY) =Y'X" VX, Y eM,, (qﬁi)’:qﬁi ,
. : 1 . .
DY (p)(al,) = @ = Ty i all ...alpt g0rOns1 | (4.222)

where Déi)(p) is equal to 1 for n = 2 while, for n > 3, is given by the product
pPw) = T[] il (= DY), d]=0=[DP@). a]) . (4.223)
J<l, j#i#l
The matrix (a&) is thus the (left) adjugate matriz of (al)) :

1

d?alﬁ = m eiil...in,1 ai¥11 . agnn—jla% antl...ocn,l _
(_1)71*1 aa...q, o
= W gaet..- ”715041042,.-0171—1[1 Dq(a) = Dq(a) 5[3 (4224)

det-intertw NK
(we have used the antisymmetry of €;;, ;. _, and further, (&1?1319; and (&fl32))
In other words,
i = Dy(a) (a™1)¢ = Dy(p) (™)) where ()7 aly = 35 , agm-l)(;-* - 5;‘-)
4.225 a-1
a-1 i
(the fact that the matrix a=! defined by (ng)in(vHQ) is also a right inverse
of a can be demonstrated in a similar way as ( ) by using the properties of
: X . a-inv
the dynamical antisymmetgizers and e-tensors ). Note that, due to (M)
(and in conformity with (K. , the determinant Dy(a) of the zero modes’
matrix is invariant with respect to the transposition:

a)) 6% = () (a%) = L DD (p)al =alal = a)é?
(Dq( )) 6[3 ( B) ( z) 'Dg’)(ﬁ) % Dq (p) « [aate’ Dq( )604 ’
(Dg(a))’ = (Dy(p))" = Dy(p) = Dy(a) - (4.226)

It also follows that the transposed elements (a’,)’ obey

_ . , L | : 1 ;
PN E) (A A A\ co 4 iV i :
E (ay,) D, (P) ag = Dy(p) o3 321 ag, Dy) (al) = 7ng)(ﬁ) 05 . (4.227) |ladjug

The involutivity of the transposition derives from the fact that the last two

equations are valid with (a?,)” in place of a’, .




To compute correlation functions (like in (%0)), we shall equip the chiral
state space (1.166) with a left ("bra”) vacuum state (0|, defining thus a linear
functional on the chiral field algebra. This will allow us to define, i Pparticular,
a bilinear form (.|.) : F x F — C on the zero modes’ Fock space (4.186) such
that, for any two vectors in F of the form |®) = A |0), |¥) = B |0) where
A, BeM,,

(® | T):= (0] A" B|0) . (4.228)

To this end, we shall require the left vacuum to be orthogonal to any F, with
p # p© | and normalized ({0]0) = 1):

0]C|0) = ¢ vCeM,, where

Cloy=colO)+ > |C), |Cp)eF,. (4.229)
p#p(©
It is clear that the vl Cnon—trivial monomials in a;o(i(%lrlltributing to the vacuum
expectation value (4.229) are those of th@flg%[mnt(m) with my = --- = m,,
which could be further reduced by using (i .. from the invariance of Dy(a)
agq(_ﬁll%qpi with respect to the transposition (K. and their commutativity,
(2.143) we deduce that

(0|C|0)y =(0]C"|0) VC e M, (4.230)
and hence (with the same conventions as above),

(®|C | W)= (0] A’CB|0)=(0| BC'A|0) = (¥ | C" | ®) vC e M,
o (4.231)
(By,taking C' = 1 in Eq.(&t?i%l) we infer, in particular, that the bilinear form
(MS) is symmetric). We thus have, for any | ¥) € F,

(0] al, | O) = (T | (al) [0)=0 for j=1,...,n—1

ie. (0]al, =0, j<n-1, (4.232)
(D] ¢ | ) = (T | "7 | @) = ¢" (T | @) = ¢" (D | V)
ie. (D gl =qPi(d | V| ®)eF, (4.233)

2. i Fpdef Dual2
(cf. (HS), (%2), and (&IET§8), respectively). It easily follows from (hl.lZaBB)
that all the irreducible U,(s¢(n)) modules F, and F, (4. with p # p’ are
orthogonal to each ofher. -
Egs. ( ?1m2), (a. 25), (h,alzggk and the relation a M = Mpa (which can be
considered, for a given M, , as a definition of the monodromy matrix M for the
zero mode sector) imply

M%) @ = @} (L) = (M%) = (a7 M, a)’, = MY,
(4.234)

i.e., the transposition of an entry of M coincides with the corresponding entry
of its transposed, in the usual matrix sense, M’ = M Al agreement with the
opposite triangularity of the Gauss components My (%6%), this js compatible
with Eq.(4.91), (My) = t(Mgl) which implies, in turn, Eq.(2.90) for the
transposed of the Chevalley generators of (é%%ﬂ(n)) .

It follows trivially from the definition (4.228) that, for any | ®),| ¥) € F,
and any X € Uy(sl(n)),

(X®|T) = (®| X' | ), (4.235)

i.e. the bilinear form is U, (sf(n))-invariant (see Section 9.20 of ﬁGQ} for a proof
that, for generic ¢, a form with this property is essentially Boigpe and non-

enerate). It is equally simple to derive, by analogy with (M) and using
(E.%?) and e(X') = e(X), the invariance of the left vacuum:

0={(0] (X —e(X)) VX eU,(st(n)) . (4.236)

HIQPT
It has been proven in [TI4] for n = 2,3 (and conjectured to hold in general)
that the scalar squares of the highest and lowest weight vectors (MO) are

(HWV | HWV), = [[lps; — 1! = (LWV [ LWV), . (4.237)

1<j

Mpr

scsq
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4.5.2 Fock representation of M, for ¢ =e¢

After having studied the structure of the Fock representation of the algebra
M, for generic ¢, we now return to our genuine problem, assuming th t_g;[}ﬂe
deformation parameter is an (even) root of unity, ¢ = e~ "%, h=k+n (%Tﬁ
The fact that in this case [Nh] = 0 for any N € Z changes drastically the
picture. We shall point out and comment on the main differences below.

The basic technical tools that enabled the classification of Fock states for ¢
generic and N > 3 were the three lemmas in the previous subsection. Lemma
4.2 holds in the root of unity case as well (due to the fact that the moduli of
the eigenvalues of p;; that are involved do not exceed n — 1, and n < h); this
also ensures the validity of Lemma 4.3 which uses Lemma 4.2 in an essential
way. The proof of Lemma 4.1 however fails since in this case [p;; —1] can vanish
which makes impossible the exchange of afé and a!, for a # 3; indeed, in this
case

i —lv=0 & pjo=Mh+v, MeZ = q¢Piv=(-1)Mgo
a2 o (4.238
(for e = £1) and (bS?) reduces to just the g-symmetry of aj,ajv :

agaé v = ¢ a% al v . (4.239)

ij1
It is quite interesting that the same condition (MS) implies the g-antisymmetry
of (aja} —al aj)v

(al, a% —al ag) v=—q ‘¥ (a% al, — aé ai)v . (4.240)

To prove it, we use h_[87 With i< jand pjv=Nh-1)v, N € Z, and
further WS well as [2] = ¢+ ¢ ¢ for e = £1. Note that both (EQSQE and
E QZI(); remain trivially Vahd fora=p.

aa2
The vanishing of the other p-dependent coefficient in (kEI87 ) implies, on the
other hand, the symmetry of @, aj v in the upper indices:

pijlv=0 < pjv=Mhv, McZ = agaév:ag‘a%v. (4.241)
The proof of Lemma 4.1 cannot be applied, for example, to the vector
Vappy =0l ap ap, ... a},,hﬁﬁ |0) for  j>3 (4.242)

which is of the form envisaged in (%193). This is an important issue: if vag, g, 7#
0, it would mean that, for n > 3, the spectrum of p = (p1,...,p,) on F includes
non-dominant (shifted integral) sf(n) weights. As mentioned above, when the
LE??X « is different from all B;, ¢ = 1,...,h+ 3 — j, it is not possible to use

87) to move a’ to the right until it reaches and annihilates the vacuum, since

[p1j — 1] aéQ . .aéhﬁﬂ, [0) = aéz .. a};h“’ﬂv p1; +h+1—4]]0) =
= [h]ap, ... a5,,, . 10)=0. (4.243)

S
It turns out, however, that the vector (&[.242) is g-antisymmetric in the first pair
of indices and ¢g-symmetric in the second,

=4’ Vgay = Vapy = 477 Vayp (4.244)

b
and, as a result, vanishes. Indeed, it follows from (&1.244) that

Vay = = Vg = —q 0T yg o\ = g e a0 g g (4.245)
but also
Vapy = 477 Vang = =47 Vyag = —q T8 py g, (4.246)
or,
Vagy = G P TOTON 0 50 = —g T Ty 5, (=0) (4.247)

pijl

pij-anti

[pijanti]

(=]

(=]

vabgl

vabg?2

vabg3



since the relative factor is equal to —1 (for 3 =7) or to —¢™2 # 1.

We shall provide details of the proof of (#.244) since they appear to be typical
for the root of unity case. The g-symmetry of v,g, in § and v is implied directly
by the second Eq.(4.184). To prove its g-antisymmetry in the first two indices,
we write

Vapy = al, aé vy where v, := a}/ aés . a}ng,j |0) . (4.248)
There are h +  ia | ope ators a- al apphed to the vacuum in v, so that,
particular, by (4.93) and (% [97),
P vy = (h+1)v, and  alv, =0 Vo. (4.249)

The last equality goagows since al Uy = al alyv, p1;v = hv etc., so one can
apply repeatedly (4.187), starting with

ajvy—af,a,lyv—[h_l] alalpyy—1v= ... (4.250)

until @/ reaches the vacuum. If o« = 3, then
Vaay = @l ab vy =alalv, =0, (4.251)

b
and this is equivalent to —vaay = Vaa nd particular case of the first Eq.(h.244).
Assume now that a # f3; again by (A.I87) (with i < j, followed by i = 1),
Eq.(.249) implies that

oy — b vy = 0 = ala} oy — dhad = ru,  (4.252)
and the first Eq.(E.244) for o # 8 follows since pj1 vy = —(h+1) vy, cf. (E[.249):

—aia}@ [h+1]v, — af} al, q‘eﬂﬁ(h"'l) =0 <
alagvy = vapy = —q ° afjg ak vy = —q P ugy. (4.253)
o1 1 1 _ :
Thus, 'afl g, gy - A,y \ 0)=0 ff)r Jj>3.
This partial result is easily generalized to vectors of the form

Wa By :af;az,af/w , pijw=Nhuw, ag’,ango Vo (4.254)

for 3<i+2<j<n (ie, wagy = 0). The full combinatorial description of
the Fock space F (#.186) for n > 3, however, remains a challenge.

We shall list below a few more complications one has to confront when
considering the zero modes’ algebra and its Fock representation at roots of
unity.

(1) The determinant Dy(a) has zero eigenvalues on F so a is not invertible.

As the determinant Dy(a) is equan!E Dby; definition, to D,(p), it vanishes on
every subspace F, characterized by ( ) such that p;; € Zh for some pair
(3, j) 1 < i < j < n.Hence, the zero modes’ o era tor matrix a is not invertible,

see For a similar reason (as D(Z)( ) ( 2) may vanish), the bilinear
form WS is not well defined, except for n = 2.

(2) The zero modes’ algebra My has a non-trivial (two-sided) ideal.
The key to this property of M, is the relation (valid for ¢ # j and « # )
iy — (@)™, = (@) ] — (@)™ el =P (4.259)

generalizing the first Eq.( hS? for any positive integer m .'® Therefore, as-
suming that (a ﬁ)’” =0 V 3,8 for generic ¢ would imply (a’. )m L' =0 etc.,

CIIEX
18Eq ([i 255) can easily be proved by induction, using the g-number relation

[p+m] = [pllm +1] — [p— 1][m] .

avgen



leading eventually to trivialization. For ¢ = —1, however, putting in (E?ZHSGXS)
(for m = h)
(@)'=0, 1<j,B<n (4.256)

does not imply further relations for the lower powers. As we are mainly inter-
ested in the Fock representation of M, in which all the eigenvalues of p;; are
integers (cf. (4. ), we could also assume that

@i =1 1<i,j<n. (4.257)

Thus, if jq(h) C My, is the two-sided ideal generated by the h-th powers of all
al, and the 2h-th powers of ¢P , the quotient M@_ = M,/ is non-trivial.
For n = 2 it is easy to deduce from Egs. (EZ 6&, (E.Z 7), 51256) and (4.257)
that Mgh) is finite (2h5-) dimensional; the corresponding Fock representation

Fr = MM o) (4.258)

HT2
is h?-dimensional %ﬂﬂ
(3) Indecomposable representations of Uq(sf(n)) appear.

This issue will be discussed at length in the following section for n = 2. Here
we shall only recall that the decomposition of the Fock space F = @2, F, (for
p = p12) still takes place in this case (Remark 4.3). Eve 50, the statement
of Proposition 4.2 does not hold as it stays; it turns out | that only the
Uy(s¢(2)) representations on F, with p < h are irreducible while those with
p > h are either indecomposable, for p ¢ Nh, or fully reducible, for p € Nh.
(As we shall see in the next Section, the true symmetry algebra in this case
is in fact a finite dimensional qugtient of Uy(s{(2)).) The dimension and the
quantum dimension of each F, (%”ZZT% are equal to

dimF, =p, qdim F,, = [p] , (4.259)

respectively; hence, the quantum dimension of J,, vanishes for p € Nh .

As we do not have full control of the situation for n > 3, we shall focus
further our attention mainly on the n = 2 case. Before that, however, we shall
complete this section with some general remarks on the role of the ]&mentary
%¥5O u(z) and the quantum group covariant chiral field g(z), cf. (%T69) and

01).

4.5.3 Braiding of the chiral quantum fields

R R. ExRaa2
In analogy to (5.33) (or (EEZIS)) and (HQ? ;, we shall postulate braiding relations
for u(x) of the type

i (1) ug(w2) = ua(xa) ur (21) (Ri2(p) 0(z12) + Ry (p) 6(w21)) (4.260)

(for —27 < 12 < 2m) or, equivalently, exchange relations for u(z)

uit (21) uf (22) =uf(2fz)r:tf‘n(21)f?(p)e?} . R(p) = PR(p) (4.261)

[uuR:

in the analyticity do spec1ﬁed in ( EEID ). Eq.( MO ) involving the dy arﬁligal
quantum R-matrix ( 7 should serve as a quantum version of the PB (3.189).
One may think that the smgularlty of R(p) for g a root of unity could be resolved
in the same way as it was done for the zero modes where e we replaced the relations
following from (%gﬁby their regular counterparts ( 87). The discussion in
the beginning of Section 3.6 however shows that we should supplement the
exchange relations of u(z) by a relation for its (regularized) determinant, and in
the quantized theory this has to be proportional to the inverse of the (operator)
function D,(p) — which is ill defined too.

We gan use analytical methods to tackle the problem by using the KZ equa-
tion (4.30). To this end, we identifyc‘tl?le spaces H, as infinite dimensional
su(n)y current algebra modules (cf. (M)) characterized by highest weight
(which also means, due to (4.18), also lowest energy) subspaces V,

JaVy=0 = L,V,=0 for n>0. (4.262)



Fur’?h.er, Vo g5 1-dimensional and coincides with the vacuum subspace; in
addition to (5.265

In gene alf 40y V, is generated from the vacuum by a primary field ¢x(2)
satisfying (g.%') (for p = A + p) so that

Vp =éa(0)]0) = 4§V =—-ma(t)Vy, LoV, =AY, (4.263)
f-din-L

where A(A) ig the conformal dimension (Eoﬁnéi of @A(z‘m@he first implication

follows from (&213)19 and the second, from (4.23) and (1.262)). In our context

the primary fields can be constructed, in principle, as composite operators in
the elementary CVO u(z).

Thus we can, think of 7. as su(n), current algebra highest weight modules
defined by (M) and (&26%) Let us now consider a matrix element of the
type

(D | uf(zl)uf(@) | @,) for &, cH,, Py cHy (4.264)

The CVO u;(z) are assumed to intertwine between H,, and H,,, ) , see (%9).
In order to avoid the difficulty of dealing with non-dominant weights, we assume
that all representations involved are integrable, i.e. all p;; satisfy 1 < p;; < h—1
for i < j (or, which amounts to the same, that — for fix udommant p and p’
— the level k is high enough). Then we can expect that (4.264) is well defined
unless p;; approaches h . R

It is possible to derive the braiding relations (EFZ'EO) in this setting, and
ﬁg following is a summary of the co s onding computation performed in

4]. Due to the SU(n) invariance, (4.264) could be only non-zero for p’ =
p~+v® + 00 so0 let us consider the 4-point function

Wy i= Wa(z, 21, 20,w) = (0 | ga-(2) ui (21) uf (22) P (w) | 0) (4.265)
where A* is the su(n represF gtl&zzg sopjugate to A+ A%+ AJ . Taking into ac-

count the Mobius invariance .265) can be reduced, up to appropriate
conformal factors, to a 4-point function W4(oo, 1,m,0) on a primary analyticity
domain containing the real values of 1 between 0 and 1. For i # j the two
possible channels (with intermediate states belonging to Hptv and Hptrvs
respectively) are identified by their analytic behaviour at n ~ 0. For each of
them the ensuing "reduced KZ equation” leads to an ordinary linear equation of
hypergeometric type in 7. In the case ¢ = j there is a single first order equation.

The braiding of the cor 68 onding solutions recovers exactly the quantum
dynamical R-matrix R(p) (4.107). The mutual normalization of the solutions
to the reduced KZ equation for i # j has poles (or, converse Zu%eroes) at
pij = Nh for i < j and N a positive integer. As expected, (4.264) makes
sense for integrable (shifted) dominant weights (p;;+1 > 1, p1n < h — 1) which
are the only ones that appear when considering the model in the framework of
rational CFT but are not sufficient for a consistent description of the canonical
quantization of the chiral theory. KZuu

By contrast, the solutions of the KZ equations for the analog of (&rzm)

(Py | 95(21) 95 (22) | ) (4.266)

involving the chiral field g(z) (ﬁg%(%) are well defined for any (dominant) p and
p’. Their braiding reproduces the exchange relations (EEID) which do not de-
pend on p. What actually happens is that the meaningless matrix elements
and exchange relations of the CVO are "regularized” by the zeroes in the corre-
sponding expressions for the zero modes. A convenient basis of regular solutions
of & KZ equations for a general 4-point function has been introduced for n = 2
i 3.

As it has been already explained, a complete description of the n > 3 case
would require studying more general representations of both the zero modes’
and the affine algebra corresponding to non-dominant p. We shall restrict our
attention in the next Section to n = 2 in which case this obstruction does not
occur.

