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STABILITY	  DIARGAMS	  

EXPERIMENTAL	  REALIZATIONS:	  
(i) atoms with a large magnetic moment (chromium and dysprosium), 
for which Bose-Einstein condensation has been recently demonstrated; 
(ii) Rydberg atoms in electric field; 
(iii) diatomic polar molecules with electrically induced dipole moment; 
(iv) and spatially separated excitons in a semiconductor layer.  

STABILITY	  PROBLEM	  

In contrast to rotational symmetry case tilted dipoles square of 
Bogoliubov spectrum touches the zero in two points. 
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The local supersolid phase is manifested by (i) density waves at 
mesoscopic scales, which coexist with (ii) Bose-Einstein condensation 
and (iii) superfluidity.  

CONVEGENCE	  OF	  THE	  DEPLITION	  

�0 5

✓ = 4�

✓ = 30�

�c ⇡ 5.13

�c ⇡ 5.17
✓ = 0(a)

n� n0, a.u.
n� n0, a.u.

✓0 ⇡/6

(b)

�c ⇡ 3.08 �c ⇡ 3.08

n
�

n
0
,a
.u
.

�0 5

✓ = 30�

✓ = 4�

�c ⇡ 5.13

�c ⇡ 5.17
✓ = 0(a)

n
�

n
0
,a
.u
. (b)

✓0 ⇡/6

�c ⇡ 3.08

�0 5

�c ⇡ 5.13

�c ⇡ 5.17
✓ = 0

(a)

(b)

✓0 ⇡/6

✓ = ⇡/6

✓ = 0.0698

n
�

n
0
(a
.u
)

n
�

n
0
(a
.u
)

The condensate depletion in the system diverges at the threshold of 
the roton instability for normal to the layer dipoles [U.R. Fisher, 2006]. 

The condensate depletion for a 2D dilute gas of tilted dipoles 
converges close to the threshold of the roton instability. 
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TOWARDS	  SUPERSOLID	  PHASE	  

The manifestation of local DWs at mesoscopic scales in the system at the 
finite temperature and the finite tilting angle in the vicinity of the threshold 
of the roton instability close to the boundary of the  collapsed phase. In (a) 
the two-body density matrix is shown as the function of (x,y) with the 
diagonal short-range  order (dotted line corresponds to x=y). In (b) the two-
body density matrix along the line x = y for zero temperature (dashed, 
amplitude is enhanced on the factor 10) and non-zero temperature (solid) 
cases. In (c) the one-body density matrix along the line x=y for non-zero 
temperature case.  
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One can see the presence of the diagonal short-range
order [see Fig. 2(a)], i.e., local DWs, in the two-body
density matrix (16). In the case of non-zero tempera-
tures, the e↵ect is enhanced [Fig. 2(b)]. This fact can
be explained as a result of the thrown of the occupation
from the BEC mode at zero momentum p = 0 to the
region of roton minima at T 6= 0.

Along this line, for the one-body density matrix
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hâ†
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where coe�cients C0 and C

T

are given by Eq. (18). Pres-
ence of the diagonal short-range order in the one-body
density matrix is illustrated in Fig. 2(c).

To start, we analyze the range of the order in the sys-
tem as the function of the detuning of the density from
the critical one [see Fig. 2(d)], at weak (✓ = 1�) and
strong (✓ = 45�) anisotropy [83]. The range of the order
is larger closer to the threshold of the roton instability.
Moreover, the short-range order transforms to the long-
range one on the crossover in the box of a fixed size.

We note that in the case of weak anisotropy the range
of the order is small, i.e., it is less that half of the wave-
length, then the e↵ect of local DWs vanishes [Fig. 2(e)].
In other words, at small angles ✓ the range of the order
becomes less that the the half-period of local DWs �/2
even in the case of the su�ciently small roton gap ⇣r.

The amplitude of the diagonal short-range order is suf-
ficiently small in the close vicinity of the long-wavelength
collapse phase due to su�ciently high temperature of
quantum degeneracy T0 and, therefore, su�ciently small
ratio T/T0 [see Fig. 2(f)]. In contrast, the amplitude of
local DWs becomes sizably larger close to the boundary
of the long-wavelength collapse phase.

On the other hand, in the immediate vicinity of the
collapsed phase the dimensionless density �

c

is very low
[Fig. 2(g)], then the density n0 is low as well, therefore,
the ratio T/T0 is large. Then the dimensionless conden-
sate parameter,

⌘ =
C

T

4
ln

1

R
s

+
T

T0
ln

L

r

s

, r

s

⇠ ~/p

r

, (25)

↵�0.5 1

⌘, U

J

0

1

FIG. 3. The dimensionless condensate parameter ⌘ [see Eq.
(25), solid] and the relative value of the universal jump UJ

[given by Eq. (25), dashed] are shown as the function of the
ratio of coupling constant ↵. Figures correspond to ad/z0 =
7/150, T/~!0 = 3/13, ✓ = 45�, ⇣ = 0.1, and ⇣L =

p
3/10.

and the dimensionless universal jump at the BKT tran-
sition [84]
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are extremely large, which prevent BEC and superfluidity
in the system (see Fig. 3). Recall that the condition for
BEC is ⌘ < 1 and for superfluidity is U

J

< 1.
One can see that there is a region of parameters in the

phase diagram (Fig. 4) indicating all signatures of super-
solidity: Bose-Einstine condensation and superfluidity
coexist with local DWs of a sizable (a) range (l � �/2)
and (b) amplitude (C

T

⇠ 1). While on the global scales
the system is in the gas phase.

Crucial requirements for the stable local supersolidity
are as follows: (i) anisotropy, i.e., dipole tilting angle
✓ is not small; (ii) vicinity of the roton instability, i.e.,
the roton gap is su�ciently small; (iii) non-zero tempera-
ture, which is lower that the temperature of the quantum
degeneracy.

A physical reasons behind the supersolid phase is pres-
ence of the attraction and the attraction in the spectrum
of the system. At certain parameters, attraction and at-
traction result in not only the roton-maxon character of
the excitation spectrum, but also in the roton instability
regime in which the spectrum touches zero at two points
only (not at the circumference).

Internal mechanism of the local supersolid phase is
macroscopic

We suggest experimental realizations of the roton min-
imum and the roton instability for dysprosium atoms and
RbOH polar molecules. Details of our estimations are:

(i) Dysprosium atoms. m = 164 u, z0 = 150 nm (~! =
130 nK, !/2⇡ = 2.72 kHz), ✓ = 72�, a

d

= 7 nm, a

s

= 5.5
nm, a = 0.5 nm, n0 = 2.15 ⇥ 1010 cm�2 (↵ = 11/14,
� = 17/5), µ = 10.6 nK, n0/n = 197/200.

(ii) Polar molecules RbOH [87]. m = 104 u, z0 = 200
nm (~! = 116 nK, !/2⇡ = 2.42 kHz), ✓ = 57.7�, a

d

= 14
nm, a

s

= 5 nm, a = 3 nm, n0 = 2.65 ⇥ 109 cm�2 (↵ =
5/14, � = 10/9), µ = 9.3 nK, n0/n = 74/75.
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