19Note that the minus sign ensures the compatibility between the commutation relations of
g and t* as [jg, 55] Ve = [ma(t?), ma (t9)] Vp = —if 0 ma(t9) Vp = if **cj6 Vi -

), the vacuum vector |0) is assumed to carry zero charge and,
ago%v(;%nsequence of the Sugawara formula, is also conformal invariant, see (&5 ],



5 Zero modes and braiding beyond the unitary
limit for n = 2

We shall collect here, for reader’s convenience, the ne esgary formulae for the
n = 2 case derived so far. The g-antisymmetrizers of (CE"FA[}QO [Section 4.4) are
rank one operators and in particular, Apgﬁ =¢eP%eq44, cf. (A . The constant
R-matrix (4.53) gives then rise to the braid operator

21 _ -

N
ol

IR, =000 — ecap (=2 =—qF , ey =c¢ )
An (5.1)
In view of Remark 4.2 and E)gf %.el 27), this case is characterized by the fact that
the Hecke representation (K- factors through the Temperley-Lieb algebra.
Using e40, 677 = —07 = £P7¢,,, it is easy to verify indeed that

A1A2A1—A1:0:A2A1A2—A2 with

aiooas . qfoq « ailogas _ sa DY
(Al) 5115225?; =4 51522 65; and (AQ) 51152251 - 5511 A ézﬁss : (5'2)

RRp2
The corresponding dynamical R-matrix (ﬁ?) reads

q ! 0 0 0
. N 0 a? a(p) [p—1] 0
Risx(p) = 2 0 af )_[’1] (p+1] _qu[p] o | PP (5.3)
2 (7]
0 0 gt

. . . det-interPwa=D
For a(p) = 1 the quadratic n = 2 determlga%lt conditions (h.l!SQ;, E.IZIQ

(implying in this case the exchange relations (| : 87)) can be written as
a{;a% —aflafa = [Pij | €ap ; a{;a}; e =[py+1] (i#7), aflaz, e =0
(5.4)

detc-n2-idetc-n2-2 braidR2
(cf. (ﬁg ichl (3; Using (Hal , we can replace the first and/or the third

relation (5.4ci by

g abal R, = alal—q' Pieag (i#37), % aal R, =alay, (55)
HT2, FHT ExRa;
respectively [T16, 117]. For n =2 Eq.(h}.{% gives simply
¢ al = al Pt ¢?a? =a’ gt (5.6)

a2.n uall
and the relations (hS3) and (%2‘32) reduce to the standard creation and anni-
hilation operator conditions

aZ|0)=0, (0]al =0. (5.7)
AdX
The U§2)(sf(2)) covariance properties (hT%S) of the zero modes read
kaik‘lzq%ai , kaék‘_lzq_%cﬁl (k*=K),
[EJJ&]:O, [Evaé]:a§K7
Fal=q'aiF+ay, Fab=qadF . (5.8)
5.1 The Fock representation of the zero modes’ algebra

A basis
{lp,m), p=1,2,..., 0<m<p-—1} (5.9)

in the Fock space F = M, |0) is obtained by acting on the vacuum by homo-
geneous polynomials in the creation operators al (of degree p —1):

Ip,m) = (a1)™(ax)?~' 7™ [0)  (]1,0)=[0), (¢" —¢")Ip,m) =0) . (5.10)

For a given p, all vectors |p, m) in the allowed range of m form a basis in F, so
that
F=&,1F (dimF, =p, qdimF,=[p]), (5.11)

Rpn=2

detc-n2

altEx

ExRapn2

a-vac

base2

basis2

FFp-dim



dim-n2 detc-n2 a-vac .
see (B.ZBQ;. By (%.Zﬂ and (%( , the operators a!, act on the basis vectors as

ailp,m) = [p+1,m+1),

aslp,m) = q"|p+1,m) ,

a3lp,m) = —qilp—m—1)lp—1,m) ,

a3lp,m) = q" P E[m]lp— 1,m — 1) . (5.12)

AdXal
The U,(s¢(2)) transformation properties follow from (}5.8? and ( .vac,

K |p,m) = ¢*" P p,m) ,
F|p,m) =[m] |p,m —1) (5.13)

asis2
('I%i%articular, all basis vectors (E I U; are eigenvectors of K'). The transposition
(#:222) is the linear transformation acting on the M, generators as

(@) =¢", (@) =i, e (a) =q¢¥a3, (1) =—q %ai.
, (5.14)
The U,y(s(2)) generators £ and K and their transposed (h.QO) are expressed

as bilinear combinations in a?;:

E= —q_%a%a% , ¢ 'FK = q%a%ag =F,

_ 5.2 1 -11.2_ 112 -1 2.1 _ g
K =q2a5a; — ¢ 2aja5 = q2aza] — q 2ajay; = K' . (5.15)

EFH HIOPT
The algebraic relations (LB_[B) (derived in endix A of [TT4]] are valid in the

Fock space representation, cf. ( and . Note that neither F' alone nor

K1 appear; the generators E, E', K obey the relation g EE'—¢~'E'E = K?’l )

dual basis2
To compute the inner product (%8) of the basis vectors (%éslli;, we first
observe that m/|p, m) vanishes if either p’ # p or m’ # m (this follows easily

’
ransp2idetc-n

from (5.14), (b.4) and (%1 JJ. Then we can apply directly (5.12) to obtain®’

@', m|p,m) = 0pp S g )l p —m — 1)1 (5.16)

Thus all vectors |p,m) are mutually orthogonal, and the only ones that have
non-zero scalar squares are those for which

1<p<h, 0<m<p-1 or h+1<p<2h—-1, p—h<m<h-1. (517)

. .. ZSC . 2 . .
It is easy to see that ¢ O(cigo_ ons (%l () determine a h°-dimensional subspace of
F isomorphic to F) (§2581%

5.2 The restricted quantum group
5.2.1 Action of U,(s{(2)) on the zero modes’ Fock space F

According to the general relations displayed in Appendix B.1, the QUEA U, =
U,(s£(2)) is a Hopf algebra with generators ', F' and K*! satisfying

KEK'=¢*E, KFK '=¢?%F, KK '=K'K=1,
K—K!

E,F| =
|, £ q—q!

(5.18)

and coalgebra structure defined by
AK)=K®K, A(BEy=E®K+1®FE, A(F)=FI+K '®F,

e(K)=1, eE)=¢e(F)=0,
S(Ky=K', S(EyY=-FEK™*', S(F)=-KF. (5.19)

5 - - scs )
OFor generic ¢, this result proves (h?i%) as |p,p—1) and |p,0) are the highest and lowest
weight vector of Fp, , respectively.

transp2

nzscsq



Ugprop2
Tt is easy to see, however, that its representation on the Fock space F (5. 1S

subject to the additional relations

EM=0=F", K*=1. (5.20)

sl2-aljg-res coalg?2
The quot%%{‘iﬂopf algebra defined by (E 8;, (gZI)i and (5.19) has been intro-

duced in under the name of the restricted quantum group Uy (s((2)) . As we
only consider the n = 2 case, we shall denote it for brevity as just U, .

— sl2-al
It is clear that U, is finite dimensional: the commutation relations (E I8

allows any monomial in the generators to be expressed in terms of ordered ones
and (b. restrict the maximal powers, so its dimension is 2h%. A Poincaré-
Birkhoff-Witt (PBW) basis is provided e.g. by the elements

EFFYK"™ for 0<pu,v<h—1, 0<n<2h-1. (5.21)

As ¢* =1, the element K" belongs to the centre Z of U,.
It is customary (see e.g. ]) to define, up to rescaling, the Casimir operator
in the deformed case as

C=NFE+qK+q¢ 'K " (=XNEF+q¢'K+¢Kk ') cZ, A=q—-q'.
(5.22)

c 2
Evaluati 5(1%32) onthe basis vectors |p,m) by using (E.iﬁ and taking into
(é.loi (Eh;

account and , one obtains
(C—¢"—q?)F=0 = (C—¢”—qgP)F=0. (5.23)

— GST1, FGST2

The representation theory of U, has been thoroughly studied in ‘87, S8 IE

has a finite set of irreducible representations which is easy to describe. It is clear
~res . . . .

from (b.20) that the dimension of an IR cannot exceed h (abusing notation, we

shall denote it again by p). Further, the spectrum of K in a p-dimensional IR

is non-degenerate and coincides with a set of the type

SIS”) ={q¢" "2 .. ") (UeZ, —h+1<Ii<h,1<p<h), (5.24)

the first and the last eigenvalue corresponding to the lowest and highest weight
vector, respectively (the fact that theUs ectrum only contains integer powers

g follows from the last equation in (b. . Evaluating the Casimir operator
(5.22) on these two vectors imposes the following restriction on £ :

¢l =g gt o Y p=1modh . (5.25)

For a fixed dimension p), (%55) has two solutions for ¢ in the allowed range,
ly =1—p and £_ = 14+ h—p (the corresponding lowest weights, and therefore
all weights, differ in sign: ¢/~ = —¢’+). So there are 2h (equivalence classes of)
irreducible representations Vpi of Uq labeled by their highest weight £¢?~! :

Vi spec K =e{¢" P, ¢* P, ....¢" '}, p=1,2,....,h, e=+,

PBW-Ugres

CLH

dim V; =p, qdimVy:=TryK =€[p], (C—€¢"+q¢")V;=0. (526)

-Vp | [C
We shall refer to the sign € as to the parity of the IR V. By (}55.296%{ and (}5.22)7
a characterization of a canonical basis {vj, ,,} in V5 invariant under a resgali

g fE F— p ' F (p > 0) which preserves all defining relations (5.18),
.19), is provided by the relations

(K —eg®™ Phoee =0 (1<p<h, 0<m<p-1), (527

p,m

(EF —e[m][p—m])vy,,, =0=(FE—¢e[m+1][p—m—1]) vy, -

Returning to the Fock space representation of Uq we see that F, ~ Vp+ for
1 < p < h while the negative parity IR first appear as subrepresentations of
the spaces Fj,4p , each of which contains two irreducible submodules isomorphic
to V,~ spanned by {|h +p,m)} and {|[h +p,h +m)} for m =0,...,p -1,
respectively. For 1 < p < h —1 the quotient of Fj, by the direct sum of
invariant subspaces is isomorphic to Vh+_p or, in terms of exact sequences,

0= Vy,oV, = Fuyp = V7, = 0. (5.28)

al



For p = h the two negative parity submodules exhaust the content of Fa, =
Vi, @&V, . More generally, the U, module structure of Fnn1p for N € Z, and
1 < p < h is described by the short exact sequence

0 — V;(N)®V;(N)@V;(N) — -FNh+p — Vhf;N)@@Vhfz(,N)

#(N+1) #N

where €(N) = (—1)" is the parity of the integer N and V& := {0} (we have
N + 1 submodules Vj, ™) and a quotient module which is a direct sum of N
copies of V) <(N) ).

The Subquotient structure of F as a representation space of U, for h = 3
is displayed on Figure 1 below.

Figure 1: The U, representation on the Fock space F for ¢ = eTi5 | Vectors belonging to
subquotients of type Vp+ (for some p) are represented by yellow circles (o in black and white

print) and those belonging to V, , by blue ones (e in BW). The eigenvalues of K = ¢ can
be read off from those of H .

5.2.2 Quasitriangular twofold cover ﬁq of U,

In accord with the consideration carried in Section 4.3, the Gauss components
of the monodromy matrix My for n = 2 can be parametrized in terms of the
twofold cover U (sé( )) of U,(s€(2)) with Cartan element k satisfying
k2 — k2
kE=qEk, kF=q'Fk, [EFl=—+ (kF=K),
q—q
Ak)=k®k, ek)=1, Sk)=k"'. (5.30)

vac tens— . . . . ase2
By (E.SH and (&1.159 we obtain th«E action of its generators on the basis (EQ

which are of course the same as in (5.13), except for

klp.m) = ¢" "% [p,m) . (5:31)
Restricting the Hopf algebra UéQ)(sé(Q)) by the ensuing additional relations
Er=0=F", k"=1 (5.32)

one obtains the 4h-dimensional double cover ﬁq of Uq with a PBW basis pro-
vided by the elements

EFFYE" . 0<puv<h-1, 0<n<4h—1. (5.33)

The important property of U q Is that it is quasitriangular i.e., there exists a
universal R-matrix (&f%?) ReU,® U satisfying (%9) while U, itself is not.

By contrast, U, (but not U q) is a factorizable Hopf algebra which means
that the (universal) monodromy matrix M = R91R belongs to U, ® Uy, and

has maximal rank (2h3), see Appendig B.3. A hint to this featur
by the following observation. Using aTGg) for n = 2, as well as %Sg {

and (5.30), we deduce that the entries of monodromy matrix M only contaln
K € U, and not its "square root” k € U,

s Lo (kY —AFk o0

g M = My M_ _(0 k ANEKTY k)T
2 -1

:(q/\ FE+K AFK) .

oA B % (5.34)

As the Hopf algebras under consideration are finite dimensional, all the
constructions are purely algebraic. An efficient way of finding the universal

— 0,

(5.29)

PBW-Uqres2



RS, Ka, M
R-matrix is the Drinfeld double construction [7T, ZIS,al I 72a, 197] since the dou-
ble of any Hopf algebra is canonically quasitriangular (and factorizable). The

quasitriangularity of U, follows from the fact that it is a quoi pt t}he (16h*-
dimensional) double of any of its Borel Hopf—subalgebrasj , see Ap-
pendix B.2. We start e.g. with the 4h2-dimensional Hopf algebra Uy(by) gen-
erated by F' and ki to find U,(b_) generated by E and k_ as its dual, and
put at the end by = k_ = k. In such a way we derive the (lower triangular)

universal R-matrix of U, given by the triple sum

1 h=l v CS (=) 4h—1 L
= i~ 7 FYQEY ek e U, U, . (5.35
R= ; i ® m;:oq QK" € U,0U, . (5.35)

R
This expression allows to recover the 4 x 4 matrix Rjs (h.53), given explicitly
in this case by

' 0 0 0

o 1 0 o
Ro=a*| o 5\ 1 ol (5.36)

0 0 0 ¢!

RbD =
from the universal R-matrix (%35) by taking the generators of U, in the 2-
dimensional representation 7y:

0 1 0 0 30
F_ f_ F_ (4
E_<O o)’ F_<1 0>, k_<0 q_). (5.37)

Indeed, using (E/)? = 0= (F¥)? and the summation formula

N

4h—
mj 4h  for j = 0 mod 4h
Z ’ { otherwise ’ (5.38)
one obtains from (%35) and (%37)
4h—1
(rp@m)R=— (heb-AF o E) Y ¢ k)" e Kk)" =
4h m, n=0
1 00\ /¢ 0 0 0
o 1 00 0 ¢ 0 0| _
“lo a1 0|0 o o o] Re (5.39)
00 01/ \og o 0 g%

Remarkably, the expression for the universal monodromy matrix M = Ro1 R,

MJF,, e
m’I’LJrV(nfm)E/,LFVka Fp,Euan
Qh/ j{: Al >« ®

1,v=0 : m,n=0

(5.40)
1X contains even pgwers of k and hence, belongs to U, ® U, . Moreover, M
% is of the type (B.28) so that U, is factorizable. ThlS is the reason why we

shall be interested mainly in U ¢ in what follows, with Uq playing an auxiliary
role providing the universal R-matrix R in terms of which M is constructed.
Remark 5.1 The other admissible (upper triangular) universal R-matrix of

ﬁq is found by exchanging the places of Uy(b4) and Uy(b_) in the double and
has the following form:

4h—1 h—1 qu<v2 1>>\,,
Ry = 4h Y TR ek Z E" @ F” . (5.41)
m, n=0

It gives rise to the inverse of the monodromy matrix M~' = R™'R;;!.

IFHT7
21The conventions in the journal paper m are updated in its last arXiv version and
coincide with those adopted here.



L. . . calcM2 .
It is instructive to note that the matrix (%.34; is equal to (my ® id) M. To
verify this we ob: rve that, due to the nilpotency of Ef and Ff one is left in
the first sum in (b. with the terms with u,v = 0,1 only:

2h—1
1
. mn _ mn+n—m+1 f _
(mp @id) M = o gn:O(q IL®I-\g FloFE

_)\qmnEf ®F+)\2qmn+n—m+1EfFf ®FE) (Kf)m ®K" —

B 1 2h—1 (qm(n+1) + /\2qmn+n+1FE) K™ —\ qm(n—l)FKn 5 49
- ﬁ Z )\ qmn+n+1EKn qm(nfl)Kn ( : )
m, n=0
[bUf
(We have applied (%37) from which it follows that
1 0 m o0
ff _ fym __ q
BfF _(0 0> . (KD _(0 q_m> (5.43)

and evaluated the tensor product as a Kronecker product of matrices.) Proceed-

ing with the supmation in m and using azil_l q"™ =2h6; gmod2n , we finally
obtain that (E%; indeed coincides with (5.34):

G\ FE+K~! —\FK
—g\E K

=q M . (5.44)

wlw

(ﬂf@id)MZ(

5.2.3 The factorizable Hopf algebra Uq and its Grothendieck ring

A partial information about indecomposable representations is provided by their
content in terms of irreducible modules, independently of whether they ap-
pear as its submodules or subquotients. It is captured by the concept of the
Grothendieck ring (GR). We write m = m; + ma if one of the representations in
the right hand side is a submodule of 7 while the other is the corresponding
quotient representation, and complete the structure to that of an abelian group
by introducing formal differences (so that e.g. m3 = m — 72 ) and zero element,
given by the vector {0}. To define the GR multiplication, we start with the
tensor product of the IR 7y, and my, (with representation spaces Vi and V3,
respectively) defined by means of the coproduct,

e, = (Ty; ® my,) A (5.45)

and further, represent each of the (in general, indecomposable) summands in the
expansion by the GR sum of its irreducible submodules and subquotients (thus
"forgetting” its indecomposable structure). By a construction due to Drinfeld
%72], the GR of the ﬁq representations turns out t Cbe equivalent to a subring
of its centre generated by the Casimir operator C' (5.22).

Let 2 be a factorizable Hopf algebra with monodromy matrix M; then there
is an isomorphism between the (commutative) algebra of the A-characters

Ch = {¢ € A" | p(xy) = ¢(S*(y)2) Y,y €A} (5.46)
3, FGST1
and the centre Z € A, given by the Drinfeld map [72, 87

A = A, b= ($@id)(M) (5.47)

(see Appendix B.3). Let further g be a balancing element®? of 2, i.e. an element
satisfying

ged, Alg=g®g, S(z)=gzg' Vred. (5.48)

Then any finite dimensional representation 7y of 2 (with representation space
V') gives rise to a YA-character Chy, defined by the g-trace

Ch{, () == Trp, (g7 'z) VoeU; (5.49)

22The existence of a balancing el ¢}, dg not granted, and it may be not unique. An element
g € U satisfying the first relation (5. is called ”group-like”.

tens-ring

Ch-Ad*inv

Dr-map

o
[
—
B
(e}
®



. Ch-Ad*inv
any Chy, belongs indeed to €h (.46) since

Chy, (S*(y) ) = Trny, (971 S*(y) @) = Trny, (yg~'2) = ChY, (zy) . (5.50)
The corresponding Drinfeld images
D(ny) = (Ch{, @ id)(M) € Z (5.51)

form a subring of the centre Z isomorphic to the GR.

We shall use the factorizability of U, to explore the GR &2, ge g{atggl by
its IR. It is easy to see that both K and K"*! satisfy the conditions (gﬂ?)l;*note
that K" € Z. Choosing K as balanci gfelement for U, , the Drinfeld image of
the 2-dimensional representation 7, (5.37) is just the Casimir operator (b.22):

(ChE, @id)(M)=C  for  ChE (z)=Try (K ') . (5.52)

ChKM iid EFKf
The computation of (%.52) amounts to applying ( A1) and (43):

Te((K')~Y(n) @ id) M) = Tr { <q01 2) (q’\zl*:’i;EKl AI?K>} _

=NFE+qK+q¢ 'K '=C. (5.53)

The, alternative choice of K1 asb ancing element (cf. Eqs. (3.3) and (4.7)
of leads to the oppgsite sign in (5.53) since (KN = —15.

It follows from (%%E?;E%at the g-dimension of an IR (and hence, of any
representation) of U, is just its g-trace evaluated at the unit element:

qdimV = Try K = Try K1 = ChE (1) . (5.54)

The following Propositio Cshows that the commutative algebra generated
by the Casimir operator C' (5.22) is 2h-dimensional and contains the central
element K" . As a preliminary step, we note that the following relations can be
easily proved by induction in r :

r—1
A\TETET = H(C _ q—2s—1K _ q2s+1K—1) ,
s=0
r—1
)\QTFTET _ H(C_q2s+1K_q—2s—1K—1) . (555)
s=0

Recall also that the Chebyshev polynomials of the first kind are defined by
T, (cost) = cosmt (degT,, =m) . (5.56)

Proposition 5.1

(a) The central element K" (of order 2) is related to C by

Kh = —Th(%) : (5.57)

c
(b) The Casimir operator AEQQ) satisfies the equation

2h—1

s ST
Pop(C) = H(C—ﬁs):ﬂ ; Bs=¢q°+q :2cos? . (5.58)
s=0
Proof Writing the formula
H 27s
Nt —cos Ny = 2V—1 t— i ,
cos Nt — cos Ny [T (cost — cos(y + =) (5.59)

s=0

Chebyl

ghHTh1



R
(see, e.g., 1.395 in %32 for 2 cost =: C' and e =: Z such that ZQN =1 (and
hence, ZV = cos Ny), and applying it to the case when C' (given by ( 22 and
Z are commuting operators in a finite dimensional space, we find

N-1
21($) - 2% = [LC- ¥z 2. (60) [
s=0

Two special cases of %TYO YN=h, Z=q 'K andb) N =2h, Z =1 give

h—1

C
2(Th(§)+Kh) =[[(Cc-q* 'K -g¢*"' K (5.61)

and

C

C
2(T($) - 1) = 4 (@) - 1) = Pu(C) (5.62)
rFr -res
respectively. - Setting in (%55) r = h and using (%.2()5, we deduce thaf, the
(5.62),

roduet in 1?.%: L vanishes, proving thus (a). Further, (b) follows from
% 5?% and ( :
Pa(C) =4 (K” ~ 1) =0. (5.69)
]
Since D maps isomorphically the U, GR &a;, to a 2h-dimensional subring

of the centre, Gap — D(Gy;,) C Z,, the algebra of the corresponding central
elements D(Ve) provides, in turn, a convenient description of thlg 1Grothendieck
fusion. As a representa ion va ¢, Tf (with Drinfeld image C (L’TS 3)) coincides
with the IR V," (see &5926’%_E It is not difficult to derive the expressions for
the Drinfeld images of all the IR 7U ¢- This is done in Appendix B.3 (see
Proposition B.1), following [87, n principle, it, is possible to find the U,
GR ring structure from the explicit expressions (B-4T). We shall follow however
another path.

Albeit the GR of U, is finite, the Fock space representation makes it natural
to express its multiplication rules in terms of the infinite number of representa-
tions F,, which are of su(2) type:

p+p’ —1

D(F,).D(Fy) = > D(Fp) p=1,2,... . (5.64)

p''=|p—p’|+1
p!' —p—p'=1mod2

The justification of (%%4) takes into account the well known fact that an anal-
ogous decomposition holds for tensor products of the (irreducible) represen-
tations F, for generic ¢; in the GR context it should remain true after spe-
cializing ¢ to a root of unity as well. Note that the GR content of Fyyp, slhegog N
N € Z4, 1 <p < h which replaces the precise indecomposable structure 2&729‘3%“

Fnip = (N +1) Vi) 4 Ny, ) 5.65) [GRpb
P

obeys the following ”parity rule”: one always has an odd number of irreducible
U, modules of type V" and an even number of modules of type V'~

Assuming that (5.64) holds, we shall make use of the following corollary of
Proposition B.1.

Corollary 5.1 The Drinfeld images of the U, IR
ds = D(Vy) = (TrﬂvpeK_l @idMecZ, 1<p<h, e==+  (5.66)
satisfy

=1, d=0  df=-Kd=1()d. (567

1d12
From %734 for p’ = 2 and (%rﬁlni ;eone concludes that D(F,) are functions
of C satlsfylng both the recurrence relations and the initial conditions for the
Chebyshev polynomials of the second kind U, (z), defined by

Un+1(x) =2 Up(z) = Up-1(x), m>1, Uy(z)=0, Ui(x)=1 (5.68)



and hence,

D(Fp) =Up(C) , pELy . (5.69)
U
It follows from (E?()'CHSisfeﬁnét U,.(z) are monic polynomials of deg U,, = m — 1
and
i t
Unm(2 cost) = Sls?n";b . D)=z, Un@) =m. (5.70)

GR, y
Using (%&5) for N =0 and N =1, one sees that the Drinfeld images (%66? of
the U, IR are given by

1
df =U,(C) , d, = 5 (Unyp(C) = Up—p(C)) 1<p<h. (571)
Cheby1
By (%.566% and (El.n?O), the trigonometric relation 2sintcosmt = sin(m + 1)t —
sin(m — 1)t is equivalent to

x
QTm(g) =Upnti1(x) = Up-1(2) , (5.72)
2hT2h directP2h

so that the condition (ETS?% (%%%onverted in terms of Uy, (x) to the equality

C
Tn(3) =1 & Unnia(C) = Uon1(C) =2=0. (5.73)

T2h= ) R-gen
ngg%% 73% ensures the consistency between (g (I and the IR content of Fop41
(5.65):

U2h+1(C) (f2h+1) = 3D(V+) +2D(Vh p) Uthl(C) +2U1(C) . (574)

One can check that the fusion of %73; with Us(C) justifies, step by step,
the consistency of the representation ( bﬁffor any Fynyp, N > 2,1ie. no
additional conditions appear. As U,,(z), m € Z; span the polynomlal ring
Clz], the U, GR is equivale 2, thgsprotient ring of C[C] modulo the ideal
generated by the polynomial (g 73” . R

It is elementary to derive from (}5‘64) and (%—85) the multiplication_rules for
the GR images (in terms of the U, IR) which, as it has been shown mFFS#read

p+p'—1
DVY).DV) = Y. D), 1<pp<h, e, d=+,

s=|p—p’|+1
s—p—p/=1mod?2

e — Vs for1<s<h
T Ve +2VS forh+1<s<2h-1

S

5 GR.
Indeed, Eq.( ETM ) imply directly ( % 755 for € = ¢ = +, and the cases when e e’

or both are of 0pp051te sign follow from these by multiplying them with T
Drinfeldi2 irec h
see (5.67), taking into account that (Th( =1, cf. %6% %63) For a
proof that (% 75% imply in turn (5.64), see
P2h=0

Eq.(5:58) can be regarded as the characterlstlc equation of the Casimir C' as
an operator on the subalgebra of the centre D(Gsp,) C Z generated by the Drin-
feld images of the U, IR. As the eigenvalues 3, = (25—, are doubly degenerate
for1<p<h-1,

h—1
Py(C)=(C-2)(C+2) [[(C-8,)*=0, By=q¢"+q ", (576)
p=1
the spectral decomposition of C' is of Jordan type:
h—1
C= 260_2eh+2(5p eptwp), (C—=Bp)ep=wy, (C—Pp)wp,=0.
p=1
(5.77)
The primitive idempotents e, and nilpotents w, obey

(5.75)

E

m

TU

spC

eres:(srser7 e’l‘wp:(s’l‘pwpa wpwp’:O OST,SS}L, 1§pap/§h_1

= F(C)=f(2)eo+ f(— €h+z (Bp) ep + ['(Bp) wp) - (5.78)



In particular, the coefficients of the idempotents e,, 1 < p < h — 1 in the
expansion of Us(C') are equal to

pr, sinZL [sp
Us(Bp) = Us(2cos - )= SnZE [l (5.79)
The ynitary WZNW model only includes integrable affine algebra represen-
tations . In the 5u(2); case, the corresponding shifted weights are in the
int ¥31F11 <p<h-1(=k+1). It has been known from the early stud-
ies , 102] that the fusion of the corresponding ”physical representations”

of U,(s(2)) (for ¢ = e*'%) can be recovered from the ordinary su(2) fusion

by approprlately factoring out representations of zero quantum dl@gﬁslo&sés

representations of U, q > the latter form the ideal of Verma modules
latter are h-dimensional and include the two IR V} := V¢, € = £ as well as
other 2h — 2 indecomposable representations with subquotient structure

0= Vs =V, =V, =0, p=1...,h—1. (5.80)

In the GR V; and V), ¢ , cannot be distinguished so it is appropriate to use the
notation

Vo= VIV, 0<s<h (V55 ={0}; Vo=V, , Vu=V"). (581)

. . . . . EB%%
That Vs form an idea in (j&h is quite easy to prove using (b.75), and

qdimV, = 0 follows from (S.e since [s] — [h sl = 0. On the other hand, the
Drinfeld images of the h + 1 representations (bBU% are spanned N0 5 Eh and

{wp}Z;ll only. i.e. the corresponding coefficients of {ep}’;;ll in (5:78) vanish.
Indeed, byr(lk&)% an (%(l ),

D(Vo) =D(V,) = 5 Uan(C) . D(Vi) = D(V,") =Un(C) ,

and (%2(7:9) gives
Usn(Bp) =0 =Un(Bp) , 1<p<h—1,

Us(ﬁp) + UQh*s(ﬁp) — [Sp] + [(2h — 3)]7]

=0, 1<p,s<h—1.(5.83)
[p]

The canonical images of D(V,") in the (h—1)-dimensional quotient with respect
to the Verma modules’ ideal are therefore of the form

dpU
(note that the coefficient [1[’ ]] = [p]g= to es in the expansion (%Eﬁ) of d, is just
¢ quantum dimension of VPJr evaluated at ¢®). The algebra of d,, follows from

( N 8) and the easily verifiable relation

p+p’'—1
sl p's] =[s] > [rs], 1<pp <h-—1 (5.85)

r=|p—p/|+1
step 2

by taking into account that, for p4+p’ > h (and 1 < s < h — 1), the terms with
r > h either vanish or cancel with the mirror ones w.r. to h, due to

[hs] =0, [(h+m)s]+[(h—m)s]=0, m=1,2,.... (5.86)

su2rel
Thus, the upper limit of the summation in (%.85) doesn’t actually exceed h — 1
and one reproduces the fusion rules of the primary fields of weights 0 < A\, u < k
in the unitary 5u(2), WZNW model

k—lk—A—p|

dyd,= Y dy (5.87)

v=|XA—p|
step 2

UpC

Verma

(Us(C) + Us_s(C)), 1<s<h—1 (5.82)

cancel



F
forp=A+1,p=p+1, h=k+2 )6§

The centre of U, is (3h — 1)-dimensional, being spanned by the idempotents
eard Suir S h and nilpoﬂ‘fents w;t, 1 < p < h—1 such that w;{ —|— w, = wp
) . The elements w,” do not belong to the algebra of the Casimir operator;

to obtain them one needs to introduce, in additign to the (Drinfeld images of)
g-traces over the IR (E@%, certain pseudotraces ].

5.3 Extended chiral su(2),

FFp-dim
The structure of the zero modes’ Fock space (%i I ; suggests that for n = 2 the
chiral state space (4.166) takes the form

H=0, Hy®Fp , (5.88)

where p is the shifted weight labelling the corresponding representation of the
su(2) affine algebr 2 Uy, respectively. Involving the full list of dominant
weights, the space (5.88) (on which the quantum gr }p covariant field g(z) acts)
is much bigger than the one of the unitary model [134] which only has a finite
number of sectors ¢ res, onding to integrable affine weights, 1 <p < h — 5 .
ard
In accord with (b.88), we have to assume that primary fields ¢,(z) (4.26)
. . . p2-1 conf-dim-L i .
with conformal dimensi ns A = S (h.Z?) exist for all integer p > 1. Their
exchange (gen Alizing (4. inside an N-point conformal block satisfying the
KZ equation M gives rise to a "monodromy representation” of the braid
group of N strands By determined by choosing appropriately the principal
branches and analytically continuing along homotopy classes of paths. The

braid group By admits a presentation with generators B;, i = 1,...,N —1
subject to Artin’s relations
B;iBj 1B; = Bi;1B;iBi1 , B;Bj = B;B; for |i—j|>1. (5.89)
TH, MST, HP
We shall recall below, without derivation, the results obtained in ; , 155]

for the corresponding representations of 4 on the conformal blocks of four
operators ¢,(z,), p > 1 (as in this case B3 = By, the braid group actually
reduces to By C Bs). It turns out that they are similar (dual) to those of an
infinite dimensional extension ﬁq of the restricted quantum group which we
proceed to review first.

5.3.1 Lusztig’s extension ﬁq of the restricted quantum group U,
1, L
Introduce, following Lusztig [T9T, 192], the ”divided powers”
1

E():WE7 F():[n]!F for  n>1. (5.90)

rop2

base2
Their action on the basis (%?Qse) follows from (5.

p—m—1

B, m) — [
'

]|p7m+r>, FOlp,m) =[] Ip.m —s) . (5.9) [vapropt

Here the (Gaussian) g-binomial coefficients [‘Zﬂ defined, fora € Z, b € Z , as

a b gt — gtmant “
M :ZEW , M =1 (5.92)
([Z}:[b]![f]ib]! for a>0>0, [Z]ZO for b>a>0>

are polynomials in ¢ and ¢~ with integer coefficients?®. The following general

ormula is valid for M € Z, N € Z,, 0 <a,b < h—1 (see Lemma 34.1.2 in

92)),
Mh+a| _ (M+1)Nh+aN—bm [0] (M -
[ }Hb] = (~1) M : (5.93) [q-bint

23Hence, for ¢ a root of unity they are just polynomials in g .




where (%) € Z is an ordinary binomial coefficient.

It is sufficient to add just EM and F® to E,F and K*' in order to
generate Lusztig’s U, algebra. Their powers and products give rise to an infinite
sequence of new elements — in particular,

()" = &Zﬁ])' ECW = (E thD ECW = (—1)Ert ECW L (5.94)

~ FFp-dim
The representations of the extended QUEA U, in the Fock space F (Hﬁ*&re
easily described by the following

Proposition 5.2 _

(a) The irreducible U, modules F,, 1 <p < h extend to irreducible U, modules,
with EM™  and FM acting trivially. _

(b) The fully reducible U, modules Fxn, N > 2 give rise to irreducible U,
modules.

(¢) For1<p<h-—1, N=1,2,... the spaces Fnn+p are indecompossgcle(}a{sg -
modules. Their structure is given by a short exact sequence similar to (; 29),

0 — Fyiip — Fnwip — Fnnyp — 0, (5.95)
where this time the submodule
Fyni1.p = ®N_o Span {|Nh+ p,nh +m) (5.96)
and the corresponding subquotient
N h—p = Fnnip [ Fns1,p (5.97)

are both irreducible with respect to ﬁq .

2
Proof Using (%.EIS; and the relation [}'] =0 for n < h, we find
EMpm) =0 =FM|pm) for p<h, (5.98)

proving (a). On the other hand, E?") and F(" | shifting the label m by +h
combine otherwise disconnected equivalent (in particular, of the same parity)
irreducible U, submodules or subquotients into a single irreducible representa-
tion of ﬁq . Together with (E?f‘gj‘,p_the relation

(N—-n)h+p—m-—-1

EW|Nh+ p,nh +m) = { b

= (=)W=t Dhtp=m=1 (N _ ) |Nh +p, (n+ 1)h +m) (5.99)

where 0 <n< N, 0<m<p—1<h—1 and the similar relation for F®)

nh+m
h

= (=)D INB 4 p, (n — 1)h +m) (5.100)

imply (b), for p = h, and the first (submodulE! %?}ﬂj of (c), fo b < laggghe
a )

second part of (c¢) is obtained by using again (5. s well as (5.99), (5.100)
but this time for 0 <n < N -1, 1<p<m<h-1. |
GRpb ~
According to the ”parity rule” (%gS), each IR of U, combines an odd number
of irreducible U, modules of type V' and an even number of modules V.

F(h)|Nh+p,nh+m):[ ] INh +p,(n—1)h+m) =

5.3.2 KZ equation and braid group representations

In addition to the KZ equation, an su(2)x conformal block is subject to Mobius
and SU(2) invariance conditions. The components of a primary field ¢,(z)
form a p-dimensional irreducible SU(2) multiplet V,, so that their 4-point con-
formal block w® belongs to the space Inv Vp@4 (which itself is p-dimensional).
Realizing each V,, as a space of polynomials of degree p — 1 in a variable

} INL+p, (n+1)h+m) =

FNh-p



Ca, a=1,2,3,4, the 4-point SU(2)-invariants appear as homogeneous polyno-
mials of degree 2(p— 1) in the differences (, — ¢, . One can express, accordingly,
w® in terms of an amplitude f® that depends on two invariant cross ratios
¢ and 7, writing

(0p(21) Pp(22) Dp(23) Pp(2a) ) =2 WP (G, 2153 Cas 20) = Dy (G, 2) FP(Em)

_ _ ~ C12@34 212234
Cab - Ca Cb ’ Zab = Za Zb 5 - C13C24 ) - 213794 )
213224 24
D,((z)=—""— p—1 5.101
b (62) <212Z34214Z23) (Gratza) ( )

where f®) (&,m) is a polynomial in £ of degree not exceeding p — 1. The po-
larized Casimirs are represented by ond order differential operators in the
isospin variables and the KZ system (m is equivalent to the following partial
differential equation for f®) (¢, n):

<hn(1 1) 3 = (1= ) COE) 49 CO (1 - 5)) fPEm =0, (5.102)

62

COE) = (- D)(p— (p—1)&) — (€ +2(p— D)(1 &) 9+e2<1—5>a—§2.

23

A regular basis of the p linearly independent solutions

{(fP = fP(&m), p=01,...,p-1} (5.103)

KZf TH
of Eq.(h{ﬁ) has been constructed in EZIS] in terms of appropriate multiple
contour integrals. We shall describe below the explicit braid group action on
the conformal blocks w,(f ) = D, fL(Lp ) (%_.1101). The braid generators b;, i =
1,2,3 act by an anti-clockwise rotation at angle 7 of the pair of world sheet
variables (z;, z;+1) and a simultaneous exchange ¢; <> ;41 . Then w,(f)) (,z2) —

wg\p) (¢, 2) (Bi(p)))‘# while the invariant amplitudes f,sp) (&,m) transform as

bi(=bs) : fP(&m) — (1= (1 —n)*S fiP(
= f)(\p) (5777) (BSD)))\/J )

by o fPN(Em) — Pyt fP)(

§—-1"1-19

11
,77) — ip)(f’n) (Bép)))\’u , (5104)
£

respectively. The p x p braid matrices Bl-(p ) i=1,2 are (lower, resp. upper)
triangular:

2_
(BIY, = (~1p A 1A= H =B, . A u=01,...p-1,

" w
o D ()2t [D=A—1
(Bép)))\u _ (ng))Pp_N_ll _ (_1))\(1(? A=1)(p—p)— = |:p - 1:| (5105)

(Bép) — g ng) F®) (F(p))A# -5

p—l—p s (F(p))2 =1,) .
By contrast, the commonly used ”s-basis” braid matrices (where B%p ) = B:gp )
is assumed to be diagonal) do not exist in this case, yielding singularities for
p=>h.

It is instructive to arrange the emerging p-dimensional representation spaces
Sp of By spanned by w,(f)(c,g) , #=0,1,...,p—1 in arrays similar to 7, in
the zero modes’ Fock space depicted on Figure 1 above.

Proposition 5.3 The p-dimensional By modules S, have a structure dual to
that of the ﬁq modules F,, described in Proposition 5.2, in the following sense.
The representation spaces S, are irreducible

(a) for 1 <p < h, as well as

(b) forp=Nh, N >2.



(c) Forl<p<h-—1, N=1,2,... the module Snp+p is indecomposable, with
structure given by the eract sequence

0 — Sva—p — Snatp — §N+1,p — 0. (5.106)
Here the N(h — p)-dimensional invariant subspace

n+1)h
Snh—p = DA Span { fNIFP AL (5.107)
and the corresponding (N +1)p-dimensional quotient §N+1,p are both irreducible
under the action of the braid group.

Proof Quly the case (c) needs some work. The fact that the subspace Sy n—p C
Snhip (B.107) is By invariant follo é om the observation that the entries of
the (Nh + p)-dimensional matrices (b.105) satisfy

mhtor mh + o al rm
(Bl)nhji_‘ﬁ ~ {nh—i—ﬁ] - [ﬂ}(n)’
(B )mh-l—a ~ (N—m)h+p—a—1

2) nhtg (N-n—-1)h+h+p—-p3-1

~ { pa-l ]( N —m > (5.108)
h+p—0F—1]\N—-n-1

cf. (E‘gﬁ%andhencevanishforo<a<p—1 p<ﬂ<h—1 and 0 <m <

N, <n<N—1(Slnceﬂ>a>0andh+p 1>p—a—-12>0,

see (b. . An inspection of the same expressions ( %_[08 for0<pg<p-1

allows to conclude that the subspace Sy ,—, has no By 1nvariant complement

in Syn4p which is thus indeed indecomposable. It is also straightforward to
verify that the quotient space

§N+1,p = SNh+p /SNh—p (5.109)

carries another IR of By . The "duality” of the indecomposable representations
Vnhtp (of Uy) and Syp4p (of By) is summed up by the observation that
each of them contains, in the GR sense, two irreducible, components of
same dimensions, but the arrows of the exact sequences ( %%)ﬁp are
reversed.

The B, invariance and irreducibility of the subspaces Span { f (ijiﬁz)hl 2 e 0

»F% SN C S(N41)h—1, in our notation (t’?IB?)) has been noted by A. Nichols in
4]?4. Their dimension is equal to N ; this fact is nicely visualized by revers-
ing the arrows on Figure 1 where these sets correspond to the upper tips of the
yellow and blue (or white and black, in BW print) squares. They possess an in-
ternal su(2) strugfure where the agtion of the su(2) generators e and f is given
by that of E?® (5.99) and F(") (5.100), respectively, under the identification

FUNEDRD) = )N (N + 1)h—1,(n+1)h—1), n=0,...,.N—1,

(n+1)h—1
el = (C)WTHIRIN 1y, L fol = (—1)m el
h:=le, f], (h—(-1)N"(2n =N +1)) o) =0. (5.110)
The corresponding N X N reduced braid matrices ((Bmd) = (B; )(n+i)1hh1 1)

ja_\{)el remarkable properties %[2104] As one can easily deduce from %IOS and
( , they are proportional to matrices with integer entries; moreover, the
correspondlng monodromy matrices B? , i = 1,2 are equal (up to a sign, for N
even and h odd) to the unit one:

re n-rm n n
(Bredyn — gFNHR ( )N+ (nkm)het (m)

B;ed _ FredB{edFred , (Fred) 6N Lm > Mym = 0,..., N—1 ,
(Bred)? = (—1)™+Dh i=1,2. (5.111)

24The scope of the paper %%4] is actually broader, including also fractional levels.



Explicitly, the first few rows of BJ¢? are given by

1 0 0 0

L, (-t 1 0 0

( 1)N+1q—§(N+1) h B{ed: 1 ( 1>h2 1 0
(_1)h+1 -3 (_1)h+13 ~1

112
(for N < 3, just take the relevant upper left corner submatrix).
Thus, for all natural N there exist N-plets of non-unitary, local chiral pri-
mary fields d) (N+1)h— 1(2) of su(2) "spin” j = —1 , isospin I = NéH h—1 and

conformal dimension Ay 1y,_; = ((N+1)£L 1)2_1 _ 1(1;1) — (N44-1)2 b %

(all these numbers are integers for N odd). The presence of additional su(2)

quantum numbers in non-unitary extended WZNW (and minimal) models has

been confirmed by other methods, see e.g. %[205 Such models are examples of

logarithmic conformal field theory (LCFT) characterized by Jordan block (in-

ecomposable and hence, non-hermitean) structure of the dilation operator L

%44] The latter fact explamjﬁ%e possible appearance of logarithms in con-
]

ﬁu lgla]CRl;Igoc]éFRg\ptéced first in For the recent status of LCFT, see e.g.

The singlet field (;5;%)_1(2') (the conformal block of which spans the 1-dimen-
sional subspace S11 C Sap—1) has isospin I and conformal dimension both
equaltoh—1=k+1,

21 +1=2h—-1 = I=

h
Aojy_1 = (2h _41h)2 -1 (z I(I; 1)) =h-1 (5.113)

and hence provides a natural candidate for a local extension of the chiral (cur-
rent) algebra. As the conformal dimensions Agnp—p and A, are integer spaced,

(2Nh —p)? -1

0 —N(Nh—p)+A,, 1<p<h—1, (5114)

AgNph—p =
it is the ”mirror” counterpart of the unit operator (p = 1) under the duality
p « 2h—p.

The locality of ¢g,]3 1(z) implies that the corresponding conformal block
(2h—1) (2h 1) (,2) (%11

b1 .101) is a rational function of z;; . This means, in
n, that f(2h 1)(5, 7) is a polynomial in 7 of order not exceeding 4As;,_1
9] such that

11
Z’ﬁ) (5.115) |rat

KZf P
The corresponding solution of Eq.(hOQ) has been found in %55}:

ChD(1 — g1 —n) = fPD (g, n) = - Dydh=1) 2hED

2(h—1) h—1

V) = - )" pnaEm), pea(Em) = Y. Y Cllemy

m=0 n=0

Chp = (= 1)fFmtr (m le _ I) (m; n) (31 . n) . (5.116)

A characteristic property of f,(lzihfl) is that it belongs to the regular basis of
Son—1 . Writing the braid invariance requirement in the form

b=V =0, i=1,2, =@ N u=1,...,2n 1

muv mnuv I
G117

we verify that the common eigenvector problem has the predicted solution,

2h—1 2h—1
fi(nvL ) i(z 1 )

(BEFIV st = i=12  for st =00 . (5.118)

(2



B1B2
Note that, as the matrices B\ and B (hTTU5) do not commute, they possess
common invariant eigenvectors only in special cases.

Remark 5.2 All polynomial solutions of the KZ equation (%Tzf@) for integrable
weights 0 < p < h — 1 givin gjlse to local extensions of chiral current algebra
5u(2)p—2 have been found ing;fif%]. The list corresponds to the Dag o series in
the ADE classification of modular invariant partition functions %%’%

Dopyo: h=4+2, p=4+1=h—-1 (Agyp1=1),
fat = £V Em =€ -n)" . LeN (5.119)
and a few exceptional cases occurring for
Es: h=12, p=7 (A;=1),
Fims = Fo (&) = (€ =m)* (€2 —n)* —4€n(1 = &)%) (5.120)
and
Es: h=30, p=11,19,29 (A1 =1,A19=3,A0=7).
It can be easily verified FFSS] that the regular basis components of (E?f%a%e

(=D~
Daa + fim ™ = s f{10D st = . on=0,...,40; (5.121)
" g [+ 1]

to prove that (BZ-(MH))ANS“ =3, i=1,2 (for h = 4f+2), one makes use of a
well known g-binomial identity?® written in the form

40 A+ 1 .
> (=1)rgreth L N J =1 for 0<A<4l, g=c ‘T2 . (5122)
n=0

Solving the common eigenvector problem in the Fg case (h = 12,p = 7, cf.

E6
%7120 , one gets fm = s”fm with
m

muv

1 1 3
EBe: $"=s8=1, s'=s"=—— | ®’=s1'= - $=——"— (5123)
3][4]

S

6 From chiral to 2D WZNW model

6.1 The right chiral sector

It is usually assumed that, instead of solving anew the quantization problem, the
exchange relations for the right sector quantities can be recovered in a straight-
forward way from those for the left sector. This is true in general yet the
change of chirality needs some care. Writing the quantum analog of (II.1) in the
form g(z,z) = g(z) §(x) for x = 2%,z = 2~ and following the reasoning for
the classical case considered in Section 3.7.4, one concludes that the exchange
relations for g(Z) are obtained from the left sector ones by just inverting the
order of terms in matrix products.?® One can then verify directly that their
quasi-classical expansions match the corresponding PB brackets. We shall dis-
play in what follows all the relevant right sector exchange relations in terms of
the bar fields. Our guiding principle in the choice of quantization conventions
is the implementation of local commutativity and monodromy invariance of the
2D field and of the quantum group covariance of its chiral components.

25We have in mind the one obtained by setting 2 = —1 in the equality

A A+1
[[a+em=3 [”1] S for A0

m=0 n=0 H

L
which is elementary to derive by induction in A (see 1.3.1(c) and 1.3.4in bQQ]).
26The heuristic derivation us oihe fagt that the constant R-matrix (#4.53) evaluated at the
inverse deformation parameter (£.58), ¢ — ¢! equals the inverse matrix, R;; (equivalently,

Ris — R;ll). The exchange relations for g(Z) contain however the original R-matrix (at the
original value of q).



6.1.1 Constant R-matrix exchange relations for the right sector

R
Starting with the left sector equalities (E%S), (%{34) and following the procedure
described above, we obtain the exchange relations

91(71) g2(x2) = ga(2) g1 (1) (Ri2 0(212) + Ryy' 0(221)) =

G2(Z2) G1(Z1) = (R120(Z12) + R;f 0(Z21)) §1(Z1) g2 (T2 =

91(21) §2(%2) = (R3 0(Z12) + Ro1 0(Z21)) G2(2) 51 (Z1) (6.1)
where

vi=z, Ti=z;, i=12, —27 < X192, %12 < 27 . (6.2)

The next step is to derive the exchange relations including the general mon-
odromy matrix M defined by

g(z+2m)=Mg(z) (M=Mg"). (6.3)
. . . barLR _ .
The consistency of the last exchange relation in (%I for 0 < Z12 < 27 requires

91(T1) ga(¥2 + 27) = Ry Ga(T2 + 27m) g1(71) , e
G1(Z1) M2 §2(Z2) = Ro1 Ma §2(Z2) §1(Z1) = Ro1 Ma Ris g1(Z1) §2(Z2)

= RY, 5:1(Z) My = M, Ry, §1(Z) (Ry, = Ri2, R, = R21 ). (6.4)

The latter exchange relation can be derived alternatively from the one for the
left sector, (4.69) by sing again the procedure described in the beginning of
this subsection. From (#.71) one obtains in a similar way the reflection equation
for the bar sector,

Mj Rip My Ry; = Rip Ma Ryy My = My Roy My Ryp = Roy My Ryp M .
B (6.5)
The same rule suggests that the factorization of M into Gauss components (the
right sector counterpart of (4.66)) reads

M=qgr " M~*M, , diagM, = diagM~! (Mg = Mpy) . (6.6)

Before discussing the ” quantum coefficient” in the definition of M , we shall first
note that the (horrg%egneous — and hence, normalization independent) exchange
relations for My ( ) imply the same relations for My ,

RioMioMyy = Mi1MioRyo, RioMioM_ 1 =M _ 1M 2Ry =
RioMioMyq = My i MysRi2, RioMioM_1 = M_1 M oR:o (6.7)

and thus provide, by the FRT constructjon, another (identical) copy of the
QUEA for the left sector. Further, from (4.67) one obtains

G (@) R Mio = Mysgi(z) = MioR),51(2) = g1(%) Myo . (6.8)

-gbar Mbarexch -b Mgb
By taking (%+6i into account, (% 5) Tollows from (% 7} and (% 1) trom (%.Sa).r

I
We shall now argue tg%jf the overall coefficient Qn " in (6. e inverse
to the factor e~274 i is conswtent with the QUEA invariance of the
”bra” vacuum vector g 236:) 1mp1y1ng

(0] (M) = e((Mx)%) (0|= 05 (0] (6.9)

To this end we multiply the bar sector equality in Eq.( 5734 ) by 222 and take
into account the definition of ”bra” (or "out”) states

((A] =) lim 222(0| g(2) = e *™2 lim %2 (0| gle ¥™'2) , (6.10)

see c.g. Eq.(4.70¢) in [139] (or Eqs. (6.4), (6.5) in [63D)).

>7 Mpma=tar— _ .

Recall that, by (%.75, the diagonal elements of (M+ and) My are expressed in terms of
Cartan generators while the off-diagonal ones contain step operators of the same type, either
raising or lowering; see Section 4.3 for the FRT construction of the QUEA.

lvac-inv



Following a line of reasoning similar to the one in the beginning of Section 4.5,
we shall further assume that the quantized chiral field §(z) splits as in (ET%Z})
and that the right chiral state space is again a direct sum of subspaces created
from the vacuum by identical homogeneous polynomials in the corresponding
zero modes a; = (a$) and generalized CVO @/ = (ujz(2)) , respectively:

gpE) =afeup(z), H=E@QFHoH,. (6.11)
p
The monodromy matrix of the field u(z) = (ﬂfg (%)) is, by definition, diagonal,

e~ 2mibo gl (7) €270 = ¢ 72 Gl (72 7) = Ul (2)(My)] (6.12)

— a
On the space H (%3), 5 is 7inherited” by the zero modes, in the sense that

a5 © up(2)(Mp)] = a5 (Mp)] © wp(2) = M%Ga] @ ujp(2) . (6.13)
This happens since ﬂfg (z) and a§ satisfy identical exchange relations with the
commuting operators p; , i = 1,...,n (where > . p; =0 = [[i_, ¢’ =1),
N I i1 o oo 1
BhE) = wh() i+ - ), pa =a i)
qﬁiz ﬂ%(f) _ ﬂ%,(f) qﬁiz+5f*5£ ’ qﬁiz (—1? — (_Z? qﬁil‘i’éij*(séj (6.14)

and hence, both fﬁ and 7:[,—, are eigenspaces of p; corresponding to the same
common eigenvalues. We set, accordingly

Ma=aM,, (M) =¢PT =56, ¢ |0)=q* "|0) (6.15)

and assume that the field ﬂgg (2) and the zero modes a§ act on the (bra or ket)
vacuum as their left sector counterparts do, i.e.

u5(2)|0)=0=a?|0) for n>i>2, Tresp.
(0|az(2)=0=(0|ay for 1<i<n—1. (6.16)
uMpgbar
%Eﬁ]l%ﬂing (6. 0 the vacuum we see that its consistency is guaranteed by
(6 (and in particular, by the ”quantum normalization factor” of Mj) since

e 28 0) =¢" 7 |0) =g Fw 0) . (6.17)

It is easy to verify that if 4, # i, for u # v, then [[};_; ¢~ = 1 and hence,

R I AL S R (A L)
so that
(]\7[&)?11 (M&)?ﬂ" =(a Mﬁ)?ll ...(a Mﬁ)f‘n" =ag'...a;" . (6.19)
The exchange relations of @ with My are identical to these of g ( .ba'r
My R, a0 = ay My . (6.20)

6.1.2 Dynamical R-matrix exchange relations for the right sector

The comparison between the left and right diagonal monodromy matrices, (%72)
and (E.znr%&(for a= a}_zl and p = pr) indicates that while gg = qil , we should
assume, when passing from the left to the right sector, that ¢?~ — PR = ¢P.
The origin of this rule can be traced back ie the p—dg%endent symplectic forms
for the Bloch waves and the zero modes, (b@) and (3.7) with M, as defined in
(B.3), which change sign when we only change the sign of & but not that of £ 28

Another important feature of the left-right correspondence (the classical
counterpart of which has been mentioned in Remark 3.7) is that the left and

28This observation is confirmed after pe forming a careful gxamination of both the ext%;ed
and unextended forms, including wg*(p) (EKSI:ZE) and wq(p) (3.85), with fj,(p) given by (B.87).

guagbar

uuMpgbar
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right dynamical R-matrices need not coincide, as functions of the respective
variables p and p, in the presence of the chiral zero modes. Omne can take
gdvagtage of this fact to make E}}}gablar sect?r zero modes excha.nge relatlor}s
identical to the left sector ones (&F%s—by setting the ”"bar” dynamical R-matrix

élg(ﬁ) equal to the transposed matrix (4.107):

RipG1Gy = a1 Ria(p) & Rizaiar = a1az Ri2(p), Ria(p) = 'Ria(p) -
ExRaal ExRaabar L. (6'21>
To show that (h.%; and (%.21 ] actually coincide (for p <> p), one pses the sym-
metry of the constant braid operator R = PR corresponding to (#.53), as well
the property (4.105) of the dynamical one (which is in general not symmetric)
together with the exchange relations (% 4) between aj and q)ﬁi .
Xha ar
We shall now describe how the exchange relations (h ] g be obtained.
ISPBT%RH ) be an arbitrary solution of the dynamical YBE (&g% from the set
for a certain choice of a;;(p;;) satisfying (% I()%)). One first shows that,
following the rules above describing the left-right correspondence of p-dependent
quantities, one derives

(Ra)g_ll(pR) AQR1 GR2 = QAR1 AR2 R2—11 = ng a1 a2 = aiao R?Q(ﬁ) . (6.22)

RRp2
Then it remains to just note that transposing the matrix (ﬁ?) (having in
mind our preferred one for which «;;(p;;) = 1) is equivalent to choosing

[pij +1]
[pij — 1]

(6.23)

@ij(pij) = a(pij) =

The quasi-classical expansion

) = [pij 1] _ 1+ tan T cot(% pij)
i 1] 1Ftan T cot(Z pyy)

pis) + Ol53)

(6.24)
shows that this choice of a;;(py changes the sign of the diagonal terms in the
classjca] dynamical r-matrix (3. ) 7) (for B(p) = 0 and B(p) = 2 cotp

Eq. (& gives fio(p) = +i F cot (¢ pjg), respectively).

a(pij = 1j:2Ecot(

k

Remark 6.1 The unique symmetric matrix in the family (%7) not rational,
the corresponding «;;(p;;) being given by the square root of ( 3) 29 This
choice has been used, for n = 2, in %119] (see Eq.(2.22) therein) in gonnect]
with the U,(sf(2)) 6j-symbol interpretation of the entries of R(p) M
As

{zjfﬂw B+ pw)JFO(%) for  B(p)=cotp,  (6.25)

£01 dyn-r-mat
it follows from (%87) that the respective ri2(p) (b.nl 5y has no diagonal terms,
ie. fj(p)=0.
ExRaabar
We shall assume in what follows that (%2 holds, which implies that aj*
satisfy exchange relations identical to those for a, ( 87)

. . X [ExRaabar
The exchange relations of the ”bar” ch.ér%][dgields @(z) corresponding to (%2 I ;
(and reproducing together with them (6.1)) are

w1 (T1) Ua(T2) = (Ry5 (P) 0(T12) + Ror (D) 0(%o1)) Ga(T2) w1 (1) . (6.26)

If w(z) is the "Bloch wave (or CVO) part” of the respective chiral field with
general monodromy matrix g(z) (i.e., if it is acc I%gaﬂled by the bar zero modes’

afrix). the dynamical R-matrix ng( p) in (6.26) should be the same as in
(% 21

If however we only consider (left and right sector) fields with diagonal mon-
odromy, then Rj5(p) should match the one for the left sector, (4.260) in order
the field uf(m) ® % (Z) to be local (in this case p = p).3°

29 As already mentioned (in the comments after (121_1—87)), we prefer to consider our algebra
over the field of rational functions of ¢Pi .

30 As discussed in Section 4.5.3, this could be only sensible if there was a way to truncate the
common spectrum of (shifted) weights to integrable dominant ones (p;i+1 > 1, pin < h—1).



6.1.3 Right sector zero modes and Fock space for n = 2

We shall display here the right sector zero modes’ algebra and its Fock repre-

sentation for n = 2.

AgxLPe quantum group transformation properties of the bar zero mode gcf.
. . aba.

(% 8) for their left sector counterparts)follow from the exchange relations (%.21)

which are equivalent to S(Mys)a; Mo = R, ay , or

-1 -

ka; ;

qFa; =a;E—a?, FEal=qaFE,

[F [F,a

@)=y S(XyarXo=(XN%a?, XelU,. (627

Aan bar

¢ 2 x 2 matrices X (= Ef,FfEf) in (6. nc1£1 jth those given in
% 197, 75 30).

(5.37), and the relevant coproducts are dlsplayed in (
Remark 6.2 The action of X on a¢ is the same as that of o(X) on a?, where
o is the Uq—algebraic homomorphism

o(X)=S8(X"), ie o(E)=-q¢'F, o(F)=—qE, ok)=k",

(6.28)
152 k2
cf. hS ) (supplemented by k' = k) and (anlgi (5.30). From here gne can find

the action of the bar generators on a Fock basis analogous to (5.

| pym) = (@)™ @)~ =" [0)

p=pm—p2; (K—¢ ") |pm)y=0,

Defining the quantum determinant of the bar zero modes’ matrix for n =2 as

1 N
det (@) = —eapasaje’ =[p] (' =1=—€?), (6.30)

2]
detc-n2
it follows from the analog of (%ézici cf. Proposition 4.1) that

za=B_ij _ _af 5 Za=B _ [ﬁzy + 1] for #J
agaje e [p] , Eap @5} { 0 forizj (6.31)
The zero mode parts of Eqs. ( %érl B) and % lZIi for n = 2 read
a3 |0y=0, (0]ay=0; Fa¢ =al @, Pag=asd ", (6.32)

respectively. We further define the transposition as

_1 _9

(@) =q¢" @) =a., = &feﬁsga ,  le., (6.33)
gral, @) =-¢ay, @)=-¢ta}, @) =q¢a

~1
ay
ransp-bar [tran

2
agac;,i comparing (6.33) wifh ¢ , deduce that the inner products of vectors

are obtained from (5. y complex conjugation, i.e.

(0, |B,1m) = Oyt Sy g~ ™ P NP — i — 1)1 (6.34)
t -b Pra.1
( 33 and (%%l imply
_a=t 2 — Ay = [ 2 \ /] 1 qz3 0
agag=0g[p] = abMpa=DMIp|, where M;=q> 0 ob (6.35)
q
barM 1cMbar2
(cf. (%ar|5§; Presenting further M in the form (%?37 and using C' = ¢? 4¢P
allows one to express the ntum group generators as bilinear combinations of

the bar zero modes (cf. (5.I5) for the analogous left sector relations):

sig

; (6.29)
|p,m—1),  Flpm)=—qp—m—1]|pm+1).

bara-vac

bilin2bar



apmn
Using the l;dentical) bar analogs of (%.12 %, it is a simple exercise to show that
Egs. (6.36) reproduce (16.29).

. calcM2,

Recall that the left sector. monodromy matrix M (%.34% is related to the
universal one M (5.40) by (b.44). We shall conclude this section with a remark
on a similar relation for M . a-bar

As the exchange relations (%{ for the Gauss components of the left and
right monodromy matrices coincide, we can parametrize them in the same way
as we did for the left sector, using the FRT construction descrijjed in Section
4.3. The right sector monodromy matrix is thus obtained from (6.6):

s - k! 0\ (k=Y —\Fk

5M = 1 = __ Z - =

M= M_My (—/\Ek‘l k) ( 0k )

k- LA

( NEE! qvﬁmk) : (6:37)

calc _ |calcMbar2
By a calculation similar to (%.42; one shows that M (%3(% is proportional to

(z’d®7rf)M - (6.38)
2h—1 q(m+1)nKm A qm(n71)+1pf(m B %M
2h 20 \oxgomiinpRn (qm0n gD B R R ) =

mn—

which implies that the right sector bar monodromy realizes the alternative ver-
sion of thj Drggfgld map, cf. Remark B.1 in Appendix B.3. In a(}cgrd with this,
(ca_n —bar I

applying or the defining representation 7; reproduces (5.53),
ol _ g 0 K- ,1 AP\ _
Tr (K (ld®”f>M)_ﬂ{(0 q1> ( ANEK=' gNEF+K)[~
=NEF+q'K+gqgKk'=CecZ (6.39)

_ c —
(C is the Casimir (%.22) viewed as a central element of the right copy of U,).

6.2 Back to the 2D field

6.2.1 Local commutativity and quantum group invariance

As the left and right (or, bar) variables commute, the local commutativity of
the 2D quantum field g(z, z) = g(z) g(z),

g1(x1, 1) g2(2, T2) = g2(22,T2) g1(21,Z1) for 1212 >0 (6.40)

barLR
follows from Eq.(%&ﬁﬂ:fhe quantum counterpart of E?‘Z?
Further, Egs. (68 imply that the entries of the 2D ﬁeld commute with
those of M4 M, ,

My My g1 (%, ) = Mio (g1 (x) Rfy Mis) 51(Z) =
= g1(2) (M12 R}, §1(Z)) Mys = g1 (x, &) Myo My (6.41)

( e :thave used the mutual commutativity of operators in different sectors3!); see
(B. for a classical analog of this relation. Having in mind a realization of
the 2D operato QB]%I?‘QI‘Y in the tensor product of the chiral state spaces H ® H ,
we can rewrite (r%ﬂT) as

_ N o A o -
(M2)% ® (Mx)%,) 9% (2) ® §°5(2) = g7, (2) ® §°5(T) ((Mx)% ® (Mx)<,)
_ (6712)
agd, as M4+ and My sati‘sfy identical .exchange relations, interpret theingn%aFRT
trix) product as the opposite coproduct in the natural coalgebra structure (h 7 ).
The above property reflects the ”quantum group invariance” of the g(z, ).

In order to discuss the periodicity of the 2D field (or, which amounts to the
same, its monodromy invariance), we have to be able to impose the constraint of

31As [(M+)%, (Mx)%] = 0, only the matriz multiplication is important here, not the order
of the left and the right matrix elements: (MiMi) = (My)® (M1)e 5 = (M) ﬁ(Mi)



constrC
equal left and right monodromy (lff?ﬁl%at the quantum level. In gauge theories
this procedure corresponds to finding an appropriate ” physical” subspace of the
extended space of states which, in the case of general monodromies, is of the
form
HOH=&p;Hp,®F, ®F; @ Hp (6.43)

(see HB EIE%(CS% (W We shall study this problem in what follows by
exploring in detall the 72D zero modes’ kernel” Q% = af, ® af (acting on the
spaces JF, ®]:'ﬁ) which is responsible for the ”gauge” quantum group symmetry.
We shall only notice here t 4, Sinc tlge exchange relations of the chiral zero
modes with and My (B 5) ?E‘Z‘(g%a;e_tr}é[e same as those of the chiral

g 5] (

fields &[g67 , a relation similar to olds for Qi as well:

[(M1)%® (M), a,®a]=0, or [A(M:),Q]=0. (6.44)

It is also easy to verify that for p = p the left and right monodromies cancel so
that us(z, 2) == u? A2) @ uB(_) is single valued:

AT D (s e R v = (M, )il () © W (2) M)y, v =
=uf (=) PR Qup(R) T T = up(z,2) v, Vv eH, @R,

(We have used Hﬂ Hﬁ %51&%% (%d (%E%S[‘E)

Hence, deducing the dlagonahty (p = p) and the truncation of p to integrable
weights from the properties of Q; , we would have a bridge from the canonically
quantized to the unitary WZNW model. We shall first show how this idea can
be realized in the n = 2 case, and then try to extend the results to general n .

6.2.2 The physical factor space of the unitary 2D model for n = 2

We shall construct in the present section, for n = 2, a truncated (finite di-

mensional) Fock representation of the U,-invariant bilinear combinations of left
and right zero modes and obtain, as a result, a description of the unitary 2D
WZNW model as a rational CFT in a gauge-field-theory-like setting.

Bef éiiscussing the action of the WZNW field g(z, Z) on the extended state
space (6. we shall tackle the intermediate problem concerning the 2D zero
Bﬁ?ﬁie%ﬁ»ﬁm&oﬂrh%ﬁlﬁ% product of chiral Fock spaces F @ F = @, 5 Fp @ Fp
[ \ , 4, o this end, as mentioned above, we have to 1ntroduce
the matrix of operators

; 1 1 . .
Q=(Q)) = (g% g%) = <g lB)) , Q) =a,@ay . (6.46)

It is convenient to Writ(ae%lco_\yl the left and right sector zero modes’ exchange
relations in the form (5.4), which only involves the constant (but not

the dynamical) R-matrix and also reflects the determinant conditions det(a) =

], det(a) = [p],

(e

(6.45)

B, =y~ Py, aalye = [y +1],
qQRp Ot ﬁ _ a] al q1 pz; EPO' , EO(B a?aﬁ = [ﬁ’” + 1] (Z # ]) 5 (647)
q? a’azRaﬁfaflaﬁ . R 5a?affa a; & alef” =0 =¢cn5a f‘d?

A A altExba:
(here, as usual, p = P12, P = Pyy). With the help of (%ZI() Wre are able to show
that

BA = (a}) ®a5) (a} ® a]) = apal @ a5 a] = apal @ (q* R ga5a) + ' Per7) =
=alal ®atay = (al ®af) (ah ®ay) = AB (6.48)

and similarly, CA = AC, BD = DB, CD = DC, i.e. the off-diagonal elements
of the matrix @ commute with the diagonal ones.



On the other hand, we obtain

BC = (al, ®a3) (a} ®a;) = ala? ® a3a; = (¢ a2al R, +eap”!) @ aga) =

*a al @ (afag — PP+ P @ p+1) =
=a2alwalal - p+1 e+ @+1] =
N-N-1 . -
:CB+717 Nilzz_qip®q¥ﬂ7_
q—q

ExR, -
Eq.(%XGa) zrxlnd its right sector counterpart (%alrﬂa vlar(r:lply

NB = ¢’BN , NC =q2CN . (6.50)
t
Similarly, for the diagonal elements of @ (%% we find
AD = (a}, ®af) (a} ®a5) = ala} @ afa) = (¢? a2al R, + capg”) @ af
= aja} @ (ahaf — ¢ Pe") — P @ [p— 1] =
= apay ®ahal — P+ 1o 7 - o1 =
L-L! 5 5
=DA+——+, LF = — ¢TP @ ¢*P
q—4q
as well as
LA = ¢*AL , LD =q ?DL . (6.52)

To summarize, the entries of the operator matrix Q) (E% generate two
commuting U,(sf(2)) algebras. The first one contains the off-diagonal elements
B and C as well as the operators N*! and the other the diagonal ones, A
and D, together with L*!.

As a unitary rational CFT, the WZWN model on a compact group only
involves integrable representations of the corresponding affine algebra. In the
5u(2) case these correspond to shifted affine weights with 1 < p < k+1 =
h —1. We shall sketch in what follﬁﬁ%sé how such a physical space can be defined
within the extended state space (6.43). As a first step we consider the tensor
product of quotient zero modes algebra M((Ih) (1.256), (E‘%']f) and its right sector
counterpart /\;l((lh) , determined by the additional relations

@)'=0=@H" (ija,6=12), FP=1=¢".  (6.53)

@ J

The corresponding "restricted” Fock representation
FM @ FM = MM e MM o) (6.54)

forms a hi-dimensional subspace of F @ F. (F") contains the IR F, ~ vt
for 1 <p <h as well ashthe irreducible quotients of Fj, isomorphic to VhJr
for1<p<h-1,ct (b%%ﬁ_goms dimension is 2(1+---+h —1)+h=h?.)

As we shall show below, Egs. (%?%% imply that the the four entries of the
operator matrix @ EETG& generate two commuting restricted U algebras (b.
The sfpcuum representation of the one formed by the dlagonal elements A and
D (6.51), (6.52) defines the zero modes’ projection of the unitary 2D WZNW
SU(2), model physical space in F") @ F()  Indeed, introducing

Al = a?[ & a% s Ay = CL% & d% =  A)A = q2A1A2 (655)

altExbar
(the implication follows from the last two equalities (%.ZI? i which are equivalent

to abal = gaial and a?a! = qala?, respectively) and similarly for B,C' and

D, one derives the relatlons
At=0=D", I*"=1; Bh=0=cCc", N*=1. (6.56)

The calculation is based on the g-binomial identity

Ms

Ao =P Ady = (A Ay =3 (T) Ay (6.57)

r=0

ADp



m (m)4!
( r )Jr (r)+'(m — T)+! s (T + )+ (T + )+(’I‘)+ ) (0)+ )
27
o q _1 _r—1 m o T(m—r) m
() ="y =07 = (7)) =7 (6.58)
implying, in particular,
Al = (Ay + A)h = Al + Z ( > ArAb=m Al =0 . (6.59)
From Egs. (%._Via),c %alr32a ivgfld 3 % 5) we obtain further
D[0)=0, (0[A=0, LI0)=—g¢*]0),
B|0)=0=C10), (0|B=0=(0|C, N|0)=-—10). (6.60)

Hence, the vacuum representation of the UqBXriple formed by the operators B, C
and N (commuting with A, D and L, see (6.48)) is equivalent to V™ . Applying
powers of A on the vacuum, we generate a h-dimensional representation of Uq
equivalent to the Verma module V; (%80% (for E - A, F—- D, K — L).
Indeed, defining

—]'\0>, m=0,....h—1, (6.61)
we derive
A|m)=[m+1]|m+1), D|m)=[m+1]|m=-1), (L+F™Y)|m)=0

Dvacetc spec §V62)
(assuming that D |0) = 0, see the first Eq.(6.60)). It follows from (5. at
the 1-dimensional submodule spanned by the vector |h— 1) is isomorphic to the

IR Vi~ (note that A| h —1) =0 = D| h — 1)), and the (h — 1)-dimensional

irreducible subquotient spanned by the vectors | m) for m = 0,...,h — 2, to
Vit
- 2 -b
Assuming that (X @Y) =X'®Y’, Egs. ( %ranlzli and %%an:ﬁ 1magy
L'=L, N =N as well as (Q;) =€y 6ng ie.
=(@Q)'=@Q=D, B =(Q)=-Qi=-C. (6.63)

EFH ErF
(Note that the transposition (%%%?%iﬁers from (%T5)) Applying (%55%), we
obtain (for P playing the auxiliary role of the Casimir operator C')
0=MAD|0)=(P—q¢ 'L—qL ™) |0)=(P+q+q ') ]0) = (6.64)

m

DA™ 0) = A [T(@ ! + a7 =g —q71) |0) = [m + 1] ([m])? |0)
s=1

and finally,

’

Dm
(/]
We see, in particular, that the vector |h — 1) spanning the 1-dimensional sub-
module V; is orthogonal to all vectors in the Verma module

(m' | m) =[m+1]6mm , (M |:==(0] m=0,....,h—1. (6.65)

The fact that the Gram matrix deL 1 Zh bzh[ ],0) of the vectors
{|m)}—}) is real (in contrast with ( allows to mtroduce a Her-
mitean structure on their complex span 32 To this end we define a sesquilin-

ear (antilinear in the first argument and hnef)ir in the second) inner product
(.].) which coincides with the bilinear one (%m) on the real span of (6.

The corresponding antilinear antiinvolution (hermitean conjugation of operators
X — X1 defined by (u|XTv) = (Xulv) is given by

D=4, LT=L1' (¢'=q1). (6.66)

DT
32In }[75] the nilpotency (A" = 0) of the operator A is used to define a BRST-type operator
by generalized (as h > 2) homology methods.

m-vect



‘tran.
It thus difgﬁfg‘ from the transposition (%ﬁﬁhen applied to L, still leaving the
relations (6.51), (6.52) invariant.

We shall denote by F’ the h-dimensional (complex) vector space spanned by
{Im)}"—1 and endowed with the (semi)positive inner product described above,
and by F” its 1-dimensional null subspace C |h— 1) . By construction, F’ is the
subspace of the tensor product of left and right Fock spaces F (%)af generated
from the vacuum by the diagonal elements of the matrix @ (ETG& We shall
show below that the action of Q on it is monodromy invariant, in the sense that

QMv:QvE<61 g)y VoeF (QM); ::(aM)Zt@(M_ld)?.

(6.67)
MM og barM
Indeed, using (ﬁ%), (.172) and (%'f‘rm;, we obtain

(QM); = (M,a)., ® (a 7]5)30} - Qj (7% ® ¢*P)) |

(D) e DT -5 DE D)

M
Eq.(%.gmi) now follows from
Bv=Cv=0, Nfly=—v VoveF . (6.69)

The relation (%ﬁ%) (valid for general n) implies that every vector v € F’ is
Uq—invariant, Xv=e(X)v, where X € Uq is given by the Fock representation
of the opposite coproduct:

((M:t)(fﬁ@(Mi)ag) :7T]:®7TﬁA/((M:|:)aﬁ) . (6.70)
MbMD i
Indeed, (%.7”; shows that (%%%) is equivalent to

[rr@mrA(X), Qi =0 VXeU, (6.71)

AdXal

vxﬁlgjt%hb%%n be alternatively substanticggg go = 2: by using the relations (b. a,

(%.2?) and the coproduct formulae (;.IQ;, (5-30), one can easily verify that the
operators Q; =a ® EL} +ab® d? commute with

kek, KeE+Eol, IQF+FoK "', (6.72)

Thus the U -invariance of all vectors in F’ follows from the invariance of the
vacuum vector.

We thus have a finite dimensional toy model rea]}'ﬁi&g typical ingredients
of the axiomatic approach to gauge theories (see e.g. TI,_?WH% — an extended
state space F") @ F() a pre-physical subspace F’ on which the scalar product
is positive semidefinite, a subspace of zero-norm vectors F”, and a physical
subquotient

FPs = FF @b Z{FRe . FRMS = Clp— 1) =C AP |0) . (6.73)

. . . y . ma’t
In this picture the entries )} of the operator matrix (ETG}S play the role of ob-
servahles and Uq , of the (generalized) gauge symmetry leaving them invariant,
see (b.71).
It follows from the above that it is consistent to present the 2D field cor-

responding to the unitary rational CFT 5u(2); WZNW model in the following
diagonal form:

2

ga(z,2) = Z uf(z) ® Q? ®@wy(2), acting on HPWS = @Z;%Hp@@ fghy‘q@?:(p .

j=1
(6.74)
(The fact that p=p §8}q1u9ws from the triviality of the action of the oﬁ"—dia%%gz;l

entries of @ on 7’ (6.69).) Note that the monodromy invariance of @ ( m)
ensures the periodicity (1.63) of g(z,2) on HPMs:

Qv —Q)FPMvs =0 = (g€’ z,e7?™2) —g(z,2)) H""* =0. (6.75)

(6.68)

Fph

2Dg



_ M
Recalling that M = M, M~! = Mp (cf. also (Ezb'él)), one can assert that
( (E-SU

Eq. is the quantum implementation of the constraint of equal left
and right monodromy matrices.

The physical rep %sselngz_xgl%glspace FPhys reproduces the structure of the
5u(2)y fusion ing g%mated by the integrable representations of the
affine algebra RZEE‘SLZUBT 63] in the following way. The (binary) fusion matrices
F}(LA) encoding the action of the operator (A + D)* for A = 0.1,....k (that
corresponds to a primary field of weight \) in the basis |m) (%mave Perron-
Frobenius eigenvalue [A 4+ 1] and provide a representation of the ring (W
The simplest non-trivial example is given by the step operator (for A = 1)
when the characteristic polynomial Dy (x) of the (h—1) x (h—1) fusion matrix

0o 1 0 ... 0 0
1 0 1 ... 0 0

Fo_[0 1 0 .0 0 (6.76)
o 0 0 .. 0 1
0O 0 0 ... 1 0

satisfies, as a function of its index, the recurrence relation and initial conditions

Dyyi(x) = —aDy(x) — Dyp_1(x) , Do(x) =—x, Dz(x)=2>—-1. (6.77)

recurseUm
It follows from (%68) gm[jat, for h > 2, Dp(x) = Up(—z) where the polynomials
(

l@x) are defined in (5.70). Hence, the eigenvalues of the real symmetric matrix
(6.76) coincide with the roots x; = 2cos 32, j = 0,...,h — 1 of Up(z). In
particular, the maximal (Perron-Frobenius) eigenvalue of F }51) is 2cos T = [2].

The above results shed light on the mechanism by which the quantum group,
albeit remaining ”"hidden” in the 2D model, leaves its imprints on the fusion
rules.

6.2.3 The (Q-algebra for general n and its Fock representation

The general n case is much harder to explore, partly because the n-linear de-
terminant conditions for the chiral zero modes are not so powerful for n > 3 as
they are in the n = 2 case.

We assume that a¢ satisfy exchange relations identical to those for a,

(fsr):

aJﬁa? [ﬁz]_l]_a CL [pu]_ _f ?qeaﬁp“ (fOI‘ Z#] and O‘#ﬂ);
[as,aX] =0, a; aﬁ*qﬁ‘”’ a’a a; , a,Bi,j=1,...,n. (6.78)

The commutation rel t120 S of p; with @, and their action on the vacuum are

acol
given in (EI /m and ( salespectiv the analolg’ous formulae for the bar
quantities are contalned mn % ZI;

De ne t the 2D zero mode n xn matrix of quantum group invariant operators
as in (6.46), Q = (Q])7 Q;—Zazlaa@)a].
Proposition 6.1 If (a})"=0= (a®)" V1<i,a<n, then (Q?)h =0.
Proof The indices ¢ and j play no role in what follows; denoting

=Y Qu, Qu=da,2ay ((Q)"=0, QuQs=0"QsQu for a>p),
a=1
(6.79) |Qnhn
we can perform the proof by induction, observing that

Qo(@i+ - +Qa1)=¢* Qi+ +Qa1)Qa, a=2,...,n (6.80)
and hence, by ( %—%% and k@ﬁ59

(@4 4+ Q)" = (@14 +Qa-1)"+(Qu)" = (Q1+---+Qa-1)" . (681) [arh



Alternatively, we can use the following explicit formula that can be proved by
induction as well:

n h n m e -
(Z%) 3@+ (Y QT @)™ Q)T
a=1 . !

mMp) 4!
a=1 my+mo+--+mp=h ( n)+
0<m;<h—1

(6.82)

We shall use for short in what follows the term ”(Q-algebra” for the free
algebra (over the rational functions in ¢P* = ¢?*® I and P/ = I®qPi) generated
by the entries of the matrix aa(gdulo the aea]é(abti%ls following from those for
the chiral zero mode algebras, (4.187) and (6.78). Further, we shall call ”Q-
vectors” those generated from the vacuum by elements of the Q-algebra; thus
any Q-vector v is of the form v = P(Q) | 0) for some polynomial P in the
(non-commutative) entries of @ . It is convenient to call a @Q-vector ”diagonal”
if it is generated by a polynomial in the diagonal entries Q!, i = 1,...,n only.

We shall prove below the following

Proposition 6.2 Any Q-monomial containing off-diagonal entries of Q an-
nihilates the vacuum vector.

Recall that in the n = 2 case this property, is valid, due to the commutativity
of diagonal @8% off-diagonal entries of @) (6.48). It ensures th dn(leonodromy
invariance (0.67) and further, the periodicity of the 2D field (%_'95%, as well
as the diagonality of the model (p = p). Inspired by this example, we shall
introduce the space of diagonal Q-vectors also in the general n case:

Fh9 ={o|vo=P@Qp,....Q1) [0)} = (pij —pij) F¥9=0. (6.83)

(We assume p-dependent coefficients in the polynomials; the equality of p;; and
Di; as operators on F diag gimply follows from the identical exchange relations
they satisfy with the corresponding zero modes.) Let further 7' be the subspace
of F%9 that is annihilated by the off-diagonal elements of Q:

FcFlias  QIF =0 for j#AL, 1<jl<n. (6.84)

As Proposition 6.2 is equivalent to the statement F/ = Fa9 proving it would
allow us to identify F’ as simply ”the Q-vector subspace” of F @ F.

We shall first describe the structure of ' starting from the following list of
conditions satisfied by the algebra of p;; (= p;; ) = —pj; and Q5, 1 <i,j, £ <n
((Y1) - (Y3)) in its vacuum representation ((Y'4) — (Y6)) :

(Y2) (@)"=0, 1<j<n,
(V3) [y +1QIQ) ~ [y —1QIQI, 1<i#j<n,
(Y5) @Q110)=0, 2<j<n,
n—1
(Y6) QnQpZi---Q1l0)=Mt!][an? o) ,
(=1

)

(6.85)

(6.86)

Y7) [py+1v=0, veF = (Q)*Qiv~0. (?70r just fori=j+17?)

The "weak equality” sign in (Y'3) refers to an identity that only%}?g;?s on F',
i.e. we omit the off-diag ?éa}l elements which annihilate it, cf. (6.84); the full
equality is displayed in (6.131) below. Condition (Y2) reflects the restriction
to the quotients of the chiral zero modes’ algebras, see Proposition 6.1. All the

remaining relations are simpl vggrpl%&rlies of corresponding chiral relati élesiilfor
example, (Y6) follows from (h?”Z , its right sector counterpart and (4.130),

and (Y7) — from ...



Found 12-16.09.2013:

ii-anti
Actually (Eizﬂﬁ 1s generally true, as an operator identity,

i 0 gl g—€ap (i i — o) g
anay — aj ay = —q~“(ag al, — aj ag,)

2
(moreover, without any restrictions on the indices)! To prove it, jusy use (%87),
the relation [p & 1] F ¢ = ¢~¢[p] for e = +1 and finally, (£.241) ([p;;]v =
0 = a,apv = alajv). We also obtain

[pij] (abyay + af aly) = g2 [pyj] (afy @y + afy @) + (¢°Ps + q=“oP7) (afal, — ajap).

3con

The last two relations imply (on top of (Y'3) (6.85)!)

2 [pi;]? (QIQ} — Q1Q1) =~ [2pi;] (al,al, — adal) ® (afas — aay) .




Found 13-14.10.2013:
We shall show in what follows that the basic exchange relations h&%? for
the zero modes,

aﬁa pij — 1] = ai J [pij] — aiﬁ aj qfPii (for i#j and a#pf),
[a,al] =0, ag L= q%f ayal, a,B,4,j=1,....,n, (6.87)

take a very simple and transparent form when written in terms of the g-symmetric
and g-antisymmetric projections of the bilinear combination agag ,

i _ Qi ]
agas =S,3+A

aB S;'Zg = qeagsga ) Agg = _q_eaﬁAga (6.88)

where

sty ={ O Pk, arh (6.:89)

J
aaa’a )

—€q — J
plag={ g A o)

2 A
Indeed, rewriting the first relation (%aa87; Siterms of S Jﬁ and A ]ﬂ using ( %788),

[pij — 1] (S, + AL = pis) (a7 S, — g7 AF,) — g7 (S, + AY,) =
= (g% [pi;] — q79) S, — (g~ [pig] + q“=7"9) Al . (6.91)

we obtain, with the help of the ¢-identities

Pl FqP =pF1], (6.92)
the following relation between the matrices S¥ := (S;]ﬁ) , A= (Aijﬂ) :
[pij —1] (S” — 89— Aﬂ) = [pij +1] A (6.93)
11
Exchanging ¢ and j in (%%3), we get
[pij +1] (S = S7" + AY) = — [p;; — 1] A7 . (6.94)
11 12
Now adding both sides of (%%3) and (%ggl), we obtain
(Ipis — 1+ oy +10) (59— §7) = [2][p] (5 — §7) = 0
= S = git (6.95)
(we use [p— 1]+ [p + 1] = [2][p]; the implication follows fr %he fact tghat if
[pij]v =0, then a,a}v = ajajl v, see (%ﬁ_ﬁeturmng to )6 93) E 94),
also derlve - B
[pij + 1] AY + [pi; — 1] A7 =0 . (6.96)

aa2-again
So the first relation (%.87; 1s equivalent to following pair of (matrix) equalities:

’Sij:Sji R [p¢j+1]Aij:[pji+1]Aji ‘

ain

Albeit derived for (i # j and) a # 3, these identities also hold for a =3
Si = SJ¢ reproducing the second relation (%8(; The last relation (6.
implies their counterpart for equal upper indices:

Identical relations follow for the right (bar) sector quantities S;; = (S’iajﬁ ),
Aij = (A%B)7 Dij :

’S S”’ [ﬁij+1]Aij:[ﬁji+1]Aji7 Aiizo.‘
Adef Alconst
Comparing (6.90) and (4. , we see that

iy o' B’
2] A(X] = aa,aﬁ,A

5 RIAY = AYsara (A, = a5 85,—05 00

K (6.97)



—antisymm
Hint: Derive the implications of the first two relations (E 3) for A=A, As =
Aggi

’AZZ:[Q]AZ-, i=1,2, AL AsA, — A = Ay Ay Ay — Ay \

N.B.: Introducing the symmetrizers
Si=[2] -4 = S?=1[2]S;, ASi=0=54;, i=1,2, (6.98)
we can rewrite the last identity in the box in various forms, for example

S1— 51828, =8y — 525815,

[3] Ay — Ay S2 Ay = [3] Ay — A3 Sy Ag (Bl=122-1),

3] S1 — S1 A2 Sy =[3] 82 — S A1 S5

A1 8o Ay + S2 4155 — [2(A1S2 + S2A1) + A + 52 = [2]

S1A428) + AgS1 Ay — [2](A2S1 + S142) + 81+ A =1[2] . (6.99)

AA SiAi
Tt follows from (6.57)8nd (6:98) that

2] Sy = alal, S5 . (2185 = 8% pa al

af J
€ap O, 55/ 5o, 5(3/ 7 do /
S = lansl, — a0, =4 Lty 0 b aZ Pand 0T )
2]65, 05 , a=0 or [2]65 0, , o/ =0
. . %% o
The free term in last two relations (6.99) implies that a 3-tensor v = v,g, that
is g-symmetric in the first pair of indices (vA4; = 0) and g-antisymmetric in the
second (vSs E 0), or vice versa, is zero (something we have already proved, cf.
(EJFZﬁ?)) and (4.244), respectively).
_a\ﬁri;ntg]g in components, the braid relation in terms of the antisymmetrizers
(E I3) reads
A1 Ay A — Ay = Ay A1 Ay — Ay N Aaf,ﬁ/ = q_EO‘B (Sg/ (Sg/ - (ng (55, =
(g —q ) 670057 — 656157 + 656557 =
= q T (g — ) 0360 —
_(qfewfeup + g Cvn e — qfewfe,/p) 535553 +
—€pv—€vp —€pv—€up _ 4 —€uv—€up) S S0
+(q +4q q )6, 0,6) . (6.101)
Note that B - B -
S @ Ay =0= A, @ Sp0 (6.102) [sa=0
since e.g.
S @ A28 = (¢r S ) @ (—q < A%) = — S @ AP (6.103)
hence

QhQi, = (S7,+ A%,) @ (Sl + Ayl = S, @ S + A, @ A . (6.104)

L SA
The properties of $¥,, A g8 g8 %788 with respect to the exchange of
a aBr2im) stEnd-“r-matr

a and B and the definition of e4g (8. imply
Sjjg ® 525 — g%es SEJ;X ® ggz 7 Aifg ® A?,ﬁ — q—zeaﬁAga ® Afg
= 0D SO Sim =07 Y Sis @5
a>f3 a<p
Y AV @AY =q) AV @ A7 (6.105)
a>f a<f

Hopefully, the identities derived above could help finding some missing (¢ri-
linear?) relations for the diagonal Q-operators suggested by the conjectured
Young diagrammatic description of the diagonal Q-space.



Clearly, we can restrict our attention to diagonal @Q-vectors that are also
eigenvectors of all p;;; we shall call them ”p-vectors” for brevity. By (Y1)
and (Y4) they are generated from the vacuum by homogeneous (diagonal) Q-
polynomials. Let mgs > 0, r =1,...,n be the order of homogeneity in Q¢ of
the polynomial generating the p-vector v € Fdie9 fro%%%%e vacuum, t?eglll the
eigenvalue of p;; evaluated on v is found from (Y1) (6.85) and (Y'4) (%736%7

Djev =pjev , pie=mj—myg+L—35, F#L. (6.106) |inc

So to any p-vector v € F%%9 there corresponds an n-tuple of non-negative
integers (myq,...,my). These can be arranged in a table with n rows, the s-
th row containing ms boxes. As the diagonal Q-algebra is not commutative,
a non-zero p-vector v is not uniquely determined by its diagram (for n > 3).
We shall show however that for p-vectors in F’ the diagram characterizes the
one-dimensional space spanned by it. _

It turns out that the restrictions imposed by (%Eg%% and (%%ﬁ%ply that
the tables corresponding to p-vectors in F/ C F%%9 are actually s/(n) Young
diagrams which not only satisfy the requirement

my 2> 2 My > m, =0 (6.107) |Youngl
but is also such that its maximal hook length®® does not exceed h — 1, i.e

pij =mi+j—1<h where m;_1 >0, mj=0 (for 2<j<n). (6.108)

By (%%06), Eq.(%jiﬁll%gfkis equivalent to the restriction p1; < h on the eigenvalue
of the corresponding operator evaluated on v. (Thus, for n = 3 two-line dia-
grams are admissible only if they have m; < h — 2 columns while for n > 4
three-line diagrams are only allowed if m; < h — 3, etc. In general, (n — 1)-
line diagrams can have at most m; < k + 1 columns where k is the level; the
"physical” ones corresponding to integrable highest weights obey m; < k.)
The mere fact that the admissible diagrams are bounded to a rectangle of
size (h — 1) x (n — 1) already shows that F’ is finite dimensional as all the
possible vectors that could correspond to a given diagram could differ at most
by permutation of the boxes (i.e., of the diagonal Q-operators applied to the
vacuum), which would give another finite factor. We shall prove however that
the factor is actually equal to 1, i.e. that all possible ways of building a vector
(by successiye a hcatl n qlf agonal Q-operators, but respecting at each step
conditions %TU%D to which such a given sf(n) Young diagram is
attached, are equwalent, i.e. the resulting vectors are proportional with non-
zero relative coefficients. On the other hand, it is easy to see that p-vectors with
different attached diagrams are linearly independent (relations (Y1) — (Y'5) are
homogeneous, and (Y'6) does not change the eigenvalue of any p;;). It would

then follow $hat the d1 ension of 7' is equal to the number of different diagrams
satisfying ( g 107 i % [08), that is

h
dim F' = < 1) +n—2 (conjecture; valid for n =2,3 only?) . (6.109)
n—

After confirming Proposition 6.2, this result will also apply to dim F@49

So we proceeding to the proof of the following
Theorem 6.1 The non-zero p-vectors in F’ are indexed by sf(n) Young
diagrams of maximal hook length h — 1.

Proof of Theorem 6.1

We shall start with one-row diagrams of the type (mq,0,...,0) (for m; > 1)
corresponding to v = (Q1)™ |0) Condition (Y'2) tells us that, in order v to be
non-zero, we should have m; < h—1. We proceed with ”hook shaped” diagrams

33The hook length of a box in a sf(n) Young diagram %] is defined as the sum of numbers
of boxes to the right of it and below it, plus 1 for the box itself. The hook length of the
diagram with no boxes at all (that corresponds to the vacuum vector in our setting) is 0. If
we enumerate the boxes by their row and column, the maximal hook length of a diagram
containing at leastppne box is that of the box (1,1) (the upper left one, in the standard
?English” ordering h’f%])



corresponding to vectors of the type Q;Q?j . Q3(QH)™|0) for2 < j<mn.
Already j = 2 restricts further the maximal value of m; ; indeed, using (Y'3)
and evaluating the p-dependent quantum brackets, we obtain

(P21 + 1] Q3(Q1)™ |0) = [Po1 — 1] Q1Q3(Q1)™ *|0), or
[m1 —1]Q3(Q1)™ 0) = [my + 1] Q1Q2(Q])™ ~*|0) and hence,
21Q5(QD)"10) = M Q1Q5(QD)"[0) , ie. Q5(Q1)"'[0) =0 .(6.110)

One infers that in this case we should have m; < h —2. The case m; =1 is, in
a sense, ”irreducible” — both sides of the equation vanish (the right-hand side
by (Y'5), and the left-hand side because [pa1 + 1] = —[m1 — 1] = 0) so, in effect,
we don’t get any non-trivial identity.

The fact that the diagram (h—1,1,0,...,0) is not admissible is universal, i.e.
it applies to all vectors of the type (Ql)mQQ(Q Ye=l=m 1) for 0 <m < h—2
which are proportional to each other (with non-zero relative coefficients). One
can summarize this phenomenon by simply noting that ”adding a box either to
the first or to the second row of the diagram (h — 2,1,0,...,0) is forbidden”.
in particular,

[pr2 + 1] Q1Q3(Q1)"*10) = [p12 — 1] Q3(Q1)" | 0) (6.111)

First of all, by (Y3) and (Y'6) the case j = n is reduced to the previous
one:

m QD™ 0) = (@)™ TIQE.. QL [0) = (@)™ M0) . c#0.
(6.112)

3 axhook
Introduce first ”backbone” diagrams. Prove that (%.IUS; should hold for
them. Ngte l‘ghat such diagrams appear as subdiagra Osugf any diagram. Deduce
that (% 0% should hol yin a y cas Eenk derive (6. . Finally, show that
any order that respects (| s OK, i.e. gives the same result up
to a non-zero coefficient.

To begin with, we note that Q{} |0) = 0 if either of the indices j, ¢ is different
from 1. We shall proceed by deriving quadratic exchange relations for the entries
of @ and then using induction in the number of the diagonal Q-elements agtin
on the vacuum, starting with |0) itself and Q1 |0) to prove that actually (%@71%
holds on the whole diagonal space, QJ Fiag =0 for j #1.

To this end, our first step will be the following

Yh2
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Lemma 6.1 [t follows from Eqs. 2@%87), (aZiij1 78) that the entries of Q belonging

to the same row or column commute:

@.Q1=0=1Q},Qi] . (6.113)

We have, in particular,

(@, Qi) =0=[Q; Q] (6.114)

Proof It is sufficient to explore the case in (ch_%rmj when the different indices
(j and ¢) are carried by the left sector variables since the bar quantities satisfy
identical relations. We obtain (assuming implicitly that equal upper and lower
greek i.e. quantum group, indices are summed over all admissible values from
1 to n, if no restrictions are indicated under a summation symbol)

pe; — 11 Q1 QL = [pej — 1) (a}y ® @) (0, @ @) = [pe; — 1] alal, @ a}af =

= [p;; — 1] Y _alal, @afad + > [pe — ] alyal, @ alad =
(e

a#p
=[p;; —1] > _abal @afal + ) (a als [pej] — ajy qe‘*ﬁp“) ® a; a; =
o a8
= [p;; — 1] Y _abal, @atai + (a aj [pes) ® P aga) — afyal, qors ®@i@?) =
a aF#B
= [pej — 1] Za o, ® a%a + Zaﬁaj 4“0 [pe;] — ¢P) @ alal =
o a8
= lpe; — ajal @ajad = [pe; —1QFQ] e, [py —1][Q], Q=0 (6.115)

(we have applied (EE%S?), exchanged the dummy indices a and § in a term on
the fourth line and then used the identity ¢“[p] — ¢ = [p —1] for € = &1). The
first relation (Eaﬂ%% [Q1, Q¢ = 0 follows since, by exchanging the upper (left
sector) indices j and ¢, we can also derive that

oy — 11[QF. Q1) = pey + 1)@ Q1 =0, (6.116)

and there is no vector on which the operators [pg; + 1] and [pgj — 1] vanish
simultaneously. One obtains in a similar way from (6. at [Q5,Q) =0. A

2b
Instead of applying separately the chiral exchange relations h_f87 %aYSETH
we can follow a different path, observing that

Rlz(p) ai ag = ay ag Ryy ; Ripa)dy = @ do ]%12(]5) =
Rix(p)Q1Q2=Q1Q2R12(p) &  An(p)Q1Q2=Q1Q2412(p) , (6.117)
dyn-braid _ |pili
where, according to (&I.nl I0) and ( . 11),

GRW) Y = a7 6 — AT L) a R R() Y = a7 689, — AY, (D)

fldyn > A ExRaabar <6.118)
If we choose a(pi;) =1 in (MB) and Ri2(p) = 'Ri2(p) (see (hﬁsv_fhen the

dynamical antisymmetrizers take the form

A(p)i{f,j,:[p[]]((sz &, — 05, 8) for i£j and i'#£j,
Dij
A(p)zz],f() for i=j or i=j;

_ . —1 g oy
A(p)l;m = A(ﬁ)éz?j, = % (6, 62, — 67 65,) for £#m and ¢ #j',
im

Ap)'L =0 for L=m or =3 . (6.119)

001
It is easy to realize that the last equa@'g? (%.ll i155 as well its bar analog are
particular cases of the last identity in (6.117):

AW, Q1 QI =04 QL AW & [py 11107, Q1]
Ap)y QY Q) = QL QL AP & by — 1] ;,Qz]:o. (6.120)
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Analogously, getting rid of the denominators, we derive from (%Q%I?) that the
following exchange relations complementing Lemma 6.1 hold:

Lemma 6.2 The entries of Q that belong to different rows and columns satisfy

(Ipij = 1 ® [Dem] — [pis] © [Pem — 1) QL QL (= [pij — Pem] Q1 Q1) =

= [pij — 1] ® [pem] Q) Q% — [pis] @ [Bem — 1] Q% Q1 , i# 4, L#m . (6.121)

Remark 6.3 Here and below we make use of the following g-identities and
notations:

PRGP—qg PR

ptlopl-pleptll=Fp-p =7 — 7
p 5 5 PP —qgPRq"
pxl@p]-PlepFl==p+p]==* PR ’
[p]®qeﬁ_q€p®[27} [p p] €e=-+1. (6 122)
Proof of Lemma 6.2 Eq. (Egﬁll% can be also derived from h87 and (%azibS;m

pij — 1] ® [pem] @) QL — [pij] @ [Bem — 1] QL Q) =

= [pi; — 1] @ [Dem)] Zaéaa® ag a,, —1—2 ij] ae aﬁ—qeaﬁp“agaj)(@[mm]&fd

0B

= [pis] @ [Pem — Z“ Lwan,af — > _[pilafal, ® ([penm] af aj), — ¢«oPrag as, ) =

a#p

= [pij — Dem] Y @b ad, @ ag @l + ([pij) @ P — g 0P @ [pyn]) Y alyal, @ af ag, =
«

aZf
= [pij = Pem] Qp QY s P Fj, L£m .
ijl
Remark 6.4 Exchanging ¢ < j and £ < m in (Egﬁl% and then summing both

sides of the obtained relati ) SWith those of the original one we obtain, with the
help of the second line of (6.122), simply

[pi — Dem] [Q4 Q2] = [ij +Pem] [Qn, Q)] . i# 4, L#m . (6.124)

So the commutativity of the diagonal and off-diagonal el Tnents of D]ior n=2
comm-d " A R
(3¢ 6.8, (6.48)) is a particular case of (E I% while Egs. (6.49) and (6.51) imply
(E %ZI]% (there is only one non-trivial relation of this type for n = 2). It is not
surprising that the n = 2 @Q-relations are stronger than those for n > 3; recall
that in the former case we could effectively make use of the chiral determinant
conditions as well.
We are now ready to present a

Proof of Proposition 6.2 We kn it}mt for n = 2 the statement is correct.
Forn >3 and i # j #0 # i Eq(%i&'l% implies, in particular, the following
relations:

pij — 1] ® [pie] Q) Qi = [pij] ® [Bie + 1] QL Q) — [pij; + Pie) Q4 Q7

[pij] @ [Bie — 11 Q) QF = [pij + 1] @ [Bie] QL Q) — [pij + Die) Q1 Q. (6.125)

There is an obvious filtration of F%9 %@%% by subspaces Flias ]:]‘f;igl,
given by the overall order N € Z, of the polynomials P(Q7, ..., Ql) . We shall
perform our proof by induction, assuming the following

ny -

induction hypothesis : QT FY9 —0 for r+#s. (6.126)
ind-h
Eq. (%nl 26% certainly holds for NV (]-'dwg is just the vacuum subspace) and

also for N = 1. Indeed, F is two dimensional, being spanned by |0) and
Q1 10) and, in case r or s equals 1, this follows from Lemma 6.1. Otheryise,

t least one of { fhe indices, say 7, must be not smaller than 3, and then (4.1I87),
(o (k) iy

7'10:{ i 77‘ —7)e
@t [0) =\ 30 (r— 1 abay, — g eesala) [0) o # B

(6.123)



and hence, Q7 Q1 [0) = 0.

So we have proved that f]‘f,iag C F' for N = 0,1. If we are able to prove
this inclusio dlfor any N, Proposition 6.2 would follow by comparing it with
F' C Fdiag K(%Y%% and having in mind that F’ is actually finite dimensional.

Let us assume for the moment th t at least one of the two p-dependent
coefficients in the left-hand sides of (6.125) does not vanish. Then we can
reduce the number of diagonal @-elements by 1 in any diagonal monomial of
order N 4+ 1 applied to the vacuum for i # j # ¢ # ¢, and Lemma 6.1 provides
the proof that this also happens for j =4 or £ =i. '

The problem is thus reduced to the cases when v € Fu®9 satisfies

[pij = 1 @ [pie] v =0=[py;] @ [pie — v for i#j#lFi. (6.128)
2 2
If [pij]lv =0 or [pi]v =0, then (%87) and (%?7]38 rfmply

pis]Jv=0 = dhav=adiav = QQiv=0;Qlv=0,
piJv=0 = aatv=a’afv = QIQiv=0Q Qiv=0,(6.129)

ij0
respectively (see (%1)) So the only case that seems to be non-trivial is

pij —1lv=0=[pi — 1]v for i£J#LFET. (6.130)
As pij |0) = (j —1i) [0) and pi¢ [0) = (£—1) |0), we conclude that such v #|0).
Therefore one needs to consider the subcases of (6. for (non-zero) vectors

of the type v = Q7 w, where w € Fu c Fy9,
Our main tool will be t e following exchange relation for the diagonal ele-
ments of ) implied by Eq.(6.125):

Lpst] ® Lﬁst + 1] Qg Qi = [pst - 1] ® [pst] Qi Qg + [pst +stt] Q; Qi

= e +1QIQ = [P —1]QyQ;  (for s#t).  (6.131)

(The ”weak equality” sign refers to an identity that holds on Fj ; we omit
the off-diag lr%l%l_helements which %}r_l%,ﬂd annihilate a vector by the induction
hypothesis 86_[2615}3) To derive (6.131) we have used the fact that p and p
coincide on F’' (we can restrict our attention to vectors that are generated by
diagonal @-monomials and hence, are common eigenvectors of p and p) and

have taken one more time into account (E l 29i mplying
[pst]v=0, s#t = QiQiv=0=QLQv . (6.132)

Presumably (if Proposition 6.2 is correct), the weak equality (%EJ%I) is actually
a strong one, i.e. holds on the whole diagonal subspace F’. 4

Assume first that v = Q] w withr = j (and hence, r # ). As [p;;—1]Qw =
O_implies p;; w = (Mh +2)w, it follows that [p;;Jw = (=1)M[2Jw # 0, and
( re 1) is equivalent to Q! Q?w = [%]Q; Qiw ([3] #0 for n >3 and k > 1).
Hence, Q; Q! Q; w = 0 by Lemma 6.1. The case r = £ is resolved by an identical
argument. robl

We shall show in what follows that any v = Q. w € F}, satisfying (%TZ{O%
(and the induction hypothesis) can be presented in fact as

v = Q; w  or v=Qiw” forsome w,w” € Fin_, (6.133)

which would allow us to reduce every case to the previous one.
Let mg > 0, r =1,...,n bethe order of homogeneity in Q¢ of the monomial
generating v from the vacuum, then the eigenvalue of p;; evaluated on v is

pipg=mj—my+L—j, jF#L. (6.134)

Note that, due to Eq.(%, we have [pjJv =0 (j # ¢) which, by (%%06),
is equivalent to mj; —my = j —¢ modh. As (h >)n—12> |{—j| >1(>0),
the latter is not compatible with m; = 0 = my, i.e. the monomial in question
contains at least one copy of Q; or Qg.

pres-v
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We could thus try to make use of (%l.rel 31) and pull to the left, step by step,
the one of these Q; or QY which is at the leftmost position in the monomial,
. res . .
until we finally get (% 33;; the idea would be successful if we are abl s show
that the relevant p-dependent coefficients (the quantum brackets) in (6.131) do
not vanish. To check if and how it will work, we need to unveil the structure of
P
v itself.

It is clear that the problem involves the combinatorics of partitions: to
each vector v € Fj generated by a diagonal @-monomial there corresponds
an n-tuple of non-negative integers (my,...,m,) (such that Y '_, ms < N).
These can be arranged in a traellv_.le in which the s-th row contains mg, boxes.
(As the diagonal Q-algebra (%TBl) is not commutative, a non-zero vector v is
not uniquely determined by its diagram for n > 3; the latter characterizes just
the one-dimensional space sp@j%ed by it.) We shall prove in what follows that
the restrictions imposed by ( 1mp1y that the table corresponding to v is
actually an sf(n) Young diagram which not only satisfies the requirement

my> - >My_1 > My =0 (6.135)
but is also such that its maximal hook length®* does not exceed h — 1, i.e

mi+j—1<h where m;_1 >0, mj=0 (for 2<j<n). (6.136)

By (1nc 4), %T&'G ) is equivalent to the restriction p;; < h on the eigenvalue of
the correbpondlng operator evaluated on v. (Thus, for n = 3 two-line diagrams
are admissible only if they have m; < h — 2 columns while for n > 4 three-line
diagrams are only allowed if m; < h — 3, etc. In general, (n — 1)-line diagrams
can have at most m; < k + 1 columns where k is the level; the ”physical”
ones corresponding to integrable highest weights obey m; < k.) Obviously, all
diagrams that are admissible for a given n are also admissible for n 4 1.

34The hook length of a box in a sf(n) Young diagram Fll—l(%@] is defined as the sum of numbers
of boxes to the right of it and below it, plus 1 for the box itself. If we enumerate the boxes
by their row and column, the maximal hook lengthgf a diagram is that of the box (1,1) (the
upper left one, in the standard ”English” ordering 1).

Y1-2

Y2-2
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(Albeit we shall use (E:.EIBI) which is only correct in case the induction hy-
pothesis takes place, there is no loophole in this consideration since the hypo-
thetical property is reproduced at the next level.)

B) Let now the index r be different from any of the indices i,j and £; then
Q@;. does not hange the eigenvalue of p;; or p;, (coinciding with that of p;)
so that (%7’3(% implies [pi; — 1Jw = 0 = [py — Hw for v = Qfw #£ 0, The
case [pirJw = 0 is trivial since then Q' Qrw = QY QLw = 0 (cf. (6. ;0
course, also QT Qiw = 0). If [p;]w # 0, the next step depends on whether
[Pir + 1w = —[pri — 1Jw #0. robl o

B1) If this is the case, we can use Eq.( ETBUJ) to replace Q) Q! QL w by
QZ Q" Qtw (or get immediately zero, %_[?W — 1w =0 or Qiw = 0). Then
we can make use of the first equality ( in case the eigenvalues of both
[pr; — 1] and [p,¢] on Qiw (# 0) do not Vanlbh, or else

pri —UQiw=0 (Qiw #0) = [p—1w=0 (6.137)

which, together with [p;; — 1Jw = 0 would imply [p;;]w = 0 — and hence,
QIQIw=0QrQ w=0=Q"Qw as above, or

Pl Qiu=0 = QIQ Qw=QIQ;Qiw=0. (6.138)
So it remains to inspect the last two possible cases,

B2) QZ Q:Qrw for i,r,j, £ all different and [p,; — 1]w =0 as well as
pij —lw=0=[py —w (= [pjJw=0) (6.139)
and that of r =i, i.e.
C) QZ QiQtw fori+#j#Ll+#i and w satisfying

pij —1Qiw=0=[py—1]Qiw (Qiw#0) =
pijlw=0=[pu]w (= [pjlw=0). (6.140)

Note that
[pij—l]UZOZ[ﬁw—l]U =
1) a’, a% v= qeaﬁa% al v, (6.141)
2) (aflafa —al, af@) v=—q P8 (az al, — aé al)v .
These relations remain valid for o = 3; similar relations exist for the bar zero

odes. . (In fact, the second relation is universal, i.e. an operator one, see
(% 32077 1t follows from %T25 for [p;; —1]v =0 = [pi¢ — 1] v that e.g.

[Mh+ 1] [Nh+2]Q:Q)v = [(M + N)h + 2] QL Q) v
fe. QQIv=QiQlv=0QlQ\v . (6.142)
On the other hand,
pijlv=0 = a%afxv:aiﬂaév = Q%sz:Q}QfU
@ Yagv = Q)Qiv=0QQiv. (6.143)

On a diagonal vector v , the simultaneous validity of the two relations [p;;—1] v =
0 = [pir — 1] v implies [pj]v =0 = [p;¢]v

[@-g]v:O = a

The next steps should involve



e an effective description of the combinatorics of the diagonal Q-vector space
(presumably, coinciding with the pre-physical space F') in terms of sé(n)
Young diagrams; conjecture:

F' = @®pezp F, (dim F, =1 finite sum!), (6.144)
;LL:{A, A >0, h—lZ)\l—‘r...)\n,lZO}
E{pv Pii+1 21 ) h+n_22p1n Zn_l} )
h M1 Hn—2
h+n—2 h+n—2
: ! n __ .
dlmffcardl'hfzzu~ Z ,un_l( b1 > ( S )
p1=1ps=1 Pn—1=1

Two bases in F' : define S;:=Q!...Q1, then

A) (@)™ QD™ [0), h=1Zm > 2 my o >m, =0,

B) ST "1‘0> ()\i:mi—mi+120)7h—lZ)\l—i—...)\n,le.
Explanation: Vectors in F,, are indexed by a (restricted) set of admissible
sf(n) Young diagrams — shapes only, no filling (i.e., no tableaux)! The
space F' is a representation space of the (diagonal) Q-algebra. (Can we

realize Uy(sl(n)) in terms of it, and how? If so, a quotient would be the
"physical” symmetry, see below.)

Taking into account that the ”maximal @Q-string” is proportional to the
vacuum vector,

QrQI=E QL 10) = fanan_1ar €10 = []! [0), (6.145)

een!

cf. (M.130), we conclude that the pre-physical Q-state space is of the form

F'={vlv=PQp1,....Q1) |0} ; (pij — pij) F' =0,

pij] ([pi + 1 Q1 Q% — [pi; — 1] QL QN F' =0 (6.146)

gr n , 1 ,Jj =2, p=pi2 sothat plm) = (m+1)|m) and
%1; A|m m+1]|m+1), Djm) = [m+1]|m—1),
pl([p+1AD—[p—-1DA)|m) = (6.147)

=[m+1]([m+2][m][m+1]—[m]m+2][m+1])|m)=0 (OK!) .

N.B. For n = 2 the representations in I} themselves play in
the same time the role of a basis of a specific (indecomposable)
representation of the quantum group!

e singling out the physical subquotient FPMs

Frhs = Dperp FrPhus ( finite sum; dim fghys =1), (6.148)
,P}TLL*{Aa )\120, kE)‘1+~-~/\n—1ZO}
={p,pit1>21,k+n—-1=h—-1>2p,>n—-1},

k+n-—1 h—1 h—1
: phys _ n o _ = =
dim F card Py, < "1 >_ (n—l) ( 1 ) ,

and, hopefully,

e recovering the 5u(n), fusion ring (of the unitary WZNW model) in this
setting;

Kol, Ko2, Wa2012
e is there a relation to the phase model algebra of Korff and Stroppel [1&5

181, 182, 257]7;

7 Discussion and outlook



Appendix A. Semisimple Lie algebras

Here we shall introduce some reWE vt otlo andégié our conventions about

semisimple Lie algebras (see e.g

Let G¢ be the complexification of the L1e algebra G of a compact semisimple
Lie group G . We shall use throughout this paper the notation tr for the Killing
form. It is proportional to the matriz trace Tr = Tr, in any (non-trivial) finite
dimensional irreducible representation = of G,

1

Y) = Y):= Tr =——"Tr Al
r(XY) = (XY) 1= 5o Tr(@d(X) ad(Y)) = = Tr(r(X)n(¥)) (A1)
for all X|Y € G. Here ad = adg is the adjoint representation of G ( é/ =

[X,Y], dim (adg) = dimG), g¢" is the dual Cozeter number deﬁned in

below,
dim 7

N(m) = Ca(m) - — g (A.2)

is the second order Dynkin indez of the representation m and ¢ (m) is the cor-
responding second order Casimir invariant. Egs. ( and (| are consistent
since

c
see (bf_lza%

For a pair {T,}, {t’} of dual b ises of Ge (such that tr (T th) = 6¢) we
define the Killing metric tensor 74 (;32) and its inverse, n®

N(ad) = Cy(ad) = 24", (A.3)

Nap = tr (TuTyy), 0% =tr(t%°) < % =T, . (A.4)

Conversely, for a given semisimple G¢ , its (unique) compact real form G can be
characterized by the fact that (n4,) is negative definite on it. A Cartan- Weyl
basis of G¢ is given by {T,} = {h;,eq} where h;, i = 1,2,...,r = rankG¢
span a Cartan subalgebra h C G¢ and e, are the step operators labeled by
the roots a of G¢ . If we define a Hermitean conjugation on G¢ acting on the
Cartan-Weyl generators as h] = h;, e} = e_,, then its compact form consists
of the antihermitean elements; hence, G is the real span of

thi, ileate—a), €a—€q, t=1...,7, a>0. (A.5)

Denote by {a;}7_; the simple roots and by aV o the coroot corre-

[e7e?
sponding to «. Let ( | ) be the Euclidean metric ind(u(lze)d by the Killing form
on the (r-dimensional) reaﬂélglci'near span of all roots; then («|8Y) € Z for all pairs
of roots v and 3 (see e.g. [104]). A root is either positive or negative, depending
on the (common) sign of the non-zero integer coefficients in its expansion into

simple roots. The Gauss decomposition of Gc as a vector space reads
Gc=G+0bh®G, Gi=span{e,, Ta >0}, (A.6)

where all the three direct summands are in fact Lie subalgebras (G4 are nilpo-
tent and the Borel subalgebras by := h @ G4 are solvable). In the Chevalley
normalization of the step operators characterized by

[ease—a] = ha , tr (hahg) = (| BY) (A7)

which we shall adopt here, the components 7;; = tr (h;h;), Mo = tr (hieq) and
Nag = tr (eqep) of the Killing metric tensor read

2 o ol a
Nij = (04;/|0¢JV) s Mia=0, nNag= Wfsa,—ﬁ (= b= ( |2 )5a,—6)
(A.8)
while the Lie commutation relations assume the form
[hi, hj] =0 s [hl, ea] = (a| Oé;/) Co = [h“ eij] = :|:Cji€:|:j
;) o)
for ci = (agla)) =2 ( 1o €+j = €ta;
Y ’ ()] o)) !

and [e;,e_;] =05 hj , (A.9)

secD

Gauss



where (¢;) is the Cartan matriz. The Lie algebra Gc admits a presentation
in terms of generators and relations: it is generated by the 3r generators

{higgse54}i—1 (forming the Chevalley basis), subject to the Lie bracket relations
in (A.9) and the Serre relations
e 1—cj
(ad(esi))! e = 0=y (~1)" ( ¢ > ehierj el T =0, it
=0

(A.10)

(the second relation using the associative product of step operators takes place
in the universal enveloping algebra U(Gc)).
The fundamental weights A7 defined by

(N |aY) =6, jl=1,.,r (A.11)

form another basis {AJ }i—y1 referred to as the Dynkin basis, and the coefficients
of a weight A with respect to it, as Dynkin labels. The canonical duality h €
Gc < Gc* established by the Killing form assumes, in particular,

ho <> a¥: aY(h)=tr(hah) Yheh = hi—al, WA . (A12)

. . . fundw | .
The orthogonality of the Dynkin and coroot basis vectors (A.IT) implies that
Z;:1($| N)aj =z =3"_ (z|a)) A for any x € Gc. Putting, in particular,
z=A", x =a; and x = " in this relation, we obtain
A=Y "(NNM)a) , ai=) e AN and o' =) (a¥|M)a), (A13)
j=1

j=1 j=1

respectively. From the first formula in (Es_eIfB) one derives the Cartan components
of the inverse Killing metric tensor
'’ = (A'|AY) (A.14)
hee
and the last one implies that the Cartan element h,, (h_?) dual to an arbitrary
(i.e. not necessarily simple) coroot is expressed as

T
ha =3 (@A) = [ha,esa] = £2es0 - (A.15)
j=1

Linear combinations of simple roots (coroots, weights) with integral coefficients
form the root (coroot, weight) lattice. The coefficients {a;}7_; in the expansion of
the highest root 0 = Z:Zl a; a; are called the Kac labels, and the positive integer
g:=14+>""_, a;, the Cozeter number of G¢ ). The elements of the weight lattice,
called integral weights, are the possible (in general, degenerate) eigenvalues of
w(h;) for any finite dimensional representation w of G . The dominant (integral)
weights A are the weights whose Dynkin labels are non-negative integers,

A=Y MNA N=Alo))eZy, i=1,...,r. (A.16)
=1

They are in one-to-one correspondence with the (non-degenerate) highest weights
of the irreducible representations w5 of G,

(ma(hs) = A\) | A) =0 =malea) |[AY, i=1,...,r, a>0. (A17)

The highest root 8 is the highest weight vector of the adjoint representation ad
of G. The expansion of ¥ in terms of the simple coroots {a}i_;,

2 T
0= ——~ 0= ala) (A.18)
a0 '~ 2
defines the dual Kac labels {a} };_; and the dual Coxeter number

g\ =1+ Z a; . (A.19)
i=1

usef

dCL



From now on we shall fix (6|6) = 2 so that ¥ = 6. For sf(n) = A,_; all
ay,i=1,...,n—1 are equal to 1 so that g;/an) =n.

The quadratic Casimir operator Cy = 7% T, T}, belonging to U(G¢) com-
mutes with all the elements of G¢ and so is proportional to the unit operator I
in any irreducible representation 7, i.e. m(T,)m ({3} = Ca2(m) Ir. On the other
hand, using the definition of the dual bases and (A.T), we obtain

N(m)tr (T t*) = Tr (n(T,) ©(t*)) = N(7) §4 = N(w)dim G . (A.20)

Taking into account that Tr I = dim, we find that the secgnd order Dynkin
index N(mr) is related, fo the Casimir eigenvalue C(m) by a?\_;ﬂ;
By (A.14) and (A'8), Cs assumes the form

T

Co=n"T,Ty="Y (N|A)hih;j+ >

i,j=1 a>0

(o] @)

2

(ea o+ e_nta) =

= Zhihi —|—Ze°‘ea . hli= Z(Ai|Aj)hj , e%:= (a] ) e_o - (A21)
i=1 «

2

j=1
Computing w5 (C2) on the highest weight vector | A) of a given IR for A given
by (IA-16), we obtain

r

Colm) = 3 WA + 3 A S @Y ), =

i,7=1 a>0 Jj=1
— (A1A) + Y (A a) = (A]A +20) , (A.22)
a>0

where
1 "L
== = A A2

is the Weyl vector. In particular, for the eigenvalue of the Ca jir in the adjoint
representation (with highest weight A = 6) one reproduces (%ﬁ;

Co (ad) = (010 +2p) = (6]0) (1+ Y (0V|A) = (0]0)g" =29"  (A.24)
i=1
dcL C
(see (&\_18) and (HQ)) On the other hand, the matrices f, - given by the
structure constants are nothing but the generators of the adjoint represent %? .
o)

WhiE al\‘gwg to relate them to the dual Coxeter number. Indeed, using
(sec 1 eta lad

, (A4 and (A~24), we find

)

Tr (ad(T,) ad(Ty)) =i f,.0 foe® = 29" Nap - (A.25)

The dimension of an IR 7, is given by the Weyl dimension formula

A
dimmy = ] Atpla) (A.26)
o (pla)
The Weyl group of a root system is the finite group generated by the simple
reflections s; := 84, , ¢ = 1,...,7 where s,(8) =0 —2 Egm a. It is a Coxeter

group with generators s; subject to the relations (s;s;)™#% = 1, where

(A.27)

:S
I
S N

and #(i,7) is the number of bonds joining the i*" and j** vertex of the Dynkin

diagram.
The fundamental Weyl chamber consists of the vectors A = Y7, pa, A" in
the weight space forming the cone (Ala)) = po, > 0, i = 1,...,r, and the

NC2



(level k) positive Weyl alcove, a subset of it, is the simplex whose points are
restricted by the additional requirement (A|#) < k. They serve as fundamental
domains of the corresponding Weyl group and affine Weyl group, respectively.

It is easy to see that for sf(r +1) = A, the pontrivial Egs.( Wi (i.e., those
for i # j) reduce to the braid relations (mfor si, i =1,...,r, in accord
with the fact that the corresponding Weyl group is the symmetric group S,41 .
In this case it is convenient to use the standard barycentric parametrization of
the roots and weights by imbedding them in an n-dimensional Euclidean space
with a distinguished orthonormal basis {5, s = 1,...,r+ 1 = n} such that the
simple roots and the fundamental weights assume the form

ag=¢cr—¢epp1, 1<€<n—-1, (&|es)=0ds, 1<rs<n,

Az: 1—— L . Az _ & 1<. < _1. A
( 79%*’ L3 e, Wlag =46, 1<it<n (

j=it1

The set of positive roots then admits a double index labeling,
j—1
Ozij:ZOzg:é“i*é‘j, 1<i<ji<n (OngOzgg_H) (A29)
(=i

and the highest root is 0 = ay, = €1 — &, = A' + A" 1. As the weight and
root systems lie in the hyperplane orthogonal to the vector £ :== >""_ &, (one
can easily verify that (aj;le) =0= (A"|e)foralll <i<j<n,1<m<
n—1), any weight A = >7_, \;A’ can be expressed in terms of the barycentric
coordinates ¢;, j =1,...,7 + 1 such that

r r+1 r+1
A=) "NA =Dt (Ae)=0 = > £4;=0. (A.30)
i=1 j=1 j=1

The Dynkin labels {\;}/_; and {¢; };i% can be found from each other by

I 1 T
No=0;—liyy Kj:Z)\m—mZm)\m. (A.31)
m=j m=1

It would be useful to present explicit formulas for the barycentric coordinates
of some important dominant weights A. One has, in particular,

e N R
Ej(”s):2<5j _1> ;o i(ma) = j1+5j2—27
n n
b =2 (2=8) o G =2 b -6 (a3
n X n

for the labels of the Weyl vector p = Y 7_, A’ (%23) and of the highest weights of
the defining representation, A', of its symmetric and antisymmetric powers, 2A"
and A2, and of their conjugate representations, 2 6”2_1 and A" 2, respectively.
The eigenvgé%%&)of the quadratic Casimir operator (A.)ZZI) in the IR with highest

weight A ( can be then expressed as
Co(ma) = (M| A+2p) =Y (65 +205(p) = > 4;(¢;=2j) . (A:33)
j=1 j=1

D
We get, in particular, Co(my) = =1 4o that, from (FAQCZ’)v

n

dim 7 n?—1 n
N = = . =
(m7) = Calms) dim sl(n) n n?2-1

1. (A.34)

It fgllows that in the fundamental representation of G = su(n) the Killing trace
tr (IAT) coincides with the usual matrix trace Tr.

28)

slnroots

lambda-ell
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On the other hand, for sf(n ) all @y = 1, hence &, sp for the adjoint
representation Cs (ad) = 2n = N(ad) cf h_18 CE\_TE) }YXP_Z% and (A3), The
corresponding level k positive Weyl alcove Contams domlnant weights (bYTG)
satisfying in addition

n—1 n—1
A= > N (Vo) =) A=t~y <k. (A.35)
j,e=1 j=1

As all the roots of sf(n) = A,,—1 have equa bﬁbngth square, the corresponding
(n —1) x (n — 1) Cartan matrix c¢™ = (¢;;) (A.9) is symmetric:

Cij = (Oéi‘Oéj) s Cii = 2 s Cii+1 = -1 N Cij = 0 for |’L 7.]| >1. (A36)
It is easy to see that det ¢(™ =n as it obeys
det ¢™ =2 det "V — det "D | det P =2, detc® =3. (A.37)

We have, furthermore

mg=cg, 0= (AIA) = min(i,5) - = (A.38)
so that
n—1
hi =Y cijh? =2h" —hi=! — it &
j—l

Zgl——h+z . (A.39)

j=i+1

Wslnlambda

etas



Appendix B. Hopf algebras

B.1. The Hopf algebra U,(sf(n))

We shall spell out the definition of the QUEA U,(G) as a Hopf algebra for
G = A, = sl.y1. It is customary in mathematical textbooks to take first ¢ as
just a central indeterminate and consider at a later stage various specializgtions
of ¢ as a (complex) deformation parameter. The definition below follows %5], a
comprehensive text on the subject (see in particular Definition-Proposition 9.1.1
therein), where the ”rational form” U,(G) is introduced as an associative algebra
over Q(q), the field of rational functions of ¢. The n-fold ”cover” Uén)(sﬁ(n))
efined by adjoining to Uy(sf(n)) the invertible elements k;, go=1,...,n — 1
(A.79) then corresponds to the simply-connected rational form [55].

The Chevalley basis of Uy(A,) contains r group-like generators K; and their
inverses Ki_l (such that KiKi_l = Ki_lKi = 1) which correspond to the clas-
sical Cartan generators, and 2r Lie algebra-like ones, the raising and lowering
operators F; and Fj;, corresponding to the simple roots. They obey the following
CR,

K, EBjK;'=qVE;, K FK'=q%F,
K, — K !
a—q¢t "’
c
(here (c;;) is the A, Cartan matrix (b§q36)) and g-Serre relations (that are only
non-trivial for r > 1):

[EZaF]}:ézj 27]:17,’[“ (Bl)

E!Ej+FE;E} =2|E;E;E;,  F!F;+F;F} =[2|F,F; F,
for |i—j]=1, [Ei,E;]=0=[F;,F;] for |i—j|>1. (B.2)
The definition of an arbitrary Hopf algebra 2 involves the coproduct (an
algebra homomorphism A : 20 — A® ), the counit (a homomorphism ¢ : 2 —

C) and the antipode (an antihomomorphism S : 2 — 2). The compatibility
conditions on the coalgebra structures read

([dRA)A = (A®id) A,

(ld@e)A(X)=(eid)AX)=X,

m(id® S)AX)=m(SRid) A(X)=¢e(X) I. (B.3)
The first property is called coassociativity. In the third relation, m is just the
multiplication in the algebra considered as amap m : ARA — A, m(X QYY) =
XY VXY e.

In the case of U, (A,) we define these structures on the generators { K;, E;, F; }
1=1,...,r as follows:

A(K;) = Ki@K; , A(E;) = BEi®K,+19E; , A(F) = FoI+K;'oF; , (B.4)
E(Kl) =1 s E(El) = E(Fl) =0 s (B5>
S(Kj))=K;', S(E)=-EK; ', S(F)=-KF,. (B.6)

A Hopf algebra A is said to be cocommutative if the coproduc%(X) =
> (x) X1 ®Xo is equal to its opposite A'(X) =37 ) Xo ® X1, see (£.36). It
is said to be almost cocommutative if there exists an invertible element R € A2
called universal R-magriz which intertwines A(X) and its opposite, A"(X) =
RA(X)R™!, see (&I.S?). In this case the element

M:=RoyR €A RA (B7)

is called the (universal) monodromy matriz. Exchanging the order of the terms
in the tensor products we obtain that M commutes with the coproduct:

AX) =R A(X)R; ' =RauRAX)RI'R;Y = [M,A(X)]=0.
(B.8)

35The universal enveloping algebra U(G) of any classical Lie algebra is non-commutative
but cocommutative. The deformed QUEA U, (G) is however neither commutative nor cocom-
mutative.

copr

coun

antip
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An almost cocommutative 2l = (2, R) is quasitriangular if R satisfies, in addi-
tion,

(A X Zd)R =R13Ra3 , (Zd X A)R =Ri13R12 . (Bg)

Any of these two relations implies that R solves the Yang-Baxter equation
R12R13Ra3 = RazRi3R12 (B.10)

(and also fixes the normalization of R ); for example, the definition of R and
the first equation (%9) (equivalent to (A’ ® id)R = Re3R13) imply

Ri12R13R23 = R12(A ® id)R = ((A' ® id)R) R12 = Ro3R13R12 . (B.11)
The following relations also hold:

(eRidR=1=(id®e)R ,
(S@idR=R'=(idoS™HR = (S®SR* =R* . (B.12)

If (A, R) is quasitriangular, so is (A, Ra;') .

Universal R-matrices R for quantum deformations of U(G) for any simple
G can be found by considering in the place of Uy(G) a ”topological” version of
it and appropriately completing the tensor square which requires, however, a
non-algebraic setting. One can consider, as a replacement of U,(G) for ¢ = €’ ,
the topologically free C[[t]] algebra (i.e. the algebra over the formal power series
int) U, = %) geperated, in the case G = Ar, by {E;, F;, H;}!_, subject
to relations (B.1) — (%T%)E(wwh K; replaced by e"i) and use an appropriate
completion of the tensor product U, . The universal R-matrix R (obtained
by Drinfeld %&égfor U:(A1), by Rosso gﬂ] for U;(A,), and by Kirillov Jr. and
Reshetikhin | and, independently, by Levendorskii and Soibelman [I87] for
U:(G) where G is a general simple complex Lie algebra) is a product of similar
terms for any sfs triple, appropriately ordered by using a quantum analog of
the Weyl group.

For U;(sf(2)) the corresponding universal R-matrix has the form

) v(v—1)
o q 2 ( )‘)V v v 7—H®H
R_Z‘BTF ® EY q . (B.13)

Clearly, the infinite series in v reduces to a finite sum in any finite dimensional
representation of U, of ”classical type” (i.e. such that Uagd F are nilpotgglgt).
It is easy to verify, in partjcular, in the n = 2 case that (B.13) reproduces (5.36)
for B/ and F/ given by (5.37) and

W' =a = (40 0) . men= (3 ) may

For general n, the matrix R (%.53) can be obtained in a similar way from the
universal R-matrix R for Ui(st(n)).
. e Eegg%tj -h% . . . .
For ¢ a root of unity (as it is in our case, (4. , finite dimensional quasi-
triangular quotients of Uy (G) exist so that the construction of their R-matrix
becomes purely algebraic.

B.2. The Drinfeld double

We are going to briefly recall here, following HSZTSK,ET?P% 197], the construction
of the Drinfeld double D(2() of a (finite dimensional) Hopf algebra 2. Any dou-
ble is quasitriangular and factorizable; moreover, there is a canonical expression
for its universal R-matrix Rp . We shall apply further the general theory to the
finite dimensional quotients of the Borel subalgebras in Uq (sE( ).

Formally, the Drinfeld double D(2() is the bicrossed product of th Jdual
A* taken with the opposite coproduct, and 2 itself (see Chapter IX of [T72]):

qtr
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D) := (A*)°°P > 2A. The Hopf structure on (2A*)°°P is defined, for X,Y €
A, F,Ged*, A(X) = Z(X) X(l) ®X(2) etc., by

(FG)(X)=(FaaG)( ZFX(l) (X@) |

AF)X@Y) (=D Fu)(X)Fo(Y) | =F(YX), (B.15)
(F)

1(X)=eX), eF)=F), SF)(X)=FSX)).

From practical point of view, the following properties of the double D(2l) are
sufficient to reproduce its general structure as a quasitriangular Hopf algebra.

e As a vector space, the double D(2() is just the tensor product 2* @ .

e As a coalgebra, the double D() = (A*)°°? ® A. The tensor product of
coalgebras B and 2 with coproducts Ag(F) = Z(F) F1y ® Fz) and
Ag(X) = Z(X) X1y ® X(g), respectively, is a coalgebra with counit
epeu(F ® X) :=en(F)ey(X) and coproduct?

Agea(F@X) = Y Fuy®Xa)® Fa® X . (B.16)
(F).(x)

e The multiplication in D(2l) is defined as

(FRX).(GoY)= ZFG "X@3)? X)) ® XY,  (BA7)

where

D> X1y @ X2y @ X3y = (id® A) A(X) = (A ®id) A(X)

(X)
and the 7 sign in the right-hand side stands for the missing argument of
the functional. Identifying 21 and its dual Wit}}tﬂoe%f subalgebras of D(2)

eg. A~ TAC D), we derive from (%U.T?)gfhe following constraint
on the mixed multiplication in D(2():

X.F=Y) F(5'(X@)?X0) X@), VXA Fe". (BIY)
()

o If e; € A and e/ € A* are dual linear bases of 2 and 2*, respectively,

the R-matrix Rp of the double D() is given by the (basis independent)
expression

Rp=>» e;@e € DA)@D®RA)  (e(e)=06]). (B.19)

We shall now apply all this to the Hopf algebras U,(by) where

Ug(by) : Fky=qkyF, F'=0, k=1,
AF)=F@I1+k’®F, A(ky)=ky®ky, (B.20)
e(F)=0, eky)=1, SF)= —kiF . S(ky) = k;l
and
Ug(b-) - k-E=qEk_, E'=0, k=1,

AE)=E®Kk +10E, Ak )=k @k_, (B.21)
e(B)=0, ek.)=1, S(E)=-Ek™%, S(k_)=k""

tens-pr-coal
36Note the flip between F(2y and X (1) which makes (B.16 ifter from Ag(F) @ Ag(X) .

tens-pr-coalg
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are the Borel subalgebras of the QUEA ﬁq defined in Section 5.2.2.

It is not difficult to prove that (U,(by)*)®P ~ U,(bs).3" To this end, we
identify e.g. the elements k_ and F with the following functionals (defined by
their values on certain PBW basis of U, (b4)):

k—(fl/n) = 5:}0(1_% 5 E(fl/n) ::_6111% (1<fun):<€(fun):61/0)

for Jon =F"E} €Ug(by), 0<n<4h—-1, 0<v<h-1. (B.22)
[Uxo
Applying the first relation (hSrI%), one derives by induction the general relation
|

(B Fon) = B 5 57 (B.23)

which can he used to prove, with the help of the other definitions in (%t%%),
that Eqs. (B31) h%ﬂ’

In accord with (B.19), the R-matrix for the 16h*-dimensional double D(U,(b.))

is given by
h—14h—1
Ro=Y 3 funme (B.24)
v=0 n=0

PB
with f,,, as defined in (EZJ:Z) and

(_)\)H _u(u;l) 4h—1
= e 2o 0T B (T () = 08T) (B29)
’ r=0
forming the dual PBW basis of U,(b_) . Finally, the mixed relations
k2 _ k72
k4, k_]=0, kiE=qFEky, Fk_=qk_F, [EF]= 77: (B.26) |B-mix
q—4q
1 -
which are derived from (Téu lt8 ,mshow that
D(Uy(by)) =Ty @Up(h) ,  Up(h) = {x™}mi=), wi=kyh='  (B27) [DBU

where Ug(h) belongs to the centre of the double. Hence, the quotient with
respect to the relation k = I (i. sk T k- = k) is isomorphic ng);q . Accord-
ingly, the same substitution in (%.24) reproduces the R-matrix (5.35).
+ex B-ex
Interchanging the roleg of the two Borel subalgebras (%20) and (%Erﬂ) we
obtain the same result (B.27) for D(U(ll(b,)). Of course, the corresponding R-
o -

matrix of the double differs from (B z ;ethe universal R-matrix of U, we obtain
from it coincides with (5.41).

B.3. Factorizable Hopf algebras and the Drinfeld map

A (finite dimensional) Hopf algebra 2 is called factorizable, if there exists a
universal monodromy matrix

M=RyR=) mam cAxU (B.28)

such that both {m;} and {m’} form bases of 2. Alte natively, a factorizable
Hopf algebra 2 is such for which the Drinfeld map D (%.47;

D: A — A, ¢ — D(¢):= (¢®id)(/\/l)zz¢(mi)®mi

is a linear isomorphism, i.e. D(A*) = 2 and D is invertible (the equivalence
of the two definitions is a simple exercise in linear algebra). The opposite
extreme is the case of triangular Hopf algebra for which Ry = R~ and hence,
M = I® 1. (Cf. Remark 3.2 for the infinitesimal notions of factorizability

D
37The duality of the quantized Borel subalgebras is a well known fact hl}



and trian, bllarity, respectively, of a Lie bialgebra defined by means of a classical

r-matrix [218].)

Ch-Ad*3
The space of A-characters (%.46; (functionals obeying ¢(xy)
is an algebra under the multiplication

(1.02) () := (P01 ® ¢2) (A(x)) Vo1, g2 € Ch

3
which, for 2 quasitriangular, is commutative %72]

(62.01)(w) = (91 ® 2) (A (2)) = (¢1 @ 62) (RA(2) RT') =
= (1 ®d2) (S? @ ) RTHRA(2)) = (61 ® p2) (A(z)) =

= o(S*(y)z)),

(5.29)

(¢1.02)(z) . (B.30)

tR
(We use consequtively the definition of R (%137) the one of YA-characters and
apply the last equation (B.12).) Denote by Z the centre of 2, and by A* the

subalgebra of A@%A consisting of elementg B such that [B A( )]
Drinfeld has shown in Proposition 1.2 of %72 that

pech, BeA* = (p®id)(B)cZ.

As M € A2 (cf. (%8))7 the restriction of the Drinfeld map D to

=0 Vrei.

(B.31)

A-characters

sends them into central elements. Moreover, it provides a (commutative) algebra

homomorphism €h — Z (Proposition 3.3 of [72]),

D(¢1.¢2) = D(¢1) D(¢2) Vo1, ¢p2 €Ch

(B.32)

ho
which, for 2 factorizable, is an isomorphism (Theorem 2.3 of ;2C2? ). So in this
case we have an alternative description of the algebra of the characters €h in

terms of more tractable objects, the elements of the centre Z.

C
It follows from (E%n(c) that all g-traces (E%Q% are A-characters. The map

from the GR & of 2 to the subalgebra of €h generated by the ¢-

§:6 — ey, VS Coneey
is a ring homomorphism since

Ch, v, = ChY, + ChY, . ChY . =Chi, . Chi,

traces

(B.33)

(B.34)

.. . . . [V-Ch-homo
where the m1§1;5111g)111%%t10n of characters is defined in (B-29). The proof uses

the identity (b.
implying A(¢g~'z) = (¢ @9 1)A(z) a d the equality Tr (A® B)

e group-like property of the balancing element g (b.

=TrA TrB.

Applying further the Drinfeld map (5. to the g-traces we obtain a com-
mutative ring homomorphism from the GR & to the centre Z of A,

DoS=D:6&6 — 2, DV):=D(Ch,) € Z. (B.35)
%ggd @ %)tmg by the tensor product V; ® V4 in the GR sense, Egs.
) and ( mply

D(V1.V3) = D(ChY, ;) = D(ChY, . Chi,) = D(V1)D(V3) .

(B.36)

Thus, the GR representation theory of 2 is equivalent to the ring structure of

the Drinfeld images D(V') of its IR in the centre Z.
GST1, FHI7 —
Proposition B.1 ( é?, 20]) The Drinfeld images of the Uy, IR

ds == D(Vy) = Z(Trm,pe (K™'my))@m' €2, 1<p<h, e=+ (B.37)

i

, Mm
(for M =3, m; @ m* (%28) taken from (B.Zatﬂr))) are given by

p—1 s
d+ _ZZ)\QM (pt+p—25—1)(p+1) [/H'p_s_l] [ } FHprRHtp=2s—1
I

s=0 pu=0 K

- c
dy = = K"dy =Ti(5)dy .

(B.38)



. Dr-VpA . .
Proof To evaluate the traces in (B.B?] , one first derives the relation

p—1
. . _ —s—1
Try, . BHFYKI = 6 I ([u)h)? § :qJ(257p+1) {/l +tp—s } {5} (B.39)
4 H M
s=0

which follows from

, 1, Mt o . B .
B FUK Ipm)* = g o J1(O = g7 7 K = KT Ipym) =
s=0

pol P +qP— q2(m—s)—p _ qp—Q(m—s)

_ i+ j(2m—p+1) € —
= el th i 2m=p Sl;[o 3z |p,m)¢ =
pn—1
— (Jtn @ (@m—p+1) H [p— m+ s][m — s]|p, m)* (B.40)
s=0
ErF -Vp  [EFK- Mmat TrV
(one uses (%?SBI), (%S.ZGGCg and (%.2765 > In vi v¥_9fA(}5.7%0§ and (ﬁi{af)), the computa-
tion of the Drinfeld images dj, = D(V};) (B.37) reduces to
= N
d; _ - Z Z 'q2 qern+H(n—7rL) (Trve (E/LF,LLK”L—l)) F”E“KB.ﬁ)
2h = o= (1)) ’
1 h=l2n1
_ % Z Z 6u+’m—1q'rn(n—u)-‘ru(n—f—l))\QM ™
pn=0m,n=0

p—1 1
x 3 glm=Des—pry) [“JFP_S_ ] [5] FHEEET
=0 M 1%

For ¢ = +1, taking the sum over m makes the summation in n automatic.
Taking € = —1 (= ¢") is equ%&b}%m to multiplying the result for ¢ = +1 by

— K" arriving eventually at ( |

3
Remark B.1 There is one more algebra of 2-characters %2] given by the
functionals

Ch:={¢pcA*| p(xy) = d(yS?*(x)) Ya,y €A}, (B.42)
cf. (E}.IZI_BA Tinl “he corresponding Drinfeld map is defined as
A = A, b (idD (M) . (B.43)

The g-traces, now given by>®

Chy, (z) == Trny, (gz) Vzedd, (B.44)
— |Ch-Ad*inv-bar
belong to €h (B.42) since
Chy (y S$*(x)) = Trry (9y 5°*(2)) = Trny (9y gz g™ ") = Chy (xy) . (B45)

calcMb

Dr-map-b
According to (6. friSection 6.2.1, it is exactly the map (Blizlméi which relates
the bar monodromy M to _%at%niversal monodromy matrix M for the right
exp in particular (througl_l the analogs of

sector_copy of Uy Eq.(B. ips,
( ﬁ 5 gaund (%f_%‘é;]) why the trace (]gi%) belongs to its centre Z .

35 - . canCh-bar o . |canCh
Note that the balancing element g itself enters (B:- and not its inverse as in (5.49).

TrVa

Ch-Ad*inv-bar

Dr-map-bar

canCh-bar
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Appendix C. The quantum determinants det(M)

and det(M.)

The exp 11;51%1 below follows F[B To understand the meaning of the second

relation ( ) det(a) = det(aM), we shall first point out that
ayMyasMs ...an M, = araz...a, (R12]%23 cee J%nq nMn)n

(C.1)

M
(the proof of (%_nl) as well as that of (b‘%) can be found below). Defining

1 i1 in
det(a M) := Tl Cinevin (@M)g, ... (aM)g ePPn

M det-intert
using (%lll) and the first relation (&Ie 319;7ev1:7ewobtain

det(aM) = det(a) det(M)

(C.2)

(C.3)

with the following expression for the determinant of the monodromy matrix:

aq...ap,

B1---Bn

1
det(M) = WE(M |:(R12R23 Rn 1nMn)n:| E’Blmﬁ" .

(C.4)

de
One can further rearrange (k I.le) in terms of the Gauss components of the mon-

odromy matrix, using

(RioRas ... Ryo1nMy)" =" (Riz. .. Ryo1n)" My ... Mo M)

M . .
The first relation (hﬁgg) (rewritten as RiaMyoMy; = MysMy Ryo) implies

Aln Min- --Mil = Min~-~Mi1 Aln

MZ) .
(C.5)

(C.6)

A1 AMM
where Ay, is the constant quantum antisymmetrizer (ﬁ27), and Eq(k l.é) leads,

in turn, to
Earenan (Mx)%G - (M1)%, = det(My)ep, .5,
(M) . (Mx)%3 7P = det(M) gon

where we define originally
1 Qp a1 _fBr1...0n
det(My) := wl Earan (Mx)%, - (Mx)%, € .

(The line of reasoning is similar to the one used in the proof of Propositi
Due to the triangularity of M. , the only nontrivial terms in the sum
the n! products of its (commuting) diagonal elements, hence

det(Mz) = [[(M2)% =1

(cf. (%217“%) Since
det(M:') = det(S(My)) = det(My)™t =1

£-FRT
(where S is the antipode (EOFS)) and, due to (E I78 ?

1
Ti0it1 . _ 1t N _
8a1...010i+1...anR iyl q " Eqy..an 1= 15 sy 1 )

o prefcton in (85
so that the ¢ ™ prefactor in (IC.5) is exactly compensated by

1 — 2_
_ (_ql—O—n)(n 1)n €6, 5, = qn 1

~ 1.0
n:|

€on...an [(R12R23 o Ryin) Bro B
d MR: d M-1
we obtain from (k ” tZII), (b%) and (k ” t?]),m C-107 that
det(M) = det(M,) det(M_)"* =1.
detaM

det-mult MM
Egs. keﬁ 3) and E!(f lg) ensure the validity of the second relation ( .

We refer to [TT3] for details in the proofs of the two crucial relatio

(C.7)

(C.8)

(ﬁc{) I%Mpg\;%rl

(C.9)

(C.10)

(C.11)

651*--Bn )
(C.12)

(C.13)

).
ns (%@1)

and (bﬁ) Here, we shall content with an illustration, calculating, et(M) for
n = 2 by using ((?.Z[). Indeed, from (4. , (h.36), (%.Z[Z and (b.44) we obtain

1 - - af 1
det(M) = mé‘ag (R12M2R12M2) e’ = —

po 2]
2
as prescribed by (}'(MMI. Mlgi %FEH

5 (2¢ "N [E,FIK+\K?) =1,

(C.14)

det-mult

detM

IIEE

MRn

AMMA

detMpmvaril

detMpmvar2

detM-1
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